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Figure 1: Two visualizations to explore indirect bias in language models: (A) The table shows the five most positively (top) and most
negatively (bottom) correlated traits with the selected occupation homemaker (highlighted column). (B) The scatterplot shows sports as
dots, and their proximity is defined by their similarity based on their associated traits (using t-SNE). The color mapping reveals how strongly
associated the sports are with female. The tooltip shows the label for the dot hovered by the user (gymmastics top right).

Abstract
Language models are trained on large text corpora that often include stereotypes. This can lead to direct or indirect bias
in downstream applications. In this work, we present a method for interactive visual exploration of indirect multiclass bias
learned by contextual word embeddings. We introduce a new indirect bias quantification score and present two interactive
visualizations to explore interactions between multiple non-sensitive concepts (such as sports, occupations, and beverages) and
sensitive attributes (such as gender or year of birth) based on this score.

CCS Concepts
• Human-centered computing → Visual analytics; • Computing methodologies → Natural language processing;

1. Introduction

Natural language processing (NLP) applications such as dia-
logue management or machine translation are nowadays mostly
based on machine learning algorithms operating on language mod-
els, such as word embeddings [MCCD13] or transformer mod-
els [DCLT19]. These language models are trained on very large text
corpora, which are likely to include stereotypes. Language mod-
els learn these stereotypes in the course of their training, leading
to bias in downstream applications. Indeed, it has repeatedly been
demonstrated that direct (or explicit) bias in language model ex-
ists [BCZ∗16, PAL20], and methods for debiasing have been pro-

posed [BCZ∗16,DLPS20]. Direct bias usually can be measured lo-
cally, for instance by varying the gender of the sentence subject
(e.g., “He works as an engineer” vs. “She works as an engineer”).
What is more challenging to discover is indirect bias [LWF∗21].
Indirect bias is triggered by a seemingly neutral attribute, such as
the Zip code, but is often caused by a correlation with some sen-
sitive attribute [ZWW17]. Indirect bias is sometimes only evident
in a holistic, global context, spanned across multiple phrases (e.g.,
“Aubrey is a woman. She works as a hairdresser and likes to
drink tea.”) and therefore also requires correct context associa-
tion [LWMS21].

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

https://orcid.org/0000-0003-1387-5132


Louis-Alexandre and Waldner / Visual Exploration of Indirect Bias in Language Models

The goal of our work is to enable users to interactively ex-
plore potential indirect bias in language models. We thereby fol-
lowed three main design goals: discovery of indirect bias (G1)
across multiple targets and attributes, exploration of multiclass
bias (G2), i.e., targets and attributes beyond binary levels, such
as female – male, and reasoning about potential sources of bias
(G3), i.e., sensitive attributes that may explain unexpected influ-
ences of non-sensitive attributes on target variables. To fulfill our
design goals, our work has the following two main contributions:
(1) a new indirect bias score to probe bias beyond local single-
sentence scope and (2) the design of two interactive visualizations
to support visual exploration of bias between multiclass targets and
sensitive or non-sensitive multiclass attributes.

2. Related Work

In their seminal work, Bolukbasi et al. [BCZ∗16] showed that
the vector space of word embeddings [MCCD13] can be probed
for implicit bias similarly to the Implicit Association Tests
(IAT) [GMS98]. A large number of bias metrics for word em-
beddings have afterwards been proposed, like the Word Embed-
ding Association Test (WEAT) [CBN17] or the Relative Norm
Difference [GSJZ18]. In contrast to word embeddings, contex-
tual word embeddings like BERT [DCLT19] preserve sentence-
level context and are more and more replacing traditional word
embeddings [KVP∗19]. Bias metrics developed for traditional
word embeddings cannot consistently reproduce bias in con-
textual word embeddings [MWB∗19, KVP∗19]. A well-known
bias metric for contextual word embeddings is the Sentence En-
coder Association Teat (SEAT) [MWB∗19], which is an exten-
sion of WEAT [CBN17]. Like WEAT, it only measures binary
bias between two extremes. The Logarithmic Probability bias
score [KVP∗19] measures the bias between a single target word
and an attribute. It is more flexible than SEAT [MWB∗19] because
it is not operating on stereotype pairs. Therefore, our indirect bias
score builds upon this score.

Bias metrics allow users to explicitly quantify an expected
bias. Visualization can facilitate untargeted exploratory analysis
of language models with respect to potential bias. For exam-
ple, DiscriLens [WXC∗21] supports interactive exploration of in-
tersectional bias – i.e., bias caused by a superposition of sev-
eral attributes – on general machine learning models. In the con-
text of language models, researchers have visualized the associa-
tion between targets, such as a set of sports or a general list of
words, and sensitive attributes, such as gender, age, or wealth, in
scatterplots [KTE19, LJLH19, Pea23, RDP∗21] or parallel coordi-
nates [GHM21]. However, most of these examples work with word
embeddings [KTE19, LJLH19, GHM21, RDP∗21], and all focus
solely on direct bias and binary sensitive attributes (e.g., male
vs. female or Islam vs. Christianity). We extend these
approaches by explicitly probing and visualizing the interaction be-
tween multi-class targets and attributes and providing interactive
methods to reason about indirect sources of bias.

3. Indirect Logarithmic Probability Bias Score

To measure indirect bias learned by contextual word em-
beddings, we extended the Logarithmic Probability (LogProb)

score [KVP∗19]. This direct LogProb score measures how strongly
a single target t, such as a person’s occupation or preferred sport, is
correlated with a single attribute a. The attribute is what describes
the persons, such as mental or physical traits, country of origin,
sex, religious beliefs, etc. The score uses the mask prediction task in
combination with a transformer model to probe direct bias. For that,
it is necessary to construct a template sentence containing both, tar-
get and attribute. To compute the score, the attribute is masked first,
and the target probability p(target) – i.e., the probability that the
mask is equal to the attribute in the template sentence containing
the target – is computed. In the next step, both, target and attribute,
are masked to compute the prior probability p(prior) that the mask
is equal to the attribute. The LogProb score p(t,a) is then the log
ratio of these probabilities. The prior probability thereby tries to
compensate for the fact that some attributes are more common than
others and therefore yield higher probabilities in the mask predic-
tion task.

The direct LogProb score can only probe direct associations be-
tween target and attribute that can be expressed in a single template
sentence. Our extension, the indirect LogProb bias score splits the
template sentence into a pair of sentences s1 and s2, which are
linked through a set of bridge elements B: For the i’th bridge el-
ement bi ∈ B, we construct two template sentences: One links the
target to the bridge s1(t,bi), and the other one links the bridge to the
attribute s2(bi,a). For each template sentence, the target probabil-
ities are computed as p1(target) = P([MASK] = bi | s1(t,bimasked ))
and p2(target) = P([MASK] = a | s2(bi,amasked)). In addition,
we compute p1(prior) by masking both, bridge and target, and
p2(prior) by masking bridge and attribute. The bias probabilities
of the sentence pair p1(t,bi) and p2(bi,a) are computed as log ratio
of the target and prior probabilities, as for the original bias score.
The final indirect LogProb score is then the Pearson correlation be-
tween the bias probabilities of all template sentence pairs generated
from the bridge, as illustrated in Figure 2.

As bridge, we use a list of first names, as names naturally link
targets and attributes to individuals. Names have been shown to
have strong associations with valence, career, and family [CBN17].
Intuitively, the indirect LogProb bias score is high if the predicted
probability of bridge names is high for target and attribute – or low
for both. As a representative bridge for the U.S., we selected a list
of the 100 most frequent female and male baby names given in the
U.S. between 1920 and 2020 [Soc22] with 779 names in total.

A strength of the indirect LogProb bias score is that the template
sentences can be very short because target and attribute queries are
expressed in two independent sentences – especially when using
names as bridges. This way, context association [LWMS21] may
be preserved. Furthermore, it can measure bias even for targets that
are unknown to the model’s vocabulary (such as fireman or po-
lice officer in case of BERT) and therefore will not be pre-
dicted by the model in a mask prediction task like “Jim works as a
[MASK]”.

To validate the indirect LogProb bias score, we compare its pre-
dictions to those of the direct LogProb [KVP∗19] score. We tested
the predictions on a BERT model [DCLT19], pre-trained on the
Wikipedia dump dataset and the BookCorpus dataset [ZKZ∗15].
Since the LogProb score is sensitive to the formulation of the tem-
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Figure 2: Overview of the indirect LogProb bias score method illustrated on the target-attribute pair hairdresser and woman: the
current bridge element bi is passed through template sentences to obtain the target and prior probabilities from which the bias probabilities
p1 and p2 are computed; they are then correlated across all bridge elements to obtain the final indirect LogProb bias score.

plate sentence, we always constructed multiple variants of the two
sentences s1 and s2 and averaged their target and prior probabilities.

First, we compare the direct and indirect LogProb bias scores
by predicting beverage preference by gender and comparing the
predictions to a public health study [BCWW∗16]. We therefore
link the four alcohol beverages discussed in the public health study
(beer, wine, liquor, and alcohol in general) to the gender-
defining word woman and compute both bias scores. According to
the ground truth [BCWW∗16], only for wine there is a higher con-
sumption ratio for women than for men. The indirect score shows
the same trend, while the direct score predicts a positive bias to-
wards woman for all four alcoholic beverage. It is also notable that,
out of a list of 18 popular alcoholic and non-alcoholic beverages,
the direct LogProb bias score predicts the same top-two bever-
ages for males and females (namely champagne and whiskey).
The indirect score predicts tea and milk as the beverages most
strongly associated with women, but beer and liquor for men.

Second, we test the association between beverage preferences
and occupations, and whether there might be an indirect gender
bias. We test 99 occupations (inspired by prior work [BCZ∗16,
LMW∗20]) as targets × 10 beverages as attributes. For the indi-
rect score, we can observe that milk and tea are associated with
occupations like nanny and businesswoman, which also pos-
itively correlate with woman. Similarly, beer and liquor are
associated with occupations like fireman or mechanic, which
also correlate with man. This indicates that the sensitive attribute
gender could indeed explain the non-sensitive association between
occupations and preferred beverages revealed by the indirect score.
The direct score, on the other hand side, predicts milk to be the
most preferred beverage by farmer. Similarly, it finds an associ-
ation between fireman and water. One potential explanation is
that, due to the concatenation of two phrases into one sentence, the
context association [LWMS21] (in this case the fact that we want
to investigate what people like to drink rather than what they work
with) might get lost.

4. Visual Bias Exploration Interfaces

The bias data we are dealing with can be represented as multi-
dimensional tabular data, where each cell represents the indirect
LogProb bias score of a target-attribute combination. We there-
fore experimented with two simple visualizations that are com-

monly employed for such data characteristics: (1) a table view
and (2) a scatterplot. In our prototype, we support the follow-
ing set of non-sensitive concepts: 99 occupations, 18 beverages,
30 sports, 10 countries, 618 mental and physical traits (extended
from [KVP∗19]). In addition, we included sensitive attributes like
gender, country of origin, race, or age.

Table-based visualizations are an intuitive choice for multidi-
mensional data structures as they essentially represent a 2D projec-
tion of the higher-dimensional data cube [STH02]. Each cell can
serve as nested display or show a single associated value as text
label or color. The indirect LogProb bias score associated with the
respective target-attribute combination is shown through a diverg-
ing color map (Figure 1). By clicking on the cell, the associated
scatterplot visualizing the direct bias scores for target and attribute
across all bridge elements is shown (see Figure 2 right). Users can
choose any target-attribute combination from a dropdown menu so
that they can explore potential indirect bias (G1).

However, the table is limited by the number of items that can be
effectively shown on the screen – especially if rows and columns
need to be labeled, as in our case (violating G2). We solve this
through interactivity: initially, the table shows all target and at-
tribute levels in a pre-defined order (e.g., alphabetically). The user
can then select a target to sort the attribute rows according to the
bias score with the selected target item. This limits the number of
displayed rows to the five most positively and negatively correlated
attributes (Figure 1(A)). This allows the users to express queries
like “Which traits are associated with homemaker, and which are
not?” By clicking the selected column header a second time, the
system also sorts the columns based on the cosine similarity of the
targets’ attribute vectors to the selected target. This supports ques-
tions like “Which professions are supposedly done by people with
opposite characteristics to homemaker?”, as shown in Figure 3.

Table sorting remains persistent when changing the displayed
attributes – even if the attribute based on which the table is sorted
is no longer visible. This way, users can visually test whether a
correlation between a target and a non-sensitive attribute is poten-
tially caused by a sensitive attribute (G3). In other words, they can
perform visual queries like “Are occupations that are considered
to be done by ambitious people also predominantly done by
males?”

Scatterplots are popular for inspecting clusters in high-
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Figure 3: Table view: traits positively correlated with homemaker (rows) as well as the most similar and dissimilar occupations to home-
maker (columns) based on their associated traits.

dimensional data. Using dimensionality reduction algorithms, the
multi-dimensional tabular data is reduced to two spatial dimensions
to show the similarity of data items in 2D [SMT13]. In our design,
each scatterplot dot represents a single target item, such as an occu-
pation, a beverage, or a type of sport. The high-dimensional feature
vector represents the bias scores associated with a single target and
the potentially large number of attribute levels (G2), e.g., the indi-
rect LogProb bias scores for sports with respect to the 618 mental
and physical traits associated with the people practising them (see
Figure 1(B)). This way, users can inspect similarities of targets with
respect to the selected attribute based on their proximities in the
scatterplot. This allows to answer questions like “Which occupa-
tions are similar with respect to the sports these professionals like
to do?” (see Figure 4). Compared to the table view, the scatterplot
scales much better with the number of target items to be shown. The
target labels can be revealed as tooltips by hovering the scatterplot
dots with the mouse (see Figure 1(B) top). Like for the table view,
any target-attribute combination can be chosen to explore indirect
bias (G1).

However, the scatterplot alone cannot answer questions like “In
which occupations do people like to play baseball in their free-
time?” To support such queries, we allow users to select any sensi-
tive or non-sensitive attribute level to define the colors of the scat-
terplot dots (Figure 4). If the color changes systematically with the
dots’ positions, we can assume that the selected attribute level can
explain the similarities between the target items. This way, a single
sensitive attribute value (e.g., female) can be directly probed on
a visualized target-attribute scatterplot (G3). This supports queries
like “Are occupations that are associated with similar sports also
predominantly associated with males / females?”

5. Preliminary Results and Conclusions

We conducted a preliminary qualitative study with ten volunteers
(five females, aged 22-25), wherein five explored potential bias us-
ing the table view and five with the scatterplot. The overall im-
pression of the of both visualizations was rated as positive by the
users. User feedback indicates that the table view was easier to un-
derstand initially, but some users would have liked more options to
sort the table. For the scatterplot, the 2D layout of the dots was not
always immediately understood and was considered rather little by
the users during their investigation. Users also mentioned difficul-
ties to find a specific target, which required hovering over the dots.
For both visualizations, reasoning whether a sensitive attribute can
indirectly explain discovered bias was considered a difficult task
and required some explanation by the study conductor.

Figure 4: Scatterplot showing the similarity of occupations based
on the how likely the professionals practice different sports. Color
coding is shown for baseball (left) and female (right), respec-
tively. Labels of dots were added manually for explanation.

Direct bias was easier to understand. Some of the users’ prior
expectations with respect to bias could be confirmed, for instance
an association between artist and passionate. Other associ-
ations were unexpected, yet seemed plausible for the users, such as
a preference for champagne and France as country of origin.
However, some associations were questioned by our users, such as
engineer with homosexual and the top countries associated
with beer (Vietnam and the United States).

In summary, while the indirect LogProb bias score could reliably
detect direct and indirect bias in our quantitative experiments, it
occasionally delivered questionable associations in the exploratory
study. Intuitively, given names may not be able to predict some
attributes, like sexual orientation. Also, the bridge currently has a
strong focus on popular names in the U.S., and therefore may fail
on sensitive attribute predictions like country of origin or race. In
the future, we will therefore investigate more international names
or even completely alternative bridge sets.

We further showed how to enrich two common visualizations
with interactivity to support our design goals. Our preliminary
study shows that both visualizations are suitable for our intended
tasks, but the table view is probably easier to understand initially.
In the future, interaction with the scatterplot view could be facili-
tated by ranking attributes used for color-coding based on quality
metrics [SA15].

Acknowledgements

This work is partially supported by the Austrian Science Fund
(FWF): P 36453.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



Louis-Alexandre and Waldner / Visual Exploration of Indirect Bias in Language Models

References
[BCWW∗16] BRATBERG G. H., C WILSNACK S., WILSNACK R.,

HÅVÅS HAUGLAND S., KROKSTAD S., SUND E. R., BJØRNGAARD
J. H.: Gender differences and gender convergence in alcohol use over
the past three decades (1984–2008), the hunt study, norway. BMC public
health 16, 1 (2016), 1–12. 3

[BCZ∗16] BOLUKBASI T., CHANG K.-W., ZOU J. Y., SALIGRAMA V.,
KALAI A. T.: Man is to computer programmer as woman is to home-
maker? debiasing word embeddings. Advances in neural information
processing systems 29 (2016). 1, 2, 3

[CBN17] CALISKAN A., BRYSON J. J., NARAYANAN A.: Semantics
derived automatically from language corpora contain human-like biases.
Science 356, 6334 (2017), 183–186. 2

[DCLT19] DEVLIN J., CHANG M., LEE K., TOUTANOVA K.: BERT:
Pre-training of Deep Bidirectional Transformers for Language Under-
standing. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT (2019), Burstein J., Doran C., Solorio
T., (Eds.), vol. 1 of Long and Short Papers, Association for Computa-
tional Linguistics (ACL), pp. 4171–4186. 1, 2

[DLPS20] DEV S., LI T., PHILLIPS J. M., SRIKUMAR V.: On measuring
and mitigating biased inferences of word embeddings. In Proceedings of
the AAAI Conference on Artificial Intelligence (2020), vol. 34, pp. 7659–
7666. 1

[GHM21] GHAI B., HOQUE M. N., MUELLER K.: WordBias: An In-
teractive Visual Tool for Discovering Intersectional Biases Encoded in
Word Embeddings. In Extended Abstracts of the 2021 CHI Conference
on Human Factors in Computing Systems (2021), Association for Com-
puting Machinery, pp. 1–7. 2

[GMS98] GREENWALD A. G., MCGHEE D. E., SCHWARTZ J. L.: Mea-
suring individual differences in implicit cognition: the implicit associa-
tion test. Journal of personality and social psychology 74, 6 (1998),
1464. 2

[GSJZ18] GARG N., SCHIEBINGER L., JURAFSKY D., ZOU J.: Word
embeddings quantify 100 years of gender and ethnic stereotypes. Pro-
ceedings of the National Academy of Sciences 115, 16 (2018), E3635–
E3644. 2

[KTE19] KOZLOWSKI A. C., TADDY M., EVANS J. A.: The Geometry
of Culture: Analyzing the Meanings of Class through Word Embeddings.
American Sociological Review 84, 5 (2019), 905–949. 2

[KVP∗19] KURITA K., VYAS N., PAREEK A., BLACK A. W.,
TSVETKOV Y.: Measuring Bias in Contextualized Word Representa-
tions. In Proceedings of the First Workshop on Gender Bias in Natu-
ral Language Processing (August 2019), Association for Computational
Linguistics (ACL), pp. 166–172. doi:10.18653/v1/W19-3823.
2, 3

[LJLH19] LIU Y., JUN E., LI Q., HEER J.: Latent space cartography: Vi-
sual analysis of vector space embeddings. In Computer Graphics Forum
(2019), vol. 38, Issue 3, Wiley Online Library, pp. 67–78. 2

[LMW∗20] LU K., MARDZIEL P., WU F., AMANCHARLA P., DATTA
A.: Gender Bias in Neural Natural Language Processing. Springer
International Publishing, October 2020, pp. 189–202. doi:10.1007/
978-3-030-62077-6_14. 3

[LWF∗21] LIU H., WANG Y., FAN W., LIU X., LI Y., JAIN S., LIU
Y., JAIN A. K., TANG J.: Trustworthy ai: A computational perspective.
arXiv preprint arXiv:2107.06641 (2021). 1

[LWMS21] LIANG P. P., WU C., MORENCY L.-P., SALAKHUTDINOV
R.: Towards understanding and mitigating social biases in language
models. In International Conference on Machine Learning (2021),
PMLR, pp. 6565–6576. 1, 2, 3

[MCCD13] MIKOLOV T., CHEN K., CORRADO G., DEAN J.: Efficient
Estimation of Word Representations in Vector Space. In 1st Interna-
tional Conference on Learning Representations, ICLR (2013), Bengio
Y., LeCun Y., (Eds.), Workshop Track Proceedings. 1, 2

[MWB∗19] MAY C., WANG A., BORDIA S., BOWMAN S. R.,
RUDINGER R.: On Measuring Social Biases in Sentence Encoders. In
Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Tech-
nologies (2019), vol. 1 of Long and Short Papers, Association for Com-
putational Linguistics (ACL), pp. 622–628. 2

[PAL20] PRATES M. O., AVELAR P. H., LAMB L. C.: Assessing gender
bias in machine translation: a case study with google translate. Neural
Computing and Applications 32, 10 (2020), 6363–6381. 1

[Pea23] PEARCE A.: What Have Language Models Learned?
https://pair.withgoogle.com/explorables/
fill-in-the-blank/, 2021 (accessed in February, 2023).
2

[RDP∗21] RATHORE A., DEV S., PHILLIPS J. M., SRIKUMAR V.,
ZHENG Y., YEH C. M., WANG J., ZHANG W., WANG B.: VERB:
Visualizing and Interpreting Bias Mitigation Techniques for Word Rep-
resentations. CoRR abs/2104.02797 (2021). 2

[SA15] SEDLMAIR M., AUPETIT M.: Data-driven evaluation of visual
quality measures. In Computer Graphics Forum (2015), vol. 34, Wiley
Online Library, pp. 201–210. 4

[SMT13] SEDLMAIR M., MUNZNER T., TORY M.: Empirical guidance
on scatterplot and dimension reduction technique choices. IEEE transac-
tions on visualization and computer graphics 19, 12 (2013), 2634–2643.
4

[Soc22] SOCIAL SECURITY ADMINISTRATION: Popular baby
names. https://www.ssa.gov/oact/babynames/limits.
html, 2021 (accessed August, 2022). 2

[STH02] STOLTE C., TANG D., HANRAHAN P.: Polaris: A system
for query, analysis, and visualization of multidimensional relational
databases. IEEE Transactions on Visualization and Computer Graph-
ics 8, 1 (2002), 52–65. 3

[WXC∗21] WANG Q., XU Z., CHEN Z., WANG Y., LIU S., QU H.:
Visual Analysis of Discrimination in Machine Learning. IEEE Transac-
tions on Visualization and Computer Graphics 27, 2 (2021), 1470–1480.
2

[ZKZ∗15] ZHU Y., KIROS R., ZEMEL R., SALAKHUTDINOV R., UR-
TASUN R., TORRALBA A., FIDLER S.: Aligning books and movies:
Towards story-like visual explanations by watching movies and reading
books. In Proceedings of the IEEE international conference on computer
vision (2015), pp. 19–27. 2

[ZWW17] ZHANG L., WU Y., WU X.: A causal framework for discov-
ering and removing direct and indirect discrimination. In Proceedings of
the Twenty-Sixth International Joint Conference on Artificial Intelligence
(2017). 1

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://doi.org/10.18653/v1/W19-3823
https://doi.org/10.1007/978-3-030-62077-6_14
https://doi.org/10.1007/978-3-030-62077-6_14
https://pair.withgoogle.com/explorables/fill-in-the-blank/
https://pair.withgoogle.com/explorables/fill-in-the-blank/
https://www.ssa.gov/oact/babynames/limits.html
https://www.ssa.gov/oact/babynames/limits.html

