
Sketch to 3d-Model using Deep Learning and Differentiable Ren-
dering

Master thesis in partial fulfilment of the requirements for
the degree of

Master of Science

Author: Kerstin Hofer, BSc.

Submitted to the Master degree program MultiMediaTechnology, Salzburg University of Ap-
plied Sciences

Advisor: DI Philipp Erler
Second Advisor: DI Dr. Clemens Havas, BSc.

Salzburg, Austria, 03.03.2023

Affidavit

I herewith declare on oath that I wrote the present thesis without the help of third persons and
without using any other sources and means listed herein; I further declare that I observed the
guidelines for scientific work in the quotation of all unprinted sources, printed literature and
phrases and concepts taken either word for word or according to meaning from the Internet and
that I referenced all sources accordingly.

This thesis has not been submitted as an exam paper of identical or similar form, either in
Austria or abroad and corresponds to the paper graded by the assessors.

Date Signature

First Name Last Name

i

Kurzfassung

3D Modelle aus 2D Sketches zu generieren ist seit einigen Jahren ein relevantes Thema, da es
die Möglichkeit bietet, den Prozess der Ideenrealisierung einiger Berufsgruppen wie Künstler,
Techniker und Designer zu vereinfachen. Mit der wachsenden Bedeutung Neuronaler Netzwer-
ke wurden neue Rekonstruktionsmethoden entwickelt, die sich diese Lernfähigkeit zu Nutze
machen. Einige dieser Methoden setzten Differentiable Rendering ein. Hierbei wird durch De-
formierung eines Basisobjekts der Unterschied zwischen dessen Differentiable Renderings und
Vergleichsrenderings minimiert. Da diese Vergleichsbilder, wie z.B. Normal- oder Depthmaps,
dem System inhärent nicht verfügbar sind, müssen diese anhand der gegebenen Informationen,
in diesen Fall der Input-Sketches, ermittelt werden.

Das Ziel dieser Arbeit ist es ein End-To-End-Framework vorzustellen, welches vorberechnete
auf 2D Bildern 3D Modelle rekonstruiert. Hierzu werden generierte Normal- und Depthmaps
als Vergleichsbilder sowie ein Basisobjekt basierend auf der Topologie des Eingabebildes in
der Deformierung verwendet. Durch einen Vergleich der generierten Modelle dieser Pipeline
mit den Resultaten einer etablierten Methode und einer Ablation Studie wird die Wirkung der
einzelnen Verbesserungen und die Grenzen des Frameworks evaluiert. Dadurch wird ermittelt
ob die eingebrachten Optimierungen die Qulität der resultierenden Meshes verbessern und all-
gemeinere Objekte unabhängig von Klasse/Typ rekonstruieren können.

Schlüsselwörter: mehrschichtiges Lernen, Modell Generierung mittels Einzelbildes, Topolo-
gie, differenzierbares Rendering, 2.5D Zwischendarstellung

ii

Abstract

Deriving 3D models from sketches has been a relevant research topic for years now, mainly due
to its potential to simplify the realization of ideas and drafts for certain professions like artists,
engineers and designers. With the raise of neural networks, new methods start to form utilizing
the learning capability of those networks. One such method is the application of differentiable
rendering, where a base mesh is deformed until the difference between the differentiable ren-
derings and the target image is reasonably small. However, those target images, e.g., normal or
depth maps, are not inherently available to the system, since the only input is a sketch. There-
fore, intermediate representations predicted from the sketch need to be generated, that provide
the required information.

The aim of this thesis is to provide a an end-to-end framework that reconstructs 3d models from
2d sketches using intermediate depth and normal representations and differentiable rendering.
In addition to that, the topology of the sketch is determined and a respective base mesh is
used for the mesh deformation. By comparing this setup to an established network as well
as conducting an ablation study to reveal the effects the improvements have, the system and
its limitations are evaluated. This will determine if the proposed optimisations facilitate input
generalisability beyond class/object restrictions and improve mesh quality.

Keywords: deep learning, single-view model generation, topology, differentiable rendering,
2.5d intermediate representation

iii

Contents

1 Introduction 1

2 Related Work 3
2.1 Single-View Deep Learning Techniques 2d Image to 3d Model 4

2.1.1 Implicit Function based Techniques 5

2.1.2 Voxel based Techniques . 5

2.1.3 Point Cloud based Techniques . 7

2.1.4 Mesh based Techniques . 8

2.2 Differentiable Rendering . 11

2.3 Generative Adversarial Networks and Wasserstein Generative Adversarial Net-
work . 13

2.4 Map Generation . 14

2.5 Image Segmentation and 2d Topology Awareness 16

2.5.1 Threshold Techniques . 17

2.5.2 Neural Network-based Segmentation Techniques 17

2.5.3 Edge-Detection-based Techniques . 18

2.5.4 Region-based Techniques . 20

3 Method 21
3.1 Base Mesh Determination . 22

3.1.1 Flood Fill . 23

3.1.2 Genus Computation and Base Mesh Determination 23

3.2 Normal and Depth Map Generation . 26

3.2.1 Network Architecture . 26

3.2.2 Network Training . 29

3.3 Mesh Reconstruction using Differentiable Rendering 31

4 Evaluation 36
4.1 Comparison with State-of-the-Art Model . 37

4.1.1 Experimental Setup . 37

4.1.2 Qualitative Evaluation . 41

4.1.3 Quantitative Evaluation . 44

4.2 Ablation Study . 47

iv

4.2.1 Experimental Setup . 47

4.2.2 Qualitative Evaluation . 50

4.2.3 Quantitative Evaluation . 58

5 Limitations and Possible Solutions 60
5.1 Hole Detection and Topology Determination - Base Mesh Determination Module 60

5.2 Map and Hole Reconstruction - Depth and Normal Map Prediction Module . . 63

5.3 Limitations introduced by Single View and Deformation Process - Differen-
tiable Rendering and Mesh Deformation Module 64

6 Conclusion and Future Work 65

Appendices 74

A git-Repository 74

v

List of Figures

1 General system overview. From a seeded user sketch, the silhouette image, the
normal and depth maps are translated and a base mesh is determined. Using
those, a differentiable renderer is used in order to predict a 3d model. 22

2 Basic mesh templates with genus 0, 1, 2, 3 and 4. 26

3 Network Discriminator, which takes the concatenated input and predicted image
as well as the concatenated input and target image. Both concatenations are
classified and the resulting classifications are then used to calculate the final
discriminator loss. 27

4 Network Generator, which takes a greyscale resp. RGB raster sketch as input
and uses an encoder-decoder network. It predicts either a greyscale image,
which depicts the depth map or an RGB image, which depicts the normal map,
based on the input sketch. 27

5 Depiction of important values used for smoothness loss. 36

6 Images used as input for the pre-trained models of Kato, Ushiku, and Harada
2018 256x256. 40

7 Sketches used as input for this thesis’ pipeline. 40

8 Normal values of reconstructed aeroplane, bench, car, and chair rendered from
4 different azimuth angles (225, 315, 45, 135) using a single view image (225°
azimuth, 30° elevation) as input. The first line shows the ground-truth meshes,
the second row the meshes generated by Kato, Ushiku, and Harada 2018 and the
last rows the results of the proposed pipeline with 64x64 resp. 256x256 images
as input. In (a) the same viewpoint the input images are rendered from, 30°
elevation and 225° azimuth, are used, in (b) an azimuth angle of 315° for the
camera position is used. The depicted meshes are normalised for the rendering
process to fit in the field of view. 42

9 Output meshes of the different comparison variants rendered from the same
viewpoint as the input images. The first line shows the ground-truth meshes,
the second row the meshes generated by Kato, Ushiku, and Harada 2018 and
the last rows the results of this research’s pipeline with 64x64 resp. 256x256
images as input. For the rendering process, the meshes by Kato, Ushiku, and
Harada 2018 are normalised to fit in the field of view. 43

10 Generated meshes using a single view input image (225° azimuth, 30° eleva-
tion) rendered from 4 different azimuth angles (225, 315, 45, 135). The first
line shows the ground-truth meshes, the second row the meshes generated by
Kato, Ushiku, and Harada 2018 and the last rows the results of the proposed
pipeline with 64x64 resp. 256x256 images as input. The depicted meshes are
normalised for the rendering process to fit in the field of view. 44

11 Input images for ablation study. 49

vi

12 Silhouettes rendered from the same viewpoint as input sketch. The ground-truth
row shows the rendered silhouettes of the ground-truth meshes, in the predicted
row the flood-filled sketches are depicted and in the remaining rows are the
rendered silhouettes of the reconstructed meshes. 52

13 Normal maps rendered from the same viewpoint as input sketch. In the ground-
truth row the rendered normal maps of the ground-truth meshes are depicted.
The predicted row shows the maps normal map prediction of the map generation
network and in the remaining rows the rendered normal maps of the deformed
meshes are presented. 53

14 Depth maps rendered from the same viewpoint as input sketch. In the ground-
truth row the depth maps of the ground-truth meshes are displayed. The pre-
dicted row shows the maps predicted from the trained depth map generation net-
work and in the variant rows the rendered depth maps of the deformed meshes
are depicted. 55

15 Resulting meshes rendered from the same viewpoint as input sketch. In these
figures, the results of the deformation process of the various variants are de-
picted in their respective row, along with a rendering of the ground-truth mesh
if available. 56

16 Meshes of all categories with genus 3 rendered from 4 different azimuth angles
(225, 315, 45, 135). If available, the first row shows the renderings of the base
mesh. In the other rows, the output meshes of the 4 variants are depicted. The
depicted meshes are normalised for the rendering process to fit in the field of
view. 57

17 Sketches where using the flood fill algorithm in combination with the determi-
nation will result in wrong base meshes. 62

Listings
1 Implementation of pattern matching in order to determine Euler calculation . . 24
2 Gradient Penalty . 28
3 Implementation of Intersection over Union for the smoothness loss and the torch

sum function used to compute the sums used in the IoU computation. 33
4 Implementation of pre-processing operation for smoothness function. For two

faces the vertex indices used as edge points for both vertices are stored in v1
and v2. Vertex indices belonging to only one face are stored in v3 resp. v4. . . 34

5 Implementation of computation of values used for the smoothness loss. 36

vii

List of Tables

1 General overview of the discussed models. The models are grouped by their
output type. The used input type and whether they use 2.5d representations
and differentiable rendering in their reconstruction process are depicted. Fur-
thermore, the consideration of the topology is charted. However, this is only
relevant for reconstruction methods using triangle meshes. * No clear input
specification in the paper, the given input medium is based on images and the
general description of the method as well as the implementation if existing. **
depth map as input possible *** silhouette map as input possible **** mesh as
input required . 4

2 Kernels used by the Sobel edge detection . 19

3 Kernels used by the Prewitt Edge detector . 19

4 Bitquads Q1. 24

5 Bitquads Q3. 24

6 Bitquads QD. 24

7 Results Intersection over Union; higher values indicate better reconstruction
results. The proposed method using 256x256 sketches as input as well as Kato,
Ushiku, and Harada 2018 produced the best outputs an equal amount of times.
For the remaining model, the proposed method scored better, with the 64x64
input sketch resulting in a slightly better result. Overall, the scores indicate
little similarity between the base meshes and the reproduced meshes. 45

8 Results Chamfer distance; lower values indicate better reconstruction results.
The absolute values of the Chamfer distance of the ground-truth models to the
ground-truth models are represented in the first row. The absolute values of
the outputs of comparison variants as well as the relative values to the GT are
represented in the respective rows. The method of Kato, Ushiku, and Harada
2018 scored best for nearly all models. For two classes the proposed method
produced better models, while for the other two, the results are very similar for
all tested variants. 46

9 Results Intersection over Union for the four comparison variants. Variants C
and A scored best on average, with C being better than A and the evaluation
of B resulting in better values than the evaluation of D. The proposed variant
scored best in 4/10 methods and resulted in reasonable results in another 2/10
categories. Overall the metrics indicate poor quality of the reproduced meshes.
Higher values indicate better reconstruction results. 59

viii

10 Results Chamfer distance for the four comparison variants, lower values indi-
cate better reconstruction results. The absolute values of the Chamfer distance
of the ground-truth models to the ground-truth models are represented in the
first row. The absolute values of the outputs of the variants of the model as
well as the relative values to the GT are represented in the respective rows. The
evaluation of the proposed model A resulted in the best values and the evalua-
tion of variant D in the worst. This indicated that despite the overall inadequate
quality of the output meshes, the proposed method improves the base variant D
inspired by research such as Xiang et al. 2020. 59

Abbreviations

AOV Arbitrary Output Variables
cGAN Conditional Generative Adversarial Network
CNN Convolutional Neural Network
CUDA NVIDIA CUDA
DR Differentiable Rendering
GPU Graphics Processing Unit
GT Ground Truth
ICP Iterative Closest Point
IoU Intersection over Union
JSON JavaScript Object Notation
OBJ Wavefront OBJ
PDE Partial Differential Equation
PLY Stanford Triangle Format
PNG Portable Network Graphics
R-CNN Region Based Convolutional Neural Networks
ReLU Rectified Linear Unit
RGB Red Green Blue
RGBA Red Green Blue Alpha
SDF Signed Distance Function
UV UV coordinate
WGAN Wasserstein Generative Adversarial Network

ix

1 INTRODUCTION 1

1 Introduction

Deriving 3d models from 2d images has been a relevant research topic for years now since there
is great potential to simplify the model creation processes of certain professions like artists,
engineers, and designers. Following the progress made in researching deep neural networks,
recently the usage of deep learning in order to generate a 3d model from a 2d image was widely
researched.
But the main problem still remains: How can a computer interpret a 2d image as a 3d object?
Many methods have been developed for different types of 2d images, with the majority focusing
on greyscale or RGB images, like state-of-the-art models such as SoftRas (Liu et al. 2019) or
MarrNet (Wu et al. 2017). However, for images that provide less information, like sketches,
those methods are not applicable. This is due to the fact that sketches are binary RGB images
representing a simplified version of a given scene using only lines. Those sparse line draw-
ings lack any information like colours that indicate which regions belong together or shading,
which would be an implication for depth and therefore supply valuable information about the
size and proportion of the depicted object. Furthermore, those sketches are often riddled with
incomplete and false lines or additional orientation lines which do not actually belong to the
object itself, making the interpretation of these inputs even more complex (Xiang et al. 2020,
1). On the other hand, this style is more accessible and less time-consuming to create, leading
to a quicker realization of an idea or at least a draft of that. This makes it a valuable medium in
a lot of fields and creating models from sketches is applicable in many areas.

Since there is no solution on how to get more data out of a sketch without modifying the input
itself by adding more information like colour, which results in extra work for the creator of the
sketch, research over the past years has tried different solutions in order to provide additional
data which can be used to interpret the 2d drawing as a 3d model:
Traditional research approaches use different techniques employing extra rules, like line la-
belling rules in order to classify 2d information and to be able to interpret this as 3d information,
e.g. depth or normal, as proposed in the work by Malik 1987. Another prominent concept is
to use cross-sections of clean curves, which compose the sketch, as the source of the geometric
information needed to generate a model, like Shao et al. 2012 did in their research. Those ap-
proaches have the disadvantage of being restricted by very specific sketches they can interpret,
e.g. the approach by Shao et al. 2012 needs a sketch consisting of clean curves in order to work
as expected, and as mentioned before, are in need of a set of additional rules in order to produce
the desired output (Xiang et al. 2020, 3).

The model generation became less restrictive with the progress in researching neural networks.
By using multiple different perspectives representing the sketched object in order to provide
more data to the reconstruction network, like the research by Lun et al. 2017 shows, using addi-
tional rules is redundant. Also, the object classes, which can be recovered, are not as restricted,
since the information used for the reconstruction can mostly be recovered directly from the in-
put, as seen in Lun et al. 2017, 69. However, those have the disadvantage of requiring multiple
sketches as input, which is not always guaranteed to be provided.

1 INTRODUCTION 2

To compensate for this disadvantage approaches using only a single input sketch instead of mul-
tiple have also been investigated, e.g. by Smirnov, Bessmeltsev, and Solomon 2021 and Delanoy
et al. 2018, which, although relying on multiple images within the learning process, can also be
used with single sketches as input. There are techniques that do not use the representation of the
object from multiple viewpoints in either their input or as an intermediate representation, like
methods using differentiable rendering in the learning process, as for example, Kato, Ushiku,
and Harada 2018, Xiang et al. 2020 and Liu et al. 2019 did in their research. Differentiable
rendering is used in the deformation process of a given mesh in order to compute the relevant
information needed to minimise the difference between the characteristics like normals of the
deformed object and the desired object. However, like the other approaches presented above,
one of the core problems of this technique is how to predict information, which can then be
used for the differential rendering process. A solution for that is to use 2.5d representation, like
Xiang et al. 2020 did by using a normal map predicted from the given sketch, which works
fairly well for their use case. But as Smirnov, Bessmeltsev, and Solomon 2021 states, normal
maps are not always accurate and can differ from other representations of the model, e.g. depth
maps. Furthermore, relying on information like normals or silhouettes introduces the problem
of depth ambiguity. To avoid problems caused by that, strong prior knowledge of the object
classes that are reconstructed is required, which means that the datasets used for learning need
to be uniform and heavily class-based, and therefore makes the methods themselves vastly re-
strictive.
Another problem some techniques like the one by Xiang et al. 2020 and Kato, Ushiku, and
Harada 2018 have is that they rely on one base shape, which then is deformed by using input, in
this case, from the normal map to achieve the anticipated result. In most cases, this is either a
sphere or an ellipse, since those are a relatively good basis for simple models with genus 0. But
if the topology model is more complex, those models tend to produce flawed results (Xiang et
al. 2020, 9). This was improved by using shapes more similar to the desired model, essentially
a simplified version of the model, as done e.g. by Smirnov, Bessmeltsev, and Solomon 2021.
However, the added input needed for each shape requires additional work by the user or addi-
tional simplification operations on the ground-truth model. Other approaches tried to shape the
deformed sphere afterwards by removing excessive faces and refining steps like Ben Charrada
et al. 2022 or the mesh processing tool by Chen et al. 2020, which refines meshes produced by
Marrnet (Wu et al. 2017).

The aim of this thesis is to further improve the generation of a 3d model from a single sketch.
The thesis results in an end-to-end learning framework, which recovers a 3d model from a 2d
sketch. The input sketches used are RGB raster images, representing the outline and details of
an object using lines. Technical sketches are not considered. Furthermore, the sketch is required
to have closed lines and no noise, since existing algorithms for line closing and sketch cleanup
could be used in a pre-processing step before applying the reconstruction framework. However,
implementing such an algorithm within this work would go beyond the scope of this thesis.
This pipeline can be divided into three modules:

• Base mesh determination: The topology is determined using an image segmentation
method, isolating the object from the background of the input sketch. The resulting im-

2 RELATED WORK 3

age is used as a target image for the silhouette in the deformation module as well as to
determine the number of holes in this module. Using this number, a base mesh is chosen.
This is essentially a more generalised approach of Smirnov, Bessmeltsev, and Solomon
2021 since a general mesh is used for each genus type rather than the simplified version
of the ground-truth model. Therefore, this model is able to reconstruct meshes without
requiring a specific ground-truth model or additional user input in form of a base mesh.

• Normal and depth map reconstruction: Similar to Xiang et al. 2020, the normal resp.
depth map reconstruction will be conducted by a trained image-to-image translation net-
work. The network structure is inspired by Su et al. 2018 and Isola et al. 2017. The
training process is conducted by using created datasets consisting of rendered sketches
and normal resp. depth maps.

• Mesh deformation: For the mesh deformation, a differentiable renderer is used. The mesh
obtained in the base mesh determination step is used as the base mesh for the deformation.
The losses supervising the reconstruction are the depth and the normal loss, for which the
maps of the second step are used as target images, the silhouette loss, for which the filled
sketch from the base mesh determination module is used, as well as two regularisers.

The main contributions of this network are the combination of the normal and depth map in a
mesh reconstruction network using a differentiable renderer, which was not done in this form
before as far as the author is aware of. This is done to improve model accuracy since two losses
instead of only the normal loss provide more information to the reconstruction process and
remove the problem of depth ambiguities. Furthermore, using a base mesh with the same topol-
ogy as the desired object is enough to be used on a variety of objects with the same genus. This
implies that more objects can be accurately predicted compared to similar methods with more
restrictive templates like Smirnov, Bessmeltsev, and Solomon 2021. The resulting framework is
expected to provide a less restrictive approach for single-view image reconstruction compared
to prior work.
The effects of the improvements are evaluated by comparing the pipeline to a state-of-the-art
method by Kato, Ushiku, and Harada 2018 in both a quantitative way using distance metrics
and a qualitative way. Furthermore, an ablation study where different versions test the absence
of depth loss and the topology-specific base mesh is conducted. The results of these studies
will showcase the benefits of the proposed method as well as the limitations and possible im-
provements that can further advance the system. In addition to that, the insights gained from
the evaluations will answer whether the addition of the depth map and the base mesh determi-
nation improve the state-of-the-art methods in terms of mesh quality and usage of input meshes
beyond class/object restrictions.

2 Related Work

The aim of this thesis is to estimate a 3d model from a drawn sketch, which is based on various
prior research in the field of computer vision. This includes work regarding GANs and their

2 RELATED WORK 4

Method Input 2.5d Intermediate
Representation

Differentiable
Rendering

considering
Topology

Sketch Greyscale RGB RGBA other
Implicit Function based

Schmidt et al. 2006 x
Xu et al. 2019 x

Chen and Zhang 2019 x
Voxels

Choy et al. 2016 x
Yan et al. 2016* x x

Tatarchenko, Dosovitskiy, and Brox 2017* x x
Wu et al. 2017 x x x

Delanoy et al. 2018 x
Wu et al. 2018** x x x

Point Cloud
Fan, Su, and Guibas 2017 x

J. Wang et al. 2020 x
Gao et al. 2022 x x

Mesh
Lun et al. 2017 x x

Kato, Ushiku, and Harada 2018* x x
N. Wang et al. 2018 x
Liu et al. 2019* *** x x x

Smirnov, Bessmeltsev, and Solomon 2021 x x x
W. Wang et al. 2019**** x

Chen et al. 2020**** x x
Xiang et al. 2020 x x x

Guillard et al. 2021 x x x
Ben Charrada et al. 2022 x x

Table 1: General overview of the discussed models. The models are grouped by their output
type. The used input type and whether they use 2.5d representations and differentiable rendering
in their reconstruction process are depicted. Furthermore, the consideration of the topology is
charted. However, this is only relevant for reconstruction methods using triangle meshes.
* No clear input specification in the paper, the given input medium is based on images and the
general description of the method as well as the implementation if existing.
** depth map as input possible
*** silhouette map as input possible
**** mesh as input required

WGAN variant, image and map prediction techniques, DR techniques as well as single-view
image reconstruction and image segmentation.

2.1 Single-View Deep Learning Techniques 2d Image to 3d Model

Although deriving a 3d model from a 2d image has been a research topic for many years now,
especially in recent years following the progress in the development of neural networks there
has been a growing interest in this research field (Xiang et al. 2020, 1). While many research
models like Lun et al. 2017 and Delanoy et al. 2018 use multiple viewpoint representations of
the image as input, single-view techniques have become more relevant since different angled
images from a model cannot always be provided and the quality of the models recreated by

2 RELATED WORK 5

those techniques is on a par with the results from the multi-view techniques. Additionally,
the research approaches vary in their form of input, like using an RGB image, a sketch or
additional information like viewpoint information or depth maps. Some approaches also use
prediction networks, that start with an input variant offering little information like a sketch and
predict additional information in form of normal maps, as done by (Xiang et al. 2020, 1), or
normal and depth maps, as seen in Lun et al. 2017. In recent work, the topology of the objects
was also considered in the reconstruction part either by removing parts of the deformed mesh
to match the genus, e.g. done by Ben Charrada et al. 2022, or by using respective base meshes
in the deformation process, as seen in Smirnov, Bessmeltsev, and Solomon 2021. The resulting
models can either be represented by implicit functions, voxels, point clouds or triangle meshes
(Chen et al. 2020, 1090). A general overview of the discussed models is given in Table 1.

2.1.1 Implicit Function based Techniques

Representing the reconstruction of an image as an implicit function in the form of e.g. implicit
surfaces or volumes has been used for years, like in Schmidt et al. 2006. With the utilisation
of neural networks to retrieve 3d models from 2d images research has also used this form to
describe the resulting models, like Xu et al. 2019 and Chen and Zhang 2019 did. The latter for
example employs an implicit field, which is defined by a continuous function over the 2d/3d
space that assigns a binary value to each point in the 3d space to determine, whether that point
is in the shape or not Chen and Zhang 2019, 5932.
Although methods outputting such structures might have several advantages like not being re-
stricted regarding the model’s resolution, they generally are not that well suited for depicting
sharp or hard-edged features and details (Xu et al. 2019, 490f), as seen in Chen and Zhang 2019,
5939. While this problem was tried to be eliminated by research like Xu et al. 2019, who added
an additional feature extractor by estimating the viewpoint of the image, encoding implicit fields
in neural networks is more complex and the implicit function has to be converted into another
representation form if it should further be used by humans. This can be done in various ways
depending on the method given and the desired output representation. For example, the conver-
sion is done by the methods mentioned above by requiring a point cloud as additional input (Xu
et al. 2019, 497) or using a method like marching cubes (e.g. Lewiner et al. 2003) in order to
retrieve a mesh (Chen and Zhang 2019, 5935). Using these can lead to quality loss and if the
overall representation should be a mesh or voxel, these methods add additional computational
costs (Xu et al. 2019, 491) (Chen and Zhang 2019, 5939).

2.1.2 Voxel based Techniques

Many research projects in the field of neural networks and 3d model reconstruction use vox-
els as their geometric representation. Those methods exploit the progress made in 2d image
processing by replacing pixel grids with voxel grids and 2d convolutions with 3d convolutions
(Ben Charrada et al. 2022, 337).
Early examples utilising voxels as a model representation include Delanoy et al. 2018, Choy
et al. 2016 and Yan et al. 2016. Those methods can be used as single input methods or extended

2 RELATED WORK 6

to use multiple views to create the requested model. Delanoy et al. 2018 uses the additional in-
put sketches in order to refine the model recreated from a single input sketch, Choy et al. 2016
uses one or more images of various viewpoints to reconstruct a 3d model and Yan et al. 2016
employs projection loss in order to backpropagate the feedback of other views than the view-
point of the given input image. This is accomplished by deriving various 2d silhouettes of the
predicted 3d model from various viewpoints using differentiable rendering. The silhouettes are
then compared to ground-truth silhouettes resulting in the loss backpropagated to the mesh gen-
erator (Yan et al. 2016, 1698). Although these methods yield reasonable results, both regarding
quality and performance, they can have problems when it comes to recreating thin structures
(Delanoy et al. 2018, 10) and as mentioned above, there might be additional input required in
order to achieve the best result possible (Choy et al. 2016, 640).
While the methods mentioned use the given input directly in order to learn the new shapes,
there are approaches that use the given image in order to generate more information that is
used within the neural networks. For example, Marrnet by Wu et al. 2017 and ShapeHD by
Wu et al. 2018 employ an estimated 2.5d representation of the object in order to recover a 3d
model from an RGB image. Unlike Wu et al. 2018, Wu et al. 2017 use the estimated 2.5d
representations to supervise the model generation. While Wu et al. 2018 adopt depth, normal
and silhouette values to recover an initial 3d representation that is further shaped by using the
cross-entropy loss between the predicted and the target voxels as well as learned shape priors
(Wu et al. 2018, 650), Wu et al. 2017 utilise those representations in order to compute the loss
for the backpropagation (Wu et al. 2017, 542). Despite their different approaches, both methods
fail in recovering thin and complex structures (Wu et al. 2018, 659) (Wu et al. 2017, 546), which
is also partially due to the nature of voxels since their nature encourages the network to focus on
the wider parts of the models (Wu et al. 2018, 660). These shortcomings were partially rectified
by research such as the TPWCoder by Chen et al. 2020. Unlike the methods mentioned above,
their research takes the topology of the object into account, which resulted in a topology-aware
encoder-decoder structure. This structure can be used to refine the reconstruction of shapes of
other reconstruction methods such as Marrnet Wu et al. 2017 by using a combination of the loss
between the ground-truth genus and predicted genus, as well as the topology respectively and
the loss between the by the reconstruction method predicted model and the model predicted by
the TPWCoder. This results in finer details and in the case of a combination with Marrnet also
improved performance (Chen et al. 2020, 1090–1094).
Voxels are still a commonly used output form for recovering 3d models because neural networks
can easily process them. However, this representation form has some shortcomings other forms
do not. As mentioned, thin structures are not as well recovered, which can require an extra
fine-tuning step in order to improve the quality of the model. Furthermore, the resulting models
can lack overall resolution, since high-resolution voxels are difficult to process due to them be-
ing regularly sampled from 3d space and having a poor memory efficiency (Kato, Ushiku, and
Harada 2018, 3907). In order to compensate for these drawbacks, research like Tatarchenko,
Dosovitskiy, and Brox 2017 has tried to use other data structures like octrees to reorganise the
used voxels to improve computation and memory efficiency (Tatarchenko, Dosovitskiy, and
Brox 2017, 2107), and research like Chen et al. 2020 tried to improve the visual flaws of the re-
sulting models by using additional fine-tuning steps. Although those are promising approaches,
other methods like point clouds do not inherently have those problems and achieve overall better

2 RELATED WORK 7

performance and quality of recovered models in most cases.

2.1.3 Point Cloud based Techniques

Point clouds have been used as a model representation method due to their simple structure that
is easy to learn within a neural network (Fan, Su, and Guibas 2017, 2463) and are more com-
putationally and memory efficient compared to voxelised representations as well as producing
an overall better quality model compared to methods using voxels (J. Wang et al. 2020, 7).
Therefore, point clouds are not only used as the final output medium of a model but also as an
intermediate representation, which is then converted to a regular mesh. This is done since point
clouds are not as efficient in representing the underlying 3d geometry (Fan, Su, and Guibas
2017, 2463) and, like voxels, it is more complex to apply texture or lighting to these structures
(Kato, Ushiku, and Harada 2018, 3907). This intermediate representation has been utilised by
e.g. Lun et al. 2017 and W. Wang et al. 2019. The research by W. Wang et al. 2019 focuses
on deforming an existing mesh into another shape by sampling points on the target and source
object, effectively transforming them into point clouds, and extracting feature vectors in order
to compute the vertex offsets. The loss is then computed by applying the Chamfer and Earth’s
Mover distance to sampled points of the predicted model and the target model. In contrast,
Lun et al. 2017 take an approach similar to Wu et al. 2017 and Wu et al. 2018. They take one
or more line drawings as input and convert them into multi-view depth and normal maps and
compute a foreground map, which predicts whether a pixel is a foreground pixel or not. The
point cloud is then generated by mapping the foreground pixels to the 3d points, which are then
aligned according to the depth map and known camera parameters. The normal of the point
is reproduced according to the normal map. Since there are inconsistencies in the maps, in a
second step ICP (Rusinkiewicz and Levoy 2001) is run in order to correct those flaws and the
method tries to optimise the point values according to various terms, like if they are consistent
with depths and normals of corresponding 3d points generated from other viewpoints. The fi-
nal mesh reconstruction is done using the screened Poisson Surface Reconstruction algorithm
(Kazhdan and Hoppe 2013) and the resulting mesh can be further refined by deforming it ac-
cording to 2d contour points extracted from the input sketch (Lun et al. 2017, 70f). By using
point clouds as an intermediate representation, the benefits of the simplicity of a network han-
dling those structures and the final mesh representation, which is discussed later in this section,
are combined. However, an extra step of reconstructing the mesh from the point cloud is needed
and it is usually not trivial to convert the point set into a ready-to-use mesh, since the individual
points do not have information about their neighbours and the connectives (N. Wang et al. 2018,
58).

Alternatively, point clouds have also been used as the final representation method for recon-
structions, not just as intermediate representations. J. Wang et al. 2020 standardised single
sketches as input for their network. Those sketches are, in their case, created from synthesised
sketches, which are distorted and then dilated and refined in a domain translation module in
order to mimic hand-drawn sketches. This helps with the training process since the synthesised
data, the networks are normally trained on, do not mimic freehand drawings in a correct way.

2 RELATED WORK 8

Therefore, deformations are applied and different styles are translated to the input image in
order to mimic various drawing styles and geometric distortions of a hand-drawn sketch. To
reconstruct a point cloud from the standardised sketch, the viewpoint is estimated and used to
generate a point cloud. This point cloud is further transformed by a rotation matrix so that the
point set aligns with the ground-truth point set. The loss is computed by the Chamfer distance
between the two point clouds (J. Wang et al. 2020, 2, 4).
Another method that uses point clouds as its final representation is Fan, Su, and Guibas 2017.
They use a random vector and an RGB input image in order to output a matrix of coordinates
that represent the predicted shape. In their research they also introduced an additional predictor
branch that operates parallel to the first branch and that learns to construct a 2d image contain-
ing coordinates. This results in a more ordered depiction of the surface and is useful to capture
the general structure of the object, while the first branch completes the object with the more
detailed components (Fan, Su, and Guibas 2017, 2466–2469).
A recent method, which also results in point clouds was introduced by Gao et al. 2022. Similar
to Wu et al. 2017 and Wu et al. 2018, as discussed in Section 2.1.2, they use intermediate 2.5d
representations in form of density maps in order to represent a predicted density distribution
of a 2d input sketch. To do that, they employ an encoder-decoder-based convolutional neural
network, which extracts the features from the input sketch and outputs them into a feature map.
An L1 loss between the ground-truth density map and the predicted density map is used for
loss computation. In order to improve the accuracy of the resulting point cloud, all upsampled
feature maps are concatenated and used for further steps instead of only the final map. This
helps with the prediction of the final point cloud, which is done by sampling the feature map
and constructing a 2d point cloud using the sampled x,y coordinates. Once this is completed,
the z coordinate is predicted by using a GAN, which takes a noise variable and a local fea-
ture. The Chamfer distance between the output point cloud and the ground-truth point cloud is
used to supervise this network. Using the three predicted coordinates, a 3d point cloud can be
constructed (Gao et al. 2022, 468–470).

2.1.4 Mesh based Techniques

Another form, models can be represented as, is polygon meshes. Although using the meshes
and mesh connectivity within the neural network is still a problem (W. Wang et al. 2019, 1038),
they are a compact data structure, memory efficient (Kato, Ushiku, and Harada 2018, 3908)
and they are the representation form that is commonly used in applications like 3d modelling
software, since they hold qualities like being easily deformable and capable of depicting shape
details (N. Wang et al. 2018, 55).
Early methods that have used meshes as their output representation are Kato, Ushiku, and
Harada 2018 and N. Wang et al. 2018. Both methods, as many others working with this out-
put type, used a given mesh and deformed it, similar to the research by W. Wang et al. 2019
mentioned before. N. Wang et al. 2018 use a convolutional network to extract features from
the given RGB image by projecting the 3d vertex positions of the model on the 2d input image
plane. In a second network, the extracted features, which contain both information about the 3d
shape and the 2d image, are then shared between neighbouring vertices, resulting in the addition

2 RELATED WORK 9

of more vertices and the displacement of the already existing vertices. The mesh reconstruction
is regularised by 4 losses (N. Wang et al. 2018, 60):

• The sum of the loss between the normals to ensure the consistency of surface normals

• The Chamfer loss for vertex location consistency between the GT and the predicted mesh

• An edge length regularisation to prevent outliers

• Laplacian regularisation to preserve the relative location between the vertices

Contrary to the sum of losses and regularisations that N. Wang et al. 2018 employ in order to
regularise the mesh reconstruction, the Neural Mesh Renderer by Kato, Ushiku, and Harada
2018 build upon the work of Yan et al. 2016, which was discussed above and employs the sil-
houette loss utilising the Intersection over Union metric and a smoothness loss, which acts as
a regulariser. The mesh generator, to which this loss is backpropagated, is part of a bigger re-
construction framework. This reconstruction consists of the mesh prediction, which works by
deforming a 3d sphere based on a 2d input image, and a neural renderer, which takes the 3d
mesh as input and uses differentiable rendering to generate the silhouette of the mesh (Kato,
Ushiku, and Harada 2018, 3907). A disadvantage of this approach is that it works only for
a simple type of geometry. Reconstructing complex objects like cars or objects with various
topologies did not result in accurate models (Kato, Ushiku, and Harada 2018, 3913). N. Wang
et al. 2018 illustrate similar problems in their research, they can only recover objects similar to
the topology of the initial object (N. Wang et al. 2018, 65).
However, incorporating DR in the learning process of the reconstruction of 3d models is a
promising method that was employed to a greater extent in recent years. A closer description
of differentiable rendering itself is provided in Section 2.2. Due to its increasing importance in
retrieving models from 2d input images some methods, like Yan et al. 2016 and Kato, Ushiku,
and Harada 2018, employ DR in their work, as discussed above. In addition to those methods,
recent research, e.g. conducted in Liu et al. 2019 and Xiang et al. 2020, employs a differentiable
renderer. As illustrated in Yan et al. 2016 and Kato, Ushiku, and Harada 2018, they use DR in
order to extract certain features, which are backpropagated to the mesh generator. By using
gradients retrieved via their DR technique, which is described in Section 2.2, Liu et al. 2019
are able to convert features from image pixels to shape and colour. The silhouette, colour, and
geometry of this mesh are compared to those characteristics in the ground-truth mesh, resulting
in the respective losses. The final loss consists of the weighted sum of those three losses (Liu
et al. 2019, 7711). Contrary to that, Xiang et al. 2020 consider model generation as a problem
of normal map generation, similar to Wu et al. 2018, Wu et al. 2017 and Lun et al. 2017. From
a single input sketch, a normal map is generated, using conditional generative adversarial net-
works, based on the work of Su et al. 2018 and Isola et al. 2017, which is discussed in Section
2.4. The resulting normal map is then used to deform a given template geometry, which in their
case is a sphere, into the desired model. From this mesh, a normal map is computed using a
differentiable renderer. This map and the original normal map are then used to compute the
normal loss of the mesh prediction. This loss is added to the silhouette loss, computed from

2 RELATED WORK 10

the difference between the predicted mesh and the ground-truth silhouette using the Intersec-
tion over Union metric, the edge loss, derived from the As-Rigid-As-Possible energy, and the
smoothness loss, which ensures the consistency of the surface (Xiang et al. 2020, 5).
A method similar to this was part of the research of Guillard et al. 2021. They compared two
methods, where one used the same approach as Xiang et al. 2020, while the other approach
involves the determination of 3d points from the sketch directly and optimising them by min-
imising the Chamfer distance between the resulting contour and the input sketch. This is done
by projecting the mesh onto an image and writing the external contours to that image. Then,
the pixels not belonging to the external lines of the depicted projection and the mesh face that
projects to it, are matched. By trying to minimise the Chamfer between the projected external
contours and the real external contours of the input sketch the loss is computed. This method
allows for partial sketches to be used, which can be exploited by mesh deformation operations
where only parts of a given input mesh should be deformed according to sketch or mesh refine-
ment processes. In this case, the Chamfer-based approach has a clear advantage over the other
method. Furthermore, the training of an image translation network is not required, which makes
the second approach more deployable (Guillard et al. 2021, 13006).
Although the mentioned methods yield promising results, they still have the same problems that
were already mentioned by Kato, Ushiku, and Harada 2018. While the results of SoftRas have
been better in terms of the level of detail the Neural Mesh Renderer is able to recover the overall
shape more accurately according to the conducted experiments (Liu et al. 2019, 7713). Xiang
et al. 2020, 9 reported having issues related to that, e.g. non-connecting edges and acknowl-
edged that using base shapes that have the same topology as the desired output could minimise
that problem.
In order to manage the problem of missing or ignored topology information, over the years,
there have been a number of scientific papers published that try to identify the topology of
2d images and 3d models. In reconstruction networks there has also been research conducted
that takes the model’s connectivity into account, e.g. the refined network by Chen et al. 2020.
Since reconstruction networks with meshes as learning parameters tend to use basic meshes
that are deformed into the desired object (Ben Charrada et al. 2022, 337), some research has
made it part of their recovering network to take the topology into account. Smirnov, Bessmelt-
sev, and Solomon 2021 use templates, which specify the connectivity of the Coon patches they
used to describe their reconstructed surfaces. Those templates can be obtained beforehand us-
ing segmentation algorithms such as Yi et al. 2016 on the ground-truth model. One or more
renderings are put into the reconstruction network, which tries to fit a collection of patches
to the ground-truth model the renderings were obtained by optimising against a sum of losses
(Smirnov, Bessmeltsev, and Solomon 2021, 3–5). While Smirnov, Bessmeltsev, and Solomon
2021 obtain their templates beforehand, Ben Charrada et al. 2022 use an extra pruning network
that applies the topology to the mesh. They extract image features from an RGB input image
by utilising an image encoder and use the retrieved information to deform an ellipsoid in three
deformation stages. After each deformation stage, a vertex is added to each edge, essentially
subdividing the mesh and obtaining a more detailed representation of each stage. Once the
deformation stages are completed, the face pruning network intelligently deletes faces that rep-
resent large areas that do not belong to the object as depicted by the input image. Depending
on how accurate the resulting mesh is, the agent performing the deletions receives a reward. In

2 RELATED WORK 11

the final step, another deformation network, similar to the first one, is used in order to refine the
pruned mesh and get rid of edgy boundaries (Ben Charrada et al. 2022, 338f).

2.2 Differentiable Rendering

Rendering is the process to project a 3d scene defined by several parameters like geometry and
camera properties onto a 2d screen. However, due to the complexity of these operations, in-
verting this procedure in order to obtain 2d information and differing levels of supervision for
a 3d scene understanding is not straightforward. A solution to do that is to integrate the ren-
dering process into a neural network. The methods that obtain the gradients of the rendering
process, which can then be used for example in the neural networks, are defined as Differen-
tiable Rendering. Via backpropagation, the gathered gradient’s scene parameters are optimised.
Therefore, in recent years DR methods in combination with neural networks have been used to
tackle several problems in the field of computer vision, like 3d object reconstruction, as men-
tioned in Section 2.1, human-pose estimation, hand-pose estimation and face recognition (Kato
et al. 2020, 1f).

Early work in the field of differentiable rendering involved computing gradients with respect to
simple materials, but other parameters like vertex position or placement were not handled. The
influence of those variables has been included in later work, e.g. via approximate differentiable
rasterisation of meshes, like Loper and Black 2014 did. The work by Loper and Black 2014
also marked a milestone in DR research, since their method introduced the first general-purpose
differentiable renderer named OpenDR (Loubet, Holzschuch, and Jakob 2019, 2).
Nowadays various DR methods exist. Like rendering processes, those techniques differ mainly
depending on the type of structure they are operating on:
For point clouds, the rendering process is quite straightforward: The first step is to compute the
screen space coordinates of a 3d point. Then, for each 3d point, the influence on the pixel’s
colour is determined and finally, their influences and z-values are used to accumulate points
to compute the pixel’s colour. Since the first step is a matrix multiplication, this is easily dif-
ferentiable. However, because steps two and three are not as straightforward to differentiate,
multiple methods have been developed: One way to make the second step differentiable would
be to create influences larger than the one pixel per screen space coordinate in the image e.g.
using the Gaussian blur like Yifan et al. 2019 did. The third step could be made differentiable
using a multitude of rendering methods, for example by computing the weighted sum of the
point’s colours based on the point’s influence, as Yifan et al. 2019, 3 did or by weighing all 3d
points according to the distance from the camera and the spatial influence at each pixel (Kato
et al. 2020, 5f).
Since voxels represent points in a regular 3d grid, they can be rendered using rays by projecting
the hit voxels to the pixel the ray descends from. This can be done by first collecting the voxels
along the ray, which is differentiable regardless if it is performed in world or screen space, and
then aggregating the voxels along the ray, like Yan et al. 2016 did by associating an occupancy
value to each voxel and then choose the one with the highest value on each ray (Kato et al. 2020,
5).

2 RELATED WORK 12

Implicit function representations, similar approaches to the one rendering voxels, are the sim-
plest to use in DR: Random points or regular points with random perturbations along a ray
or sampling random points in the 3d space and checking their intersections with rays are the
most common ways the rendering of implicit representations can be made differentiable (Kato
et al. 2020, 7).
Two main methodologies have been established for making the rendering process of meshes
differentiable: Approximated Gradients and Approximated Rendering. The first one builds on
the idea of approximating the backward pass of the neural network (Kato et al. 2020, 3), imple-
mented by e.g. Loper and Black 2014, Kato, Ushiku, and Harada 2018 and Xiang et al. 2020.
The idea implemented by Loper and Black 2014, 160f is to use image-space filters in order
to take the neighbouring pixels into account when computing gradients, similar to a solution
approach used by point clouds. Kato, Ushiku, and Harada 2018, 3909f use a similar approach,
however, they do not utilise local filters. Instead, they use gradients that incorporate back-
propagated gradients of non-direct neighbours of the initial pixels, which results in complex
computation. Xiang et al. 2020, 5 build upon the idea of Kato, Ushiku, and Harada 2018. How-
ever, they use their technique in order to incorporate the normal loss into their reconstruction
framework, unlike most differentiable renderers used for reconstruction tasks, which mostly
differentiate the silhouette or RGB rendering of a scene, as described in Section 2.1.
The second methodology, which is widely used to differentiate mesh rendering, approximates
the rasterisation instead of the backward pass. This was used by e.g. Liu et al. 2019, who
consider every pixel of the RGBA input image to be a triangle of the resulting mesh. Via the
usage of a probability map, which defines the probability of the pixel is inside the triangle, and
an aggregate function, merges the colour maps of the pixels with the output of the probability
map and the relative depths, 3d parameters like camera, texture or material can receive gradients
from the image (Liu et al. 2019, 7709).

In order to apply the correct DR method, the problem that should be solved via using DR, the
parameters and the DR technique itself need to be well understood. However, it is not always
necessary to implement methods from scratch. Despite using open-source DR techniques, DR
Libraries provide a wide range of functionalities, which allow for a rather straight-forward im-
plementation of DR. Well-established libraries are Tensorflow Graphics by Google, Kaolin by
Nvidia, PyTorch3d by Facebook and Mitsuba 2 (Nimier-David et al. 2019). While the first three
rely on rasterisation, Mitsuba 2 utilises raytracing. Furthermore, Mitsuba 2 uses automatic dif-
ferentiation supported by their custom library Enoki (Jakob 2019), while the other libraries rely
on the backpropagation capabilities of PyTorch or Tensorflow (Kato et al. 2020, 13–15).
In mid-2022 Mitsuba 3 by Jakob, Speierer, Roussel, and Vicini 2022 and Jakob, Speierer,
Roussel, Nimier-David, et al. 2022 was released, which also relies on a custom automatic-
differentiation, Dr.Jit, which is the predecessor of Enoki. It outperforms its predecessor by
relying on megakernels, which compile the rendering graph to data-parallel kernels (Jakob,
Speierer, Roussel, and Vicini 2022, 9). Furthermore, features like the usage of geometry-based
differentiation are provided by the latest revision, unlike in Mitsuba 2, where this is provided in
an extra branch on the repository based on the work of Loubet, Holzschuch, and Jakob 2019,
which is not up to standard with the current state of the renderer. This differentiation however

2 RELATED WORK 13

is crucial for tasks like 3d mesh reconstructions from 2d input images and in Mitsuba 3 inspired
by the work of Loubet, Holzschuch, and Jakob 2019 and Bangaru, Li, and Durand 2020 and
therefore different from the other libraries, which rely on techniques based on rasterisation. The
main challenge that Jakob, Speierer, Roussel, and Vicini 2022 need to overcome in their work
is to make the Monte Carlo sampling differentiable to certain parameters like positions. This is
inherently not possible, because these parameters compared to others like colour do not change
the composition of the scene, which would require the sampling positions to move along with
the deformations. To solve that, Jakob, Speierer, Roussel, and Vicini 2022 use a combination of
the technique by Loubet, Holzschuch, and Jakob 2019 and Bangaru, Li, and Durand 2020 and
results in re-parameterisation of the rays: During the initial rendering, the re-parameterisation
does not have any effect on the path tracing process. When differentiated, auxiliary rays are
used to intersect with the shape and based on that information construct a warp field. Since this
field contains information about how the silhouette of the object was deformed, in the back-
propagation it is now possible to scatter the parameter gradients into intersected shapes (Jakob,
Speierer, Roussel, and Vicini 2022, 14).

2.3 Generative Adversarial Networks and Wasserstein Generative Adver-
sarial Network

Generative Adversarial Networks (Goodfellow et al. 2014) have become widely used in the field
of computer vision and are used primarily to create new content like images. These outputs are
variants of content in a large dataset, which the network learns the features of and uses to com-
pose its own versions.
The structure of these networks consists of 2 parts: a generator that predicts images and a dis-
criminator, which challenges the generator and gives feedback on the predicted images. The
respective loss functions and therefore objectives are different in the various GAN variants. A
traditional GAN type like a Conditional Generative Adversarial Network classifies a given im-
age either as real or as fake. The objective of the network is to train the generator to output
predictions of a given input in order to fool the discriminator into classifying the predicted im-
ages to be real ones. Formally, in the training process, the goal is to minimise a divergence,
like Kullback-Leibler or Jensen-Shannon, between the real and the predicted data distributions.
However, this can lead to vanishing gradients due to the local saturation of the discriminator
(Gulrajani et al. 2017, 5768). Furthermore, it is possible for the discriminator to get stuck at a
local minimum when the generator produces identical samples, which always fools the discrim-
inator, also known as mode collapse.
In order to avoid these problems, Wasserstein GANs are used, which employ the Earth-Mover
distance, which defines the minimum cost of transporting mass in order to transform one dis-
tribution into another. Their value function is defined as (Arjovsky, Chintala, and Bottou 2017,
4):

min
G

max
D∈D

Ex ∼ Pr [D(x)]−Ex̄ ∼ Pg[D(x̄)] (1)

where the distance between the distribution of the real images and the predicted images is de-
scribed. Furthermore, the discriminator, which is known in WGANs as a critic but is referred

2 RELATED WORK 14

to as discriminator for consistency, is trained to optimality, which in practice means that it is
trained more often than the generator to avoid the possibility of mode collapse, which is dif-
ferent from the classic GAN structure, where the generator and discriminator are both trained
every epoch (Arjovsky, Chintala, and Bottou 2017, 5). However, since the D in equation 1
is defining a set of 1-Lipschitz functions, which ensures that the norm of their gradients is 1
nearly everywhere in order to provide reasonable gradient information to the generator, con-
straints need to be enforced on the discriminator, which makes this worse but is justified by
the improved training of the generator (Gulrajani et al. 2017, 5768, 5775). Arjovsky, Chintala,
and Bottou 2017, 4 solve this by employing weight clipping in order to ensure that the loss is
within a compact space. This introduces some problems, e.g. it can lead to vanishing gradi-
ents or biases the discriminator towards learning the simpler functions (Gulrajani et al. 2017,
5769). Therefore, the gradient penalty introduced by Gulrajani et al. 2017 is used to enforce
the Lipschitz continuity while omitting the mentioned problems. The idea is to penalise the
model if the gradient norm between points interpolated between the real and the predicted data
is not 1. Since using batch normalisation in the discriminator would introduce correlations in
the batches, this would invalidate the gradient penalty because the objective is to compute the
penalty for the gradient wrt. every input (Gulrajani et al. 2017, 5769f). Therefore, when im-
plementing a discriminator the usage of layer normalisation is recommended over the usage of
batch normalisation (Gulrajani et al. 2017, 5).

2.4 Map Generation

Depth and normal estimation are critical parts of scene understanding tasks in computer vision.
Such an understanding is crucial for a variety of tasks, like pose estimation tasks, image seg-
mentation and in 3d reconstruction networks where the maps are used as 2.5d representations
of an input image (Eigen and Fergus 2015, 2650), as proposed by Xiang et al. 2020 and Lun
et al. 2017.

Modern approaches utilise neural networks in order to learn how to map normal or depth values
onto sketch inputs. A common way of doing this is using Convolutional Neural Networks, as
Eigen and Fergus 2015, Wang, Fouhey, and Gupta 2015 and Eigen, Puhrsch, and Fergus 2014
did. CNNS consist of multiple convolution layers, which convolve the input and pass the output
to the next layer, pooling layers that discard redundant information, and fully connected layers,
which are usually the last stage of the CNN and used to assign the final values like probabilities.
How each network is designed depends on the task at hand.
The aforementioned techniques employ at least two CNNs, where one captures the whole scene,
and the second is responsible to fine-tune the coarse output of the first network, like e.g. in
Eigen, Puhrsch, and Fergus 2014, 2369, or predicting local features, which are then combined
with the output of the first network like Wang, Fouhey, and Gupta 2015 did. Since CNNs are
generally supervised, meaning the loss is computed by comparing the predicted image to the
GT, the methods also applied variations of those in order to backpropagate. Therefore, they
learn how to compute the various output images, like normal maps, depth maps or image labels.

2 RELATED WORK 15

Another way of reconstructing depth and normal maps is to use an Encoder-Decoder network
structure, as done by Lun et al. 2017. This network structure consists of an encoder part, which
converts a given sketch into a compact representation of the shape information by employing
a series of convolution layers and batch normalisation layers, which use transformations in or-
der to normalise the inputs of the layers to make the prediction process faster and more stable.
The decoder part uses the output of the encoder and outputs the depth, normal and foreground
probability map for the given input. To accomplish that, they adapt the U-Net structure, which
concatenates encoder and decoder layers, utilising upsampling and convolutional layers em-
ployed along with batch normalisation layers and dropout layers that essentially remove nodes
at random in order to force the network to essentially connect in different ways every iteration
leading to a more robust network. Like in the CNN techniques, the network’s loss is computed
utilising the weighted difference between the predicted and ground-truth maps (Lun et al. 2017,
69). The outputs of this network are then used as 2.5d representations of the input sketch in a
reconstruction network, as described in Section 2.1.

Isola et al. 2017 and Su et al. 2018 took a similar approach to Lun et al. 2017, however, they
used a cGan, which encapsulates an Encoder-Decoder structure. This means, they employ a
Generator-Discriminator structure, in which the generator network learns to predict the images,
while the discriminator network learns to differentiate between ground-truth images and pre-
dicted ones. In order to do that, the generator part is similar to the one by Lun et al. 2017. The
discriminator part is described structurally similar to the CNN structure described above, but
missing the final fully connected layer. Each of the networks has its own loss function, with the
discriminator comparing the generator’s prediction to the GT and the generator utilising the sum
of the prediction of the discriminator on the predicted image and an L1 loss of the predicted and
real image. That way, the networks try to minimise their loss against each other, as described in
Section 2.3.
Su et al. 2018 used the approach by Isola et al. 2017, but instead of a general-purpose image
translation network, they focused on predicting normal images from sketches, which however
does not change the structure of the network, they just verified their thesis for normal maps and
does not indicate that other image types such as greyscale images cannot be predicted using this
network. They introduced the Wasserstein loss (Arjovsky, Chintala, and Bottou 2017) as part of
their loss function instead of the loss utilised by Isola et al. 2017. Su et al. 2018 also employed
user interaction by adding a mask, which can be used by the user in order to define certain
normal values at specific points. Generated masks are also incorporated in the training process
and therefore included in the overall loss function for the Generator, alongside the Wasserstein
loss mentioned above and an L1 difference between the ground-truth and the predicted image
(Su et al. 2018, 4–6).
Xiang et al. 2020 employed a similar approach to Su et al. 2018 and Isola et al. 2017 in their
reconstruction network in order to generate a 2.5 representation in form of a normal map from
an input sketch, as discussed in Sections 2.1 and 2.2. The main difference to the other functions
is the generator loss, for which they used the prediction of the discriminator on the generated
image, the difference between the predicted and the ground-truth normal map, and the loss at
local sampled pixels of sharp geometric features like corners or edges (Xiang et al. 2020, 6).

2 RELATED WORK 16

2.5 Image Segmentation and 2d Topology Awareness

Image segmentation has been an important topic in the field of image processing and analysis
since the early days of those research areas. The objective is to partition an image into multiple
images based on the similarity of the regions in the pixels, like colour values, textures or inten-
sity (Kaur and Kaur 2014, 810). Based on what and how the images are segmented is given by
various image segmentation techniques, which have been developed over the last decades.
Segmented images can be applied to many problems, for example, image compression, object
recognition, medical imaging, input images for neural networks, robot vision, etc. However,
segmented images can provide information about the topological properties of the depicted
object: Once the picture has been decomposed into its subsets, relations between them can be
described. This is because the topology of an object is defined by the connectivity of the subsets
or lack thereof, segmented images can be used in order to describe the topology of a depicted
object (Rosenfeld 1979, 621–623).

There are many different problems, which can be solved using image segmentation. However,
the techniques are often very specific to a problem, which is why many different segmentation
techniques exist. Instead, over the years many specialised methods were invented, which can
be applied to a specific task. Those techniques can be categorised in several ways. One widely
used accepted split is to classify them based on the properties of images into discontinuity and
similarity based approaches (Kaur and Kaur 2014, 810):

• Discontinuity detection partitions the image based on sudden changes in the intensity
levels of the colour values. A common technique that uses discontinuity is edge detection.

• Similarity based segmentation divides the image into regions based on predefined criteria,
like thresholding techniques, region-based approaches and clustering techniques.

However, nowadays this split does not suit all techniques equally well, since neural networks
do not adhere to either of those classes. When dealing with techniques like that, a much more
fitting classification would be (Sultana, Sufian, and Dutta 2020, 3):

• Semantic segmentation, where every pixel is assigned to a dedicated class.

• Instance segmentation, which is very similar to the practice of object detection.

Following, some of the most relevant image segmentation techniques are discussed: thresh-
olding techniques, segmentation techniques employing neural networks, edge-detection-based
techniques and region-based approaches. Other important segmentation methods include:

• Clustering techniques: Pixels are assigned to specific clusters based on similar charac-
teristics. This can be done in either a hierarchical way, where a tree structure is utilised
to represent all clusters and their subclusters, or in a fuzzy way, where pixels are not
necessarily assigned to one class only (Kaur and Kaur 2014, 812).

2 RELATED WORK 17

• Watershed methods: The image can be viewed as a relief where pixel intensities represent
a certain height. This relief is filled with water until a certain height is reached. The
resulting filled basins represent the connected regions. This technique is very similar to
region-based techniques like flood fill, which is discussed in Section 2.5.4 (Vincent and
Soille 1991, 584f).

• PDE techniques: e.g. Snakes by Kass, Witkin, and Terzopoulos 1988, where the idea is
to define regions by using energy-minimising splines, which are guided by external and
internal forces to capture structures of the image (Kass, Witkin, and Terzopoulos 1988,
321).

These methods are not discussed in detail, since they are not relevant to this thesis.

2.5.1 Threshold Techniques

One of the easiest ways to split an image into homogeneous parts is to use a value that poses
as a threshold. The segmentation works by comparing the values of the pixels to this threshold
and then assigning the pixel to a particular class or region based on whether its value is higher
or lower than the threshold. This threshold value can be provided manually, e.g. a user, or eas-
ily chosen via the peaks of the image histogram. These thresholds are a constant value for the
whole image, also known as a global threshold, which results in binary images. If the threshold
varies across the image, it is either a variable threshold, where e.g. every subsection has its own
threshold or multiple global thresholds applied to the image (Kaur and Kaur 2014, 811).
Although this method is fairly easy, it comes with some drawbacks. It does not take the spatial
characteristics of an image into account and is very sensitive to noise, which can lead to the
false assignment of pixels to certain regions or classes (Kaur and Kaur 2014, 813). Therefore,
topological information regarding the scene can be wrong, if pixels are assigned to the wrong
classes. Furthermore, since the values of the pixels of the image are used to filter whether it be-
longs to a region, only images where the pixel has a value that is relevant to the overall depiction
can be segmented by this method, like RGB images or greyscale images. Simplified represen-
tations of objects, like sketches that are only described by their outline, cannot be segmented
from e.g. the background of the image.

2.5.2 Neural Network-based Segmentation Techniques

Utilising neural networks for image segmentation has been around for years. Since neural net-
works essentially learn from inputs and targets to predict respective outputs, the applicability of
these techniques covers a wide range of fields. They are suitable for both semantic and instance
segmentation tasks and can be used on greyscale images as well as RGB or sketches and even
videos.

Modern semantic image segmentation utilising neural networks mainly employ convolutional
network, especially Fully Convolutional Networks. This specific type of network is able to

2 RELATED WORK 18

conserve the spatial information of the input image since the fully connected layers used in tra-
ditional CNNs, the structure of which is described in Section 2.4, are removed (Sultana, Sufian,
and Dutta 2020, 4).
A recent example of semantic image segmentation was introduced by Ku, Yang, and Zhang
2021. They employ a convolutional encoder-decoder structure. While the decoder part of the
network consists of convolutional networks in order to reduce the channels, the encoder part
uses dilated convolutional layers in an aggregation module to obtain multilevel feature maps.
This is done by feeding an RGB image into a CNN to obtain 4 layers of hierarchical feature
maps. Those are then processed by the multilevel aggregation modules, which consist of 4 di-
lated convolution layers and a final pooling layer. In order to preserve the semantic information
dilated convolution is used rather than standard convolution layers. This means that holes are
inserted in the consecutive elements, which results in a larger receptive field. However, this can
lead to the information being no longer as relevant, since a larger area is now involved, or the
loss of consecutive information due to the holes, which do not provide any. In order to solve
this, Ku, Yang, and Zhang 2021 use different dilation ratios for the four layers in their multilevel
aggregation module and the information of all levels is extracted for feature aggregation. In the
final step, the resulting feature maps are then fused with the hierarchical feature maps and the
high-level feature maps are upsampled and spliced with the lower-level feature maps to make
the final predictions (Ku, Yang, and Zhang 2021, 4–6).

Since the majority of instance image segmentation also relies on convolutional neural networks,
the basic idea of feeding an input image to a network and a segmented output image is the same
as in semantic segmentation. They are often divided into two modules, wherein the first stage
of object detection is performed and in the second stage those detected objects are masked.
Furthermore, it is also common that object detection models like Faster R-CNN are used and
a binary mask is added, which results in an instance image segmentation like Mask R-CNN
(Sultana, Sufian, and Dutta 2020, 17).

Such segmentation algorithms result in reliable segments and once trained they produce those
outputs in a timely manner, they are tasked with critical operations like segmentation of medical
images in order to reprocess them for medical diagnosis or are used within autonomous car
driving. However, since there is a lot of data required to train those images and the training
processes themselves are more computationally and timely expensive than the other approaches
mentioned (Kaur and Kaur 2014, 813).

2.5.3 Edge-Detection-based Techniques

The aim of edge detection algorithms is to locate points in an image where the intensity of
the image suddenly changes, also known as the discontinuity approach described above. These
sudden changes usually indicate the boundaries of objects, therefore the outlines of the objects
are the result of these techniques. Over the years, many methods have been developed in order to
detect the edges of these results. Some of the most popular to this day are (Al-Amri, Kalyankar,
and Khamitkar 2010, 805f):

2 RELATED WORK 19

• Using the Sobel operator to detect edges works by applying 2 3x3 kernels to the image.
The kernels are the same, with one simply rotated by 90°. As shown in Table 2, the
middle rows respond to the vertical resp. horizontal edges are filled with 0, while the rest
of the kernel is weighted with 1 and 2, both negative and positive.

-1 0 1
-2 0 2
-1 0 1

1 2 1
0 0 0
-1 -2 -1

Table 2: Kernels used by the Sobel edge detection

• The Prewitt Edge detector is basically the same as the Sobel operation, however the
weight of the current row resp. the column is not incorporated, therefore all values except
for the middle row resp. the column is 1 or -1 resp., as shown in Table 3.

-1 0 1
-1 0 1
-1 0 1

1 1 1
0 0 0
-1 -1 -1

Table 3: Kernels used by the Prewitt Edge detector

• Contrary to the other algorithms mentioned, the Canny edge algorithm does not use ker-
nels. The process involves a Gaussian function in order to smooth the image and the
application of a difference gradient in order to compute the edge strength. Once that is
done, gradient operation as mentioned in the previous edge detectors can be applied in or-
der to compute the gradient magnitude and direction. The final steps consist of applying
non-maximal or critical suppression to the gradient magnitude and threshold to the non-
maximal suppression image in order to determine potential edges and suppress weaker or
non-connected edges.

Although the edge detectors are able to detect edges on images different images, noise amount,
computation time requirements, etc. may make one algorithm superior to another when applied
to a certain task. For example, the Sobel operator is more sensitive to noise in images than the
Canny Edge, since the smoothing operation reduces the image noise in the beginning, however,
it is simpler to implement (Al-Amri, Kalyankar, and Khamitkar 2010, 805f). Another example
would be that the Prewitt operators have been found to be more applicable to satellite images
than the other techniques mentioned (Al-Amri, Kalyankar, and Khamitkar 2010, 807).
However, all edge detectors fail when there are too many edges since there is a chance of
them detecting wrong edges, which in turn leads to the wrong representation of the depicted
object. Another aspect that all methods have in common is that their output is basically a binary
image depicting the outlines of the image scenery (Kaur and Kaur 2014, 813). This makes
this technique optimal to be paired with another method, e.g. boundary depictions of image

2 RELATED WORK 20

sceneries are used in the region filling approach like by He, Hu, and Zeng 2019 can be used as
input images and Chudasama et al. 2015 used Canny edge detection in a first step and later apply
morphological operations and region filling in order to segment the image. This combination
can be used for the detection of the topology of the depicted objects, however, the output of
edge detectors itself does not provide meaningful information about the connectivity of objects.

2.5.4 Region-based Techniques

Region-based approaches can be divided into two basic methods: Region splitting and merging
and Region growing. Region splitting and merging use two basic techniques, where images
are in an iterative process split into smaller sections until only homogeneous regions are left
and the sections are combined based on similar characteristics in order to form similar regions
(Chudasama et al. 2015, 16).
Region growing algorithms start from one point within a region, also known as a seed, and then
grow until a stopping criterion is met, e.g. the bounds of the region, similar to the watershed al-
gorithm discussed above. In image grids, this is done by exploiting the 4- or 8-connectedness of
the regions, which describes the relation of pixels with their neighbours (Kaur and Kaur 2014,
811), which according to Rosenfeld 1979, 623 describes the neighbourhood relations between
pixels, and therefore if a region is simply connected or has cuts or holes.

Scan-Line. The starting points of the seeds can either be determined automatically, which are
also known as scan-line or edge filling algorithms, or seed filling, also known as flood filling
algorithms. The first algorithm relies on the detection of spans of scan lines lying inside the
objects, with automatic seed detection along those lines and a filling process, which starts to
fill the region to the right and the left of the determined starting point. An example of this
was presented by He, Hu, and Zeng 2019. Their approach was to classify the pixels images in
either background or boundary pixels. They then start with a flood fill from the padded origin
of the image, in order to classify the initial exterior and classify the visited pixels as exterior
pixels. After that, all other pixels in the image are considered to be a new starting point for the
remaining flood fill operations and fill all its connected regions with either an exterior or inte-
rior colour. When those steps are completed, the interior class is swapped with pixels labelled
as masks, and the exterior class is swapped back to background-labelled pixels. This way, the
algorithm can determine where holes are, based on the premise, that adjacent connected regions
should be treated differently, which essentially means when a region inside an interior region is
automatically classified as a hole (He, Hu, and Zeng 2019, 763–765). While a clear advantage
of these algorithms is that the seed positions are determined in an automatic manner, this limits
the applicability to a certain degree of complexity which can be correctly segmented. E.g., for
very detailed sceneries, where many little detailed elements are part of an object, those details
can easily be identified as external or background objects, although they are detailed elements
on top of the base element rather than holes.

Seeded Process. The second approach, which is also known as the seeded process, is much
more popular. The seeding process is usually done in a manual manner, where user interaction

3 METHOD 21

is involved. However there have been approaches to determine the seed positions automatically,
but as mentioned above, determining whether a pixel belongs to an object, a detail belonging
to said object or another object or the background can be a quite difficult task, especially when
dealing with sketches, since they do not have colour and intensity values, from which member-
ship could be determined.
An early example of this algorithm was introduced by Adams and Bischof 1994. They compare
region growing to watershed approaches since they both exploit the similarities and connectiv-
ity of the regions and start their filling processes from designated areas within the regions. In
their algorithm, they start from a set of determined seeds, which were given by users and then
the 8-connectivity of the regions and the similarities between the pixels are used to fill the re-
gions until the similarity criterion is not met anymore, meaning the neighbouring pixel belongs
to another region, or all pixels are classified. If a pixel value is not similar enough to any seed
pixel, they are subsumed by surrounding regions (Adams and Bischof 1994, 641–643).
While compared to the scan-line algorithms these images usually require human interaction for
seeding processes, which in turn means, that more complex images can be segmented. How-
ever, automatic seeding processes are more time and memory-consuming than manual seeding.
Despite this, the flooding process of both variants of the region growing algorithm already relies
on the region connectedness, they can be used for topology determination, similar to watershed
algorithms.

While region-based algorithms are intuitive and they are basically immune to noise, the clear
disadvantage is that they require more memory and time to be computed than other algorithms
(Kaur and Kaur 2014, 813). They can be applied to all kinds of images if the stop and similarity
criteria are compatible with the image types. Therefore, these techniques can also be applied
to sketches, however here the stop criterion has to be either based on properties of the flooded
region, like the size, or the lines of the sketches, which in turn require clean, connected edges.
In order to ensure this, either a stable edge detector has to be applied if the initial image is a
grey or RGB image, or pre-processing techniques like those mentioned in Xiangyu et al. 2002
be applied in order to connect broken boundaries and remove unnecessary line segments.

3 Method

The implemented system takes in a user-generated sketch and returns a 3d representation of
that. Python 3.10.4 is the python version used to implement the project and the system was
tested on both Windows 10 and 11 with CUDA 11.4 as well as the Linux distribution Ubuntu
22.04. with CUDA 11.5. The main packages used are pytorch 1.12.1, pytorch lightning 1.7.5
(Falcon and team 2019), Mitsuba 3.0.2 (Jakob, Speierer, Roussel, Nimier-David, et al. 2022)
and Dr.Jit 0.2.2 (Jakob, Speierer, Roussel, and Vicini 2022). For Mitsuba 3 as well as for Dr.Jit
the CUDA variant is used to profit from the parallel computing capabilities of the GPU in the
computations. Other relevant packages used are mentioned in the following as the part of the
implementation they are used in is discussed.

3 METHOD 22

Figure 1: General system overview. From a seeded user sketch, the silhouette image, the normal
and depth maps are translated and a base mesh is determined. Using those, a differentiable
renderer is used in order to predict a 3d model.

As depicted in Figure 1, the system pipeline consists of three modules:

• Topology determination, where the genus of the sketched object is determined and a base
object is chosen. This is done using a flood fill algorithm and the computation of the Euler
number. This number representing the genus and number of depicted objects is used to
select a matching base mesh from a variety of models.

• Trained neuronal networks that establish a normal and depth map based on the given
sketch. The network architecture is based on the work of Su et al. 2018 and Isola et
al. 2017 and two networks for the depth resp. normal map predictions are trained.

• A differentiable render deforms the base mesh using losses based on the depth and normal
maps, the silhouette representation as well as the edge and smoothness regularisers until
a 3d representation of the input sketch is created.

In the following sections, these three modules are discussed as well as the findings and practice
used, which were either not mentioned within the research the modules are based on or specific
to this framework but are crucial in order to ensure the creation of reasonable outputs.

3.1 Base Mesh Determination

To get a base mesh for the reconstruction, first, a flood fill is performed in order to differentiate
the object from the background, which is then processed to determine the genus of the depicted
object. The user-provided sketch has to include seeds, from which the fill algorithm starts.
Therefore, the user has to consciously mark every part of the object with a colour that is neither

3 METHOD 23

white (RGB(1,1,1)) nor black ((RGB(0,0,0))), as depicted in the first step of the topology part
in Figure 1. It is also irrelevant if multiple colours are used for these seeds since the fill colour
is predefined and is not the same as the colour used for the seeds. Also, multiple seeds in
one segment are not problematic, since the algorithm visits the neighbours of the seeds and if
they are already coloured, the algorithm goes right on to the next seed in the list. Although
this seeding process puts more workload on the user compared to other segmentation methods
discussed in Section 2.5 like neural networks, this can be justified since the user already has to
interact with the sketch when creating it and putting seeds into the object is a timely insignificant
addition to that process. Furthermore, additional time and resources would be required in order
to implement and train an extensive segmentation method, which does not require a user input
method, like a neural network, while the contribution to an improvement of framework output
is expected not to be significant.

3.1.1 Flood Fill

For the segmentation, a stack-based 8-connected flood fill is used. This requires the lines to be
closed as well as to be 4-connected, otherwise, the filling algorithm spills into other segments,
and possibly the background. Although this requires the input to be clean, algorithms like Yi et
al. 2016 could be used to pre-process such sketches to ensure that the input is free of any noise
and that the lines meet the requirements. Despite this disadvantage, the algorithm itself enables
the segmentation of complex objects with a lot of details, which is due to the user-placed seeds,
while other algorithms of the same simplicity fail to do so.
After the image is loaded, it is transferred to a range [0, 1] and padded. The seeds from the
provided input sketch act as starting points for the fill algorithm. Then, it is saved in a lossless
format and, if needed for debugging purposes, as a png file. A binary image is created where
the edges of the object merge with the object’s body because, for the application of the Euler
number computation, this solid unit is required.

3.1.2 Genus Computation and Base Mesh Determination

The Euler number is a topological attribute, that describes the relationship between the holes
and connected components in an object. It is defined by:

E =C−H (2)

where C is the number of connected components and H is the number of holes. Since the
user sketches are required to depict a single solid object (how this could be applied to sketches
depicting multiple objects is described in Section 5.1), C, in this case, is 1. Therefore, in order
to determine the number of holes, the Euler number has to be determined to apply the above-
rewritten formula:

H =C−E (3)

A common method to apply this method in applications, for example, described in Pratt 2007,
is to match segments of the image to patterns, so-called bit quads. This method is similar to the

3 METHOD 24

edge detection methods using kernels, like the Sobel operator, described in Section 2.5.3. There
are 3 sets of detectors, Q1, Q3 and QD, which are depicted in Tables 4, 5 and 6 resp.

1 0
0 0

0 1
0 0

0 0
1 0

0 0
0 1

Table 4: Bitquads Q1.

0 1
1 1

1 0
1 1

1 1
0 1

1 1
1 0

Table 5: Bitquads Q3.

1 0
0 1

0 1
1 0

Table 6: Bitquads QD.

If one of the patterns of a group matches a 2x2 segment of the image, said group value is
increased by 1. In this work, this was simply done by adding the values of the current pixel seg-
ments and comparing them against a value, that determined which bit quad group this segment
fell into as depicted in Listing 1.

1 for x in range(shape_x-1):
2 for y in range(shape_y-1):
3 current_pixel = image[x][y]
4 neighbours = [(x+1, y), (x, y+1), (x+1, y+1)]
5 neighbour_sum = 0
6 for i in neighbours:
7 neighbour_sum += image[i[0], i[1]]
8 sum = neighbour_sum + current_pixel
9

10 if sum == 1:
11 Q1 += 1
12 elif sum == 3:
13 Q3 += 1
14 elif sum == 2:
15 if current_pixel == 1 and image[neighbours[2][0], neighbours

[2][1]] == 1:
16 QD += 1
17 if current_pixel == 0 and image[neighbours[2][0], neighbours

[2][1]] == 0:
18 QD += 1

Listing 1: Implementation of pattern matching in order to determine Euler calculation

3 METHOD 25

Once the bit quads were compared to every 2x2 segment of the image, the final formula for the
determination of the Euler number is:

E =
1
4
[n{Q1}−n{Q3}−2n{QD}] (4)

where n{Qx} is the number of matches detected. With the usage of this formula, an 8-connectivity
of the object is assumed, which complies with the 8-connectivity-based flood fill used for the
segmentation. Furthermore, it is assumed, that the object is white while the background is black,
however, this is inverted in this work, therefore Q1 and Q3 were swapped, leading to the used
formula:

E =
1
4
[n{Q3}−n{Q1}−2n{QD}] (5)

Once the Euler number is computed via the application of the formula 3, the genus of the object
is determined. This number is used to fetch the base mesh from a variety of predefined meshes,
as depicted in Figure 1. For this thesis, five base meshes with different genera were created,
which are depicted in Figure 2. All the base meshes are low poly with a vertex count of around
650 vertices per mesh, which is around the same vertex count that similar work has used in the
past. However, the possibility of adding more or different meshes as well as using all types of
different mesh formats is given, since in order to do a simple configuration of the dictionary
which matches the genus to the corresponding model file name is stored in a JSON file, which
has to be located within the same directory as the given base meshes. Therefore, when adding a
new file or changing the filename of an existing file requires adding resp. changing the entry in
this file as well as adding resp. changing the model to the directory is the only step needed to
enable the usage of the said base mesh. Newly added meshes have to adhere to certain standards,
which can be enforced using the script used for the mesh pre-process operation, which was also
employed when creating the datasets for the map generation module, as described in Section
3.2.2. However, it is not mandatory to use this function, as long as the model is watertight, and
normalised, which in this case means that the diagonal of the bounding box has a length of 1,
manifold and the centre of the bounding box is located at the origin of the coordinate system.
Deviations from these requirements can lead to problems in the mesh deformation module due
to the rather fixed rendering setup, which would otherwise have to be adjusted accordingly.
Furthermore, Mitsuba 3 requires either the use of Wavefront OBJ or Stanford Triangle Format
models. It is important to use only vertex indices to describe the faces over variations like
vertex data and texture coordinates or vertex data and normals since the face indices, which are
used in the deformation module as described in Section 3.3, returned by Mitsuba 3 is the last
indices of the face descriptors. This means when vertices and UVs describe a face, only the
UVs are returned, when vertices, UVs and normals are used, only the normals are returned and
when only the vertices are used to describe the faces, those are returned. The standard meshes
provided are stored in PLY format, since this is recommended by the developers over using OBJ
models1.

1. https://mitsuba.readthedocs.io/en/latest/src/generated/plugins shapes.html

3 METHOD 26

Figure 2: Basic mesh templates with genus 0, 1, 2, 3 and 4.

3.2 Normal and Depth Map Generation

The normal and depth map generation rely on an image translation network implemented using
PyTorch lightning, inspired by the research conducted in Su et al. 2018 and Isola et al. 2017.
The network employs a WGAN architecture, consisting of a generator and discriminator, where
the generator creates normal resp. depth images from a given input sketch, and the discriminator
tries to maximise the predicted distance between real reference images and predicted images,
as described in Section 2.3.
The WGAN is trained on datasets consisting of either normal and sketch images or depth and
sketch images. Once the training process is completed, the resulting models can be used by
feeding them a sketch and they return either a depth or a normal map. In order to incorporate
this in the overall flow of the reconstruction network, the seeded user sketch is first cleaned from
the seeds. This is done to remove the noise the seeds introduce, which could be interpreted by
the network as part of the object and therefore relevant to the map reconstruction process, which
could ultimately lead to less accurate maps.
The training step itself is divided into a train and validation step, as explained in Section 3.2.2.
An additional function, test, can be used to get normal resp. depth maps from input sketches
using trained networks. This split in train, validation and test is used since this is the most
common division used in PyTorch lightning models.
The following sections describe the network architecture of the WGAN used as well as the
performed training process in depth.

3.2.1 Network Architecture

The network used for the map generation is a Wasserstein GAN network like Su et al. 2018
rather than a conditional GAN, like Isola et al. 2017 did in their research. For the generator as
seen in Figure 4, an encoder-decoder network is used. The encoder part consists of 8 convo-
lutional layers, batch normalisation and ReLU activation functions, while the decoder consists
of the same number of deconvolutional layers, layer normalisation and leaky ReLU activation
functions. As described by Isola et al. 2017, the layers, except for the innermost encoder and
outermost decoder layer are concatenated with their respective counterpart in the encoder resp.
decoder part, meaning d1 is connected with e7, d2 is connected with e6 and so on, forming skip
layers. That helps to preserve fine details since features are directly passed from the encoder to
the decoder part instead of being further up and downsampled. Since the concatenation of those
layers gives the network a U-shape-like appearance, as discussed in Section 2.4, this network

3 METHOD 27

Figure 3: Network Discriminator, which takes the concatenated input and predicted image as
well as the concatenated input and target image. Both concatenations are classified and the
resulting classifications are then used to calculate the final discriminator loss.

Figure 4: Network Generator, which takes a greyscale resp. RGB raster sketch as input and
uses an encoder-decoder network. It predicts either a greyscale image, which depicts the depth
map or an RGB image, which depicts the normal map, based on the input sketch.

structure is known as U-Net. This structure is used since previous research in the field of com-
puter vision employed it successfully in tasks such as image-to-image translation, which is the
goal of the normal and depth map generator.

The discriminator takes in the input sketch as well as either the predicted or the ground-truth
normal resp. depth map, which can be seen in Figure 3. A total of five layers, consisting of 2d
convolutional layers, layer normalisation and a leaky ReLU as an activation function are used to
process the dataflow. The loss function described in Section 2.3 can be rewritten and simplified

3 METHOD 28

to a loss function, which the discriminator is trying to maximise:

lossdiscriminator =−(lossreal − lossfake) (6)

where lossreal and lossfake are the mean of the prediction made on the real resp. fake images
made by the WGANs discriminator
This loss function is extended by a gradient penalty. The implementation of this can be seen in
Listing 2. Here, the first pairs of points on the real and the fake images are sampled uniformly
and the results are interpolated. Then, the gradient for the data distribution of the interpolated
image predicted by the discriminator is computed. Finally, the mean of the squared distance
between the gradient’s norm and 1 is relayed back to the discriminator, where it is weighted and
added to the loss described above. The final loss function for the discriminator can formally be
defined as:

max
D∈D

Ex ∼ Pr [D(x)]−Ex̄ ∼ Pg[D(x̄)]+λEx̂ ∼ Px̂ [(||▽x̂D(x̂)||2 −1)2] (7)

or simplified:

lossdiscriminator = -(lossreal - lossfake) + weightgradient penalty * gradient penalty(self, real images, fake images)
(8)

1 def gradient_penalty(self, real_images, fake_images):
2 alpha = torch.rand((real_images.size(0), 1, 1, 1)).to(real_images.

device)
3 alpha = alpha.expand_as(real_images)
4 interpolation = alpha * real_images + ((1 - alpha) * fake_images).

requires_grad_(True)
5 d_interpolated = self.D(interpolation)
6 gradients = torch.autograd.grad(
7 outputs=d_interpolated,
8 inputs=interpolation,
9 grad_outputs=torch.ones_like(d_interpolated),

10 create_graph=True,
11 retain_graph=True,
12)[0]
13 gradients = gradients.view(real_images.size(0), -1)
14 grad_norm = gradients.norm(2, 1)
15 return torch.mean(torch.square(grad_norm - 1))

Listing 2: Gradient Penalty

For the generator, the goal is to minimise the Wasserstein distance between the real and gen-
erated images, as seen in formula 1. However, this can be simplified, as shown by (Arjovsky,
Chintala, and Bottou 2017, 4):

min
G

Ex ∼ Pr [D(x)]−Ex ∼ Pg[D(x̄)]≡ min
G

−Ex ∼ Pg [D(x̄)] (9)

As done in the work by Su et al. 2018, to this loss the weighted L1 loss between the predicted
and the target image, which is either the ground-truth normal or depth map, is added to the
Wasserstein distance. This leads to the final loss function:

lossgenerator =−lossfake +L1(f ake, target)∗weightL1 (10)

3 METHOD 29

3.2.2 Network Training

The models of the used datasets, which are ShapeNet3d (Chang et al. 2015) for the compari-
son and a combination of the ABC dataset (Koch et al. 2019) and the Thingy10k (Zhou and
Jacobson 2016 for the ablation study as mentioned in Section 4.1.1 and 4.2.1 respectively, are
filtered and pre-processed. The images are processed using Mitsuba 3 (Jakob, Speierer, Rous-
sel, Nimier-David, et al. 2022). The camera is positioned using a 225° azimuth angle and with
a 30° elevation. All depth and normal images are rendered using 256 rays per pixel, which was
found to result in a detailed image.
For the rendering of the normal maps a custom implementation returning the shading normals
is used and for the depth maps a custom depth implementation is used. The shading normals are
chosen over the geometry normals since the interpolation of the normals provides a smoother
value distribution over the surface, which makes the loss computation more accurate. For the
creation of the maps the custom depth resp. normal integrator, described in greater detail in
Section 3.3, are used. Although Mitsuba 3 provides the same functionality in their AOV inte-
grator and the re-parameterised rays are not needed for a non-differentiable rendering, the AOV
integrator or the depth integrator of Mitsuba 3 could be used as well. But since the reparam
integrators are used in the DR process using those for the rendering of the target images ensures
that the maps are as similar as possible regarding background colours and tensor shape. Fur-
thermore, since the depth values are returned by the depth integrator resp. the AOV integrator is
not normalised and is in fact the absolute distance to the camera, this can lead to some problems
within the training process of the neural network: The object could, in theory, have very similar
values as the background, which makes the learning process more difficult. Masking the image
would be possible, however, due to the similar values, it is very likely that the object itself is
outlined by a darker outline that has slightly greater values than 0 and could also be found in
the object itself, but belongs to the background. Therefore the created integrator returns 2 if
the ray hits no object in order to create a clear boundary between the object’s values and the
background values. The value 2 can be replaced by any other value, however, depending on the
normalisation of the model certain values can be interpreted as object values or the threshold
needs to be chosen carefully, e.g. using 0, which is used in the depth interpreter provided by
Mitsuba 3, can introduce difficulties if the rendered model is close to the camera. The resulting
image is then masked using the distance between near and far planes as the threshold. If the
pixel value is higher than the threshold, the value assigned is 1, otherwise, it is the pixel value
divided by the distance between the near and far planes. This process ensures a uniform back-
ground, which is not necessarily provided by the initial rendering where the values can vary by
small float values, which in turn can introduce errors in the mesh generation. Furthermore, the
object values are normalised while preserving the placement wrt. the camera placement and the
size ratio of the object’s parts.
The maps are then saved as OpenEXR files since conversion to a standard image format like
PNG would cause data loss due to the conversion from float to int. Furthermore, when us-
ing converted image data in the differentiable renderer the differentiated renderings also would
have to be converted, which would have added an extra unnecessary step, which also introduced
slight inconsistencies with the missing data.
For the sketches, Mitsuba 3 is used to render a greyscale image, which is then processed by the

3 METHOD 30

Canny Edge detection. Since when using a small output format, like 256x256 pixels as done
for the normal and depth map, artefacts like broken lines or merged parallel lines occurred, the
images are rendered with an output format of 1024x1024 pixels using 256 resp. 100 sample
rays per pixel. This different sample size is caused by the size of the ABC dataset compared
to the dataset used for the ablation study. Using more sample rays to render an image, would
have resulted in an unreasonably long rendering time for the whole dataset while the quality
of the sketches did not change significantly. Therefore, the sample size used to render the
Thingy10k/ABC dataset is deemed impractical for the ABC dataset and the number of used
sample rays is adjusted. In order to generate a sketch from the rendered models, a Gaussian
Blur, as well as the Canny Edge detection, are applied and the resulting lines are dilated before
resizing the image to 256x256 pixels. Resulting in colour artefacts being removed by thresh-
olding the image. For all image processing operations, the OpenCV2 library (Bradski 2000) is
used.

The generated images are split into training, validation and test datasets, which are used for the
operations described in the next paragraph. The concrete partition is described in Sections 4.1.1
and 4.2.1.
In order to utilise the generated datasets, custom data loaders are implemented. The imple-
mentation of the data loader used for the Thingy10k/ABC dataset is straightforward: The given
input and target folder are iterated and the paths are stored in a list. During the training process,
for the given indices those lists are used to load the images and returned with their respective
paths to the training, test or validation function. It is also possible to only get the input image
and its path, which can be utilised during the test process, as described in the following para-
graph.
The data loader of the ShapeNet3d dataset is inspired by the one used by Liu et al. 2019: Since
this dataset is divided into classes, the training process needs to include equal amounts of ren-
derings for every class. This number for the training process is given by the user and the size
of the validation set is computed based on the ratio of the training set size and the validation set
size given by the state-of-the-art method, which this work is compared to. In the data loader, the
paths are not stored in a list but in a target and an input dictionary which are composed of lists
of paths and their respective classes as keys. During the training process, the classes are chosen
at random, which is used to get the list of the respective images of the directory. Then, an image
at a random index within that list is returned. For the test method, the same method used for
the Thinky10k/ABC dataset is used since this should process the whole dataset, however, the
implementation needed to be adjusted to the composition of the dataset, which is different in
the two datasets as described in Sections 4.1.1 and 4.2.1.
While this implementation has the disadvantage of not producing the same models for each
training, even if the parameters are all equal, it works for this dataset, since within the classes
the objects are very similar and of one type. While there are alternatives which ensure that
all classes are trained equally, e.g. by using a probability function suited for that cause, this
approach worked for the purpose of this thesis.

The training itself is conducted on 4 Nvidia A40 GPUs, using the Distributed Data Parallel

3 METHOD 31

strategy. The input consisted of the sketch images, which served as input images, and either
the normal or the depth images, which were used as the target images. For the training input,
the integer values of the input sketch were transformed from a range of [0,255] to float values
with a range of [-1,1] and the float values of the depth map were transformed from a range of
[0,1] to [-1,1]. The normal map is not transformed, since the output of the normal rendering
process is already mapped [-1,1]. Furthermore, for the depth map only 1 channel is used, since
all 3 channels have the same value and using only one channel in the training process omits the
problem of variance in pixel values between channels.
At the end of every training process, a validation step is performed, where the L1 loss between
the predicted image and the target image is computed. Those are transformed to a 0-255 value
range and logged in order to follow the learning process in a visual way in addition to the
logged losses as well as to provide some information about the quality of the resulting images
without having to generate images using the trained models. Those checkpoints are also created
during the validation step. A total of 6 checkpoints are saved during the training process, five
depending on the smallest L1 loss of the validation and one after the last step, which concludes
the training process. Once the training is completed, a test step is performed where the test set
is fed into the model with the lowest validation loss and depth resp. normal maps are created
from that, both in lossless formats as well as in png formats for better debugging. In addition
to that, if a target folder for the test set exists, the output and the target png are merged into
one image for better comparison, otherwise only the predicted image is created. For predicting
depth images, an additional step includes transforming the output back to 0-1.
This test function is used in the framework to employ the trained models to create the depth
resp. normal maps from the given user input. A target folder with corresponding target depth
resp. normal maps is given, and the output of the prediction and this target are concatenated
into one png for better comparison. If no target image is given, the predicted image is output on
its own. The test step can be performed on any number of GPUs. Like in the training step, the
strategy is Distributed Data Parallel and mixed precision is also used.

3.3 Mesh Reconstruction using Differentiable Rendering

In the final step, the base mesh and the flood-filled sketch returned by the base mesh determi-
nation module, as described in Section 3.1, and the predicted by the trained neural networks
normal and depth map, as described in Section 2.4, are used in a differentiable renderer to con-
struct the output mesh. This is done by offsetting the initial vertex positions, which are obtained
via the scene traverse method of Mitsuba 3, of the input mesh by certain values. Those values
are optimised iteratively. For the loss, which is backpropagated with the associated gradient to
the optimiser, 5 losses are computed in each iteration and a weighted sum is computed:

loss = losssi ∗weightsi + lossd ∗weightd + lossn ∗weightn + losssm ∗weightsm + losse ∗weighte
(11)

The depth loss (lossd), the normal loss (lossn) and the silhouette loss (losssi) are determined by
the differentiable rendering of the deformed base object. For this process, Mitsuba 3 is used
with 16 sample rays per pixel, since this number of rays proved to gather enough information

3 METHOD 32

regarding the scene parameters to result in reasonable deformation and produces a rather small
gradient, which is beneficial for the time it takes to backpropagate the loss. However, in order to
speed up the deformation process, this number can be reduced but can impact the quality of the
deformed mesh since less information can be retrieved from the resulting images. Furthermore,
it is mandatory that the masking process for the depth map, which is needed in order to separate
the object from the background as described in Section 3.2.2, is excluded from the backprop-
agated gradient associated with the depth map. This is done by utilising the suspend graph
function for the computation of the mask. If this is not excluded, this computation is captured
in the graph and backpropagated which leads to the mesh getting distorted in undesired ways
leading to faulty normals, which in turn can lead more likely to the normal map renderer return-
ing nan values and ultimately to a failure of the deformation process. Although faulty normals
should not occur when this is taken into account, the rendered normals are still checked for
invalid values in order to log the failing mesh and the associated meshes. This is included for
debugging purposes.
Mitsuba 3 was chosen over the others described in Section 2.2, since the possibility of adding
plugins or other code parts and integrating them with the existing framework is more accessible
than in the other renderers. Although other libraries, e.g. Pytorch3d, already provide losses
like the smoothness loss or the edge loss, which are discussed in the following paragraphs, the
benefit of Mitsuba 3 is that it is low level compared to the other libraries, which allows for
own extensions to be easier implemented. Furthermore, custom rendering techniques, which
are referred to as integrators in Mitsuba 3 and its predecessors, are fairly straightforward to
implement. Each integrator solves the light transport equation, which is an essential part of the
Monte Carlo method that is used in Mitsuba 3 as described in Section 2.2. However, since the
provided integrators for the AOVs, which include the normals and depths, are not inherently
differentiable and there is no silhouette renderer, this needed to be implemented for this the-
sis. In order to implement differentiable integrators, the init as well as the reparam function,
which makes the re-parameterisation of the used integrator possible and is needed to make it
differentiable as discussed in Section 2.2, are constructed according to already existing reparam
integrators. The init function includes the following parameters:

• The maximal depth, to which the re-parameterisation is applied.

• The number of auxiliary rays used to evaluate the parameterisation, which is described in
Bangaru, Li, and Durand 2020, 8.

• A probability distribution parameter, which specifies the sampling positions of the auxil-
iary rays.

• A weight exponent is used for weighing the integral along the auxiliary ray.

• Whether antithetic sampling is used, which is a variance reduction method used in Monte
Carlo sampling and also adopted by Bangaru, Li, and Durand 2020, 11 in their work as
an option.

The other addition to the classic depth resp. normal integrator used in Mitsuba 3 is the reparam
function, which returns a re-parameterised ray. These two functions are taken from other built-

3 METHOD 33

in reparam integrators and combined with the depth resp. shading normal computation method,
which is used in the AOV integrator. This part uses Monte Carlo sampling and adds either the
shading normal or the depth value of the hit value to a spectrum, which is then returned. If a
ray hits nothing, a predefined value, which in this case is 2 enables the masking processes as
described in Section 3.2. Once the differentiable depth resp. normal maps are rendered, the L1
loss is used in order to get the difference between the GT and the rendered maps.

For the rendering of the silhouette, another integrator is implemented, which returned 0 if the
object is hit and 1 otherwise. Although a differentiable renderer is not mandatory to get the
silhouette of the objects since masking the depth or normal map would also be an option, this
is implemented because the division of the renderings into independent steps seemed to be a
reasonable step in order to make debugging and the evaluation of contributions of the respec-
tive losses and therefore the choice of the weights easier. Once the silhouette is rendered, the
Intersection over Union metric is used to compute the difference between the flood-filled image
acquired from step 3.1.1, which is used as the target image, and rendered image. This metric is
popular when computing silhouette loss because it is a straightforward way to compute similar-
ities between two binary images. Therefore, many researchers have included this step in their
works, e.g. Xiang et al. 2020 and Liu et al. 2019.
The computation process is depicted in the function Intersection over Union in Listing 3: First,
the horizontal and the vertical sum of the two tensors representing the rendered and the input
silhouette are computed, which declares the intersection of the 2 images. The union is the
horizontal and vertical sum of the added images subtracted by the multiplied images. For the
horizontal and vertical sum, the torch implementation of the sum function is employed, since
Dr.Jit reduces tensors over dimension 0, which in this case leads to wrong results. This is rep-
resented by the torch add function depicted in Listing 3. Once the intersection and the union
are computed, the final computation returns a value describing how similar the intersection and
the union values are. To avoid a division by 0, ε is added, which is 1e-6 in this work. If the
similarity divided by the elements in a column or row of the input tensors approaches zero, 1 is
returned, which is the desired value for the silhouette loss.

1 @dr.wrap_ad(source=’drjit’, target=’torch’)
2 def torch_add(self, x):
3 dims = tuple(range(x.ndimension())[1:])
4 return torch.sum(x, dim=dims)
5
6 def iou(self, predict, target):
7 intersect = self.torch_add(predict * target)
8 union = self.torch_add(predict + target - predict * target)
9 intersect_shape_x = intersect.shape

10 x = 1.0 - dr.sum(intersect / (union + 1e-6)) / intersect_shape_x[0]
11 return x

Listing 3: Implementation of Intersection over Union for the smoothness loss and the torch sum
function used to compute the sums used in the IoU computation.

3 METHOD 34

Like in Xiang et al. 2020, for the edge loss (losse) the As-Rigid-As-Possible energy is used:

losse =
1
ne

∑(einitial − ecurrent)
2 (12)

In order to do this, the vertex indices associated with an edge are stored in pairs in a list before-
hand. This is done by traversing the faces of the mesh obtained by the scene traverse function of
Mitsuba 3 and storing the vertex indices of the edges. Using those indices, the vertex positions
are gathered from the deformed vertex position list and the length between two vertices belong-
ing to an edge is computed. These resulting edge lengths are described by the variables einitial
and ecurrent in equation 12. The einitial are computed using the initial vertex positions before the
deformation loop starts and the ecurrent is computed in every iteration using the deformed vertex
positions. As seen in the formula above, the L2 distance of the einitial and the ecurrent are then
multiplied by 1 divided by the number of edges in order to get the edge loss. As mentioned in
2.1, this loss is employed to regularise the edge lengths and therefore keep the mesh structure
consistent.

For the smoothness loss (losssm), which is inspired by the work of Kato, Ushiku, and Harada
2018 as described later in this paragraph, the needed vertex indices are also pre-processed be-
forehand in order to minimise the computation time of the loss during the deformation iterations.
This is done in two steps: For the first step, the two face indices of the faces with 2 same edge
vertices are stored in a tuple in a directory with the edge vertices as keys. In a second step, for
which the implementation is depicted in Listing 4, this directory is iterated and for the adjacent
face indices the 4 vertices are stored in one list based on the vertex they belong to and whether
they are the x, y or z coordinate. This appending process is done in a closure function since this
reduces code and this function must not be globally accessible. The x, y and z lists belonging to
a vertex are concatenated in a single list once the iteration process is completed. v1 and v2 are
the lists containing the vertex indices that are contained by both faces, while v3 and v4 consist
of the vertex indices located in only one of the two faces. These containing vertex lists can be
used in the deformation loop to gather the current vertex positions by using the gather function
provided by Dr.Jit. The smoothness loss computation, which is described in the following, is
then executed two times, using the gathered vertex indices from the lists v1 and v2 both times
and the vertices from the lists v3 and v4, which are contained by only one of the faces, only
once. Using this prepossessing and list-based approach is performing much better when using
the CUDA-based approach, due to the parallel computing capability of the GPU. This reduces
the computation time significantly compared to a sequential approach, which is crucial due to
the usage of a large number of iterations to deform the mesh.

1 def pre-process_smoothness_params(self, edge_vert_faces, face_indices):
2 def generate_vertex_list(self, vertex_list_x, vertex_list_y,

vertex_list_z, vertex_index):
3 vertex_list_x.append(3 * vertex_index)
4 vertex_list_y.append(3 * vertex_index + 1)
5 vertex_list_z.append(3 * vertex_index + 2)
6 v1_x, v1_y, v1_z = [], [], []
7 v2_x, v2_y, v2_z = [], [], []

3 METHOD 35

8 v3_x_f1, v3_y_f1, v3_z_f1 = [], [], []
9 v3_x_f2, v3_y_f2, v3_z_f2 = [], [], []

10
11 for key in edge_vert_faces:
12 curr_faces = edge_vert_faces[key]
13 vert_idx_face1 = [face_indices[0][curr_faces[0]],
14 face_indices[1][curr_faces[0]],
15 face_indices[2][curr_faces[0]]]
16 verts_idx_face2 = [face_indices[0][curr_faces[1]],
17 face_indices[1][curr_faces[1]],
18 face_indices[2][curr_faces[1]]]
19 joined_verts = list(set(vert_idx_face1).intersection(

verts_idx_face2))
20 generate_vertex_list(v1_x, v1_y, v1_z, joined_verts[0])
21 generate_vertex_list(v2_x, v2_y, v2_z, joined_verts[1])
22 v3_face1 = (set(vert_idx_face1).difference(joined_verts).pop())
23 generate_vertex_list(v3_x_f1, v3_y_f1, v3_z_f1, v3_face1)
24 v3_face2 = (set(verts_idx_face2).difference(joined_verts).pop())
25 generate_vertex_list(v3_x_f2, v3_y_f2, v3_z_f2, v3_face2)
26 v1 = [v1_x, v1_y, v1_z]
27 v2 = [v2_x, v2_y, v2_z]
28 v3_face1_idx = [v3_x_f1, v3_y_f1, v3_z_f1]
29 v3_face2_idx = [v3_x_f2, v3_y_f2, v3_z_f2]
30 return v1, v2, v3_face1_idx, v3_face2_idx

Listing 4: Implementation of pre-processing operation for smoothness function. For two faces
the vertex indices used as edge points for both vertices are stored in v1 and v2. Vertex indices
belonging to only one face are stored in v3 resp. v4.

The smoothness loss is itself the same as used by Xiang et al. 2020 and Kato, Ushiku, and
Harada 2018:

losss = ∑
(f i, f j∈F)

(1+ cos < f i, f j >)2 (13)

where fi and fj are two adjacent face pairs. As described above, in two steps the current vertex
indices of adjacent triangles and the angle between them are computed. A depiction of the edge
and vertex of the faces values can be found in Figure 5.
As seen in Listing 5, for each face the adjoined edge a and another edge b are computed, using
the given vertex data v1, v2 and v3 or v1, v2 and v4. Then, the vector c, which describes v2
to the edge of a projected point v3, is computed. This is done using scalar projection of one
edge b onto the edge a. Returned are then the distance b to c, which describes the dashed line
in Figure 5 and its squared magnitude.
Once cb and the length of that are computed, the angle between the two faces can be computed
using:

cos(θ) =
cb f 1 · cb f 2

magcb f1 ∗magcb f2
(14)

which is the equivalent of the second term of the addition in equation 13. Like in the com-
putation of the IoU, epsilon of 1e-6 is added if there is a chance of a division by zero. As
described in equation 5, the result is added to 1 and squared before computing the final sum

4 EVALUATION 36

of the resulting list, which serves as the smoothness loss. This implementation is a simplified
version of the one Kato, Ushiku, and Harada 2018 did in their work, which is implemented in
their project repo2. However, their implementation is more complex and adds the epsilon value
multiple times in the various steps, but is not explained nor validated in their work. Therefore,
this framework uses an intuitive, simpler version with only the necessary eps.

1 def smoothness_helper(self, v1, v2, v3):
2 a = v2 - v1
3 b = v3 - v1
4 sqr_magnitude_a = dr.sum(dr.sqr(a))
5 dot_ab = dr.sum(a * b)
6 l = dot_ab / (sqr_magnitude_a + 1e-6)
7 c = a * l
8 cb = b-c
9 l1_cb = dr.sqrt(dr.sum(dr.sqr(cb)))

10 return cb, l1_cb
11
12 cb_1, l1_cb_1 = self.smoothness_helper(v1, v2, v3_face1)
13 cb_2, l1_cb_2 = self.smoothness_helper(v1, v2, v3_face2)
14 cos = dr.sum(cb_1 * cb_2) / (l1_cb_1 * l1_cb_2 + 1e-6)
15 smoothness_loss = dr.sum(dr.sqr(cos+1))

Listing 5: Implementation of computation of values used for the smoothness loss.

Figure 5: Depiction of important values used for smoothness loss.

4 Evaluation

In order to evaluate the implemented system two studies are conducted: A comparison with a
state-of-the-art model and an ablation study. The first intends to rate the output mesh of the
proposed pipeline compared to the output of an established state-of-the-art model as well as to
identify certain factors that could be improved in future work. The ablation study is conducted
in order to prove that the incorporation of the depth map and basing the base mesh used for

2. https://github.com/hiroharu-kato/mesh reconstruction/blob/master/mesh reconstruction/loss functions.py

4 EVALUATION 37

the deformation process on the genus of the sketch do improve the reconstruction process. The
results of the studies are presented in the following. Finally, the limitations of this pipeline and
possible ways of overcoming them are discussed.

4.1 Comparison with State-of-the-Art Model

To establish how the proposed model performs in comparison to state-of-the-art models, this
thesis’ system is compared with the Neural Mesh Renderer by Kato, Ushiku, and Harada 2018.
This is done in both a quantitative way, using metrics to measure the similarity between the
ground-truth model and the generated models and evaluating the results for both the Neural
Mesh Renderer and the proposed pipeline, as well as a qualitative way, where the resulting ob-
jects where examined based on how they appear and possible geometric flaws.
In the following section, the experimental setup is explained including the used dataset, param-
eters, comparison model and evaluation images. Thereafter, the results of the qualitative and
quantitative study respectively are presented.

4.1.1 Experimental Setup

Dataset. The dataset used for the comparison with a state-of-the-art model is based on ShapeNet3d
v1 (Chang et al. 2015). This is chosen over the dataset used in the ablation study, since attempts
to train models on this dataset are unsuccessful, which can be attributed to the variety of the
dataset. Therefore, the standard dataset is utilized, which most of the models in this field used
to train their methods. This however meant that the impact of the proposed improvement on the
predefined base model based on the genus could not be evaluated for most sketches, since the
classes offered by ShapeNet consist of models which mostly have genus 0. Furthermore, the
ShapeNet data had to be extensively pre-processed, since this proved to be unusable due to var-
ious problems like inconsistent normals, holes, and coincident or overlapping faces. Therefore,
the pre-processed ShapeNet data provided by Xu et al. 2019 is used, and the remaining data is
cleaned using the research by Xu et al. 2019 and Sin, Schroeder, and Barbič 2013. Although
this caused artefacts in some meshes like missing or disconnected parts, the resulting render-
ings proved to be usable. Another option would have been to reconstruct the meshes from the
dataset provided by Kato, Ushiku, and Harada 2018 using a technique like marching cubes (e.g.
Lewiner et al. 2003).
After the pre-processing step that repairs the broken ShapeNet data, a second pre-processing
step is applied before rendering the dataset images. This ensures that the mesh is watertight,
and normalised, which in this case means that the diagonal of the bounding box has a length of
1 as mentioned in Section 3.1.2, at the centre of the coordinate system, has consistent normals
and has no holes.
Since Kato, Ushiku, and Harada 2018 does not provide their exact split, the dataset has to
be split according to the ratio used by Kato, Ushiku, and Harada 2018, which means that the
datasets the Neural Mesh Renderer was trained on and the one used in this thesis might be dif-
ferent.
The resulting dataset consisted of a total of 13 classes and 43783 256x256 images, which are

4 EVALUATION 38

not evenly distributed amongst the classes. The dataset is split into a sketch dataset, and a tar-
get dataset, which is split into train, test, and validation folders. Those contain folders for the
classes, in which the sketches resp. normal or depth maps for the associated class are stored.
The ratio in which the train, validation, and test images are split is 70:10:20, which is based
on the split ratio of the dataset used by Kato, Ushiku, and Harada 2018. This results in 30643
training images, 4378 validation images and 8762 test images.

Map Generation Parameters. For the map generation training the randomised data loader for
the ShapeNet3d dataset, which is described in Section 3.2.2, is used. From this dataset 782
training images are chosen at random for each training epoch and 112 validation images are
used. The model is trained over 3000 epochs, using a batch size of 91. The learning rate is
set to 2e-5. For the network optimiser, RMSProp is used, since those proved to be the most
effective in the research by Arjovsky, Chintala, and Bottou 2017, 7, however, using the Adam
optimiser would also have been an option since this performed the best in the study conducted
by Gulrajani et al. 2017, 5775. The discriminator is trained five times more often than the gener-
ator since the WGAN structure demands the discriminator to be trained more than the generator,
as discussed in Section 2.3. Based on experience and manual optimization, for the weight of L1
loss between the predicted and target image added to the WGAN loss in the generator, a factor
of 500 is used. For the gradient penalty weight in the discriminator 10 is used, since this is the
value successfully used by Gulrajani et al. 2017, 5770 in their experiments. This setup is the
fastest tested while producing reasonable results, taking about a day to complete the training.
The networks could have been trained for longer to produce better output, however, the esti-
mated time for that would not warrant the predicted improvement. Therefore, the checkpoints
with the lowest validation error of the 6 options produced during the training to predict the maps
in the proposed pipeline are selected. The chosen checkpoints are the ones produced at epoch
2843 with a validation loss of 0.025612 for the depth map prediction and produced at epoch
2724 with a validation loss of 0.027100 for the normal map prediction.

Comparison Model. The model chosen for this comparison is the Neural Mesh Renderer by
Kato, Ushiku, and Harada 2018. Although this is one of the older networks existing in this field,
it is still regarded as state-of-the-art. Furthermore, the authors provided their pre-trained models
in the repository3 associated with their study and the information on how to use those, which
is not the case for all potential comparison models. The difference to the proposed version is
that they use RGBA images in their work instead of sketches and they produce intermediate
multi-view silhouettes from a given input sketch. Furthermore, the dataset they trained their
model on, is the voxelised version of ShapeNet3d, which for their approach should not make a
difference since their deformation process is based on silhouettes rather than normal and depth
maps as well as a small input image size which includes less information about details. There-
fore, it is expected that the Neural Mesh Renderer is able to better capture the overall shape of
the input image, while the proposed method should output more details in the model, which is
also expected to be reflected in the results of the quantitative evaluation. In addition to that, they

3. https://github.com/hiroharu-kato/mesh reconstruction

4 EVALUATION 39

trained their model on the classes for each model, resulting in a pre-trained model for each class,
while the thesis approach uses one pipeline and the pre-trained depth and normal map generator
for each object independent of their class. This likely makes their output for the classes more
accurate, however, a more generalised approach to reconstructing models from image input is
provided by using one solution for all options. Despite the differences in the approaches in
the reconstruction techniques, the output of the study will provide valuable information on how
the proposed technique performs against an established method and which parts of the work by
Kato, Ushiku, and Harada 2018 might be worth investigating and incorporating in future work.

Pipeline Parameters. The parameters set for the pipeline refer to the mesh deformation mod-
ule, since the other relevant parameters are used in the map generation module and therefore
described in the Dataset and Map Generation Parameters paragraph of this section. The defor-
mation process is performed over 4000 epochs, which takes about 6 hours per mesh to com-
plete. The Adam optimiser is configured with a learning rate of 0.0001, beta1 of 0.9 and beta2
of 0.999. While those values are not the ideal parameters for all models due to the variance
and therefore the different requirements to the optimization parameters in the dataset, they are
chosen since they did work for all input sketches without producing major errors as well as
producing reasonable output meshes. The weights mentioned in Section 3.3 are set to weightd
0.002, weightn 0.002, weightsm 0.02, weightsi 0.9 and weighte 0.9. Therefore, the setup of the
weights is similar to Xiang et al. 2020 with the exception of the addition of the depth weight for
the depth loss and the weight for the smoothness parameter. The latter parameter is not 0.01,
as used in Xiang et al. 2020, due to some errors occurring in the normal renderings and the
resulting problems which became apparent in the ablation study. This is further explained in
Section 4.2.2.
Since Kato, Ushiku, and Harada 2018 used images with a size of 64x64, the meshes are re-
constructed using this thesis’ pipeline with both the setup with a 256x256 input image size, as
recommended with this framework, and the 64x64 input image size. This is done to investigate
how the framework and the output are affected by this change as well as to compare the output
of the state-of-the-art method with the parameters as well as with theirs in case that has a huge
impact on the reconstruction.

Evaluation metrics. The Intersection over Union metric and the Chamfer distance are evalu-
ated for the models reconstructed by the proposed variant and Kato, Ushiku, and Harada 2018.
These metrics are chosen since they are the most commonly used metrics to compare meshes
and using various metrics rather than one offers a more objective result, since different methods
may respond differently to certain features in the output meshes.
Since the computation of the Chamfer distance is designed for point clouds rather than for trian-
gle meshes, 10000 points are sampled on the ground-truth and the output object, resulting in the
point sets A and B. Those are used in the following equation to compute the Chamfer distance:

dch(A,B) =
1
|A| ∑

(pi∈A)
min
(pj∈B)

||pi − pj||22 +
1
|B| ∑

(pj∈B)
min
(pi∈A)

||pj − pi||22 (15)

While this metric is a good determinator of whether there are excess or missing parts, this makes

4 EVALUATION 40

it very sensitive to outliers. Therefore, the IoU metric is also used. While the basic computation
of this is already explained in Section 3.3, since the evaluation is done on 3d objects 10000 SDF
values per mesh are computed. Those are then used in logical operation in order to determine
the Intersection and the Union, similar to the implementation presented in Listing 3.
The results of the comparison are presented in the quantitative study in Section 4.1.3.

Evaluation Images. For the evaluation, the sketches utilised as input for the proposed pipeline
are chosen from the test part of the dataset used in the map generation part, for which the
generation is illustrated in Section 3.2.2, and the split is described above. A rendered image
for each class (aeroplane, bench, dresser, car, chair. display, lamp, speaker, rifle, sofa, table,
telephone, vessel) in the ShapeNet3d v1 dataset is used, resulting in 13 evaluation sketches,
which are depicted in Figure 7.

Figure 6: Images used as input for the pre-trained models of Kato, Ushiku, and Harada 2018
256x256.

Figure 7: Sketches used as input for this thesis’ pipeline.

The same models are used to generate the evaluation images for this thesis’ pipeline as well as
for the comparison models. Since the dataset split by Kato, Ushiku, and Harada 2018 is not
disclosed in their work, there is no guarantee that the split for this thesis resembles the one they
used in their research. For the renderings themselves, the direct integrator provided by Mitsuba
3 is employed, which is also utilised to render images to apply the Canny Edge detection to
generate the sketches, as described in 3.2.2. However, for these images, a point light emitter is
used instead of a constant emitter as done with the temporary rendering for the proposed setup

4 EVALUATION 41

in order to equip the RGB part of the images with a black background instead of a white one,
since that causes problems with the pre-trained models by Kato, Ushiku, and Harada 2018. It
needs to be acknowledged, that this is not the only way to ensure a black background in those
images, however, since these images work for the comparison it is used in this setup. To the
RGB image rendered with the direct integrator, an inverted silhouette image rendered with the
silhouette integrator generated for the mesh deformation module, as described in Section 3.3,
and added to the RGB layers to form the alpha layer. The finished and assembled images are
64x64, unlike the 256x256 input sketches, and are rendered from the same viewpoint as the
sketches, which is possible since Kato, Ushiku, and Harada 2018 used multiple angles in their
training. This meets the requirements to be used in the model by Kato, Ushiku, and Harada
2018 and the rendered images are depicted in Figure 6.

4.1.2 Qualitative Evaluation

As already determined in the quantitative evaluation there are differences between the outputs
by the proposed pipeline and the ones by Kato, Ushiku, and Harada 2018. The values com-
puted using the Intersection over Union and Chamfer distance indicate that the methods overall
produce faulty meshes. Furthermore, it can be assumed that the main difference between the
proposed pipeline and the state-of-the-art method is that the network by Kato, Ushiku, and
Harada 2018 is better at reproducing the general shape of the mesh, while this thesis’ frame-
work is better at reconstructing details. In order to confirm these theses and to further identify
qualitative differences in the output objects, in the following the reproduced meshes are com-
pared and evaluated.

The first difference that needs to be acknowledged is the difference in the normals of the re-
constructed meshes, which can be seen in 8. Here are examples depicted that indicate that the
normals rendered from the same viewpoint used to render the input images are less flawed in
the meshes produced by the proposed pipeline, which is portrayed in Figure 8a. This is caused
by the usage of the normal loss in the loss function, which takes the loss between the predicted
normal and the normal of the deformed mesh and is consistent for all deformed meshes. This is
supported by the similarity between the predicted and the rendered normals of the meshes used
in the ablation study in Figure 13.
If the meshes are rendered from different viewpoints, e.g. like in Figure 8b, the models also
display some faulty normals. This is caused by the same problem Kato, Ushiku, and Harada
2018 has, namely that the deformation is not supervised wrt. the normals from that viewpoint,
which leads to inverted faces. However, the overall flaws in these meshes are very minimal, and
the value distribution of the meshes produced by the proposed framework seems to be closer
to the one by Kato, Ushiku, and Harada 2018. Therefore it can be assumed that the proposed
pipeline is superior to the Neural Mesh Renderer in terms of correctly reproducing the normals
of the meshes and avoiding inverted faces.

Another difference that was assumed at the beginning of this evaluation is that the proposed
method is better at capturing and reconstructing the details of the given input meshes. This
can be seen in Figure 15, especially with the table and the dresser. While those details are not

4 EVALUATION 42

(a) (b)

Figure 8: Normal values of reconstructed aeroplane, bench, car, and chair rendered from 4
different azimuth angles (225, 315, 45, 135) using a single view image (225° azimuth, 30°
elevation) as input. The first line shows the ground-truth meshes, the second row the meshes
generated by Kato, Ushiku, and Harada 2018 and the last rows the results of the proposed
pipeline with 64x64 resp. 256x256 images as input. In (a) the same viewpoint the input images
are rendered from, 30° elevation and 225° azimuth, are used, in (b) an azimuth angle of 315°
for the camera position is used. The depicted meshes are normalised for the rendering process
to fit in the field of view.

perfect, there are at least hints of them in the meshes. What is notable is that the input image
resolution does not have a considerable impact on the reconstruction of Kato, Ushiku, and
Harada 2018. This is demonstrated in e.g. the reconstruction of the aeroplane, where the details
in the object, especially in the tail and on the wings, are similar to the ground-truth mesh as
well as the reconstruction where a 256x256 sketch is used as input, whereas the reconstruction
based on the 64x64 image lacks those. Due to that as well as the dissimilarity between the lamp
and the bench shape it can be reasonably assumed that the Neural Mesh Renderer relies heavily
on the classes and is able to only reconstruct multi-view images that are familiar to it. If the
input shape is not as prevalent in the training set, the results will not resemble the GT. This
is similar to the normal and depth map generators in this thesis, for which these problems are
discussed in Section 5.2. Despite the proposed pipeline suffering from the problem introduced
via the map prediction, it still can be argued that it is not as significant since the normal and
depth map are a part of the generation process along with more regularisers and a loss. While
the work of Kato, Ushiku, and Harada 2018 also includes the silhouette, smoothness and edge
loss, the information from the normal and depth map is missing, making the shape less detailed
and reliant on the class of the shape.
This reliance on the class is essential for the Neural Mesh Renderer since there is no other
source regarding how parts that are not shown in the image look like. If that information is not

4 EVALUATION 43

(a) (b)

(c)

Figure 9: Output meshes of the different comparison variants rendered from the same viewpoint
as the input images. The first line shows the ground-truth meshes, the second row the meshes
generated by Kato, Ushiku, and Harada 2018 and the last rows the results of this research’s
pipeline with 64x64 resp. 256x256 images as input. For the rendering process, the meshes by
Kato, Ushiku, and Harada 2018 are normalised to fit in the field of view.

available to the system, the prediction of the other views would not be possible and not be able
to be reconstructed. This happens in the proposed pipeline and is also a great disadvantage of
the system. As seen in Figure 10, the proposed system is not able to reconstruct mesh parts
it has no information about, which is discussed more in detail in Section 5.3. This also aligns
with the output of the Chamfer distance in the quantitative evaluation of this chapter, since the
reconstructed model has more excess mesh parts. Furthermore, this confirms the thesis about
the characteristics of the different systems, with the Neural Mesh Renderer being able to recover
the general shape better, while the pipeline of this thesis is able to reconstruct details better.

4 EVALUATION 44

(a) Renderings of aeroplane model. (b) Renderings of bench model.

(c) Renderings of car model. (d) Renderings of chair model.

Figure 10: Generated meshes using a single view input image (225° azimuth, 30° elevation)
rendered from 4 different azimuth angles (225, 315, 45, 135). The first line shows the ground-
truth meshes, the second row the meshes generated by Kato, Ushiku, and Harada 2018 and the
last rows the results of the proposed pipeline with 64x64 resp. 256x256 images as input. The
depicted meshes are normalised for the rendering process to fit in the field of view.

4.1.3 Quantitative Evaluation

Prior to evaluating the metrics for the qualitative evaluation the generated meshes had to be
pre-processed in order to ensure that they have the same position, are normalised and rotated
to ensure that they have the same orientation. To guarantee the first two requirements, the nor-
malisation method ensuring that the diagonal of the bounding box of the mesh is 1 is used in
conjunction with a transform of the centre of the object to the centre of the coordinate system.

4 EVALUATION 45

The rotation part is only necessary for the objects produced by the models of Kato, Ushiku, and
Harada 2018 since their orientation is different from the produced models using the proposed
pipeline as well as the ground-truth models.
The results of this evaluation are presented in Tables 7 and 10. It needs to be recognised, that the
greater image size did improve this thesis’ system, which is attributed to an overall higher em-
phasis on the normal, depth, and silhouette loss as well as the details that could be reconstructed
due to the higher resolution. However, this will be analysed, discussed, and compared to the
output by Kato, Ushiku, and Harada 2018 in greater detail in 4.1.2, because this discrepancy
becomes more apparent when analysed visually rather than via metrics.

Comparison Variant Output Model Mean
Aeroplane Bench Dresser Car Chair Display Lamp Speaker Rifle Sofa Table Phone Vessel

Kato, Ushiku, and Harada 2018 0.143 0.018 0.188 0.444 0.123 0.282 0.205 0.089 0.125 0.117 0.246 0.281 0.077 0.180
proposed pipeline 64x64 0.021 0.060 0.257 0.314 0.244 0.076 0.177 0.115 0.053 0.137 0.093 0.162 0.127 0.141

proposed pipeline 256x256 0.043 0.088 0.270 0.313 0.308 0.108 0.211 0.131 0.087 0.150 0.156 0.196 0.125 0.168

Table 7: Results Intersection over Union; higher values indicate better reconstruction re-
sults. The proposed method using 256x256 sketches as input as well as Kato, Ushiku, and
Harada 2018 produced the best outputs an equal amount of times. For the remaining model,
the proposed method scored better, with the 64x64 input sketch resulting in a slightly better
result. Overall, the scores indicate little similarity between the base meshes and the reproduced
meshes.

Intersection over Union. The results of the Intersection over Union metric do not indicate a
clear superiority of the method by Kato, Ushiku, and Harada 2018 compared to the results of the
Chamfer distance, as discussed in the next paragraph. From the 15 tested models, the proposed
method of this thesis yielded better results in 7 cases, however, the mean over the results of all
models is better for the Neural Mesh Renderer. While the values of the classes where Kato,
Ushiku, and Harada 2018 scored the best are generally higher than the classes in the proposed
method that produced the best results, the difference between the values of the proposed method
and Kato, Ushiku, and Harada 2018 is for most classes significant. This leads to the conclusion,
that there is a clear advantage for most classes to use one method over another. However, since
there is no clear trend for which shapes one method outperforms the other, there is not really a
conclusion as to when one method should be considered over another. A possibility that needs
to be considered is the influence of the likely different training sets used Kato, Ushiku, and
Harada 2018 and the proposed method, but that cannot be confirmed for certain. Therefore, the
results of the qualitative evaluation need to be taken into account to determine the best applica-
tion cases for the specific implementations.
However, the results in Table 7 indicate an overall inaccurate mesh reconstruction. This does
not match the results in the original work of Kato, Ushiku, and Harada 2018, for which there
are several reasons: They used more primitive meshes, more specifically the meshed version of
the voxelization of the ShapeNet3d v1 dataset according to the dataset they provided in their
project repository. Since they used also only 64x64 images as input, this mesh quality is suf-
ficient for their studies, since details in the meshes as well as in the images are not prevalent
and can therefore not be reconstructed. This is supported by comparing the 64x64 version to

4 EVALUATION 46

the 256x256 version, where the higher resolution for most cases results in better scores for both
the IoU and Chamfer distance. Using the reconstructed meshes as GTs will therefore result in
worse metric outputs for the comparison than if the version by Kato, Ushiku, and Harada 2018
is used. It must also be acknowledged, that those simpler models could improve the quality of
the output meshes of the pipeline, since the values of the normal maps are more unified, which
can improve the prediction process, and the shapes are simpler, which can reduce error when
it comes to reconstructing the details. This is however only an assumption that could be eval-
uated in future work. Another factor that could attribute to the overall worse result is that the
test models used for the evaluation are not the same as Kato, Ushiku, and Harada 2018 used
in theirs. In selecting the evaluation images there is a focus on having a variety of sketches in
terms of their similarity to the training data. This can cause images, which are less familiar to
the trained models by Kato, Ushiku, and Harada 2018 as well as the map generation module to
work better for certain objects.

Comparison Variant Output Model Mean
Aeroplane Bench Dresser Car Chair Display Lamp Speaker Rifle Sofa Table Phone Vessel

ground-truth Values abs 59 93 135 111 89 100 78 166 40 106 102 78 70 94

Kato, Ushiku, and Harada 2018 abs 163 1592 1254 567 377 335 639 1454 309 1254 755 678 666 773
rel. 2.763 17.118 9.289 5.108 4.236 3.350 8.192 8.759 7.725 11.830 7.402 8.692 9.514 7.998

proposed pipeline 64x64 abs 1264 1008 1796 865 1011 1693 1303 1140 1046 1299 2152 1088 1011 1283
rel. 21.424 10.839 13.304 7.793 11.360 16.930 16.705 6.867 26.150 12.255 21.098 13.949 14.443 14.855

proposed pipeline 256x256 abs 1657 991 1165 912 962 1498 1140 1173 1244 1240 2037 1670 1076 1290
rel. 28.085 10.656 8.630 8.216 10.809 14.980 14.615 7.066 31.100 11.698 19.971 21.410 15.371 15.585

Table 8: Results Chamfer distance; lower values indicate better reconstruction results. The
absolute values of the Chamfer distance of the ground-truth models to the ground-truth models
are represented in the first row. The absolute values of the outputs of comparison variants as
well as the relative values to the GT are represented in the respective rows.
The method of Kato, Ushiku, and Harada 2018 scored best for nearly all models. For two
classes the proposed method produced better models, while for the other two, the results are
very similar for all tested variants.

Chamfer Distance. When reviewing the results of Table 8 it is clear that the Neural Mesh
Renderer produces better output meshes. While this thesis’ pipeline performs better in 4 out of
15 cases, the difference for 2 cases is very minimal to the output of Kato, Ushiku, and Harada
2018 and can therefore be neglected. Analysing the remaining 2 classes where the proposed
framework outperformed the comparison method, there is no real reason for the speaker class
to perform better, the improvement of the bench class could be attributed to the usage of a
matching base class. But this cannot be determined for certain, since for the chair class this
effect did not take place, and the holes are not similar in terms of size and placement to the ones
in the sketch. Therefore, while this might have caused the improvement, there is not enough
data to confirm that this is the case here.
Since the Chamfer distance is susceptible to outliers, it was expected that the method by Kato,
Ushiku, and Harada 2018 is superior to the thesis’ when looking at the results of the metric.
This is due to the Neural Mesh Renderer using intermediate multi-view images to supervise
the deformation, while the proposed pipeline uses only single-view supervision. This confirms
the thesis that Kato, Ushiku, and Harada 2018 is better at capturing the overall shape since it is

4 EVALUATION 47

likely that the hidden parts of the mesh still resemble its base shape or are deformed to minimise
the regularisers. Therefore, the results need to be interpreted with the results of the qualitative
evaluation in 4.1.2.

Overall it can be determined, that the Neural Mesh Renderer is better at capturing the shape of
the meshes, which was expected. However, the outputs of the proposed pipeline are not much
worse than the ones by Kato, Ushiku, and Harada 2018, especially when looking at the results
of the Intersection over Union evaluation. Therefore, it is reasonable to assume that if improve-
ments, as suggested in Section 5 are implemented in the proposed system, the outputs are better
or at least on par with established state-of-the-art methods.

4.2 Ablation Study

To evaluate whether the incorporation of the depth map and the genus of the model that should
be reconstructed impact the generation of the mesh in a positive way, an ablation study is con-
ducted. For that, 4 variants of the pipeline are evaluated both in a quantitative and qualitative
way. For the quantitative evaluation metrics are used to compare the resulting scores of the
different variants’ outputs for the given input sketches. The qualitative evaluation aims to de-
scribe the flaws and differences in the reconstructed meshes in a holistic way. In this section,
also a comparison of the reconstructed maps is analysed in order to explain their impact on the
imperfections of the meshes and a general comparison of the variants and the influence of their
setup on the overall output is evaluated. Furthermore, this evaluation also included non-artificial
sketches and their reconstructed meshes in order to prove that the proposed pipeline can also
produce reasonable output for hand-drawn images as input.
The following sections describe the experimental setup used for the study as well as discuss the
aforementioned evaluations and present their results.

4.2.1 Experimental Setup

Dataset For the generation of the dataset, meshes from the ABC dataset (Koch et al. 2019) and
the Thingy10k (Zhou and Jacobson 2016) dataset are adopted. Most models contained in these
datasets are flawless or at least easily fixable to be used in the rendering process. In addition to
that, they are not based on classes but offer a wide variety of models from different areas. This
also introduces a greater variety of topologies compared to ShapeNet3d data, which is used for
the comparison study as described in Section 4.1.1.
With the combination of those two sets, it is anticipated to enable the model to reconstruct a
greater spectrum of maps of different shapes and to test the capabilities of the constructed model
in terms of topology reconstruction. This is contrary to most similar reconstruction methods that
used this map generation technique beforehand. They overfitted their models on a set of differ-
ent classes, like e.g. Lun et al. 2017, 72 which generated three collections, character, aeroplane
and chair, for their training or Kato, Ushiku, and Harada 2018, which trained a model for each

4 EVALUATION 48

of the 13 ShapeNet classes as explained in the previous section.
In preparation for the training, the models are pre-processed in order to make sure, that only 1
model is processed and that the mesh is watertight, normalised, at the centre of the coordinate
system, has consistent normals and has no unintended holes. After rendering the sketches, nor-
mal maps and depth maps, the resulting dataset consisted of a total of 7491 256x256 images.
The dataset is split into a sketch dataset, containing sketch files, and a target dataset, containing
either normal or depth maps. Those folders are split into the train, validation and test, with 1611
test, 5480 train and 400 validation images respectively.

Map Generation Parameters. For the training itself, a batch size of 83, over 3000 epochs and
mixed precision is used. The other parameters are the same as in the comparison evaluation,
which is described in Section 4.1.1. The models used in the pipeline are selected based on the
lowest validation loss. These are the checkpoints at epoch 2929 for the depth map prediction
with a validation loss of 0.019534 and at epoch 2986 for the normal map prediction with a val-
idation loss of 0.034091.

Comparison Variants. In order to evaluate whether the usage of the depth map in the mesh
generation process and a base mesh based on the input sketch impact the quality of the output
mesh, 4 variants of this work are tested:

• The variant introduced in this work, in the following referred to as Variant A.

• A variant which does not use the genus evaluated by the topology determination module
of the proposed pipeline but a sphere as a base mesh for all input sketches. This variant
is referred to as Variant B.

• Variant C does not use depth loss in the deformation process.

• The last variant is an implementation inspired by Xiang et al. 2020, where both the depth
loss and the base mesh determination are not used. In the following sections, this is
referenced as Variant D.

By using 4 different variants instead of only Variant A and Variant D, which is similar to the
setup by Xiang et al. 2020 and acts as the base method that is intended to be improved in this
work, comparing the output to Variant B and C will determine how the proposed changes affect
the model generation.

Pipeline Parameters. The pipeline parameters used in the ablation study are the same as de-
scribed in Section 4.1.1, however, for the ablation study only 256x256 images are used as input
since this is the recommended input size for the pipeline. For variants C and D, the weights
are not changed, but the depth loss and therefore the depth weight is not considered here. This
cuts down the reconstruction time by around 1 hour due to the faster optimization step, which
is a direct result of the smaller gradient associated with the loss that had to be backpropagated.
Therefore, the setup for the mesh deformation resembles the setup by Xiang et al. 2020, except

4 EVALUATION 49

for the smoothness weight, which is chosen to avoid errors introduced by flawed normal map
renderings. This is explained in more detail in Section 4.2.2.

Evaluation metrics. Same as in 4.1.1.

Evaluation Images. The evaluation images are chosen in order to test and compare the variant
based on the impact of the quality of the predicted maps, and the complexity of the deforma-
tions in the mesh. They are selected from the datasets created for the map generation network,
for which the creation process is described in Section 3.2.2, and grouped based on certain qual-
ities the variants are tested and compared on. This results in three categories of images with
the topologies of the base meshes, as depicted in Figure 2, being present in every category:
Category A with easy-to-reconstruct images, Category B with complex images and Category C
with user-generated input. While the images from categories A and B are generated artificially,
they are pre-processed in order to make sure that the flood fill and therefore the base mesh de-
termination worked as intended, since this algorithm imposes some limitations on the proposed
framework as described in Section 5.1. The images are referred to in the following by their
category and the genus of the depicted model over the actual names of the depicted images in
order to make the classification straightforward.

(a) Simple images. The images depict a vase (A0), a magnifying glass (A1)
and various CAD objects (A2, A3, A4).

(b) Complex images. This set consists of a table (B0) and several CAD
objects for genus 1 to genus 4 (B1, B2, B3 and B4).

(c) User-generated images. The drawn sketches included a wine glass (C0)
for genus 0, an inflatable in form of a duck (C1) for genus 1, a mask (C2)
for genus 2, a pretzel (C3) for genus 3 and a button for genus 4 (C4).

Figure 11: Input images for ablation study.

4 EVALUATION 50

Category A, which can be seen in Figure 11a, consists of images used in the training set for
the map generation module. This should be an advantage in the deformation process, since the
normal and depth map from the training set is more likely to be reconstructed correctly, espe-
cially in such a diverse training set, compared to images unfamiliar to the network. The shapes
of the depicted models are not too different from the base shapes, which means that especially
the placement and size of the holes are as similar as possible to those characteristics in the base
meshes. Due to the limited size of the training set, those characteristics are sometimes met only
partially, however, it is expected that all variants are capable of producing reasonable output
meshes.
Category B is depicted in Figure 11b and contains sketches from the test set of the dataset.
This introduces the challenge to reconstruct the images unknown to the network and might in
itself cause problems if the shapes are not similar to anything the network is already familiar
with. This factor can contribute to the reconstruction process in a negative way since there is
the added complexity of flawed normal and depth maps. Furthermore, the shapes chosen are
less similar to the base meshes. This becomes especially apparent with the sketches chosen
for genera 3 and 4 since the arrangement of the holes is different from the base meshes. The
size/shape of the holes is also a challenge for the deformation module since for deformations of
holes the relation to the body of the model has to be respected in order to prevent errors in the
mesh such as extensive inversion of faces.
For the last category, which is portrayed in Figure 11c, 5 human-created sketches are used.
The main focus when creating the sketches is that the placement of the holes matched the base
meshes in an attempt to guarantee reasonable output meshes. However, the challenge with
these sketches is the possibility of flawed depth resp. normal meshes, as with the complex
sketches, and that user-generated sketches are different from artificial images, which the net-
work is trained on. The unsteady lines in the sketches, which did not occur in the artificial
sketches, are expected to cause some problems with the map generation as well as in the de-
formation process. However, the primary focus of this test set is to prove that the proposed
framework is able to also reconstruct non-artificial images in a way where the relation between
the input sketch and the output mesh is apparent and that Version A still does a better job in re-
constructing the meshes as opposed to the other variants despite the added difficulty introduced
by the potentially flawed reconstructed normal and depth map.

4.2.2 Qualitative Evaluation

In order to fully understand and interpret if the addition of the depth map and a topology based
base mesh improves the reconstruction of 3d models from 2d sketches, both the results of the
quantitative evaluation and the qualitative evaluation need to be considered. For the latter, it
is important not only to describe and compare the output of the mesh of the different variants,
but the resulting silhouette, normal and depth map also needs to be evaluated. Therefore, this
section will outline the general impact of the depth and various base meshes on the reconstruc-
tion, as well as the comparison of the silhouette maps, the normal maps, and the depth maps,
followed by an evaluation of the output mesh in order to determine the difference between the
various variants in a qualitative way. The resulting implications on and limitations of the pro-

4 EVALUATION 51

posed pipeline will be discussed in depth in Section 5.

Although the base mesh does not have an impact on whether the deformation process works, it
is found that the addition of the depth map stabilises the mesh generation, making it more robust
in terms of the selection of the weights and the learning rate. While this may not be important
for other systems, the rendering of the normal map in Mitsuba 3 can return invalid numbers,
leading to a system failure. This happens due to twisted geometry, which can occur as a result
of the randomness of the optimization process. Therefore, if the same input is used in another
attempt, this error is likely to not happen again. While this problem cannot be guaranteed to
be eradicated with the addition of a depth map and subsequent depth loss since the sample size
does not produce a generalisable result on that matter, it is found that it occurs less often or not
at all. However, the learning rate and weights still have to be adjusted thoughtfully in order to
produce reasonable results.

The results of the silhouette renderings are illustrated in Figure 12. It needs to be acknowl-
edged, that the difference between the predicted, which in this case refers to the flood-filled
input sketch, and the ground-truth images, as seen for example in the silhouette of model A4
in Figure 12a, are due to the manual alterations made to the sketches, which are mentioned in
the setup part of this chapter. These alterations are minor, however, they could affect the output
meshes and the subsequent outcome of the evaluation.
The output of all silhouette renderings emphasizes the results of the quantitative evaluation,
with variants D and B being less likely to form holes. However, variants A and C also fail to
reproduce the holes adequately in some instances. They are either missing, as seen with model
B1 in 12b, reproduce an incorrect number of holes, as seen with model A3 produced by variant
A, or deform the hole in ways where the original hole is destroyed and formed into a new struc-
ture, as implied by the silhouette of model A1 in Figure 12a. These problems can be partially
attributed to flaws in the reconstructed normal and depth maps, which produce losses that are
considered more important by the proposed system, as well as the random optimization process,
which are discussed in depth in Sections 5.2 and 5.3. In general, it can be determined that while
the holes are problematic in some of the output meshes and therefore their silhouette rendering,
the outline is relatively accurate for all meshes. Thin lines like the table legs in Figure 11a are
not reconstructed accurately, which will also be reflected in the model itself, and occasionally
thin, antenna-like structures are added, e.g. in C0 by variant A and C1 by variant B as seen in
Figure 12c. These structures, as well as if the small white spots depicted in, e.g. C3 by variants
C and D are in fact holes, will be further evaluated in the following with the assessment of the
output meshes.

Compared to the silhouette images, the predicted normal maps introduce a greater problem to
the mesh reconstruction, since this process is not guaranteed to produce the output depicting
similar to the ground-truth normal map and therefore the mesh deformation relies on a distorted
version of normal loss. This can even be seen in the normal maps generated from the user-
generated images, which is depicted in Figure 13c. Although there is no GT to compare the
output to, the noise in e.g. A1 and the filled holes can be regarded as non-desired, since the

4 EVALUATION 52

(a) Results from simple sketches. (b) Results from complex sketches.

(c) Results from user-generated sketches.

Figure 12: Silhouettes rendered from the same viewpoint as input sketch. The ground-truth row
shows the rendered silhouettes of the ground-truth meshes, in the predicted row the flood-filled
sketches are depicted and in the remaining rows are the rendered silhouettes of the reconstructed
meshes.

sketches, the silhouettes, as well as common human knowledge about shapes like buttons, do
not obtain those features. This is affecting the mesh reconstruction and in turn introducing
limitations, which are further discussed in Section 5.2. Furthermore, the values of the predicted
images of the complex and user-generated sketches are distributed less evenly than the values of

4 EVALUATION 53

(a) Results from simple sketches. (b) Results from complex sketches.

(c) Results from user-generated sketches.

Figure 13: Normal maps rendered from the same viewpoint as input sketch. In the ground-truth
row the rendered normal maps of the ground-truth meshes are depicted. The predicted row
shows the maps normal map prediction of the map generation network and in the remaining
rows the rendered normal maps of the deformed meshes are presented.

the simple images. These problems are likely a result of the unfamiliarity of the network with
those sketches, leading to the patchy appearance, closed holes and noise.
As for the differences between the output normals of the models of the different variants they
are in general very similar. There are some diversities when it comes to mesh parts other models

4 EVALUATION 54

do not have, e.g. B3 in Figure 13a or A4 in Figure 13b, since there is evidently an extended part
of the mesh that should not be there. This becomes more evident when comparing the ground-
truth and rendering results of the silhouette renderings, e.g. in Figure 12b, and the renderings
of the models, e.g. in Figure 15b, themselves. Other than that, there are no visual outliers in the
rendered maps of the variants, and they all look similar to the predicted mesh in terms of colour
distribution.

The results of the comparison of the depth maps for variants A and B as well as discrepancies
between predicted and ground-truth maps, which are shown in Figure 14, are similar to the re-
sults of the normal maps in the previous passage. However, the depth maps for variants C and
D are also rendered, which do not utilise the depth loss in the reconstruction process. This does
not make a huge difference for simple structures like A0, A1, A2 and A4 in Figure 14a with
them only being a little bit darker, which indicates that the model is closer to the camera and
therefore smaller. Since the model can be re-scaled without any issues and because the propor-
tions are correct this is only a minor issue. The remaining map in this Figure, A3, depict less
smooth colour transitions compared to the maps of variant A and B, which can be seen clearly
in the bottom part of this mechanical part. This indicates that this part is a little bit bulkier and
that the mesh is less smooth compared to the other variants, but overall the difference is not
significant.
These map and subsequent model flaws are more apparent in the Figures 14b and 14c. B2, B3,
B4, C1 and C4 of variant C and B4 and C1 of variant D depict sharp edges caused by high
colour value changes, that indicate either sudden changes in the mesh structure or even overlaps
of mesh parts with the overlapping parts not being at the same values as the other mesh and
sticking out of the mesh. Therefore, using depth maps and the subsequent depth loss in the
mesh deformation not only stabilises the mesh generation, which is discussed in this section
beforehand but also seemingly introduces a smoother surface.

As the results of the previous comparison of the silhouette, normal, and depth map indicate,
the variants produced different versions of the models, which can be seen in Figure 15. For
the simple models, the variants using a base mesh based on the respective genus of the model
produced the best output, followed by the outputs of variant B, with the exception of model A3.
This however can be attributed to the discrepancy between the placement and size of the holes
in the base and desired meshes, which is noted as a possible problem in the setup of this section
as well as in Section 5.2. The results of the evaluation of the renderings of the reconstructed
models from the simple sketches also support the results of the quantitative evaluation regarding
the improvement the proposed additions introduced, however, there are some inconsistencies
due to the deformed hidden parts of the meshes, which are briefly mentioned in the previous
part and will be discussed in depth in Section 5.3. Furthermore, as e.g. the open part in A1 of
variant D indicates, with more epochs in the deformation process, this problem could have been
avoided. Using the same weights and learning rates for the models is likely to become an issue
that is already predicted in the pipeline parameters part of Section 4.1.1 and is further discussed
in Section 5.3.
Another problem with the genera, which becomes more apparent when looking at the rendered
images from the complex and user-generated based meshes in Figures 15b and 15c, is that the

4 EVALUATION 55

(a) Results from simple sketches. (b) Results from complex sketches.

(c) Results from user-generated sketches.

Figure 14: Depth maps rendered from the same viewpoint as input sketch. In the ground-truth
row the depth maps of the ground-truth meshes are displayed. The predicted row shows the
maps predicted from the trained depth map generation network and in the variant rows the
rendered depth maps of the deformed meshes are depicted.

holes are not reconstructed correctly, which is a direct result of the flawed predicted normal
and depth maps as well as the randomness of the optimization, which are both discussed in
Section 5.3. This undermines possible improvements with the addition of a genus-specific base
mesh, resulting in holes to be closed and producing overlaps of mesh parts, which can be seen

4 EVALUATION 56

(a) Results from simple sketches. (b) Results from complex sketches.

(c) Results from user-generated sketches.

Figure 15: Resulting meshes rendered from the same viewpoint as input sketch. In these figures,
the results of the deformation process of the various variants are depicted in their respective row,
along with a rendering of the ground-truth mesh if available.

in e.g. C3 and C4 of variants A and C in Figure 15c. However, in these models holes can occur,
which is confirmed by reviewing the renderings as well as the meshes themselves, as seen in
the models of variants C and D based on complex and user-generated sketches. This could be
attributed to the missing supervision of the depth values in the optimization process. Despite
that, the renderings of the complex output models support the conclusions of the quantitative
evaluation, which established that no variant reconstructed all models equally well.
Since the mesh quality largely exhibits the same general problems for all used variants, these
will be discussed in greater detail in Section 5.3. Apart from that, there are a few differences:
The models recovered from the simple input sketches depict a few inverted and overlapped
faces and random mesh distortions in the parts of the meshes hidden and not visible from the

4 EVALUATION 57

(a) Results from simple sketch. (b) Results from complex sketch.

(c) Results from user-generated sketch.

Figure 16: Meshes of all categories with genus 3 rendered from 4 different azimuth angles (225,
315, 45, 135). If available, the first row shows the renderings of the base mesh. In the other
rows, the output meshes of the 4 variants are depicted. The depicted meshes are normalised for
the rendering process to fit in the field of view.

rendering viewpoint and therefore deformation view, which is a general problem in the proposed
pipeline. However, it needs to be noticed, that those distortions are more extreme in shapes that
are different from the base mesh or if the base mesh hole positions do not line up with the hole
positions of the input sketch, as for example the case with models A1 and A3.

4 EVALUATION 58

The evaluation of the complex meshes also showcases greater overlaps and self-intersections,
which happens with all variants. Furthermore, looking at meshes from other points of view
reveal that the holes in the meshes might not be closed if the normal and the depth map and
their respective losses direct the reconstruction to close them, but they might get pushed out of
the view of the camera, hidden behind other parts of the meshes. The incorrect reconstruction
of the holes can also result in the antenna-like structures mentioned beforehand in the silhouette
evaluation part and can be seen in variants A and C of Figure 16a. These structures occur
primarily if the system does not deform the holes of the base mesh in the intended way but tries
to create new holes or structures from other parts of the mesh. This reconstruction problem and
the problem of matching the sketches’ holes with the base mesh holes are further discussed in
Sections 5.1 and 5.3.
Differences between the variants occur more clearly when looking at the outputs using the user-
generated sketches as input. Here it becomes apparent that details and proportions are better
recovered in variants A and C which used the depth loss in the mesh deformation process, which
confirms the conclusion made in the evaluation of the depth maps above.
When it comes to the deformation of the parts that are not visible from the angle the sketch is
rendered, the difference depends on the genus rather than the optimization process. As depicted
in the examples in Figure 16, in the renderings of the base shape using genus 0 the sphere is
still partially visible, while this is not the case for variants A and C because the vertices that
make up the holes of the base mesh are moved in the optimization process. However, there
is no consistency in the deformations between the variants that share the same improvements,
which can be attributed to the randomness of the vertex translations, which is further discussed
in Section 5.3. Furthermore, the results do not confirm the theory that the hidden parts are
responsible for the difference in the output of the Chamfer metric in Table 10, since they are
approximately equally faulty and therefore have about the same influence on the metric.

4.2.3 Quantitative Evaluation

In order to evaluate the metrics for the quantitative evaluation, the generated meshes are pre-
processed in order to be normalised and at the centre of the coordinate system. This is done
to ensure that the ground-truth mesh and the generated meshes have the same placement and
dimensions.
The evaluation results are presented in Tables 9 and 10. These depicted values show that the
addition of the depth map as well as using a base mesh similar to the anticipated output shape
does have a positive effect on the model reconstruction. However, there is a difference in how
this is reflected in the results of the used metrics: While the results for the Chamfer distance
clearly mark variant A as the best and variant D as the worst, the output of the IoU present
variants A and C as the best and variants D and B as the worst, with variant B having slightly
better results than variant D. Therefore it can be reasonably assumed, that the usage of the base
mesh based on the genus of the desired mesh improves the quality of the output mesh. The
results of the addition of the depth map are not as obvious, however, since the depth map only
affects the deformation of the mesh from one view with no impact on the hidden parts of the
models, that might explain the results in the IoU, since these parts could impact the output of

4 EVALUATION 59

the IoU differently than the Chamfer distance.

Comparison Variant Output Model Mean
simple images complex images

A0 A1 A2 A3 A4 B0 B1 B2 B3 B4
A 0.029 0.091 0.188 0.126 0.057 0.020 0.057 0.174 0.115 0.189 0.105
B 0.022 0.056 0.060 0.211 0.027 0.019 0.036 0.155 0.032 0.070 0.069
C 0.023 0.100 0.111 0.173 0.258 0.038 0.073 0.071 0.120 0.099 0.107
D 0.025 0.050 0.028 0.181 0.034 0.035 0.037 0.136 0.009 0.083 0.062

Table 9: Results Intersection over Union for the four comparison variants. Variants C and A
scored best on average, with C being better than A and the evaluation of B resulting in better
values than the evaluation of D. The proposed variant scored best in 4/10 methods and resulted
in reasonable results in another 2/10 categories. Overall the metrics indicate poor quality of the
reproduced meshes. Higher values indicate better reconstruction results.

Intersection over Union. When evaluating the results in Table 9, it becomes apparent that the
results for variant C are slightly better than for variant A. Since for many models the difference
is very small the proposed method can still be seen as an improvement to the ground-truth vari-
ant D. This variant scored the best in 4 of 10 models and is a little bit worse than variant C when
deforming the models A1 and B3. The results of the evaluation of the variant are not impacted
based on whether the input is a simple or a complex sketch, however, the best results are scored
on model A3 with variant B and A4 with variant C, but these are rather outliers than a general
trend for the results.

Comparison Variant Output Model Mean
simple images complex images

A0 A1 A2 A3 A4 B0 B1 B2 B3 B4
ground-truth Values abs. 101 44 82 110 90 92 102 103 71 112 91

A abs. 996 1150 338 1200 479 1551 1330 826 978 1832 1068
rel. 9.861 26.136 4.122 10.909 5.322 16.859 13.039 8.019 13.775 16.357 12.440

B abs. 973 1238 1300 1291 1789 1497 1274 1244 1164 1138 1291
rel. 9.634 28.136 15.854 11.736 19.878 16.272 12.490 12.078 16.394 10.161 15.264

C abs. 1638 1154 376 1795 511 1971 1486 1273 770 1420 1239
rel. 16.218 26.227 4.585 16.318 5.678 21.424 14.569 12.359 10.845 12.679 14.090

D abs. 1171 1781 1293 1990 1446 1944 1585 1474 1369 1247 1530
rel. 11.594 40.477 15.768 18.091 16.067 21.130 15.539 14.311 19.282 11.134 18.339

Table 10: Results Chamfer distance for the four comparison variants, lower values indicate
better reconstruction results. The absolute values of the Chamfer distance of the ground-truth
models to the ground-truth models are represented in the first row. The absolute values of the
outputs of the variants of the model as well as the relative values to the GT are represented in
the respective rows.
The evaluation of the proposed model A resulted in the best values and the evaluation of variant
D in the worst. This indicated that despite the overall inadequate quality of the output meshes,
the proposed method improves the base variant D inspired by research such as Xiang et al. 2020.

5 LIMITATIONS AND POSSIBLE SOLUTIONS 60

Chamfer Distance. The insignificance of the category of the model is not reflected in the results
of the Chamfer distance, which are presented in Table 10. Here, it is clear that the proposed
variant scores best for 4 out of 5 models and second best for the remaining model, with the
result of variant C being better. For the complex category variant A is the best for model B2,
and second best to the results of variant C for model B3. The results of the other models do not
show a clear trend despite variant B scoring the best, however, the distribution of result values
among the other models does not reflect the distribution of the scores of the simple images.
Therefore, for complex models the variant or included parameters have to be more carefully
chosen compared to the simple models. This is discussed in more detail in Section 5.3. Further-
more, it needs to be acknowledged that due to the unsupervised deformation of the hidden parts
of the meshes, those could introduce coincidental outliers, that are considered by this metric.
While this likely does not have a great influence, the results of the Chamfer distance should still
be interpreted with the results of Section 4.2.2.

Overall it can be determined, that there is very little similarity in the output of the IoU and
Chamfer distance regarding the ranking of the models, but it is indicated that the implemented
adjustments improve the base variant. Furthermore, the results do not indicate a close similarity
between the ground-truth meshes, neither for the results of the IoU nor the results of the Cham-
fer distance. The reason for this stems from the limitations the proposed system has, which
are further investigated in Sections 4.2.2 and 5. It needs to be acknowledged, that those results
can be improved, which will be further discussed in the Sections 5 and 6, however, those im-
provements are beyond the scope of this work, which is why the results reflect the output of an
implementation including the essential functionalities to reproduce a mesh from a sketch rather
than a state-of-the-art implementation.

5 Limitations and Possible Solutions

While the proposed pipeline is able to reconstruct models from sketches, there are limitations
to this implementation. These are not limited to a single part of the implementation, but every
module of the three that compose the proposed framework, which is outlined in Section 3,
could be improved in order to correct errors and flaws in the output meshes. While some of
those are already mentioned in the previous chapters, especially in Section 4, in the following
the limitations of the pipeline are discussed in detail and suggestions for improvement are made.
The limitations are grouped based on the part of the framework they occur within.

5.1 Hole Detection and Topology Determination - Base Mesh Determina-
tion Module

The flood fill algorithm and Euler number to generate the silhouette image as well as to de-
termine the genus of the depicted sketch impose several problems, that can cause issues in the

5 LIMITATIONS AND POSSIBLE SOLUTIONS 61

reconstruction process.

The first issue is touched upon in the introduction of this method in Section 3.1.1: Since an
8-connected filling algorithm is used, the sketch lines need to be thoroughly closed. This, as
well as the fact that the sketch needs to be seeded in order to provide starting points for the
algorithm, requires user interaction, especially when it comes to artificial sketches. For human-
generated sketches, the difference is not significant since the process of creating the sketch is
already a manual task performed by the user, but for artificial sketches, there has to be an extra
pre-processing step introduced in order to seed and clean the sketch. A solution to that could be
an automatic pre-processing step that thickens the sketch lines that in addition to an algorithm
like the one by Yi et al. 2016 for cleanup to provide a clean input for the pipeline. However,
this does not solve the issue that the image needs to be seeded by hand. Since a sketch does
not provide any information to distinguish the regions, methods like watersheds, thresholds or
region-based methods are not applicable to that issue, because it cannot be determined whether
a region belongs to an object or not. Attempts of using automatic methods like scan-line al-
gorithms, e.g. as done by He, Hu, and Zeng 2019, had some success in that, however, this
classification alternates between closed regions and holes, as explained in Section 2.5.4. This
is not necessarily the case, especially for detailed sketches. Using neural networks could be a
solution, however, based on the model several issues could occur: If an image-to-image trans-
lation network similar to the normal and depth map generator in this thesis is used, the issue of
closed holes could occur, which would impact the genus determination. For the segmentation
algorithms, there are not really datasets that provide meshes as well as the needed information
for the segmentation. The easiest solution for that could be to add information about the genus
and the connectivity to an existing dataset like ShapeNet and use a classification network. While
this is the simplest way to limit human effort as much as possible, it would be an extensive ad-
dition to the pipeline with a benefit that is very minimal compared to if the seeding process is
still done by the user, especially if the cleanup process is already automated by the proposed
sketch pre-processing module.

However, the classification network could theoretically improve the problems introduced by the
Euler number: This is only applicable to a single object depicted in the sketch in the proposed
pipeline. For multiple objects, this method does not work anymore, since assuming the con-
nected components C of the formula 3 are assumed to be 1. Here the classification network
could determine how many objects are depicted. This could also be realised by a type of object
detection network. However, using multiple meshes introduces added complexity in the map
prediction module. Therefore, it is easier to separate the split image into several, with a split
depicting only one object. This solution would also be applicable in the deformation module,
which cannot deform multiple meshes in one process, but multiple instances of that module
could be started parallel using a split as input. For the split process, object detection could be
utilised and a combination of a flood-filled image as well as a connected component analysis,
which is, e.g., provided by the OpenCV library or just different coloured seeds for the objects
could be used. However, it needs to be ensured that the separated images are square, preferably
256x256, and have no blurred lines, etc. that can occur during the resizing process, which in-

5 LIMITATIONS AND POSSIBLE SOLUTIONS 62

troduces other challenges to a possible pre-processing module.

Another problem that is the direct result of the usage of the Euler number to determine the
genus is that the resulting number is not necessarily correct. In Figure 17 three examples are
depicted, where the proposed method will determine the wrong base mesh for the reconstruction
method. In the first image, the tentacles curl at the ends, which will be identified as holes by this
algorithm since here the outlines themselves are considered part of the object. This would lead
to a genus 6 for that object for which no base mesh is provided, instead of the genus 0, which
would be sufficient to reconstruct that image. A solution would be to not include the outline
of the object in the final filled object, however, for some objects, this is not possible, like the
second sketch depicted in Figure 17. Here the object itself forms a hole from the viewpoint it is
looked at and removing the outline pixels does not change that. Therefore, this is classified to
have a genus of 1, while a human that recognises these objects or objects similar to that knows,
that for both sketches the genus would be 0. Using that concept in the pipeline could also
provide a solution for that problem, however, would require an object recognition algorithm or
at least some form of line labelling to determine whether a line is an outline and base the genus
determination on that, which is a complex addition to the existing pipeline. This could also
solve the problem of the third image in 17: Here the problem is not this algorithm, since the
sketch only shows 3 holes and therefore the base mesh is correctly determined to be of genus
3. However, as established from evaluating multiple perspectives of this mesh, as depicted in
Figure 16a, and a human would be able to guess since such parts are usually symmetrical, this
mesh does not fit the actual genus of 4. But this cannot be determined solely from the input,
more information, e.g. in form of an additional object recognition or classification network
would have to be provided to solve this issue.

Figure 17: Sketches where using the flood fill algorithm in combination with the determination
will result in wrong base meshes.

The last problem observed that can occur due to the topology and base mesh determination is
if the genus of an object is correctly determined, however, the base mesh just does not fit the
aimed shape. This can be seen e.g. in the reconstruction A1 or B3 in Figures 15a and 15b and
is a result of the combination of the deformation module and the base mesh, with the influence
of the former part being discussed in depth in 5.3. The part of the issue stemming from the base
mesh determination is that generic base meshes are used and that only the genus is considered,
but not how the holes are located relative to each other. An attempt to tackle that problem is to

5 LIMITATIONS AND POSSIBLE SOLUTIONS 63

find the shortest connections between the holes in the flood-filled sketch and by comparing the
lengths of the connections more information about the locations could be gathered. Using that
information combined with the genus of the desired object can result in choosing a more fitting
base mesh. While this would result in a requirement for more base meshes, it is a more general
approach than using specific base meshes for a certain class, like e.g. Smirnov, Bessmeltsev,
and Solomon 2021 did.
However, not only the placement of the holes relative to each other matters but also the global
placement of the holes. This can e.g. be seen in A1 in Figure 15a, where the existing hole is not
used to reconstruct the hole of the depicted mesh. Trying to fit those global positions to align in
the sketch and the base mesh would be difficult with higher genera since this would mean that
the base mesh would have been deformed before the actual deformation process, and while it
is likely that the pre-existing holes remain if they align the predicted maps and the silhouette
image, it is not guaranteed, since the optimization process moves the vertices at random in order
to get the optimal output. Therefore this is rather a problem of the differentiable renderer and
the deformation part of the pipeline, which is why this is discussed in Section 5.3.

5.2 Map and Hole Reconstruction - Depth and Normal Map Prediction
Module

The most obvious problem in the map generation are the closed holes in the output meshes
and the uneven normal resp. depth value distribution in some models, e.g. in the complex and
user-generated models in Figure 13. As seen in e.g. Figures 13b and 14c, where the parts which
should be white are coloured with normal resp. depth values. This influences the normal resp.
depth loss in the mesh reconstruction module, because those losses have a huge impact on the
overall loss and therefore the mesh is optimised to fit the normal resp. depth map as closely as
possible to the predicted mesh. This issue stems from the large variety of the Thingy10k/ABC
dataset used in the ablation study because the placement of the holes as well as the value dis-
tribution can differ drastically between the models and can therefore be not easily learned.
Furthermore, the testing images may also not resemble the training data, which makes it more
difficult if the sketches used for the evaluation are taken from the test set. This does not have
such an impact for datasets with more uniform data like ShapeNet3d, especially if a separate
model is trained for each class/object type. Despite unifying and dividing the dataset, adapting
the parameters, especially the number of epochs, can also improve the predictions, since the
parameters used are chosen to produce reasonable outputs rather than optimal outputs. This
is because for this process there is no empirical way of choosing the correct values, which in
turn makes it not generally applicable to every prediction network equally well. However, there
is no guarantee that the holes are reconstructed correctly if sketches are used as input to the
network on which it is not trained and is therefore not familiar with. This is even worse for
inputs where the size and location of the holes are not similar to those known to the trained
network. An adaption and unification of the dataset is the best way to improve the prediction of
the maps and therefore the overall output mesh. This will also improve the overall prediction of
the value distribution, since, as mentioned before, the maps resulting from this prediction can
be noisy, which can result in additional mesh parts that are not in the original mesh, e.g. with

5 LIMITATIONS AND POSSIBLE SOLUTIONS 64

B0 in Figure 13b.
Another minor problem, which needs to be acknowledged, is that the network is trained with
images depicting the objects from a single view. While this is not necessarily a problem for the
Thingy10k dataset since there the models do not have a coherent up vector, for the ShapeNet
dataset this limits the ability to reconstruct sketches. For this problem, the solution would be
to render the sketch and the target images from several angles, as done by Kato, Ushiku, and
Harada 2018. Since there is only a single view needed to examine the proposed pipeline, ren-
derings from multiple viewpoints are not included, because this would likely also enhance the
training time as well as the time it takes to render the datasets. However, extending the predic-
tion to multiple viewpoints would not be a problem, since the proposed implementation for the
dataset generation would be capable of rendering the meshes from multiple camera locations
and angles and nothing would change for the actual training of the network.

5.3 Limitations introduced by Single View and Deformation Process - Dif-
ferentiable Rendering and Mesh Deformation Module

The third module of the proposed pipeline has several limitations that drastically influence the
quality of the output mesh. The first problem stems from the given base meshes and their re-
spective vertex counts. For this thesis, as well as for other reviewed work in this field, base
meshes with approximately 600-700 vertices are used in the deformation process, which re-
stricts the methods to only reconstructing low-poly meshes. While using meshes with more
vertices would be possible in this system as well as in other work, this is not the norm due
to several problems: Using more vertices would expand the gradient, which in turn would in-
crease the time the optimization process takes to backpropagate the loss. Furthermore, the edge
and smoothness loss would take longer times to compute and since these have to be evaluated
every epoch, the overall time the mesh deformation would take increases. Another problem
with high-poly meshes is that the output mesh is likely to have more flaws like inverted faces
and fold-overs since there are more vertices that can be deformed in various ways. This would
require an adjustment of the optimization process by e.g. introducing a local bias that keeps the
vertices in relation to each other or the weights for the edge and smoothness regularisers need
to be enhanced, which could undermine the influence of the losses and affect the reconstruc-
tion. Therefore, while using only low-poly meshes limits the proposed pipeline, there are valid
reasons this is done and unless the above-mentioned problems are solved, high-poly meshes
cannot be recovered from images in a reasonable way.

Despite the limitations caused by the parameters and the number of vertices in the base mesh,
the main problem is introduced by the optimization process itself. As pointed out in the qualita-
tive evaluations in Sections 4.1.2 and 4.2.2 as well as depicted in Figures 10 and 16 it becomes
apparent that the proposed pipeline cannot recover parts of the object that are not depicted in
the sketch. Furthermore, the randomness of the optimization process can lead to undesirable
deformations of the holes, where the system tries to form new holes instead of using existing

6 CONCLUSION AND FUTURE WORK 65

ones. As a result, those parts are deformed in various ways and do not resemble the intended
shape in any way. A solution to that problem could be to use an attempt similar to Kato, Ushiku,
and Harada 2018, where multiple views are predicted, which is however heavily class-based,
as described in Section 4.1.2. Another suggestion is to use biases in the optimization process,
which are added to the vertex value, as done e.g. by Xiang et al. 2020. Since they do not dis-
close how their network computes those biases, which is assumed to be either based on the class
or the symmetry of the models. This, in turn, further restricts the network as well as requires
another system, which needs to be added to the framework in order to predict the biases. How-
ever, restricting the optimization of the possible vertex deformations could also improve issues
like closing holes, undesired deformation of holes, fold-overs and inverted normals, which are
prevalent in most research in this field. For the latter two problems other solutions of varying
complexity and effectiveness are applicable like using another output representation like point
clouds or implicit functions, which are described in Section 2.1, using re-meshing algorithms
or methods from recent research like Nicolet, Jacobson, and Jakob 2021. However, the problem
of the deformed hidden part of the mesh would still remain. A simple improvement would be to
cut the deformed mesh in half, mirror the remaining part and connect the two halves. While this
would only work for symmetrical objects and would require the sketch to display the image in a
way that it can be cut along a specific axis, it would provide a quick resolution for some models.
Furthermore, the previous idea of predicting biases also needs some information about class or
symmetry, which would introduce similar restrictions but be more time-consuming. Therefore,
a combination of the mirroring approach along with some form of re-meshing as done e.g. with
the cleanup of the ShapeNet dataset using the work by Xu et al. 2019 and Sin, Schroeder, and
Barbič 2013 could improve the output of the proposed pipeline.

6 Conclusion and Future Work

This thesis proposes a method to recover 3d meshes from 2d sketches using DR and deep learn-
ing. The research includes the implementation of a pipeline, which consists of 3 modules that
serve different purposes: A module to determine the silhouette as well as the topology and,
based on that, a base mesh; another module that employs an image-to-image translation neural
network based on the work of Isola et al. 2017 and Su et al. 2018 to predict the normal and
depth map of the mesh; and a third module for the mesh deformation process, in which the
differentiable renderer Mitsuba 3 is used to deform the determined base mesh based on several
losses including the silhouette, normal and depth loss for which the predicted maps and silhou-
ette image from the other models are used. By using the depth map in the loss computation of
the DR process as well as a base mesh based on the topology of the sketch, this thesis aims to
improve the existing work like the one by Xiang et al. 2020.

In order to prove the improvements made in the pipeline and determine whether the addition of
the depth map and the base mesh determination improve the state-of-the-art methods in terms
of mesh quality and usage of input meshes beyond class/object restrictions, two studies are
conducted: A comparison with a state-of-the-art model to determine how the system performs

6 CONCLUSION AND FUTURE WORK 66

against an established network, as well as an ablation study in which different versions of the
implemented pipeline are tested and compared.
For the first evaluation the Neural Mesh Renderer by Kato, Ushiku, and Harada 2018 is used
as a comparison model. The results of the quantitative and the qualitative evaluation confirm
the assumption that the Neural Mesh Renderer is good at capturing the overall shape of the
object, while the proposed pipeline is better at reconstructing details. However, the results of
this evaluation are significantly worse compared to the ones in other research. This can be at-
tributed to the dataset, for which the method of Xu et al. 2019 and Sin, Schroeder, and Barbič
2013 is utilised to make the data of the ShapeNet v1 dataset usable, which resulted in more
detailed meshes compared to the re-meshed representation that is based on the voxelised data
of ShapeNet, used in the work by Kato, Ushiku, and Harada 2018. Furthermore, for this thesis
a split different from the ones by Kato, Ushiku, and Harada 2018 to divide the dataset into train,
validation and test parts are generated since Kato, Ushiku, and Harada 2018 did not disclose in
their work which split they used. Considering that, better results would likely be achieved if
those alterations were not made, especially for the output of the Neural Mesh Renderer. Fur-
thermore, due to the simplicity, a smaller input image could be used in the pipeline since the
details are not as prevalent in those ground-truth meshes. While this would be a valid test to
conduct in future work, the simplification of the ground-truth models as well as the input image
makes the usage of meshes obsolete, since one of the great advantages of that is that details are
better reconstructed and those are expunged if the ground-truth meshes are simplified. In that
case, models based on point clouds or voxels would be sufficient, which would also not exhibit
the problems introduced by the mesh deformation.
For the second evaluation, 4 variants of the thesis pipeline are tested against each other: The
proposed version, one with a sphere as base mesh, one with no depth loss, and a fourth with a
sphere as base mesh as well as no depth loss. For the evaluation, a for the thesis constructed
dataset is used, which is composed of data from the Thingy10k dataset and the ABC dataset
in order to get a large variety of models with different genera. The results conclude that the
addition of the genus-based base mesh and the depth map resp. depth loss did improve the
mesh reconstruction, with the additions having different influences on the deformation process:
While the genus-based base mesh allowed for a better overall reconstruction of the shape, the
depth map added additional information to the reconstruction process, which also had the side
effect of avoiding invalid normal values in the differentiable rendering and therefore stabilizing
the deformation process.

While the proposed system improves the base version inspired by Xiang et al. 2020 and per-
forms as expected compared to a state-of-the-art method, there are several limitations, which
need to be improved in order to produce usable output meshes. Since many problems stem
from missing information, which the sketch does not provide due to the single view as well
as the simplicity of this medium, employing some form of object recognition network would
be a valuable addition to the network. This would make the topology-determination module
obsolete, as well as could provide more information for the deformation process, e.g. in the
form of images depicted from different views. While this is a similar approach to multi-view
approaches like Kato, Ushiku, and Harada 2018 or Lun et al. 2017, the difference would be that

6 CONCLUSION AND FUTURE WORK 67

there is not a trained network per class and can therefore be generalised if a non-uniform dataset
is used. However, this addition would require a modification of the dataset as well as the imple-
mentation of a new network, which are both time-consuming tasks. An easier way to improve
the output meshes is to add small improvements like using only half of the input mesh and mir-
roring that half to construct the output mesh and use a re-meshing approach on this mesh. This
with other small improvements like the cleanup of the input sketch, using more base meshes as
well as improving the topology determination also take the relations of the position of the holes
into account and optimise the parameters. While this will not yield optimal results and still
could suffer from the problems like undesired deformation of holes, these optimizations can be
implemented within a reasonable time and are expected to improve the system profoundly.

Overall, the output meshes of the thesis pipeline are not sufficient to be used as representations
of sketches without them being extensively edited. As of right now, most reconstruction meth-
ods do not have this quality due to various problems like fold-overs and inverted faces, for which
extensive adjustments need to be made, as e.g. presented in the work of Nicolet, Jacobson, and
Jakob 2021. Despite that, it is proven that the addition of a depth map to the deformation pro-
cess, as well as the use of a general base mesh based on the genus of an object, did improve
the reconstruction process. While this approach, along with other methods like Ben Charrada
et al. 2022, is a step to generalise the reconstruction models more, there are various limitations
that require extensive improvements, both in the system itself as well as in external data like
more diverse datasets. However, incorporating the suggested improvements should reduce the
limitations of the pipeline and lead to favourable results.

REFERENCES 68

References

Adams, Rolf, and Leanne Bischof. 1994. “Seeded Region Growing.” IEEE Transactions on
Pattern Analysis and Machine Intelligence 16 (6): 641–647.

Al-Amri, Salem Saleh, NV Kalyankar, and SD Khamitkar. 2010. “Image segmentation by using
edge detection.” International journal on computer science and engineering 2 (3): 804–807.

Arjovsky, Martin, Soumith Chintala, and Léon Bottou. 2017. “Wasserstein Generative Adver-
sarial Networks.” In Proceedings of the 34th International Conference on Machine Learn-
ing, 70:214–223. Sydney, NSW, Australia: PMLR.

Bangaru, Sai, Tzu-Mao Li, and Frédo Durand. 2020. “Unbiased Warped-Area Sampling for
Differentiable Rendering.” ACM Trans. Graph. 39 (6): 245:1–245:18.

Ben Charrada, Tarek, Hedi Tabia, Aladine Chetouani, and Hamid Laga. 2022. “TopoNet: Topol-
ogy Learning for 3D Reconstruction of Objects of Arbitrary Genus.” Computer Graphics
Forum 41 (6): 336–347.

Bradski, G. 2000. “The OpenCV Library.” Dr. Dobb’s Journal of Software Tools.

Chang, Angel X., Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo
Li, Silvio Savarese, et al. 2015. ShapeNet: An Information-Rich 3D Model Repository.
Technical report arXiv:1512.03012 [cs.GR]. Stanford University — Princeton University
— Toyota Technological Institute at Chicago.

Chen, Qimin, Vincent Nguyen, Feng Han, Raimondas Kiveris, and Zhuowen Tu. 2020. “Topology-
aware single-image 3d shape reconstruction.” In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), 1089–1097. Seattle, WA, USA:
IEEE.

Chen, Zhiqin, and Hao Zhang. 2019. “Learning Implicit Fields for Generative Shape Modeling.”
In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
5932–5941. Long Beach, California, USA: IEEE.

Choy, Christopher B, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio Savarese. 2016.
“3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction.” In
Computer Vision – ECCV 2016, 628–644. Springer International Publishing.

Chudasama, Diya, Tanvi Patel, Shubham Joshi, and Ghanshyam I. Prajapati. 2015. “Image Seg-
mentation using Morphological Operations.” International Journal of Computer Applica-
tions 117 (18): 16–19.

Delanoy, Johanna, Mathieu Aubry, Phillip Isola, Alexei A. Efros, and Adrien Bousseau. 2018.
“3D Sketching using Multi-View Deep Volumetric Prediction.” Proceedings of the ACM
on Computer Graphics and Interactive Techniques 1 (1): 21:1–21:22.

REFERENCES 69

Eigen, David, and Rob Fergus. 2015. “Predicting Depth, Surface Normals and Semantic La-
bels with a Common Multi-Scale Convolutional Architecture.” In 2015 IEEE International
Conference on Computer Vision (ICCV), 2650–2658. Santiago, Chile: IEEE.

Eigen, David, Christian Puhrsch, and Rob Fergus. 2014. “Depth Map Prediction from a Single
Image Using a Multi-Scale Deep Network.” In Advances in Neural Information Processing
Systems, 27:2366–2374. Montreal, Quebec, Canada: Curran Associates, Inc.

Falcon, William, and The PyTorch Lightning team. 2019. “PyTorch Lightning.” Accessed Febru-
ary 13, 2023. https://www.pytorchlightning.ai.

Fan, Haoqiang, Hao Su, and Leonidas J. Guibas. 2017. “A Point Set Generation Network for
3D Object Reconstruction from a Single Image.” In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2463–2471. Honolulu, Hawaii, USA: IEEE.

Gao, Chenjian, Qian Yu, Lu Sheng, Yi-Zhe Song, and Dong Xu. 2022. “SketchSampler: Sketch-
based 3D Reconstruction via View-dependent Depth Sampling.” In Computer Vision –
ECCV 2022, 464–479. Springer Nature Switzerland.

Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. 2014. “Generative Adversarial Nets.” In Ad-
vances in Neural Information Processing Systems, 27:2672–2680. Montreal, Quebec, Canada:
Curran Associates, Inc.

Guillard, Benoit, Edoardo Remelli, Pierre Yvernay, and Pascal Fua. 2021. “Sketch2Mesh: Re-
constructing and Editing 3D Shapes from Sketches.” In 2021 IEEE/CVF International
Conference on Computer Vision (ICCV), 13003–13012. Montreal, Quebec, Canada: IEEE.

Gulrajani, Ishaan, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville.
2017. “Improved Training of Wasserstein GANs.” In Advances in Neural Information Pro-
cessing Systems, 30:5767–5777. Long Beach, California, USA: Curran Associates, Inc.

He, Yixuan, Tianyi Hu, and Delu Zeng. 2019. “Scan-flood Fill(SCAFF): an Efficient Automatic
Precise Region Filling Algorithm for Complicated Regions.” In 2019 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition Workshops (CVPRW), 761–769. Long
Beach, California, USA: IEEE.

Isola, Phillip, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. 2017. “Image-to-Image Trans-
lation with Conditional Adversarial Networks.” In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 5967–5976. Honolulu, Hawaii, USA: IEEE.

Jakob, Wenzel. 2019. “Enoki: structured vectorization and differentiation on modern processor
architectures.” Accessed July 27, 2022. https://github.com/mitsuba-renderer/enoki.

Jakob, Wenzel, Sébastien Speierer, Nicolas Roussel, Merlin Nimier-David, Delio Vicini, Tizian
Zeltner, Baptiste Nicolet, Miguel Crespo, Vincent Leroy, and Ziyi Zhang. 2022. Mitsuba
3 renderer. V. 3.0.2. Https://mitsuba-renderer.org.

https://www.pytorchlightning.ai
https://github.com/mitsuba-renderer/enoki

REFERENCES 70

Jakob, Wenzel, Sébastien Speierer, Nicolas Roussel, and Delio Vicini. 2022. “Dr.Jit: A Just-In-
Time Compiler for Differentiable Rendering.” Transactions on Graphics (Proceedings of
SIGGRAPH) 41 (4): 124:1–124:19.

Kass, Michael, Andrew Witkin, and Demetri Terzopoulos. 1988. “Snakes: Active Contour Mod-
els.” International Journal of Computer Vision 1 (4): 321–331.

Kato, Hiroharu, Deniz Beker, Mihai Morariu, Takahiro Ando, Toru Matsuoka, Wadim Kehl, and
Adrien Gaidon. 2020. “Differentiable Rendering: A Survey.” arXiv preprint arXiv:2006.12057,
1–20.

Kato, Hiroharu, Yoshitaka Ushiku, and Tatsuya Harada. 2018. “Neural 3D Mesh Renderer.” In
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 3907–3916.
Salt Lake City, Utah, USA: IEEE.

Kaur, Dilpreet, and Yadwinder Kaur. 2014. “Various Image Segmentation Techniques: A Re-
view.” International Journal of Computer Science and Mobile Computing 3 (5): 809–814.

Kazhdan, Michael, and Hugues Hoppe. 2013. “Screened Poisson Surface Reconstruction.”
ACM Transactions on Graphics (New York, New York, USA) 32 (3): 29:1–29:13.

Koch, Sebastian, Albert Matveev, Zhongshi Jiang, Francis Williams, Alexey Artemov, Evgeny
Burnaev, Marc Alexa, Denis Zorin, and Daniele Panozzo. 2019. “ABC: A Big CAD Model
Dataset For Geometric Deep Learning.” In 2019 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 9593–9603. Long Beach, California, USA: IEEE.

Ku, Tao, Qirui Yang, and Hao Zhang. 2021. “Multilevel feature fusion dilated convolutional
network for semantic segmentation.” International Journal of Advanced Robotic Systems
(London, England, United Kingdom) 18 (2): 1–11.

Lewiner, Thomas, Hélio Lopes, Antônio Wilson Vieira, and Geovan Tavares. 2003. “Efficient
implementation of Marching Cubes’ cases with topological guarantees.” Journal of graph-
ics tools 8 (2): 1–15.

Liu, Shichen, Weikai Chen, Tianye Li, and Hao Li. 2019. “Soft Rasterizer: A Differentiable
Renderer for Image-Based 3D Reasoning.” In 2019 IEEE/CVF International Conference
on Computer Vision (ICCV), 7707–7716. Seoul, South Korea: IEEE.

Loper, Matthew M., and Michael J. Black. 2014. “OpenDR: An Approximate Differentiable
Renderer.” In Computer Vision – ECCV 2014, 154–169. Springer International Publishing.

Loubet, Guillaume, Nicolas Holzschuch, and Wenzel Jakob. 2019. “Reparameterizing Discon-
tinuous Integrands for Differentiable Rendering.” ACM Transactions on Graphics (New
York, New York, USA) 38 (6): 228:1–228:14.

Lun, Zhaoliang, Matheus Gadelha, Evangelos Kalogerakis, Subhransu Maji, and Rui Wang.
2017. “3D Shape Reconstruction from Sketches via Multi-view Convolutional Networks.”
In 2017 International Conference on 3D Vision (3DV), 67–77. Qingdao, China: IEEE.

REFERENCES 71

Malik, Jitendra. 1987. “Interpreting Line Drawings of Curved Objects.” International Journal
of Computer Vision 1 (1): 73–103.

Nicolet, Baptiste, Alec Jacobson, and Wenzel Jakob. 2021. “Large Steps in Inverse Rendering
of Geometry.” ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 40 (6):
248:1–248:13.

Nimier-David, Merlin, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. 2019. “Mitsuba 2: A
Retargetable Forward and Inverse Renderer.” Transactions on Graphics (Proceedings of
SIGGRAPH Asia) 38 (6): 203:1–203:17.

Pratt, William K. 2007. “Digital image processing: PIKS Scientific inside.” Chap. 18, 4:623–
650. John Wiley & Sons, Ltd.

Rosenfeld, Azriel. 1979. “Digital Topology.” The American Mathematical Monthly 86 (8):
621–630.

Rusinkiewicz, Szymon, and Marc Levoy. 2001. “Efficient Variants of the ICP Algorithm.” In
Proceedings Third International Conference on 3-D Digital Imaging and Modeling, 145–
152. Quebec City, Quebec, Canada: IEEE.

Schmidt, Ryan, Brian Wyvill, Mario Costa Sousa, and Joaquim A Jorge. 2006. “ShapeShop:
Sketch-Based Solid Modeling with BlobTrees.” In ACM SIGGRAPH 2006 Courses, 14–
es. Boston, Massachusetts, USA: ACM.

Shao, Cloud, Adrien Bousseau, Alla Sheffer, and Karan Singh. 2012. “CrossShade: Shading
Concept Sketches Using Cross-Section Curves.” ACM Transactions on Graphics (New
York, New York, USA) 31 (4): 45:1–45:11.

Sin, Fun Shing, Daniel Schroeder, and Jernej Barbič. 2013. “Vega: Nonlinear FEM Deformable
Object Simulator.” In Computer Graphics Forum, 32:36–48. 1. Oxford, Uk: UK: Blackwell
Publishing Ltd.

Smirnov, Dmitriy, Mikhail Bessmeltsev, and Justin Solomon. 2021. “Learning Manifold Patch-
Based Representations of Man-Made Shapes,” 1–24.

Su, Wanchao, Dong Du, Xin Yang, Shizhe Zhou, and Hongbo Fu. 2018. “Interactive Sketch-
Based Normal Map Generation with Deep Neural Networks.” Proceedings of the ACM on
Computer Graphics and Interactive Techniques (Montreal, Quebec, Canada) 1 (1): 22:1–
22:17.

Sultana, Farhana, Abu Sufian, and Paramartha Dutta. 2020. “Evolution of Image Segmenta-
tion using Deep Convolutional Neural Network: A Survey.” Knowledge-Based Systems
201:106062:1–106062:38.

Tatarchenko, Maxim, Alexey Dosovitskiy, and Thomas Brox. 2017. “Octree Generating Net-
works: Efficient Convolutional Architectures for High-resolution 3D Outputs.” In 2017
IEEE International Conference on Computer Vision (ICCV), 2107–2115. Venice, Italy:
IEEE.

REFERENCES 72

Vincent, Luc, and Pierre Soille. 1991. “Watersheds in Digital Spaces: An Efficient Algorithm
Based on Immersion Simulations.” IEEE Transactions on Pattern Analysis & Machine
Intelligence 13 (6): 583–598.

Wang, Jiayun, Jierui Lin, Qian Yu, Runtao Liu, Yubei Chen, and Stella X Yu. 2020. “3D Shape
Reconstruction from Free-Hand Sketches.” arXiv preprint arXiv:2006.09694, 1–13.

Wang, Nanyang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, and Yu-Gang Jiang. 2018.
“Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images.” In Computer Vi-
sion – ECCV 2018, 55–71. Springer International Publishing.

Wang, Weiyue, Duygu Ceylan, Radomir Mech, and Ulrich Neumann. 2019. “3DN: 3D Defor-
mation Network.” In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), 1038–1046. Long Beach, California, USA: IEEE.

Wang, Xiaolong, David Fouhey, and Abhinav Gupta. 2015. “Designing Deep Networks for
Surface Normal Estimation.” In 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 539–547. Boston, Massachusetts, USA: IEEE.

Wu, Jiajun, Yifan Wang, Tianfan Xue, Xingyuan Sun, Bill Freeman, and Josh Tenenbaum. 2017.
“MarrNet: 3D Shape Reconstruction via 2.5D Sketches.” Advances in Neural Information
Processing Systems (Long Beach, California, USA) 30:540–550.

Wu, Jiajun, Chengkai Zhang, Xiuming Zhang, Zhoutong Zhang, William T Freeman, and Joshua
B Tenenbaum. 2018. “Learning Shape Priors for Single-View 3D Completion and Recon-
struction.” In Proceedings of the European Conference on Computer Vision (ECCV), 646–
662. Springer International Publishing.

Xiang, Nan, Ruibin Wang, Tao Jiang, Li Wang, Yanran Li, Xiaosong Yang, and Jianjun Zhang.
2020. “Sketch-based modeling with a differentiable renderer.” Computer Animation and
Virtual Worlds 31 (4-5): e1939:1–e1939:12.

Xiangyu, Jin, Liu Wenyin, Sun Jianyong, and Zhengxing Sun. 2002. “On-line Graphics Recog-
nition.” In 10th Pacific Conference on Computer Graphics and Applications, 2002. Pro-
ceedings. 256–264. Beijing, China: IEEE.

Xu, Qiangeng, Weiyue Wang, Duygu Ceylan, Radomir Mech, and Ulrich Neumann. 2019.
“DISN: Deep Implicit Surface Network for High-quality Single-view 3D Reconstruction.”
Advances in Neural Information Processing Systems (Vancouver, Canada) 32:490–500.

Yan, Xinchen, Jimei Yang, Ersin Yumer, Yijie Guo, and Honglak Lee. 2016. “Perspective Trans-
former Nets: Learning Single-View 3D Object Reconstruction without 3D Supervision.”
Advances in Neural Information Processing Systems (Barcelona, Spain) 29:1696–1704.

Yi, Li, Vladimir G Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao Su, Cewu Lu, Qix-
ing Huang, Alla Sheffer, and Leonidas Guibas. 2016. “A Scalable Active Framework for
Region Annotation in 3D Shape Collections.” ACM Transactions on Graphics (New York,
New York, USA) 35 (6): 210:1–210:12.

REFERENCES 73

Yifan, Wang, Felice Serena, Shihao Wu, Cengiz Öztireli, and Olga Sorkine-Hornung. 2019.
“Differentiable Surface Splatting for Point-based Geometry Processing.” ACM Transac-
tions on Graphics (New York, New York, USA) 38 (6): 230:1–230:14.

Zhou, Qingnan, and Alec Jacobson. 2016. “Thingi10K: A Dataset of 10,000 3D-Printing Mod-
els.” arXiv preprint arXiv:1605.04797.

74

Appendices

A git-Repository

According to the respective guidelines.

The repository must be uploaded to the MMT/HCI git server gitlab.mediacube.at

https://gitlab.mediacube.at/fhs41347/masterthesis hofer kerstin

gitlab.mediacube.at
https://gitlab.mediacube.at/fhs41347/masterthesis_hofer_kerstin

	Introduction
	Related Work
	Single-View Deep Learning Techniques 2d Image to 3d Model
	Implicit Function based Techniques
	Voxel based Techniques
	Point Cloud based Techniques
	Mesh based Techniques

	Differentiable Rendering
	Generative Adversarial Networks and Wasserstein Generative Adversarial Network
	Map Generation
	Image Segmentation and 2d Topology Awareness
	Threshold Techniques
	Neural Network-based Segmentation Techniques
	Edge-Detection-based Techniques
	Region-based Techniques

	Method
	Base Mesh Determination
	Flood Fill
	Genus Computation and Base Mesh Determination

	Normal and Depth Map Generation
	Network Architecture
	Network Training

	Mesh Reconstruction using Differentiable Rendering

	Evaluation
	Comparison with State-of-the-Art Model
	Experimental Setup
	Qualitative Evaluation
	Quantitative Evaluation

	Ablation Study
	Experimental Setup
	Qualitative Evaluation
	Quantitative Evaluation

	Limitations and Possible Solutions
	Hole Detection and Topology Determination - Base Mesh Determination Module
	Map and Hole Reconstruction - Depth and Normal Map Prediction Module
	Limitations introduced by Single View and Deformation Process - Differentiable Rendering and Mesh Deformation Module

	Conclusion and Future Work
	Appendices
	git-Repository

