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Kurzfassung

Jüngste Fortschritte in Bildgebungsverfahren erlauben es umfangreiche volumetrische
Datensätze mit einer großen Anzahl von Kanälen zu produzieren. Um solche Volumen
interaktiv darzustellen, werden Out-of-Core Direct Volume Rendering (DVR) Methoden
benötigt. Aus diesem Grund werden solche Datensätze zu einer Hierarchie mit mehreren
Auflösungen herunterskaliert und diese jeweils in kleinere Bricks unterteilt, um nur jene
Teile des Volumens, die zum dargestellten Bild beitragen, auf die GPU zu übertragen.
Darüber hinaus erfordert das Rendering mehrerer Kanäle aufgrund des hohen Rechenauf-
wands für DVR sorgfältige Optimierung, da dieser mit der Anzahl der darszustellenden
Kanäle steigt. Eine häufige Optimierung bei DVR ist Empty-Space Skipping, bei dem
durchsichtige Bereiche im Volumen beim Rendern übersprungen werden.

Frühere Out-of-Core-DVR-Methoden sind nicht für Volumen mit mehreren Kanälen
konzipiert und für diese daher nur bedingt geeignet. Oktree-basierte Methoden erfordern
für jeden Abtastpunkt und jeden Kanal das Traversieren des Baumes. Darüber hinaus
ist in früheren Ansätzen die räumliche Unterteilung des Oktrees an die verfügbaren
Auflösungen und die Bricking-Granularität im Datensatz geknüpft. Dies führt zu einer
suboptimalen Cache-Nutzung und macht Empty-Space Skipping kostspielig. Page-Table
Hierarchien hingegen ermöglichen den direkten Zugriff auf jeden Brick aus jeder Auflösung,
ohne eine Baumstruktur zu traversieren. Die räumliche Granularität für Empty-Space
Skipping ist hier jedoch ebenfalls an die Bricking-Granularität im Datensatz geknüpft.

Wir stellen einen hybriden Volume-Rendering-Ansatz vor, der auf einem neuartigen
Residenz-Oktree basiert. Dieser kombiniert die Vorteile von Page-Table Hierarchien mit
jenen von klassischen Oktrees. Unser Ansatz entkoppelt die räumliche Unterteilung, die
durch die Oktree-Struktur vorgegeben wird, von den Auflösungsstufen und der Bricking-
Granularität im Datensatz. Anstatt dass jeder Knoten exakt einem Brick zugeordnet
ist, wird jeder Residenz-Oktree-Knoten in jeder Auflösung mehreren Bricks zugeordnet.
Dadurch ist es möglich, Auflösungen effizient und adaptiv auszuwählen und zu mischen,
Abtastraten anzupassen und Cache-Fehlzugriffe zu kompensieren. Gleichzeitig erlau-
ben Residenz-Oktrees flexibles Empty-Space Skipping, unabhängig der für das Caching
verwendeten Bricking-Granularität. Wir haben unseren Ansatz mit WebGPU und We-
bAssembly als web-basierten, clientseitigen Renderer implementiert, um wissenschaftliche
Zusammenarbeit zu erleichtern. Wir zeigen, dass unsere Methode Datensätze mit vielen
Kanälen effizienter darstellt und GPU-Speicher besser nutzt als bisherige Methoden.
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Abstract

Recent advances in imaging modalities produce large-scale volumetric data sets with a
large number of channels. Interactive visualization of such data sets requires out-of-core
direct volume rendering (DVR) methods such as octrees or page-table hierarchies. For
this reason, data sets are both down-sampled into a multi-resolution hierarchy and divided
into smaller bricks, in order to stream only those parts of the volume contributing to the
rendered image to the GPU. Furthermore, rendering multiple channels requires careful
optimization because the high computational cost of DVR grows with the number of
channels to render. A common optimization in DVR is empty-space skipping where fully
translucent regions in the volume are not sampled to reduce the number of loop iterations
and texture look-ups during rendering.

Previous out-of-core DVR methods are designed for single-channel volumes and are
only suitable for multi-channel volumes to a limited extent. In octree-based methods,
accessing cached volume data requires traversing the tree for each sample and channel.
Furthermore, in previous approaches, the spatial subdivision of the octree is intrinsically
coupled to the down-sampling ratio and bricking granularity in the data set. This leads
to suboptimal cache utilization and makes fine-grained empty-space skipping costly.
Page-table hierarchies, on the other hand, allow access to any cached brick from any
resolution without traversing a tree structure. However, their support for empty-space
skipping is also tied to the bricking granularity in the data set and is thus limited.

We present a hybrid multi-volume rendering approach based on a novel Residency
Octree that combines the advantages of out-of-core volume rendering using page tables
with those of standard octrees. We enable flexible mixed-resolution out-of-core multi-
volume rendering by decoupling the cache residency of multi-resolution data from a
resolution-independent spatial subdivision determined by the tree. Instead of one-to-one
node-to-brick correspondences, each residency octree node is mapped to a set of bricks in
each resolution level. This makes it possible to efficiently and adaptively choose and mix
resolutions, adapt sampling rates, and compensate for cache misses. At the same time,
residency octrees support fine-grained empty-space skipping, independent of the data
subdivision used for caching. Finally, to facilitate collaboration and outreach, and to
eliminate local data storage, our implementation is a web-based, pure client-side renderer
using WebGPU and WebAssembly. Our method is faster than prior approaches and
efficient for many data channels with a flexible and adaptive choice of data resolution.
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CHAPTER 1
Introduction

1.1 Motivation & Problem Statement
Recent advances in imaging modalities produce large-scale volumetric data sets with
a large number of channels. Interactive visualization of such data sets requires out-of-
core direct volume rendering (DVR) methods like octrees or page-table hierarchies. An
example of large-scale data sets is Immunofluorescence (IF) imaging data. IF technologies
(e.g., CyCIF [LIW+18]) are used in the field of digital histopathology to image biological
tissue. The resulting multiplexed images contain information for millions of cells in up to
60 channels, where each channel represents the cells’ response to one or more marker
antibodies [KBJ+20, RCH+22], making proteins visible and thereby revealing the cells’
types and functions.

File sizes of IF data sets range from gigabytes to terabytes, and continue to grow as sample
sizes, the number of recorded channels, and imaging resolutions increase [LWC+23]. Since
such file sizes often exceed the available memory, out-of-core techniques like bricking,
multi-resolution hierarchies, and ray-guided rendering approaches, as discussed by Beyer
et al. [BHP15], are necessary to visualize IF data sets.

Since it is common for multiple people to collaborate on these data sets using a hetero-
geneous set of tools and applications [KBJ+20, JKW+22, RCH+22], it is desirable to
provide the data via a web server and use web-based visualization tools instead of relying
on native applications. Due to limitations such as the lack of general-purpose computing
on the GPU (GPGPU) in WebGL 2.0, previous web-based volume rendering research has
often focused on minimizing the effects of network latency [YSG15, MKRE18, ACA+19]
as well as on optimizing the rendering performance itself by offloading some or all render-
ing work to a dedicated server [WRT15, QCZ+17, RHH17]. However, with the emergence
of WebAssembly [Ros19] and WebGPU [MNJ23], web-based scientific visualization appli-
cations are now comparable to native applications, both in terms of performance and

1
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1.2. Aim of the Work

development effort, as, e.g., shown by Usher and Pascucci [UP20]. This now makes it
feasible to design out-of-core volume rendering algorithms for web-based contexts that
are similar to those developed for native applications.

Apart from the memory pressure introduced by large file sizes, another problem that arises
when visualizing highly multiplexed data sets is the large number of different channels.
Even though in practice only a subset of m ≤ n channels (e.g., m = 4) out of all n
available channels is visualized at a time, rendering more than one channel using DVR
requires careful optimization due to the performance impact of accessing each sample
position in multiple volumes. A common optimization in DVR is empty-space skipping,
where empty (i.e., fully translucent according to the current transfer-function) regions in
the volume are not sampled in order to reduce the number of loop iterations and texture
look-ups during rendering [ZSL18, ZHL19, ZML19, ZSL21, FW20, LCDP13, HAAB+18,
DK19, DK20, XZLK19, BPH14]. However, most existing web-based volume renderers
are neither designed for large-scale multi-channel data nor do they use optimizations
such as fine-grained empty-space skipping techniques [MGP+22, Goo22].

The subset of visualized channels is usually user-defined and may change at run-time.
For this reason, acceleration structures used to optimize rendering performance need to
be flexible enough to allow for channel selection switches. Furthermore, channels are
not necessarily equally important, for example, by having different frequency content,
or they are simply less interesting to the user in the current context. This makes it
desirable to render more important channels in higher resolution while rendering less
important channels in lower resolution in order to reduce the memory required for storing
the currently visible volume data on the GPU. Existing techniques for multi-volume
data for native environments are not designed for channel switches and do not support
rendering different channels at different resolutions [BPH14, DLJL22].

Ray-guided DVR methods have been shown to work best for large-scale volumetric
data [BHP15]. They can be divided into two families: page-table-based and octree-based
approaches. The former allows direct access to any cached brick from any resolution
level. In octree-based approaches, each node represents exactly one brick in the data
set. Because of the hierarchical tree structure, these approaches enforce the traversal
algorithm used to access cached volume data during rendering as well as the order in
which bricks of different resolutions are streamed in, i.e., from the root node to leaf nodes.
This makes page-table-based approaches more flexible than octree-based ones, but they
do not offer a clear and efficient strategy for substituting missing high-resolution data
with lower-resolution data guaranteed to be resident in the cache [BHP15]. Both families
allow for empty-space skipping by either skipping over empty pages or empty octree
nodes, respectively.

1.2 Aim of the Work
We propose a novel residency octree, a hybrid data structure for out-of-core DVR of
multi-volume data that combines the advantages of page tables with those of octrees.

3
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It decouples the cache residency of multi-resolution data from a resolution-independent
spatial subdivision determined by the tree. Instead of one-to-one node-to-brick corre-
spondences, each residency octree node only represents a spatial region in the volume
that is mapped to a set of bricks in each resolution level in the bricked volume hierarchy.
This makes it possible to efficiently and adaptively choose and mix resolutions, adapt
sampling rates, and compensate for cache misses. At the same time, this decoupling
allows residency octrees to support fine-grained empty-space skipping, independent of the
data subdivision used for caching. For this purpose, each residency-octree node stores
transfer-function independent metadata, e.g., minimum and maximum scalar values in the
spatial region represented by the node, alongside the information about resolution levels
in which the node’s corresponding bricks are currently resident in the cache. Internally,
our data structure is backed by a multi-resolution multi-channel page-table hierarchy and
a brick cache. By keeping information about multiple resolutions and channels in each
node, the residency octree works well for multi-channel empty-space skipping and allows
mixing different resolutions not only for single-channel but also for multi-channel data.
Our data structure has been fully implemented on the GPU and facilitates efficient run-
time changes to the selection of visible channels. With WebGPU [MNJ23], the method
enables pure client-side out-of-core multi-volume rendering on the web. Figure 1.1 gives
an overview of our system architecture.

1.3 Contributions
The main contributions made in this work are the following:

1. A novel hybrid data structure for out-of-core volume rendering of multi-volume
data sets that decouples the resolution levels in a bricked volume hierarchy from
the spatial subdivision determined by the residency octree. This decoupling makes
it possible to efficiently and adaptively choose and mix resolutions, both between
samples of a single channel and samples taken from multiple channels, adapt
sampling rates accordingly, compensate for cache misses, and skip empty space.

2. A mixed-resolution multi-volume rendering algorithm to visualize multiple channels
at different resolutions and dynamically take into account differences in channel
importance.

We evaluate both the introduced data structure and the mixed-resolution multi-volume
rendering algorithm by comparing our approach to previous methods in terms of GPU
memory usage as well as run-time performance.

1.4 Structure of the Thesis
In Chapter 2, we examine previous and related work to put our work into context.
We include related work on large-scale volume rendering (Section 2.1), multi-volume

4



1.4. Structure of the Thesis

rendering (Section 2.2), empty-space skipping (Section 2.3), and web-based volume
rendering approaches (Section 2.4). Chapter 3 introduces important concepts and
terminology that are used throughout this work.

In Chapter 4, we give a high-level overview of our system’s architecture and explain
how its individual parts work together. A multi-channel page-table hierarchy and brick
cache discussed in Chapter 5 form the basis of the approach. The residency octree, the
data structure introduced by this work, is discussed on a theoretical level in Chapter 6.
Chapter 7 then shows how the residency octree is used in the mixed-resolution multi-
volume rendering algorithm presented in this thesis to visualize multiple channels at
different resolutions.

In Chapter 8, we give a detailed discussion of how we implemented the data structures
and algorithms presented in Chapters 4 to 7 using WebGPU [MNJ23] and WebAssembly
[Ros19].

We evaluate the run-time performance of our renderer and the GPU memory usage
of the residency octree in Chapter 9. We compare our method with two reference
implementations based on previous work. The results of this evaluation are discussed in
Chapter 10.

Chapter 11 concludes this work. We summarize the concepts introduced in this thesis, as
well as the results of the evaluation. Finally, we give an outline of future work.

5





CHAPTER 2
Related Work

The following sections give an overview of work related to this thesis. Research on
large-scale volume rendering is discussed in Section 2.1. Section 2.2 gives an overview of
previous multi-volume rendering approaches. Existing empty-space skipping methods are
discussed in Section 2.3, and previous web-based techniques and applications, as well as
file formats facilitating web-based volume rendering, are covered in Sections 2.4 and 2.5
respectively.

2.1 Large-scale Volume Rendering

Childs defines a data set as large if it is “too large to be processed ... (1) in its
entirety, (2) all at once, and (3) exceeds the available memory” [BCH12, p. 9]. Following
this definition, Beyer et al. [BHP15] define the scalability of GPU-based large-scale
visualization approaches in terms of the minimal subset of the data required to render an
image at a desired resolution - the working set. A visualization approach is considered
scalable if the working-set size depends only on the output resolution and the data visible
on the screen but is independent of the size of the whole data set.

Several scalable volume rendering techniques have been developed for desktop environ-
ments [BHP15]. For these approaches, the data set is (a) present in a multi-resolution
hierarchy and (b) split into smaller bricks where all bricks across all resolutions have the
same size in voxels. A multi-resolution hierarchy can either have a fixed or arbitrary
spatial subdivision scheme and fixed or arbitrary down-sampling ratios between resolution
levels. An example of a data structure using a fixed spatial subdivision scheme and
fixed down-sampling ratios is the octree. Using arbitrary down-sampling ratios can be
beneficial for anisotropic volumes. Figure 2.1 illustrates these concepts.
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Figure 2.1: Bricking & Multi-resolution hierarchies. In out-of-core volume rendering
the original volume (a) is divided into a bricked volume (b). Furthermore, the data is
down-sampled into a multi-resolution hierarchy using fixed (c) or arbitrary (c) down-
sampling ratios. Octrees (d) use a fixed down-sampling ratio. Source: [BHP15]

2.1.1 Culling
Early approaches to large-scale volume rendering were based on culling bricks that
do not contribute to the output image, and thus determining the working set, before
rendering [BHP15]. Bricks can either be culled if their bounding box is not within the
camera’s view frustum [AM00], if they are fully transparent with respect to the transfer
function used [HSS+05, BHWB07], or due to occlusion [LMK03, GHSK03, GSHK04,
MM10]. For performance reasons, these early approaches produce very conservative
estimates of the working set, leading to sub-optimal memory utilization [BHP15].

2.1.2 Ray-guided volume rendering
In ray-guided volume rendering [CNLE09, HBJP12, FSK13, BPH14, SCRL20], the work-
ing set is determined during the ray casting process itself. In each frame, a list of
brick requests is compiled to stream in missing volume data on demand. Ray-guided
methods use a brick cache, e.g., a 3D texture, to store individual bricks of different
resolutions in GPU memory in an unordered manner. Furthermore, an additional data
structure is used to store for each brick in the volume if it is resident in the cache or not.
During ray casting, this data structure is used to translate a sample location specified
in a reference space that comprises the entire volume, e.g., normalized coordinates in
a [0, 1]3 unit cube, to texture coordinates within the corresponding brick in the cache.
Beyer et al. [BHP15] refer to this process as address translation. Previous ray-guided
rendering approaches use either octrees [CNLE09, BPH14, DLJL22] or page-table hier-
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archies [HBJP12, FSK13, SCRL20] for address translation. In contrast to estimating
the working set in advance, ray-guided approaches minimize the working-set size by
only streaming in bricks that are accessed during rendering. However, depending on the
data structure used for address translation, the working set may still contain bricks that
do not contribute to the rendered image as shown in Section 9.6. Data structures for
address translations typically also have rudimentary empty-space skipping capabilities,
e.g., by marking fully translucent bricks as empty and thus not requiring them to be
stored in GPU memory [CNLE09, HBJP12, FSK13, BPH14, SCRL20]. However, due to
large brick sizes in voxels, e.g., 323 or larger, the spatial subdivision of a bricked volume
is often not fine-grained enough for efficient empty-space skipping [FZZ+22].

2.1.3 Data structures for address translation in ray-guided rendering

The state-of-the-art methods for address translation in ray-guided rendering are either
based on octrees [CNLE09, BPH14] or page-table hierarchies [HBJP12, FSK13, SCRL20].

Octrees

In octree-based ray-guided rendering, the down-sampling ratio between resolution levels in
the multi-resolution hierarchy is intrinsically coupled to the spatial subdivision determined
by the tree structure such that each node corresponds to exactly one brick in the data
set [CNLE09, BPH14]. Crassin et al. [CNLE09] were the first to use an octree structure
for address translation in the GigaVoxels system illustrated in Figure 2.2. In their
approach, octree nodes are stored within a node pool. Each entry in the node pool is
a group of eight nodes, which all have the same parent node. Each node in the octree
stores a pointer to its corresponding brick-cache entry and a pointer to the node-pool
entry storing its children. As an optimization, each node additionally stores metadata
on the region represented by the node, e.g., if it only contains zero values, that is used
to skip over translucent nodes during rendering. The node-pool acts as a cache for
octree nodes, where only those nodes are kept in memory that have corresponding bricks
stored in the brick cache. Octree nodes that are resident in the node pool are considered
active. During ray casting, the octree hierarchy is traversed for each sample. In order
to reach a high-resolution brick, the whole subtree, i.e., from the root node to the node
corresponding to the high-resolution brick, has to be kept both in the node pool and the
brick cache. While this makes it straightforward to substitute missing high-resolution
data with low-resolution data, this also leads to potentially unused low-resolution bricks
being stored in the cache and thus sub-optimal GPU memory utilization. Note that this
is due to the tight coupling of the multi-resolution hierarchy in the data set and the
spatial subdivision of the octree. Crassin et al. [CNLE09] use multiple render targets to
record up to one missing brick per ray and report these brick requests to the CPU. Brix et
al. [BPH14] extend the structure presented by Crassin et al. [CNLE09] to multi-channel
data as discussed in Section 2.2.
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Figure 2.2: The GigaVoxels system. Each node in the octree (here: N3-Tree) keeps
track of the cache residency of its corresponding brick in the multi-resolution volume.
Bricks are stored in a brick pool and accessed via their corresponding nodes during
rendering. Active nodes, i.e., nodes whose bricks are resident in the cache, are stored in
a node pool. Source: [CNLE09]

Page-Table Hierarchies

Hadwiger et al. [HBJP12] propose a memory virtualization technique for volumetric
data based on page-table hierarchies instead of a tree structure. Each page table in the
page-table hierarchy represents a single resolution level in the volume hierarchy. A page
table comprises multiple pages that allow referencing all bricks corresponding to the page
table’s resolution level. Each page stores if its corresponding brick is resident in the brick
cache or not and if so, a pointer to its location in the brick cache. As an optimization,
a page table may also mark bricks that are known to not contain any useful data with
an EMPTY flag to eliminate the need to actually load or store them in the brick cache.
As in the octree-based approach by Crassin et al. [CNLE09], this allows a renderer to
skip over translucent bricks during ray casting. Because there is no explicit hierarchy
between pages of different page tables involved, their method supports both arbitrary
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Figure 2.3: Multi-resolution page-table hierarchy. Left: The volume virtualization
makes use of two orthogonal hierarchies: the resolution hierarchy in the data set, and
the page-table hierarchy. Right: During ray casting, the page-table hierarchy (here:
Multi-Resolution Page Directory) is used for address translation. Missing bricks are
reported in a hash table. Source: [HBJP12]

down-sampling ratios for the data set and directly accessing volume data of a desired
resolution without traversing a tree structure. However, their technique does not give
a clear strategy for substituting missing bricks with other resolutions resident in GPU
memory. To report missing bricks, Hadwiger et al. [HBJP12] use hash tables shared by all
rays in an N × N tile in screen space. These hash tables are read back to the CPU once
per frame. Since the page-table hierarchy is itself a hierarchy of volumes, the memory
virtualization technique can be applied to produce a multi-resolution page-table hierarchy
as illustrated in Figure 2.3. This recursive approach makes it possible to represent volume
sizes in the exascale on the GPU [HBJP12].

Fogal et al. [FSK13] propose a similar approach but use a global hash table for reporting
cache misses back to the CPU instead of one hash table per image tile. Sarton et
al. [SCRL20] generalize the concept of page-table hierarchies for volumetric data sets for
non-rendering purposes. They use CUDA shared memory to process cache misses on the
GPU itself to minimize memory transfers between the CPU and the GPU. Whenever
a brick-cache entry is used, the current timestamp is recorded in a global brick-usage
buffer that comprises one timestamp per cache entry. For example, in a real-time volume
rendering application, these timestamps could be the current frame’s number. These
timestamps are used for managing the brick cache in a Least Recently Used (LRU)
manner and keeping frequently used bricks in the cache. For this reason, indices into
the brick cache sorted by their most recent usage times are stored in an LRU buffer. To
update the LRU buffer, a mask of brick-cache entries used at the current timestamp is
generated from the timestamps in the usage buffer. This mask is then used to rearrange
the last timestamp’s LRU buffer such that the most recently used entries are moved to
the front of the LRU buffer. Similarly, whenever a brick is missing, the current timestamp
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Figure 2.4: Parallel cache management. Left: Brick usages are marked in a global
usage buffer. The usage buffer is processed in parallel to update the LRU buffer (here:
Old LRU and Updated LRU). Right: A list of brick requests is compiled from a global
request buffer with one entry per brick in the data set. Source: [SCRL20]

is recorded in a global request buffer that contains one timestamp per brick in the data
set. A single stream compaction is used to compile a list of all bricks that have been
reported missing at a given timestamp. Their parallel cache management approach is
illustrated in Figure 2.4.

Residency Octree

Our approach combines the advantages of both octrees and page-table hierarchies by
decoupling the cache residency of multi-resolution data from the spatial subdivision
determined by the residency octree. Figure 2.5 illustrates how this novel approach differs
from previous octree-based ones. Instead of having one-to-one correspondences between
bricks and nodes, our approach decouples resolution levels in the data set and the spatial
subdivisions determined by the octree structure such that each node maps to one or more
bricks in each resolution level.

2.2 Multi-Volume Rendering
Multi-volume rendering refers to rendering multiple co-registered volumes at once. This
is done by evaluating each sample along a viewing ray for all channels currently visible.
Schubert and Scholl [SS11] give an overview of how multiple channels can be combined
during rendering. They differentiate between (1) classification-level intermixing, (2)
accumulation-level intermixing, and (3) image-level intermixing. In classification-level in-
termixing, at each ray sample, the sampled values of two channels are linearly interpolated
using a weighting factor ω, e.g., ω = 0.5, before evaluating an illumination model using
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Tree Structure Tree StructureData Resolution

1:1
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n:m
mapping

Standard Octree Residency Octree

Figure 2.5: Previous octree-based out-of-core approaches (left) employ a one-to-one
mapping between bricks and octree nodes. In contrast, the residency-octree nodes in our
approach (right) represent geometric spatial regions, with each node mapping to multiple
bricks and vice versa.

the interpolation result. Accumulation-level intermixing refers to separately evaluating
the illumination model for each channel at each ray sample and then combining the
results. This is more flexible than the other approaches but computationally also more
expensive. For image-level intermixing, a complete image is rendered for each channel
and the results are mixed using alpha blending. A problem that arises with image-level
intermixing is that occlusions between different channels can not be handled correctly
due to missing depth information in the accumulated intermediate results.

Brix et al. [BPH14] present an out-of-core rendering approach for multi-channel volume
data sets that is based on Crassin et al.’s [CNLE09] octree-based memory virtualization
scheme. Instead of keeping track of a single channel only, octree nodes, as well as
bricks, store information on up to n, e.g., n = 4, channels. The number of channels
is implementation-defined and can not be changed at run-time. In practice, because
each brick-cache entry stores n channels and texture formats available on current GPU
hardware are limited to four components, the number of channels n is limited to 4. To
combine multiple channels, Brix et al. [BPH14] use accumulation-level intermixing. As
an optimization, nodes corresponding to homogeneous bricks, i.e., all voxels contain the
same value (up to a user-defined threshold), store the average value in the corresponding
brick instead of a pointer to the brick’s location in the brick cache. For multi-channel
data, a node can only be marked homogeneous if its corresponding bricks in all channels
are homogeneous. Their approach is implemented in Voreen [DLJL22].

Viv [MGP+22] is a web-based volume renderer that supports multi-channel data by storing
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each channel in a separate texture. The number of channels that can be represented
simultaneously on the GPU is therefore limited only by the number of available texture
bind points allowed by the hardware. WebGL 2.0 guarantees a minimum of eight
texture bind points. Channels may be switched at run-time, which simply changes
the texture bindings in the shader. However, Viv does not employ any out-of-core
techniques to support large-scale data and is thus limited by the GPU memory available.
Multiple channels are combined during rendering using accumulation-level intermixing.
Neuroglancer [Goo22] uses the same technique for representing multiple channels on the
GPU. In contrast to Viv, Neuroglancer uses bricking for volumetric data. They choose
a global resolution level for each frame based on current viewing parameters and thus
produce suboptimal working sets. Furthermore, rendering multiple channels requires
users to adapt the fragment shader used for ray casting themselves.
Our mixed-resolution multi-volume rendering algorithm uses accumulation-level intermix-
ing to combine different channels. The residency octree is backed by a channel-agnostic
brick cache where each cache entry only contains data belonging to a single channel.
The number of channels is thus not limited by the texture format used by the brick
cache implementation. Furthermore, residency octrees support changes to the selection
of visible channels at run-time by replacing only the parts of their nodes related to the
affected channels.

2.3 Empty-Space Skipping
One of the major problems with DVR is its high computational cost due to evaluating
hundreds to thousands of samples per ray in each frame. Empty-space skipping methods
accelerate this process by determining regions of empty space that do not require extensive
sampling, effectively reducing the number of samples that have to be evaluated. For this
purpose, volumes are subdivided into smaller parts, often involving a tree-like hierarchy,
like octrees [CNLE09, LCDP13, BPH14, FZZ+22], kd-trees [ZSL18, ZML19, ZSL21], or
linear bounding volume hierarchies (LBVH) [ZHL19, FW20] that are traversed during
rendering. Other approaches rasterize bounding geometry to speed up volume ray
casting [LCDP13, HAAB+18, ZML19, WBD+21]. Figure 2.6 shows a comparison of
different empty-space skipping methods. They differ in the number of look-ups into
the data structure used for empty-space skipping and the number of samples along
each viewing ray. There is often a trade-off between the two. Which of the two is
more important to optimize depends on the respective use case as well as on different
aspects of the volume data, such as the distribution of empty space and the size of the
volume. If no empty-space skipping is used (Figure 2.6a), the whole volume has to be
sampled. Standard rasterization of bounding geometry (Figure 2.6b) only skips empty
space before the first and behind the last non-empty sample. Octrees (Figure 2.6c) allow
a near-optimal distribution of samples but require a lot of look-ups into the tree structure.
Hadwiger et al. [HAAB+18] propose SparseLeap (Figure 2.6d), a method that optimizes
both the number of samples to evaluate and the number of look-ups into the empty-space
skipping data structure.
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(a) no empty-space skipping (b) rasterizing bounding geometry

(c) octree (d) SparseLeap [HAAB+18]

Figure 2.6: Comparison of empty-space skipping methods. Red structures depict
non-empty voxels. Light blue backgrounds visualize the bounding geometry used by
the respective method. Regions, where the volume is sampled, are denoted by bold
ray segments, and dots show where the empty-space skipping data structure has to be
queried by each method. Source: [HAAB+18]

2.3.1 Parallel Tree-Construction for Empty-Space Skipping

In recent years, several parallel tree-construction algorithms have been proposed to
support run-time re-construction of acceleration data structures for empty-space skipping,
e.g., as a result of changes to the transfer function used [ZSL18, ZHL19, ZML19, FW20,
DK19, DK20, ZSL21]. Zellmann et al. [ZHL19] propose an adaptation of a linear
bounding volume hierarchy (LBVH) construction algorithm for triangle geometry to
sparse volumetric data by using the boundaries of non-empty bricks as bounding geometry.
They show that their algorithm allows constructing an acceleration structure on the GPU
at interactive frame rates for 10243 volumes and that their LBVH structure allows for two
to three times higher frame rates than using no empty-space skipping during ray marching.
While Zellmann et al. [ZHL19] divide the volume into a uniform grid with a fixed brick
size for their LBVH construction algorithm, Fernandes and Walter [FW20] group voxels
into buckets instead. For sparse volumes, Zellmann et al. [ZSL18] present a parallel

15



2. Related Work

construction scheme for reconstructing a kd-tree structure based on summed-volume
tables. While their work is designed for multi-core CPU architectures, Zellmann et
al. [ZSL21] adapt their previous approach to a GPU-based construction. Zellmann et
al. [ZML19] present a hybrid data structure combining a kd-tree structure at the root level
and a uniform grid at the leaf-node level that is used for empty-space skipping. During
rendering, the kd-tree is traversed on the CPU to generate a sorted list of non-empty
leaf nodes that are then iterated over on the GPU.

Other approaches include the use of Chebychev distance maps [DK19, DK20], or sub-
dividing the volume into non-uniform grids [XZLK19]. Deakin and Knackstedt [DK19]
use Chebychev distance maps for empty-space skipping, which achieves speed-ups of 5.3
times the baseline frame rate on average. Since the distance maps are transfer-function
dependent, they need to be updated on transfer-function changes. Deakin and Knackst-
edt [DK20] further improve their previous approach by resuming empty-space skipping
after a single empty voxel instead of a fixed set length of empty voxels.

Our approach builds on an octree structure that is constructed in parallel on the GPU.
Since the residency octree is designed to handle both empty-space skipping, and cache
residency, we avoid reconstructing it when viewing parameters, e.g., transfer functions,
change, and rely on incrementally constructing the octree.

2.3.2 Rasterizing Bounding Geometry

Instead of traversing a tree structure on the GPU, hardware-accelerated rasterization
can be exploited to skip over empty space [LCDP13, HAAB+18, ZML19, WBD+21].
This is done by rasterizing bounding geometries, e.g., bounding boxes of leaf nodes of a
tree structure [ZML19], and using the fragment positions of their front and back faces
as the start and end points for ray casting. This can lead to fewer look-ups into the
empty-space skipping data structure during rendering when compared to octree structures
as illustrated in Figure 2.6.

Liu et al. [LCDP13] propose rasterizing proxy geometry representing a view-dependent
cut of octree nodes. Hadwiger et al. [HAAB+18] also utilize rasterization hardware to
avoid hierarchy traversal on the GPU by only traversing per-pixel lists of non-empty ray
segments produced through rasterizing occupancy geometry. The occupancy geometry is
generated from a lazily constructed occupancy-histogram tree where each node has one of
the occupancy classes, empty, if it is completely empty, non-empty, if it is non-empty, or
unknown if such information is not yet known. As illustrated in Figure 2.6d, this approach
called SparseLeap optimizes both the number of look-ups into the data structure used for
empty-space skipping and the number of samples along each viewing ray. An advantage
of SparseLeap over other empty-space skipping techniques is that it is agnostic of the data
structure used for managing volume data, e.g., page-table hierarchies, or octrees, and
can instead be used in conjunction with them. Wang et al. [WBD+21] use a tile-based
rendering scheme combined with an octree structure with a fixed leaf-node size to render
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per-tile node lists. They note that while a smaller leaf-node size leads to less overlap of
node lists between image tiles, the storage and traversal overhead is increased.

The residency octree shares with SparseLeap the incremental construction of the under-
lying tree structure. But instead of rasterizing octree nodes or other bounding geometry,
the empty-space skipping algorithm traverses the residency octree directly on the GPU.

2.3.3 Transfer-Function Independent Empty-Space Skipping

Figure 2.7: Bitfield representation of a transfer function. The transfer function
(top) is quantized to an 8-bit bitfield (bottom). By representing the value range of
an octree node in a similar fashion, testing if a node is translucent under the transfer
function comes down to a single bit-wise AND operation. Source: [FZZ+22]

Many acceleration structures store transfer-function dependent visibility information and
therefore require reconstruction after transfer-function changes [ZSL18, ZHL19, ZML19,
FW20, DK19, DK20, ZSL21]. Faludi et al. [FZZ+22] propose storing a histogram of
values contained in the spatial region represented by an octree node as a bitfield instead.
Similarly, the visible value range of a transfer function is also represented as a histogram as
illustrated in Figure 2.7. To determine if a node is empty, its bitfield is tested against the
transfer function’s bitfield using a bitwise AND operation. This allows for transfer-function
changes at run-time without the need for reconstructing the acceleration structure. Their
approach achieved the best results with a leaf-node size of 43 and optimized the traversal
algorithm by starting at a subdivision level other than the root node which is expected
to be non-empty anyway. Similarly, Brix et al. [BPH14] propose an octree structure that
stores average values in non-empty homogeneous nodes.

Our approach also uses transfer-function independent culling information in residency-
octree nodes for empty-space skipping without the need to reconstruct the tree on
transfer-function changes. This has the advantage that cache-residency information also
does not have to be redistributed over octree nodes on transfer-function changes.
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2.4 Web-Based Volume Rendering
In web-based environments, volume rendering research is mostly focused on solutions to
network latency when loading volumetric data [YSG15, YSG15, MKRE18, ACA+19] and
improving volume rendering performance on the web, e.g., by offloading some or all of the
rendering work to remote rendering servers and only displaying the rendered images in
the browser or client application [FCS+10, BHS+11, WRT15, QCZ+17, RHH17, SRL19].

For large-scale volume rendering, several distributed server-side rendering schemes have
been proposed [FCS+10, BHS+11, SRL19]. Beyer et al. [BHS+11] propose a distributed
shared virtual-memory scheme for distributed server-side rendering of tera-scale volumes
where multiple rendering nodes render only a part of the volume each. A similar approach
is presented by Sarton et al. [SRL19] who use a single node server with multiple GPUs
and CPUs instead. Campoalegre et al. [CNC13] transfer gradient octrees computed on
the server side to a rendering client to reduce network traffic and avoid the need to
compute gradients on the client. Our method is designed to work without a dedicated
rendering backend and relies only on a file server instead. All volume rendering is done
in the browser itself.

In contrast to server-side rendering, pure client-side renderers only require a file server
as a backend [CSK+11, MF12, DGBNV18, AMBGA19, MGP+22, Goo22]. Manz et
al. [MGP+22] present Viv, a WebGL-based library for visualizing biomedical data.
While their library focuses on 2D data, it also allows DVR of 3D data. However, it
is limited to the available GPU memory and thus does not support large-scale data.
Neuroglancer [Goo22] is a WebGL-based tool for visualizing and annotating large-scale
volumetric data. It uses a bricked multi-resolution hierarchy approach for its DVR view to
scale to large data sets. In the DVR view, all bricks are selected from the same resolution
based on global camera parameters before rendering a frame leading to suboptimal
working sets. Current web-based volume rendering solutions are limited by WebGL’s
lack of compute pipelines and general shader storage buffers.

The method presented in this work is designed for client-side rendering. Our implementa-
tion (Chapter 8) makes use of the upcoming WebGPU standard, which allows a range of
algorithms proposed for native environments to be implemented in web contexts thanks
to its GPGPU capabilities [UP20].

2.5 File Formats
Open file formats for bricked multi-resolution hierarchies eliminate the need to run
a dedicated back-end to pre-process data and facilitate integrating new software into
existing workflows.

Besson et al. [BLL+19] describe the OME-TIFF format for storing both 2D and 3D multi-
resolution, multi-channel biomedical imaging data. Multiple resolutions and channels are
all stored within a single Tiff file. An application requiring only a subset of all resolutions
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and channels, e.g., a single channel, has to load the entire file into memory. This makes
OME-TIFF infeasible for web-based out-of-core rendering of 3D data.

Moore et al. [MAB+21] present OME-NGFF, an open file format for chunked biomedical
2D and 3D multi-resolution, multi-channel data sets. It allows fast access to individual
chunks of the data set by storing them in separate files. This also makes it more useful
for use in a cloud-based context than its predecessor OME-TIFF, since chunks may be
distributed across multiple file servers.

Manz et al. [MGP+22] present indexed OME-TIFF, an open file format for biomedical
image data sets that improves access times to individual chunks of an underlying OME-
TIFF data set by storing byte offsets in a separate JSON file. They note, however, that
OME-NGFF still outperforms indexed OME-TIFF in terms of access times for individual
chunks of a data set.

Our implementation (Chapter 8) uses OME-Zarr, an implementation of OME-NGFF,
for representing bricked multi-resolution volume data, with LZ4-compressed chunks for
efficient data transfer over a network.
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CHAPTER 3
Basics and Terminology

In this chapter, we establish concepts and terminology, which we are going to use
throughout this thesis. We make a clear distinction between the resolution levels of a
volume and the spatial, purely geometric subdivision determined by the residency octree,
i.e., the geometric boundaries of octree nodes.

3.1 Brick Hierarchy
Each data set is represented as a bricked volume hierarchy consisting of multiple resolution
levels. A brick in this hierarchy is a chunk of voxel data belonging to a specific resolution
level. Each brick has a size in voxels (e.g., 323) that is the same for all resolution levels,
and that is therefore independent of its spatial extent. The latter is determined by the
resolution level the brick belongs to. To access a brick’s data on the GPU, it has to be
resident in a brick cache.

3.2 Residency-Octree Hierarchy
In contrast, a residency octree has multiple subdivision levels. While the downsampling
ratio between resolution levels in the bricked volume hierarchy is flexible (see, e.g., the
work by Hadwiger et al. [HBJP12]), the spatial subdivision determined by the octree is
not. Instead, at each subdivision level in the octree, each dimension is halved such that
each node in the tree has eight children. A node in the residency octree thus represents
a region in the volume whose spatial extent is determined by the subdivision level it
belongs to. Other than in previous work [CNLE09, BPH14], we do not associate a size
in voxels with a single octree node, as illustrated in Figure 2.5. In previous octree-based
out-of-core DVR approaches, the resolution levels of the bricked volume hierarchy are
intrinsically coupled to the subdivision levels of the octree, due to a one-to-one mapping
between bricks and octree nodes.
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3.3. Fully vs. Partially Mapped Residency-Octree Nodes

In our approach, these two concepts are decoupled, such that an octree node corresponds
to a set of bricks in each resolution level in the bricked volume hierarchy. The number
of bricks of a resolution level required to fully cover the spatial extent of an octree
node depends on the spatial extent of bricks in that resolution level, which differs from
the spatial extent of the octree node. For instance, the spatial extent of a single brick
in the lowest resolution level may cover the entire volume space, and thus cover all
residency-octree nodes. Vice versa, a brick in a higher resolution level will only cover a
part of the residency octree’s root node because the latter covers the whole volume.

3.3 Fully vs. Partially Mapped Residency-Octree Nodes
If for a given octree node the cache-resident bricks of a given resolution level fully cover
the node’s spatial extent, we refer to the node as fully mapped in that resolution level.
Similarly, if at least one brick of a resolution level whose spatial extent overlaps with
a node’s spatial extent is resident in the cache, the node is partially mapped in that
resolution level. This implies that a node that is fully mapped in a resolution level is also
partially mapped, but not vice versa. Furthermore, if a node is fully mapped in some
resolution level, all of its child nodes are also fully mapped in that resolution level; and if
a node is partially mapped in some resolution level, its parent node is too. Naturally, the
same brick can both fully map some nodes, while partially mapping others, as Figure 3.1
illustrates, and an octree node may be partially and fully mapped in multiple resolutions
at the same time.

3.4 Multi-Channel Data
If a volume has multiple channels, the bricked volume hierarchy is extended to a bricked
multi-volume hierarchy, where we assume all channels to use the same brick size in voxels.
The relationship of octree nodes and bricks in this multi-volume hierarchy is similar to
the single-channel case, but instead of having a single set of corresponding bricks per
resolution level, a node now has one such set for each channel and resolution level.
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CHAPTER 4
System Overview

This chapter provides an outline of the architecture of our system. We briefly discuss the
server side providing access to a bricked multi-volume hierarchy in Section 4.1. Section 4.2
then gives an overview of the client-side consuming and rendering volume data. We
show how the residency octree (Section 4.2.1) and the ray-guided, mixed-resolution multi-
volume renderer (Section 4.2.2) are used together to render large-scale multi-volume
data in web browsers. Finally, we discuss our GPU-driven design in Section 4.2.3. The
complete system architecture, with the server (Section 4.1) on the left and the client
(Section 4.2) on the right, is illustrated in Figure 4.1.

4.1 Server
The bricks in the bricked multi-volume hierarchy are provided by a server. This server
has to provide the following data to the client application:

• Metadata: The server needs to be able to provide some metadata about the data
sets, such as the number of resolution levels, the number of channels, the brick size,
etc.

• Bricked volume data: Bricks of all resolution levels need to be accessible
individually to avoid having to load the whole data set into memory.

Depending on the implementation, the server may either only offer file storage, or it
may have some additional capabilities, e.g., querying metadata for specific regions in
the volume that can be used for empty-space skipping. Examples of such metadata are
minimum and maximum scalar values, or a histogram of values within a region in the
volume as proposed by Faludi et al. [FZZ+22].
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4.2. Client

4.2 Client
Bricks and metadata are consumed by a client-side multi-volume rendering application
that uses a ray-guided renderer to determine which data to fetch from the server. It
consists of two main parts: the novel residency octree presented in detail in Chapter 6,
and the mixed-resolution multi-volume renderer discussed in Chapter 7.

4.2.1 Residency Octree
The residency octree manages information about volume data on the GPU by keeping
track of which bricks that are currently resident in the brick cache, partially or fully
map to which octree nodes. It does this in conjunction with a page-table hierarchy
similar to those presented in previous work [HBJP12, SCRL20], for multiple channels,
as discussed in Chapter 5. Additionally, the residency octree provides transfer-function
independent metadata for each node, which the renderer uses for empty-space skipping.
For multi-volume data with n different channels, the residency octree can represent m ≤ n
channels at a time. The maximum number of visible channels m is user-defined and set
at initialization time. The mapping of channels in the data set to channels referenced by
our hybrid data structure can change at run-time.

4.2.2 Mixed-Resolution Multi-Volume Renderer
The mixed-resolution multi-volume renderer accesses both metadata and cached volume
data through the residency octree. If either is missing for a node, it generates a request
for the missing data to be streamed in from the server. Since these requests are generated
by ray traversal during rendering our method is ray-guided.

4.2.3 GPU-Driven Architecture
Both the residency octree and the mixed-resolution multi-volume renderer can be fully
implemented on the GPU as shown in Chapter 8. The CPU is mainly needed for driving
the overall rendering. It dispatches rendering and memory management commands to the
GPU, forwards brick requests to the server, and uploads bricks received from the server
to the GPU. In order to keep buffer copies from the GPU to the CPU small, we specify
a global limit on the number of recorded cache misses per frame, similar to previous
approaches [FSK13, SCRL20].
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CHAPTER 5
Multi-Channel Page-Table

Hierarchy

In this chapter, we discuss the multi-channel page-table hierarchy that forms the base of
the residency octree presented in Chapter 6. We show how we extend the algorithms and
data structures presented in earlier work to support multiple channels. Section 5.1 gives
an overview of page-table hierarchies. How we extend this concept to multi-channel data
is presented in Section 5.2. In Section 5.3, we show how voxels and bricks in the multi-
channel page-table hierarchy can be addressed via a reference space using normalized
coordinates in the range [0, 1)3. We explain how brick IDs are used to communicate cache
misses to the CPU in Sections 5.4 and 5.5. In Section 5.6, we discuss the LRU scheme
used for managing the brick cache. Finally, we list the parameters of the multi-channel
page-table hierarchy in Section 5.7.

5.1 Page-Table Hierarchy
Page-table hierarchies draw inspiration from memory virtualization schemes in operating
systems [HBJP12]. They virtualize bricked volume hierarchies without enforcing down-
sampling ratios or spatial subdivision schemes on data sets. Instead, each brick in the
data set is an independent chunk of data, analogous to individual files in a file system.
Thus there is no implicit hierarchy between bricks of different resolution levels, allowing
page-table hierarchies to support direct access to any brick in the data set without
the need of traversing a tree structure such as an octree. Due to this direct access,
page-table hierarchies are well suited for volume data management and are more efficient
in terms of data-access patterns than other out-of-core volume rendering approaches such
as octrees [HBJP12, FSK13, SCRL20]. A page table represents a resolution level in a
bricked volume hierarchy and is thus a volume in itself where each voxel corresponds to a
brick belonging to the page table’s resolution level. A page-table hierarchy thus forms a
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5. Multi-Channel Page-Table Hierarchy

Figure 5.1: Multi-resolution page-table hierarchy. The page-table hierarchy (here:
Multi-Resolution Page Directory) virtualizes the volume. It consists of one page table
per resolution level in the data set (here: l = 0, l = 1, and l = 2) which keep track of
the current location of their corresponding bricks in the brick cache. During ray casting,
the page-table hierarchy is used for address translation. Missing bricks are reported in a
hash table. In case the page-table hierarchy is virtualized itself, page tables are stored
within a page-table cache. Source: [HBJP12]

volume hierarchy, which makes it possible to apply the virtualization scheme recursively
to represent volumes of arbitrary dimensions [HBJP12]. Page tables virtualize volumes
by translating normalized floating point coordinates, such as the coordinates of a ray
sample, in a virtual volume space (e.g. [0, 1)3) to the page table’s reference space, or
address space (Section 5.3). Figure 5.1 illustrates how page-table hierarchies are used in
out-of-core volume rendering to access bricks of any resolution level directly.

5.2 Extension to Multi-Volume Data
We use a page-table hierarchy to manage volume data on the GPU as proposed in earlier
work [HBJP12] but fully implemented in GPU kernels similarly to earlier implementa-
tions [SCRL20], extended to multiple channels, and implemented in WebGPU (Chapter 8).
For scalability, we utilize a brick cache that stores a working set of bricks on the GPU,
referenced by a multi-channel page-table hierarchy illustrated in Figure 5.2. The latter
fully virtualizes a bricked multi-volume hierarchy, by implementing a paged 3D address
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5.2. Extension to Multi-Volume Data

Ch1
. .

 .

Ch2

Chm

Multi-Channel
Page-Table Hierarchy Brick Cache

Figure 5.2: Multi-channel page-table hierarchy. The page-table hierarchy (left) is
extended to keep track of multiple channels using one page-table hierarchy per channel.
All channels use the same brick cache (right) with all bricks having the same size in
voxels.

space with page-table entries storing all information required for virtual-to-physical
address translation and keeping track of the in-cache-residency of bricks. Each page table
in the page-table hierarchy represents a single resolution level in the volume hierarchy,
each comprising multiple pages that allow referencing all bricks corresponding to the
page tables resolution level. Each page stores if its corresponding brick is resident in
the brick cache or not and if so, a pointer to its location in the brick cache. In practice,
the brick cache is implemented as a buffer or 3D texture [HBJP12, FSK13, SCRL20].
Pointers into the brick cache stored in pages are therefore the brick’s offset within the
cache. A page may also mark bricks that are known to be empty, i.e., if they contain only
zero values, with an EMPTY flag to eliminate the need to store them in the brick cache.

Like previous out-of-core renderers [HBJP12, FSK13, SCRL20], all bricks in the multi-
volume hierarchy have the same size in voxels even though they can have different spatial
extents in the volume, depending on the resolution level they belong to. This greatly
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5. Multi-Channel Page-Table Hierarchy

simplifies cache management, since each entry in the brick cache has the exact same size.
Pointers into the brick cache, i.e., brick offsets, are thus all an integer multiple of the brick
size. For multi-channel volumes, we make the same assumption, such that extending this
method to multiple channels is achieved by having one page-table hierarchy per channel,
but all channels share the same brick cache.

5.3 Address Translation
To address voxel data, like earlier work [HBJP12, FSK13, SCRL20] we use virtual
multi-resolution addresses (l, p), where l ∈ Z is the resolution level and p ∈ [0, 1)3 are
the normalized floating-point coordinates in the virtualized volume’s reference space
([0, 1)3).For a position p ∈ [0, 1)3, e.g., a sample along a viewing ray, the address of the
corresponding voxel pv in a volume with extent v ∈ N3 is computed as follows:

pv = ⌊p ◦ v⌋, (5.1)

where ◦ is the element-wise product of two matrices, and ⌊⌋ is the element-wise flooring
operation. Similarly, Equation (5.1) is also used to compute the address of a page pvptl

in the page-table ptl at resolution level l, which is itself a volume with extent vptl
∈ N3.

In practice, page-tables in a page-table hierarchy are often stored within the same buffer
or texture, where each page-table has its own offset [HBJP12, FSK13, SCRL20]. In
such a case, a page’s address pvptl

for a page-table at resolution level l has to take the
page-table’s offset ol ∈ Z3 into account:

pvptl
= ol + ⌊p ◦ vptl

⌋ (5.2)

In order to address a position in a multi-volume hierarchy, we extend the virtual multi-
resolution addresses (l, p) to virtual multi-resolution, multi-volume addresses (l, c, p),
where c ∈ Z is the channel index. Again, if all page tables of all resolutions and channels
are stored in the same texture or buffer, a page table’s offset ol,c has to be taken into
account when computing the page’s address pvptl,c

.

To compute the address of a voxel pb within a brick b for a position p using a page’s
pointer into the brick cache ob, i.e., the brick’s offset into the texture used as a cache, we
use the following equation:

pb = ob + ⌊p ◦ vl⌋modb, (5.3)

where vl is the extent of the volume at resolution level l, b is the brick size, and mod is
the element-wise modulo operator.

5.4 Brick IDs
To efficiently communicate cache misses to the CPU, previous methods additionally assign
unique integer IDs to bricks in bricked volume hierarchies that encode their position
in the volume as well as their resolution level [HBJP12, FSK13, SCRL20]. As shown
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5.5. Brick Requests

by Hadwiger et al. [HBJP12], the bit-width of the data type used for brick IDs, e.g.,
32-bit or 64-bit integers, constrains the maximum number of bricks in a volume that
can be unequivocally identified by an integer ID. The number of bricks in a bricked
volume hierarchy depends on the volume’s size, the brick size in voxels, the number of
resolution levels, and the down-sampling ratios between resolution levels, i.e., the number
of bricks in each resolution level within the hierarchy. The number of bricks is reduced by
increasing the brick size, reducing the number of resolution levels, or by more aggressive
down-sampling.

To address bricks in bricked multi-volume hierarchies, we additionally encode the brick’s
channel index in its ID. The maximum number of channels that can be represented by a
multi-channel page-table hierarchy is thus also constrained by the bit-width of the data
type used for brick IDs. In order to still support more channels than can be represented
by the multi-channel page-table hierarchy, we virtualize multi-channel data sets: We
store a mapping of the channels currently used by our data structure to the channels in
the multi-volume hierarchy. This mapping is used by the CPU layer of our system to
translate brick IDs generated on the GPU to brick requests that are then forwarded to
the server. This allows our system to address more channels and to exchange channels at
run-time.

5.5 Brick Requests
We use the algorithm presented by Sarton et al. [SCRL20] for processing brick requests
and transmitting them to the CPU: A 3D buffer, the request buffer, stores for each page
in the multi-channel page-table hierarchy the timestamp it was last requested. If a page
representing a brick that is not resident in the brick cache and is not known to be empty
is accessed on the GPU, a cache miss is generated by writing the current timestamp to
the page’s corresponding location in the request buffer. To retrieve all cache misses for a
given timestamp t, the brick IDs of all pages that have been requested at t are written to
a request list as illustrated in Figure 5.3. This request list is then read back to the CPU
to stream in the bricks that were reported missing from the server.

As Sarton et al. [SCRL20] proposed, the number of requested bricks per timestamp can
be limited globally to limit traffic between the client and the server. This limit can
either be a constant, e.g., defined by the user at initialization time, or a variable that
changes at run-time. For example, the number of requested bricks can be decreased if
working sets of successive frames are expected to be temporally incoherent, e.g., during
user interactions, such as viewport changes.

5.6 Cache Management
We use the same LRU cache management scheme as Sarton et al. [SCRL20]: An additional
buffer, the LRU buffer, stores a sorted list of linear indices into the brick cache referencing
brick-cache entries. These indices are sorted by the last time the respective cache entry

33



5. Multi-Channel Page-Table Hierarchy

Figure 5.3: Processing brick requests. A list of brick requests is compiled from a
global request buffer with one entry per brick in the data set. This request list is then
read back to the CPU. Source: [SCRL20]

has been accessed on the GPU from the most to the least recent access. Furthermore, a
buffer, the usage-buffer, stores for each entry in the brick cache the timestamp it was last
accessed. It is used to update the LRU buffer. If a brick in the brick cache is accessed
on the GPU, the usage of the brick is recorded by writing the current timestamp to the
usage buffer. To update the LRU buffer using the usage buffer for a given timestamp t,
the LRU buffer is rearranged such that all indices referencing brick-cache entries that
have been accessed at t, are moved to the front while preserving the order of all other
elements as illustrated in Figure 5.4.

5.7 Parameters
The multi-channel page-table hierarchy and its brick cache have the following parameters:

• The brick size in voxels, i.e., the size of a brick in the multi-volume hierarchy and
the size of an entry in the brick cache.

• The brick cache size determines the maximum number of bricks in the working
set.

• The number m of channels that can be referenced simultaneously by the page-
table hierarchy.
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5.7. Parameters

Figure 5.4: Parallel cache management. Brick usages are marked in a global usage
buffer. A mask M is generated from the usage buffer to mark all indices in the old LRU
buffer (here: Old LRU) Lo that have been used at the current timestamp. Lu+, the
union of indices in Lo that are marked in M , is moved to the front of the updated LRU
buffer (here: Updated LRU), while Lu−, the inverse of Lu+, is moved to the back of the
buffer. The original order of indices in Lu− is preserved. Source: [SCRL20]

• The brick ID data type that is used for efficiently communicating brick requests
to the CPU.

Note that depending on the platform, the data type used for brick IDs can not be set by
the user. For example, shaders in WebGPU currently only support 32-bit integers.
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CHAPTER 6
Residency Octree

In this chapter, we discuss the main contribution of this thesis: the residency octree.
We first give a short overview of our data structure in Section 6.1 before describing its
nodes in more detail in Section 6.2. Section 6.3 shows how residency octrees are extended
to multiple channels to act as a base for efficient cache management and empty-space
skipping for multi-volume data sets. The incremental construction of residency octrees
is discussed in Section 6.4. Finally, the parameters of the residency octree are listed in
Section 6.5.

6.1 Overview
The residency octree is a hybrid data structure for out-of-core multi-volume rendering
combining the advantages of page-table hierarchies with those of octrees. It is illustrated
in Figure 1.1, middle, and Figure 6.1. The residency octree is internally backed by a
multi-channel page-table hierarchy discussed in the previous chapter, which references
bricks of different resolution levels and channels stored in a single brick cache. In contrast
to previous octree-based out-of-core methods [CNLE09, BPH14], the residency octree
decouples the resolution levels in the bricked volume hierarchy from the spatial subdivision
determined by the tree. Each node thus corresponds to a set of bricks in each resolution
level instead of just one brick. Residency-octree nodes store the resolutions they are
currently mapped in in a bitmap. This makes it possible to keep bricks of high-resolution
levels resident in the cache without having to keep bricks of lower resolution levels that
fall into the same spatial region of the volume in the cache if they are unused. For
example, if a renderer is able to render the visible parts of a volume in the highest
resolution level, the working set produced by a residency octree thus only consists of
bricks of that resolution.

The decoupling of the tree’s spatial subdivision and the volume hierarchy’s resolution
levels also allows residency octrees to subdivide the volume further than the spatial
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6.2. Residency-Octree Nodes

subdivision introduced by splitting the volume into bricks. As a result, residency octrees
support more fine-grained empty-space skipping than previous approaches [CNLE09,
HBJP12, FSK13, BPH14, SCRL20] for the same brick size used for cache management.
By additionally storing transfer-function independent metadata, e.g., minimum and
maximum scalar values, in its nodes, the empty-space skipping is further refined, such
that nodes are not only considered empty if they contain only zero values but can be tested
against a transfer-function’s visible value range dynamically. In Section 6.2, we discuss
the layout of residency-octree nodes, and in Section 6.4 we discuss how residency-octree
nodes are updated when new data is streamed in.

6.2 Residency-Octree Nodes
As illustrated in Figure 6.2, for each resolution level, a residency octree node can be (1)
fully mapped, (2) partially mapped, or (3) not mapped at all by the cache resident bricks.
However, since we want to avoid having to load all bricks of a given resolution level when
we only need a subset, we only keep track of each node’s partial mapping. We use a
ray-guided renderer to determine and stream in those parts of each node that currently
contribute to the rendered image enabling our system to converge to a state where
precisely those parts are mapped while unused parts of a node are not. Furthermore,
each node represents a spatial region in the volume whose corresponding data contain
a range of scalar values. Transfer-function independent metadata for this range, e.g.,
the minimum and maximum or a histogram of occurrences, is used to determine if a
node is empty or homogeneous under the current viewing conditions. In these cases, a
node’s corresponding bricks do not need to be resident in the cache. If a node is empty
or homogeneous, it is implicitly considered fully mapped in all resolution levels during
octree traversal.
As illustrated in Figure 6.3, each node in the residency octree stores the following:

• Transfer-function independent metadata that can be used for empty-space skipping.

• Pointers to its children.

• A bitmap storing in which resolution levels the node is at least partially mapped.

Since the residency octree only stores metadata and information about cache residency, it
is not necessary to load successive resolution levels or to load them as a whole. Instead,
individual bricks can be loaded as needed while the tree is constructed and updated
incrementally for those regions that are of interest as determined by the ray-guided
renderer. Since the metadata stored in octree nodes is transfer-function independent
and is not tied to a specific brick, only the residency information of a node needs to be
updated when a brick is added to or removed from the brick cache (Section 6.4). On the
other hand, because of the hierarchical structure of residency octrees, a node’s metadata
can be computed from its children as shown in Figure 6.3. Residency octrees can thus be
constructed in parallel from the bottom up as discussed in Section 6.4 and Chapter 8.
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6.3. Extension to Multiple Channels

bitmap of partially
mapped resolutions

minimum
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pointer to children

Figure 6.3: Residency-octree nodes store transfer-function independent culling infor-
mation (here: minimum and maximum scalar values), pointers to their children, and a
bitmap of partially mapped resolutions. A node’s culling information can be computed
from its children (here: the parent node’s minimum and maximum are the minimum and
maximum values of its children’s respective values).

6.3 Extension to Multiple Channels

To extend the residency octree to multi-channel data, all channels share the same octree
structure, but each node stores culling and residency information for up to m ≤ n
channels, where m is the number of channels that can be referenced simultaneously in
each octree node. Using the same octree structure for all channels while keeping a node’s
residency information independent for all channels makes it possible to use the same
spatial subdivision for empty-space skipping, while at the same time rendering each
channel in a different resolution.

Since the set of visible channels may change at run-time and volume data may be streamed
in on a per-channel basis rather than loading all channels at once, a node may already
store culling and residency information for one channel while this information is still
missing for other channels. Therefore, each node also stores for each of the m channels
whether the channel information it contains is already initialized or not using a special
INVALID value. If a node’s data for a channel is invalid, it stores a pointer to the node in
the next lower subdivision level that has valid information for that channel, or a special
UNKNOWN value if no such node exists. To reduce the memory required for each node,
the pointer to the next node storing valid information replaces the metadata stored for
that channel. Whenever a channel is replaced by another one, all nodes storing valid
data for the old channel are marked as INVALID for the new channel.
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6. Residency Octree

6.4 Residency-Octree Updates

Residency-octree nodes store metadata and residency information, accessible during tree
traversal. The residency octree needs to be updated when new metadata or bricks are
streamed in from the server.

6.4.1 Updating Culling Information

As soon as new metadata for a volume region has been received by the client, the
corresponding residency-octree node needs to be either (1) created and added to the
octree, or (2) updated if it already exists. Whenever a new node is added to the residency
octree, its metadata is initialized as INVALID for all channels except for the channel
for which the metadata was received. The new node’s residency information is also
only initialized for this channel, by checking for each resolution level whether the new
node is partially mapped or not. If the node already existed in the residency octree, its
channel-specific metadata is updated and its residency information is initialized similarly.
This only happens for multi-channel volumes (Section 6.2) when a node already holds
metadata for another channel.

In case the server does not support requesting metadata for a region in the volume,
e.g., if it is just a file server, this information has to be computed on the fly from the
actual brick (voxel) data on the client. Since a residency-octree node is not tied to a
specific resolution, it is up to the application to choose a resolution level for which the
corresponding set of bricks should be fetched from the server in order to have sufficient
data to compute the metadata. For example, if the resolution is too coarse it might
happen that only a single voxel is taken into account for computing the culling data of a
node. To avoid cases where too few voxels result in inaccurate metadata, a residency
octree may specify a minimum number of voxels that have to be taken into account
when computing the metadata for a node’s spatial extent. If the client had to fetch new
brick data in order to compute the node’s culling data, each new brick can then also be
uploaded to the GPU. This requires residency information to be updated as well.

6.4.2 Updating Residency Information

For each new brick received by the client, an available slot in the brick cache is selected
for storing the new brick. Whenever a brick is stored in the brick cache, we determine
all residency-octree leaf nodes whose spatial extent overlaps the spatial extent of the
brick to mark them as partially mapped in the brick’s resolution level and channel. This
update is then propagated up the tree until the root node is reached.

Residency information is stored as bitmaps, and can therefore be updated for all non-leaf
nodes by combining the bitmaps of child nodes via bit-wise OR. This is possible because
residency-octree nodes store partial residency information and therefore only require a
single brick of a resolution level to be resident in the brick cache in order to be partially
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mapped in that resolution level. As soon as a node’s bitmap remains unchanged by this
operation, we terminate the upwards propagation of the update.

6.4.3 LRU Cache Eviction
If no brick-cache slot is available for a new brick, we use an LRU scheme as used in earlier
work [SCRL20] to evict the least recently accessed brick from the cache in order to create
an available slot. When a brick is evicted from the cache, we check for all leaf nodes
whose spatial extent overlaps with the brick’s spatial extent if they are still partially
mapped after the evicted brick’s overlap is removed. This is done by checking for each of
a node’s corresponding bricks in the resolution level that the evicted brick belongs to,
if they are resident in the cache or not. Only if no other brick in this resolution level
is resident in the brick cache, the node is no longer partially mapped in that resolution
level, and its corresponding bit in the node’s bitmap is set to zero. Updating non-leaf
nodes is done in the same fashion as for newly added bricks, by setting their bitmaps to
the bit-wise OR of their child nodes’ bitmaps.

6.5 Parameters
The parameters of our multi-channel residency octree are

• The number of spatial subdivisions used to construct the tree.

• The number of channels that can be referenced by the residency octree.

Since the residency octree is backed by a multi-channel page-table hierarchy discussed in
Chapter 5, the number of channels that can be referenced by the octree is equal to the
number of channels that can be referenced by the page-table hierarchy.
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CHAPTER 7
Mixed-Resolution Multi-Volume

Rendering

In this chapter, we discuss our mixed-resolution multi-volume rendering algorithm. The
residency-octree structure discussed in Chapter 6 handles cache-residency information
and provides access to the volume data in conjunction with the multi-channel page-table
hierarchy (Chapter 5). However, it does not control what data is needed on the GPU
directly. Instead, we use a ray-guided volume-rendering algorithm in order to determine
which data is needed during rendering. To render a scene, we march through the volume
along viewing rays, and at each step traverse the residency octree (Section 7.1) to find
the leaf node containing the current sample. The leaf node’s metadata is then used
to determine if the sample falls into a region of empty space that can be skipped, or
if it might contribute to the rendered image. In the latter case, the node’s residency
information is used to fetch a brick currently resident in the brick cache in order to
access its voxels for rendering. If the leaf node’s metadata is missing or invalid, or no
corresponding brick is resident in the brick cache, the respective data is requested from the
server. Furthermore, we use the residency information stored in residency-octree nodes to
substitute missing brick data in the desired resolution with bricks of another resolution as
discussed in Section 7.2. In Section 7.3, we show how we extend the ray-guided algorithm
to multiple channels. To save memory when visualizing multiple channels, our algorithm
supports controlling the resolution levels used for rendering on a per-channel basis. This
is discussed in Section 7.4.

7.1 Residency-Octree Traversal
We traverse the residency octree for each sample within the volume along a viewing ray.
The traversal algorithm for a single channel is outlined in Algorithm 7.1. For brevity, we
assume that the root node already contains metadata. Before traversing the residency
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7. Mixed-Resolution Multi-Volume Rendering

Algorithm 7.1: Residency-octree traversal. For each sample along the ray,
we traverse the tree until we reach a maximum traversal depth or we find an
empty node that allows us to skip over empty space. Missing metadata and
bricks are reported so they can be streamed in from the server.
1 resolutionLevel ← chooseResolutionLevel(depth(ray));
2 traversalDepth ← chooseTraversalDepth(stepSize(ray));
3 node ← rootNode;
4 for ( i ← 0; i ≤ traversalDepth; i + + ) {
5 if isEmpty(node) then
6 ray ← skipNode(node, ray);
7 break
8 end
9 if isHomogeneous(node) then

10 ray ← renderAndSkipNode(node, ray);
11 break
12 end
13 if not(isPartiallyMapped(node)) then
14 reportBrickRequest(node, ray, resolutionLevel);
15 ray ← skipNode(node, ray);
16 break
17 end
18 if i < traversalDepth then
19 nextNode ← next(node, ray);
20 if nextNode.missing then
21 reportNodeRequest(nextNode);
22 else
23 node ← nextNode;
24 continue
25 end
26 end
27 page ← getPage(node, ray, resolutionLevel);
28 if page.unmapped then
29 reportBrickRequest(node, ray, resolutionLevel);
30 page ← getAlternativePage(node, ray, resolutionLevel);
31 end
32 if page.unmapped then
33 skipBrick(node, ray);
34 else
35 renderUntilNextBoundary(getBrick(page), node, ray);
36 end
37 break
38 }
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octree, we choose the desired resolution level for the ray sample based on current viewing
parameters such as the sample’s distance to the camera. Furthermore, we choose a
maximum traversal depth based on the current sampling step size, to avoid skipping a
distance smaller than the distance to the next ray sample, and define the current node
to be the root node. The tree is only traversed until this maximum traversal depth is
reached.

For each node, we first check if it is empty, denoted here as the function isEmpty.
Internally, isEmpty tests the node’s culling information, e.g., the minimum and maximum
scalar values in the node, against the current transfer function’s visible range. If a node
is empty, all samples along the ray that would fall into the empty node are skipped by
intersecting the ray with the node’s bounding box and advancing it to the position where
it exits the node.

Similarly, we check if the current node is homogeneous, i.e., all voxels hold (approximately)
the same value, using the function isHomogeneous. If a node is homogeneous, the
node’s value is used directly for rendering all samples along the ray that would fall into
the node, and the ray is advanced to the next node. Using the same value for all samples
in the same node avoids unnecessary tree traversals. The exact value used for rendering
is implementation-dependent. For example, if a node stores minimum and maximum
scalar values, the value can be either one of the extremes or a linear combination of the
two.

The function isPartiallyMapped checks if a node is partially mapped in any resolu-
tion, and not denotes the logical negation of a boolean value. If a node is not partially
mapped, all of its children are implicitly also not mapped. Thus we can stop the octree
traversal immediately, report a brick request, and skip all samples that fall into the node
in such a case. The function reportBrickRequest reports the node’s brick in the
chosen resolution level as requested using the request buffer discussed in Section 5.5.

If at this point, the target traversal depth is not yet reached, we try to advance
the tree traversal to the next subdivision level, i.e., the node’s child node. How-
ever, if the child node does not yet have any culling information (here: checked using
nextNode.missing), the whole subtree is implicitly known to not contain any culling
information. In that case, the child node’s culling information is requested using the
function reportNodeRequest, and the current node is used for rendering instead as if
the target traversal depth would have been reached.

If the target traversal depth is reached and the current node is non-empty and inhomoge-
neous, the page of the chosen resolution level is retrieved from the page-table hierarchy. If
the page is unmapped, i.e., its brick is not resident in the cache, a brick request is reported
and we try to find an alternative resolution level in which the node is currently partially
mapped using the function getAlternativePage. We discuss how a node’s bitmap
of partially mapped resolutions is used to find an alternative resolution in Section 7.2.

If the region in the residency octree node that the current sample falls into is not mapped,
we advance the ray to the boundary of the current page’s brick. Note that the next ray
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sample may still be within the same node. Otherwise, we render all samples that fall
into the brick. If the resolution level of this brick is lower than the desired resolution
for the current sample’s distance to the camera, the sampling rate along the ray can be
decreased for the ray segment within the brick’s bounds.

As an optimization, octree traversal may also start at a higher subdivision level, assuming
lower subdivision levels are non-empty anyway. For example, the root node can usually
be expected to be non-empty as pointed out by Faludi et al. [FZZ+22].

7.2 Choosing Alternative Resolutions
If a brick is not cache resident in the desired resolution, we try to render a brick of
an alternative resolution level instead. Thanks to the bitmaps of partially mapped
resolutions in each residency-octree node, we can use this information to check if bricks
of those resolutions are in the cache directly, instead of having to do a random search
through all resolution levels. The algorithms to compute the next lower and higher
resolution levels a node is partially mapped in are given in Section 7.2.1 and Section 7.2.2
respectively. However, since a node only stores if it is partially mapped, a ray sample
may still fall into a region within the node that is not mapped. We thus may have to
iterate over candidate resolution levels retrieved from a node’s bitmap.

Using the building blocks given in Sections 7.2.1 and 7.2.2, different strategies are possible.
For example, a renderer can choose to only use lower resolutions a node is partially
mapped in, prioritizing a low memory footprint over rendering quality. Similarly, only
resolutions higher than the desired one could be taken into account. Other strategies
include iterating over higher resolutions before taking lower resolutions into account,
alternating between lower and higher resolutions, or choosing the resolution level that is
closest to the desired one. In our mixed-resolution multi-volume renderer, we first try to
find a brick from a lower resolution, before trying to find a higher resolution brick that is
resident in the cache instead as shown in Algorithm 7.2.

7.2.1 Finding Lower Resolution Levels

To access the next lower resolution level in which an octree node is partially mapped,
given its bitmap of partially mapped resolutions and the index of the desired resolution
level, i.e., the one in which the node is not mapped, we use Algorithm 7.3.

We first compute a mask of all resolution levels in which the residency-octree node is
partially mapped, and that are lower than the one we already checked. For each resolution
level, the function getLowerResolutionsMask returns a bitmask where only the bits
corresponding to resolution levels lower than the given index are ones. These masks are
constant. The function can thus be implemented as an access into a constant array. The
mask of all lower resolutions the node is partially mapped in is then the result of a logical
AND of the node’s bitmap and the mask returned by getLowerResolutionsMask.
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Algorithm 7.2: Choosing an alternate resolution given a node’s bitmap
of partially mapped resolutions and the index of a resolution level.
1 nextResolution ← nextLower(node.bitmap, resolutionLevel);
2 page ← getPage(node, ray, resolutionLevel);
3 while nextResolution ̸= NONE ∧ page.unmapped do
4 nextResolution ← nextLower(node.bitmap, resolutionLevel);
5 page ← getPage(node, ray, resolutionLevel);
6 end
7 if page.unmapped then
8 nextResolution ← nextHigher(node.bitmap, resolutionLevel);
9 while nextResolution ̸= NONE ∧ page.unmapped do

10 nextResolution ← nextHigher(node.bitmap, resolutionLevel);
11 page ← getPage(node, ray, resolutionLevel);
12 end
13 end

Algorithm 7.3: Choosing a lower resolution given a node’s bitmap of
partially mapped resolutions and the index of a resolution level.

input :partiallyMapped: the node’s bitmap of partially mapped
resolutions.
resolution: the index of the resolution last tested.

output : The index of the next lower resolution.
/* Only those bits of "lower" corresponding to resolutions

where the node is partially mapped and are strictly
lower than the given resolution level will be ones. */

1 lower ← partiallyMapped ∧ getLowerResolutionsMask(resolution);
2 if lower = 0 then
3 return NONE;
4 end
/* Resolution levels are ordered from 0 (highest) to k

(lowest). The index of the next lower resolution level
the node is partially mapped in, is the position of the
first trailing one-bit of "lower". */

5 return firstTrailingBit(lower);
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If the node is not mapped in any resolution lower than the given one, i.e., if the computed
bitmask is zero, we return the special value NONE. Otherwise, we use the function
firstTrailingBit to find the index of the first trailing one-bit of the mask computed
in Line 1 of Algorithm 7.3. This is equal to the index of the next lower resolution level’s
index because we order resolutions from 0 (highest) to k (lowest). In case the function
firstTrailingBit is not available on a platform, the index of the first trailing one-bit
of an integer is also equal to the number of consecutive trailing zero-bits of an integer
counting from the least significant bit.

7.2.2 Finding Higher Resolution Levels
The algorithm to find the next higher resolution level a residency-octree node is partially
mapped in, is similar to the one choosing a lower resolution. It is listed as Algorithm 7.4.

Algorithm 7.4: Choosing a higher resolution given a node’s bitmap of
partially mapped resolutions and the index of a resolution level.

input :partiallyMapped: the node’s bitmap of partially mapped
resolutions.
resolution: the index of the resolution last tested.

output : The index of the next higher resolution.
/* Only those bits of "higher" corresponding to

resolutions where the node is partially mapped and are
strictly higher than the given resolution level will be
ones. */

1 higher ← partiallyMapped ∧ getHigherResolutionsMask(resolution);
2 if higher = 0 then
3 return NONE;
4 end
/* Resolution levels are ordered from 0 (highest) to k

(lowest). The index of the next higher resolution
level the node is partially mapped in, is the position
of the first leading one-bit of "higher". */

5 return firstLeadingBit(higher);

As in Algorithm 7.3, we first compute a mask of all resolution levels the node is partially
mapped in and that are strictly higher than the index of the given resolution level. Sim-
ilar to getLowerResolutionsMask, the function getHigherResolutionsMask
returns a bitmask where only the bits corresponding to resolution levels higher than the
given resolution level are ones.

Again, if the node is not mapped in any resolution higher than the given one, we return
the special value NONE. Otherwise, we compute the index of the next higher resolution
the node is partially mapped in, by finding the index of the first leading one-bit of the
mask computed in Line 1 of Algorithm 7.4.
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If firstLeadingBit is not available on a platform, the index i of the first leading
one-bit of an integer x can be computed in terms of countLeadingZeros instead:

i = BIT_WIDTH − 1 − countLeadingZeros(x), (7.1)
where BIT_WIDTH is the bit-width of x.

7.3 Extension to Multiple Channels
For rendering multiple channels, we use a similar algorithm as the one presented in
Section 7.1. The main difference is that we cannot terminate the traversal before all
channels have been processed. The channels are organized based on their importance
that, together with the current viewing parameters, determines both the sampling rate
and the desired traversal depth (Section 7.4). Traversing the entire tree for each sample
and channel would be computationally inefficient. Instead, we only traverse the tree
hierarchy once, starting with the most important channel, i.e., the channel requiring the
highest sampling frequency. To do this, the algorithm outlined in Algorithm 7.5 keeps
track of an index in the sequence of channels. As soon as we reach a point where we
would terminate the traversal in the single channel case, we simply stay in the same node
but increase this index, and continue the traversal from there.
We start processing each node by checking if it holds any culling information for the
current channel index. If it does not, we request culling data for this node and the current
channel and continue with the next channel.
Because we have to take all visible channels into account, we can not skip a node if it is
only empty for one channel. Instead, empty nodes can only be skipped if all channels
have been found to be empty. For this reason, our algorithm keeps track of the number
of channels for which empty nodes were found for a sample. While a node might be
empty for one channel, another channel might require a few more traversal steps to reach
a subdivision level in which the corresponding node is empty. The skipped distance is
determined by the spatial extent of the last empty node we encounter during traversal.
Since the spatial extents of nodes are strictly decreasing between tree traversal steps, we
are sure to not skip non-empty space using this strategy. Figure 7.1 gives an example of
how empty-space skipping may require more traversal steps in a multi-volume setting
compared to a single-channel setting because multiple channels have to be checked instead
of only one.
Similarly, homogeneous nodes can also only be rendered more efficiently due to their
homogeneity if they are homogeneous for all channels. The algorithm keeps a count of
channels for which homogeneous nodes have been encountered during octree traversal.
Similar to empty nodes, the last homogeneous node we encounter during traversal
determines the spatial extent that can be skipped. Furthermore, the last homogeneous
node’s values are used for rendering the node for each channel.
The desired resolution level for each channel is only determined if it is necessary, i.e.,
when bricks are requested or accessed for rendering. Since resolution levels are chosen
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7. Mixed-Resolution Multi-Volume Rendering

Algorithm 7.5: Residency-octree traversal for multiple channels.
1 traversalDepth ← chooseTraversalDepth(stepSize(ray));
2 node ← rootNode;
3 channelIndex ← 0;
4 emptyChannels ← 0;
5 while node.depth ≤ traversalDepth ∧ channelIndex <

numChannels do
6 if noCullingInformation(node, channelIndex) then
7 reportNodeRequest(node, channelIndex);
8 channelIndex++;
9 continue

10 end
11 if isEmpty(node, channelIndex) then
12 if emptyChannels = numChannels − 1 then
13 ray ← skipNode(node, ray);
14 break
15 end
16 emptyChannels++;
17 channelIndex++;
18 continue
19 end

/* Homogeneous nodes are handled similarly to empty
nodes. Left out here for brevity. */

20 if not(isPartiallyMapped(node, channelIndex)) then
21 resolutionLevel ← chooseResolutionLevel(depth(ray),

channelIndex);
22 reportBrickRequest(node, ray, resolutionLevel, channelIndex);
23 channelIndex++;
24 break
25 end
26 if node.depth < traversalDepth then
27 nextNode ← next(node, ray);
28 if nextNode.missing then
29 reportNodeRequest(nextNode);
30 else
31 node ← nextNode;
32 continue
33 end
34 end
35 resolutionLevel ← chooseResolutionLevel(depth(ray),

channelIndex);
/* Fetching and rendering a brick is similar to the

single channel scenario and left out for brevity. */
36 channelIndex++;
37 end52
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7. Mixed-Resolution Multi-Volume Rendering

on a per-channel basis rather than choosing one globally for all channels, our renderer
supports mixing resolutions (Section 7.4). The sequence of channels that need to be
evaluated for a ray sample depends on the chosen sampling rate for each channel. For
example, a channel with high-frequency content may require a higher sampling rate while
another channel may only need to be sampled at every second step along the ray.

7.4 Mixing Resolutions
When rendering large-scale multi-volume data, it may be desirable to render different
channels in different resolutions. This could be due to a channel having a lower frequency
content than the others, or simply one channel not being as important as others for
the user, possibly depending on the current viewpoint. Similarly, a volume might have
high-frequency content only in some parts of the space.

With large-scale data requiring out-of-core methods, we can exploit this by limiting the
range of resolutions that are uploaded to the GPU on a per-channel basis to both save
memory at run-time and reduce the number of samples that need to be evaluated for
all channels. In our system, each channel has a function that constrains the range of
resolution levels to choose from, when computing a resolution level for a channel. For
example, it is based on current viewing parameters like a ray sample’s distance to the
camera. Conceptually, this function can be quite general, from user-controlled upper and
lower bounds for resolution levels to a function taking into account multiple different
parameters like frequency content, viewing parameters, and transfer functions.

Figure 7.2 gives an example of multi-channel human tissue data rendered with mixed
resolutions. Here the resolution level for each channel is set explicitly for demonstration
purposes. While some channels are always rendered in the highest resolution available,
others are rendered at lower resolutions.
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7.4. Mixing Resolutions

(a) pink = l3, orange = l5, rest = l0 (b) pink = l3, orange = l4, rest = l0

(c) pink = l3, rest = l0 (d) all = l0

Figure 7.2: Mixed resolution rendering of five channels of human tissue data.
The pink and orange channels are rendered at lower resolutions than the other channels,
which are all rendered at the highest resolution level (l0). The pink channel is rendered
at resolution level l3 (a-c), and the orange channel is rendered at resolution levels l5 (a),
l4 (b), and l0 (c,d). In (d) all channels are rendered at the highest resolution.
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CHAPTER 8
Implementation

In this chapter, we discuss our implementation of the presented methods as a web-based,
pure client-side volume rendering application that consumes bricked volume data provided
by a server.

8.1 Server

For our implementation, we use a file server providing bricked multi-resolution multi-
volume hierarchies as OME-Zarr files, an implementation of OME-NGFF [MAB+21]. We
convert data sets in other formats, e.g., raw binary data, to OME-Zarr in a pre-processing
step. Our server does not support querying culling metadata for specific regions in the
volume, so they have to be computed on the client.

8.2 Client

Our client-side application is implemented in Rust and compiled into WebAssembly. It
uses the WebGPU API for issuing GPU commands. It uses three separate threads: the
main thread controls the UI, a render thread that runs our algorithm and handles all
CPU-GPU communication, and a brick-loading thread that in turn uses a pool of worker
threads to pre-process data fetched from the file server. Since WebGPU does not yet
allow multiple threads to access the same GPU resources [MNJ23], brick data needs to
be transmitted from the brick-loading thread to the render thread. In the render thread,
received brick data is stored in a First-In-First-Out (FIFO) queue. At the beginning of
each frame, a user-defined number of bricks is drained from this queue and uploaded to
the GPU.
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Data pre-processing

For simplicity, we convert all volume data fetched from the server to unsigned 8-bit
integer data as a pre-processing step in the brick-loading thread. To convert values from
a higher-precision data type, e.g., 16-bit integers, to unsigned 8-bit integer values, we
apply one or more of the following pre-processing methods and scale the result to a range
of [0, 255]:

• scale: Divide each value by a user-defined constant.

• scaleToMax: Divide each value by the channel’s approximate maximum value.
The channel’s approximate maximum value is determined automatically by the
application by using the maximum value in the lowest resolution representation of
the channel.

• logTransform: Take the common logarithm of each value.

The pre-processing method or combination of pre-processing methods is chosen by the
user at initialization time.

Furthermore, user-defined minimum and maximum thresholds in the range [0, 1] may be
specified. Each value outside of the range given by these thresholds, i.e., outside of the
range [min ∗ 255, max ∗ 255], where min and max are the user-defined thresholds, is set
to zero during pre-processing. This is used to remove unwanted values from the data,
e.g., noise produced during imaging. Instead of transferring bricks containing only zero
values to the render thread, a special EMPTY value is transmitted as an optimization.

8.3 Multi-Channel Page-Table Hierarchy
The multi-channel page-table hierarchy is modeled after the fully GPU-driven approach
presented by Sarton et al. [SCRL20]. However, we do not apply the memory virtualization
recursively on the page-table hierarchy itself.

8.3.1 Page-Table Hierarchy
We use a single 3D texture in the rgba32uint texture format to store the multi-channel
page-table hierarchy. Each page table is a 3D sub-region within this texture, where each
pixel represents a page, i.e., a single brick in the page table’s corresponding channel and
resolution level. A page stores a 3D offset into the brick cache in the RGB channels and
a state flag in the alpha channel. The state of a brick is one of the following:

• UNMAPPED: the corresponding brick is currently not resident in the cache and thus
the page’s offset into the brick cache is invalid.

• MAPPED: the corresponding brick is resident in the cache. The page’s offset into
the brick cache is valid.
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• EMPTY: the corresponding brick contains only zero values and thus does not need
to be stored in the cache. The page’s offset into the brick cache is invalid.

We use an additional page-table meadata-buffer to store an array of metadata about
each individual page table in the multi-channel page-table hierarchy, like its offset within
the 3D texture, on the GPU. Each individual page table’s metadata is accessed using its
index.
To report cache misses to the CPU, we use a 3D texture in the r32uint texture format
with the same resolution as the multi-channel page-table hierarchy as a request buffer.
For each page in the multi-channel page-table hierarchy, this request buffer stores the
timestamp, i.e., the frame number, when it was requested for the last time. After each
frame, the request buffer is processed to compile a list of requested brick IDs in a compute
pass.
The multi-channel page-table hierarchy uses unsigned 32-bit integers for brick IDs. They
consist of 24 bits for the spatial offset (8 bits each for the x, y, and z coordinates) of
the brick relative to the origin within its channel and resolution, and 8 bits for the
page-table index, i.e., the index into the page-table meadata-buffer. Having 8 bits for the
page-table index allows for (m × k) ≤ 256 page tables in total, where m is the number of
channels and k is the number of resolution levels that can be represented on the GPU.
The parameters m and k are chosen by the user at initialization time.

Supporting arbitrary numbers of channels

A data set may have more than the m channels that can be represented on the GPU
using 32-bit brick IDs. To support such data sets, our implementation stores a mapping
of channels in the multi-channel page-table hierarchy to the channels in the data set and
vice versa. The mapping can change at run-time through user interaction. This mapping
is used to translate requested brick IDs that are unique with respect to the GPU-resident
multi-channel page-table hierarchy to brick IDs unique with respect to the complete data
set. We refer to these brick IDs as local and global brick IDs respectively.
Mapping a GPU buffer to the CPU, i.e., making its memory available for reading or
writing on the host side, is an asynchronous operation in WebGPU [MNJ23]. Since
waiting for this operation to complete would stall the CPU side of the application, we
do not wait for the buffer containing requested brick IDs to be mapped. Instead, we
check at the beginning of each frame if the buffer’s memory is already mapped and if so,
read its contents. Requested brick IDs are thus read with a delay of at least one frame.
If the mapping of local to global brick IDs changes, local brick IDs produced during a
previous frame may therefore be translated incorrectly. For this reason, we store not a
single mapping of channels in the page-table hierarchy to channels in the data set, but
a list of such mappings - each with an associated timestamp at which it replaced the
previous mapping. Similarly, we store the timestamp with each set of local brick IDs at
which it was created. This timestamp is used to determine the appropriate mapping for
translating local brick IDs to global ones.
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8.3.2 Brick Cache
Our implementation uses a single-channel 3D texture in the r8unorm texture format as
its brick cache, i.e., each entry in the brick cache corresponds to a single brick in the
multi-resolution multi-volume hierarchy. The brick cache implementation is agnostic to
the number of channels in the data set. The cache size Csize is chosen by the user at
initialization time and is rounded up to be a multiple of the brick size Bsize.

The brick cache is managed in an LRU manner using an array of linear indices into the
brick cache sorted by the most recent access time of the corresponding brick-cache entry.
This array is only resident in GPU memory in a storage buffer called the LRU buffer that
is updated each frame. Whenever a brick-cache entry is accessed during rendering, the
current global timestamp, i.e., the current frame number, is written into a usage buffer.
The usage buffer is implemented as a 3D texture in the r32uint format with one voxel
per brick-cache entry. The usage-buffer size Usize is defined as

Usize = (Csizex

Bsizex

,
Csizey

Bsizey

,
Csizez

Bsizez

). (8.1)

We use a series of WebGPU compute passes to update the LRU buffer after each frame
in the following manner: As discussed in Section 5.6, we first process the usage buffer to
produce a mask of brick-cache entries that have been accessed at the current timestamp.
We then use a sequence of compute passes to compute the exclusive scan of this mask. The
result of this scan is taken to move all indices in the LRU buffer referencing brick-cache
entries that have been used at the current timestamp to the front of the LRU buffer
while preserving the order of the remaining elements.

8.3.3 Cache Updates
A user-defined number of brick data received from the file server is uploaded to the
GPU each frame. For each of the received bricks, the brick data comprises the brick’s
global brick ID, and either the special EMPTY value if it contains only zero values or the
pre-processed brick. As a first step, the brick’s global brick ID is translated to a local brick
ID. If the brick’s channel is currently not represented by the multi-channel page-table
hierarchy, the brick is discarded. If the brick is EMPTY, only the brick’s corresponding
page in the multi-channel page-table hierarchy is marked as EMPTY. Otherwise, the
brick’s corresponding page is marked as MAPPED, and the brick’s data is added to the
brick cache. To do so, the LRU buffer is used to find either free cache entries or ones
that have not been accessed recently, as discussed in Section 6.4.3. Whenever a brick is
removed from the brick cache, its corresponding page is marked as UNMAPPED. When the
brick cache update is completed, two lists of local brick IDs are passed to the residency
octree for further processing:

• a list containing the local brick IDs of all bricks for which the corresponding page
has been marked EMPTY or MAPPED, and
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• a list containing the local brick IDs of all bricks for which the corresponding page
has been marked UNMAPPED in the current update.

How these two lists are used in the residency-octree construction is discussed in detail in
the next section.

8.4 Residency Octree

The residency octree is implemented as a full, pointerless octree for simplicity. Instead of
allocating new octree nodes only when they are needed, all nodes are pre-allocated and
have a fixed location in the storage buffer containing the residency-octree nodes. This
removes the extra indirection introduced by child-node pointers in octree nodes when
accessing the children of a node and thus simplifies data management in the octree. Each
node consists of m unsigned 32-bit integers, where m is the number of channels. Each
channel uses 16 bits for keeping track of partially mapped resolutions and 8 bits each for
minimum and maximum scalar values in the region represented by the node.

We use minima and maxima instead of histograms of occurrences as proposed by Faludi et
al. [FZZ+22] for empty-space skipping. While histograms support efficient testing against
multi-modal transfer functions, they do so at the cost of precision by quantization. For
unimodal transfer functions, extremes allow more control and are closer to optimal for
empty-space skipping due to higher precision. The renderer is designed for multi-channel
immunofluorescence data. Each channel represents the response of cell material to a
single marker fluid leading to a single structure being captured in each channel. To
visualize such structures, it is sufficient to use unimodal transfer functions and we thus
decided to implement empty-space skipping using minimum and maximum values for
each octree node.

8.4.1 Volume Subdivision

The number of subdivision levels is indirectly defined by the user at initialization time
by specifying an approximate leaf-node size in voxels. This leaf-node size is then used to
iteratively subdivide the volume until a subdivision level is reached where the size of a
node in voxels is lower or equal to the given leaf-node size in each dimension. At each
step, each of the volume’s dimensions is either halved or not subdivided at all depending
on the other two dimensions. For example, if in one iteration, a node’s extent is twice as
large in one dimension than it is in the other two, e.g., Nextent = (4, 2, 2), where Nextent

is a node’s extent, then it will only be subdivided in that dimension. It is possible that
the constructed octree actually resembles a quadtree or binary tree in some subdivision
levels depending on the volume’s dimension and the chosen approximate leaf-node size.
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8.4.2 Incremental Construction
The incremental parallel construction of the multi-channel residency octree is fully
implemented on the GPU. Since we use a full octree, nodes only have to be updated
when bricks are added to or removed from the brick cache. Our application starts
residency-octree updates directly after a frame’s brick-cache update has been completed.
We process updates from the leaf-node level up to the root node in a breadth-first manner
but make use of indirect compute passes to determine during the upwards propagation
if we can terminate the process early on the GPU. Starting at the leaf-node level, an
update-candidate buffer is used to mark the parent nodes of updated nodes as potential
candidates to process in the next higher level. We use a series of indirect compute passes
to process the lists of added and removed local brick IDs in the following manner:

1. Process removed bricks. As a first step, for all bricks that are no longer resident
in the cache, the corresponding leaf nodes in the residency octree are determined.
For each node that is no longer partially resident in the removed brick’s resolution,
the bitmap of partially mapped resolutions is updated and its parent node is marked
as an update candidate in the update-candidate buffer.

2. Compute culling metadata for new bricks. For each scalar value in each newly
added brick, the corresponding leaf node in the residency octree is determined.
If the value is lower than the node’s minimum or greater than its maximum the
node’s respective culling metadata is updated and its parent node is marked as an
update candidate in the update-candidate buffer. Note that a node’s minimum
and maximum values need to be written using atomic operations, i.e., atomicMin
and atomicMax respectively, because multiple threads may update the same node
concurrently.

3. Process added bricks. For each brick that has been added to the cache, all
corresponding leaf nodes in the residency octree are determined and marked as
partially mapped in the brick’s resolution level. If a node’s bitmap of partially
mapped resolution is changed by this operation, its parent node is marked as an
update candidate in the update-candidate buffer.

4. Compile a list of update candidates. The update-candidate buffer is processed
to compile a list of all nodes that have been marked as update candidates and
need to be processed in the next step. Furthermore, the update-candidate buffer
is cleared for subsequent iterations. The number of update candidates is used
to control the number of workgroups dispatched for the next indirect compute
pass, i.e., Step 5. If no candidates are left to process, no further workgroups are
dispatched, and the update process is terminated.

5. Process update-candidates. For each update candidate, the node’s culling
metadata and bitmap of partially mapped resolutions are recomputed from its child
nodes. If at least one of the node’s values is changed by this operation, the node’s
parent node is marked as an update candidate in the update-candidate buffer.
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6. Repeat. Steps 4 and 5 are repeated until the root node is reached, or no update
candidate is left.

8.5 Mixed-Resolution Multi-Volume Renderer
The mixed-resolution multi-volume renderer is implemented in a WebGPU compute
shader. To reduce the number of diverging branches in the shader, each visible channel
is evaluated at each sample along a ray even though some channels may be rendered at a
lower resolution than others. The sampling rate along each ray can thus be determined
globally for all channels instead of on a per-channel basis. It is computed in terms of the
step size dtstep between two samples based on the channel requiring the highest sampling
rate, i.e., the channel rendered at the highest resolution, using Equations (8.2) and (8.3).

dti = 1
vi ∗ si ∗ di

, (8.2)

where vi is the volume’s extent in dimension i, si is the voxel spacing in dimension i, di

is the ray’s direction in dimension i, and i ∈ [0, 1, 2].

dtstep = min(dt0, dt1, dt2) ∗ stepScale, (8.3)

where stepScale is a user-defined scaling factor to increase or decrease the sampling rate
at run-time.

Our system’s UI has a slider for each channel to control the lower and upper bound for
the range of resolutions to choose from during rendering as discussed in Section 7.4. A
channel’s importance is determined by the user-defined range of resolutions, where a
channel with a higher upper bound is considered more important than a channel that is
allowed to be rendered at lower resolutions.

As an optimization, the renderer never starts tree traversal at the root level, but at a
user-defined subdivision level, or the parent level of the subdivision level at which the
tree traversal was terminated for the previous sample. Since we use a full octree, this
optimization does not require any changes to our shader code. Instead, each node can be
accessed directly via its index.
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CHAPTER 9
Evaluation and Results

In this chapter, we discuss how we evaluate the residency octree and mixed-resolution
multi-volume rendering algorithm proposed in this work using the implementation
discussed in Chapter 8. We evaluate the mixed-resolution multi-volume rendering
algorithm in terms of run-time performance (Section 9.4) using six different data sets
described in Section 9.3. We show how the decoupling of resolution levels and the
residency octree’s spatial subdivision is beneficial with an increasing number of channels
in Section 9.5. The residency octree’s optimized cache utilization in terms of smaller
working sets compared to existing page table and octree-based approaches is shown
in Section 9.6. The environment we use for evaluating our method, as well as two
reference implementations we compare our method against are discussed in Section 9.1
and Section 9.2 respectively.

9.1 Evaluation Environment

We evaluate our method using the implementation discussed in Chapter 8 on a computer
running Ubuntu 22.04.1 LTS. The computer has an AMD Ryzen 7 2700X CPU, 32 GB
RAM, and a GeForce GTX 1080 as a dedicated GPU with 8 GB GPU memory. Since
WebGPU is a browser API, we use version 108.0.5359.40 of the Chromium browser
in our experiments. We enable the browser’s experimental WebGPU support and
use Chromium’s Vulkan backend for dispatching WebGPU commands to the GPU.
Furthermore, we enable the use of WebGPU’s timestamp-query feature [MNJ23] in order
to accurately time individual GPU operations by writing a timestamp in nanoseconds at
the start and end of each compute pass to a buffer. This buffer’s contents are then read
back to the CPU once per frame. We enable the timestamp-query feature by allowing
unsafe API calls in the Chromium browser.
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9.2 Reference Implementations
We evaluate the residency octree and mixed-resolution multi-volume renderer by compar-
ing it to two other approaches modeled after the current state of the art in out-of-core
volume rendering as discussed in Chapter 2: (1) rendering with just a multi-channel
page-table hierarchy as described in Chapter 5, and (2) an octree-based out-of-core
renderer based on Crassin et al.’s [CNLE09] approach extended to multiple channels.

9.2.1 Multi-Channel Page-Table Hierarchy
The first approach uses the multi-channel page-table hierarchy to access cached volume
data directly, instead of traversing an octree for each sample. It skips empty space
only if the current bricks of all channels are empty. Since bricks are only marked as
EMPTY if all of their voxels are zero instead of providing a transfer-function aware
method for this purpose, this approach is expected to skip empty space only in rare cases.
Furthermore, this approach does not substitute missing bricks by rendering the volume
in other resolutions that may be resident in the brick cache. Instead, all samples that
fall into the missing brick are skipped for the missing brick’s channel.

For very dense volumes, this approach is expected to achieve higher or at least comparable
frame rates when compared to the other two approaches, since the overhead of traversing
a tree can not be compensated by skipping over empty space by the other methods. In
terms of GPU memory utilization with respect to the number of bricks in the working set,
this method is expected to perform worse than our method, because bricks containing at
least one non-zero value are not considered EMPTY and thus have to be kept in memory
even though they might be completely transparent under the current viewing conditions.

9.2.2 Octree
The second approach we compare our method to is based on the out-of-core renderer
presented by Crassin et al. [CNLE09] and is similar to the octree-based method discussed
by Brix et al. [BPH14]. We extend the single-channel approach by Crassin et al. [CNLE09]
by storing in each node m pointers to the nodes’ m corresponding bricks, where m is
the number of visible channels. Additionally, we store culling metadata in the form of
minimum and maximum scalar values for each channel in each of the nodes. We use
the same culling data as the residency octree implementation in this approach but use a
one-to-one mapping of bricks and octree nodes. Furthermore, in order to render parts of
the volume in a high resolution, the whole subtree has to be resident in the cache. To
enforce this, we restart the tree traversal for each visible channel when evaluating a ray
sample. In case of a missing brick in the desired resolution, the next lower resolution is
rendered instead.

Because whole subtrees have to be resident in the cache for rendering the volume in high
resolution, the memory footprint in terms of the number of bricks in the working set is
expected to be higher when compared to the residency octree. This approach is expected
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to achieve frame rates comparable to our method for a single channel, since both use a
similar empty-space skipping strategy. However, for multiple channels, the octree has to
be traversed for each channel to ensure that all subtrees are resident in the cache. It is
thus expected to perform worse than our method for multiple channels.

9.3 Data Sets
To evaluate our method, we use both single-channel data sets and biomedical data sets
generated by Cyclic Immunofluorescence (CyCIF) [LIW+18] with a large number of
channels. Their exact dimensions, number of resolution levels, number of channels, file
sizes, as well as their data types are listed in Table 9.1. Renderings of the data sets
used for evaluating our method are shown in Figure 9.1. We use the following three
single-channel data sets in our evaluation:

• Aneurism: A scan of an aneurism within the arteries of a human head.

• Bonsai: A scan of a bonsai tree.

• Kingsnake: A scan of a Lampropeltis getula (common kingsnake) egg.

To evaluate multi-channel settings with single-channel data sets, we simulate multi-
channel volumes with n channels by duplicating the volume n times. During rendering,
we use different transfer functions for each channel. For the Bonsai data set, for example,
we use different transfer functions for the value ranges corresponding to leaves and grass,
the flower pot, and the bonsai’s trunk and branches (Figure 9.1b). For the Kingsnake
data set, we use transfer functions that highlight the snake’s skeleton. Due to noise in
the scan, there are almost no regions that contain only zero values.

We use three different biomedical data sets generated using CyCIF in our benchmarks.
Each shows a human tissue sample containing cancer cells. The different channels in each
data set show different elements within the tissue, e.g., DNA, certain types of cancer cells,
or types of antibodies. The following biomedical data sets are used in our benchmarks:

• CyCIF Small [NMV+22]: A scan of malignant melanoma in human skin tissue.

• CyCIF Medium: A scan of malignant melanoma in human skin tissue.

• CyCIF Large: A scan of cancer in human tonsil tissue.

To avoid issues related to slight inaccuracies in the physical positioning of tissue samples
between imaging cycles in the imaging process, microscopes used in this process are
often configured to record a region that is slightly larger than the actual tissue sample.
This leads to completely empty image slices at the top and bottom of the image stack
comprising the volume. In the CyCIF Small data set such empty regions at the top and
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(a) Aneurism (b) Bonsai
(here with 4 simulated channels)

(c) Kingsnake (d) CyCIF small

(e) CyCIF medium (f) CyCIF large

Figure 9.1: Data sets used for evaluation.
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bottom of the volume, i.e., along the volume’s z-axis, have been removed in pre-processing.
This has not been done for the other two CyCIF data sets, however.

9.4 Rendering Performance
To evaluate the rendering performance of our mixed-resolution multi-volume renderer,
we measure the computation time of the compute pass performing the volume rendering
using WebGPU’s timestamp-query feature [MNJ23]. We measure the performance in
ten-second intervals during which the camera is rotating around the center about the
y-axis (pointing up), and average the results of ten iterations each.

To compare the performance of our method to the other two approaches (Section 9.2),
we use the same down-sampling ratio and spatial subdivision for both the bricked multi-
volume hierarchy and the residency octree. We use a cache size of 4 GB and a brick size
(and approximate leaf-node size) of 323 voxels.

As to not give an unfair advantage to any of the methods, in most of our benchmarks most
bricks visible are already resident in the cache. All single-channel data sets are tested
with one and four channels each. The biomedical data sets, however, are tested with
multiple channels. CyCIF Small [NMV+22] is tested with 16 visible channels. CyCIF
Medium is tested with all its 15 channels being visible. The CyCIF Large data set is
tested with four visible channels rendered at the second-highest resolution level. The
reason for this is that keeping a channel of the CyCIF Large dataset requires roughly
four gigabytes of memory in the highest resolution, and one gigabyte of memory in the
next lower resolution level. This allows for only four channels to be resident in the cache
at the same time.

As an optimization, we start residency octree and octree traversal at the third subdivision
level counting from the root node. We also do not start tree traversal at the root level
for each sample, but from the parent node’s subdivision level in the tree structure of the
last node visited for the last sample. Because we use a full octree in our implementation
(Chapter 8), we can access the correct node for a ray sample in each subdivision level
directly.

9.4.1 Results
The results of the benchmarks are shown in Table 9.1. Our method outperforms the other
approaches in all benchmarks except for rendering the two small single-channel data
sets, Aneurism and Bonsai. Rendering the Aneurism data set with a single channel, our
method achieves the same frame rate as the octree reference implementation. The octree
reference implementation is slightly faster in rendering the Bonsai data set with just a
single channel. However, there is only a 0.1-millisecond difference between our method
and the octree reference implementation. As discussed in Section 9.2, this similarity in
rendering performance is expected with a single visible channel due to the similarity of
the two methods with respect to empty-space skipping. However, the expected similarity
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Table 9.1: Performance evaluation of our method for several data sets (Section 9.3).
We list the general information about the data set and the results of our benchmarks.
Note that the data size is the size of the uncompressed volume, not of the OME-Zarr data
set we converted them to. We compare our method (Ours) against a multi-resolution
multi-channel page-table (PT) only, and an octree-based approach (Oct.).

Dataset & Description Data Size and Type,
# Resolution Levels

DVR Performance
Avg. ms / frame
(num. channels)

Aneurism
256 × 256 × 256

Channels: 1 (simulated 4)

16.8 MB (8 bit)
Resolution levels: 4

PT: 5.1 (1) / 15.0 (4)
Oct.: 4.8 (1) / 15.8 (4)
Ours: 4.8 (1) / 12.3 (4)

Bonsai
256 × 256 × 256

Channels: 1 (simulated 4)

16.8 MB (8 bit)
Resolution levels: 4

PT: 4.7 (1) / 11.9 (4)
Oct.: 4.5 (1) /6.7 (4)

Ours: 4.6 (1) / 6.5 (4)
Kingsnake

1024 × 1024 × 795
Channels: 1 (simulated 4)

833.6 MB (8 bit)
Resolution levels: 6

PT: 15.0 (1) / 42.5 (4)
Oct.: 11.6 (1) / 60.7 (4)
Ours: 5.1 (1) / 19.8 (4)

CyCIF Small
1024 × 1024 × 40

Channels: 29

2.4 GB (16 bit)
Resolution levels: 5

PT: 34.0 (16)
Oct.: 122.8 (16)
Ours: 25.7 (16)

CyCIF Medium
1024 × 1024 × 105

Channels: 15

6.6 GB (16 bit)
Resolution levels: 5

PT: 40.4 (15)
Oct.: 155.1 (15)
Ours: 37.8 (15)

CyCIF Large
5632 × 4352 × 160

Channels: 38

149 GB (8 bit)
Resolution levels: 9

PT: 24.4 (4)
Oct.: 123.5 (4)
Ours: 22.4 (4)

between the two methods can not be observed in rendering the Kingsnake data set with
just a single visible channel. In this case, our method is more than twice as fast as the
octree approach.

While the page-table hierarchy approach achieves times similar to our method for rendering
the Aneurism and Bonsai data sets with a single visible channel, this is not the case for
the Kingsnake data set. This is due to a lot of space in this data set being transparent
under the transfer function used, even though the actual voxel values are non-zero. In
such cases, the limited empty-space skipping capabilities of page-table hierarchies become
apparent.

The benefits of our multi-volume rendering algorithm in comparison to the octree approach
are clearly visible when rendering data sets with multiple channels. While the difference
is not large for the smaller datasets, Aneurism and Bonsai, the octree-based approach no
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longer achieves interactive frame rates for all other data sets. Especially for the three
biomedical data sets, CyCIF Small, CyCIF Medium, and CyCIF Large, this method
takes more than 120 milliseconds to render a single frame. As expected, this approach
suffers from its high memory footprint and from the computational cost of restarting
tree traversal for each channel for multi-channel data sets.

The multi-channel page-table hierarchy performs significantly worse than the residency
octree when rendering the Aneurism, Bonsai, and Kingsnake data sets. Again, the reason
for this is that empty space can only be skipped if all values within a brick are zero.
Since we duplicated the channels for these data sets to simulate multiple channels, the
distribution of empty space is the same in all channels. The negative effects in the
single-channel case are amplified with multiple channels. This is not the case for the
CyCIF data sets, where the difference between our method and the page-table hierarchy
approach is not as large, even though our method is clearly faster in all three cases. For
these thin data sets, our empty-space skipping approach has less of an advantage over the
page-table approach. The overhead of traversing an octree is not compensated as much
as for cubical data by the little empty space that is skipped for these thin data sets.

9.5 Decoupling Resolution Levels from Spatial Subdivision

In Section 9.4, we evaluated the performance of our method when we use the same
down-sampling ratio and spatial subdivision for both the bricked volume hierarchy and
the residency octree, i.e., the tree structure was coupled to the resolutions in the data
set. However, due to the conceptual decoupling of these two phenomena, the residency
octree supports using a different granularity for empty-space skipping than the bricking
granularity used for the data set. Thus the residency octree can achieve higher frame rates
since efficient empty-space skipping typically requires a finer granularity than bricking as
shown by Faludi et al. [FZZ+22].

To evaluate the rendering performance when using residency octrees with a spatial
subdivision decoupled from the resolution levels in the data set, we employ a similar
setup as in the benchmarks discussed in Section 9.4. We use a brick size of 323 voxels
for all methods, ours, and the two reference approaches (Section 9.2). However, we use
different approximate leaf-node sizes for the residency octree: 323, 163, 83. We also
evaluate our method with an approximate leaf-node size of 8 × 8 × 4 to show that the
spatial subdivision used for a residency octree is arbitrary. This can be beneficial for
anisotropic volumes as pointed out by Beyer et al. [BHP15].

We only use the CyCIF Small and CyCIF Medium data sets in this evaluation. We
compare the performance for rendering the data sets with different numbers of visible
channels in order to analyze how our method scales with respect to the number of
channels. For the CyCIF Small data set, we use m ∈ [1, 16] visible channels. For the
CyCIF Medium data set, we use m ∈ [1, 15] visible channels.
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Figure 9.2: Performance results - CyCIF Small. Results of decoupling brick and
leaf-node sizes for the CyCIF Small data set. Small residency-octree nodes mixed with
larger brick sizes achieve the best performance.

9.5.1 Results

Figure 9.2 shows the results for the CyCIF Small data set using different numbers of
spatial subdivisions and different numbers of visible channels. The data set is very thin
and does not contain many empty bricks of size 323. Therefore, in this case, our method
performs similarly to accessing cached volume data through the multi-channel page-table
hierarchy directly when visualizing up to three channels. However, for larger numbers
of channels, our method clearly outperforms the other two methods. Using a more
fine-grained spatial subdivision for culling than the bricking granularity, the advantages
of the residency octree become even more apparent. The residency octree also supports
completely different spatial subdivision schemes that are better suited for anisotropic
volumes, e.g., where a leaf node roughly corresponds to 8 × 8 × 4 voxels as demonstrated
in Figure 9.2.

As already shown in the previous benchmark (Section 9.4), the octree-based approach
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Figure 9.3: Performance results - CyCIF Medium. Results of decoupling brick and
leaf-node sizes for the CyCIF Medium data set. Small residency-octree nodes mixed with
larger brick sizes achieve the best performance.

suffers from the increased computational cost of restarting the tree traversal for each
visible channel. Similar to our approach, the page-table hierarchy-based approach scales
linearly with the number of visible channels.

Figure 9.3 shows the results for the CyCIF Medium data set. While the results are
similar to the ones for the CyCIF Small data set, the residency octree and the page-table
hierarchy-based approach achieve similar frame rates if the residency octree’s approximate
leaf-node size is the same as the brick size. In this case, our method only performs better
if the leaf-node size is decoupled from the brick size.

9.6 Working-Set Size
We evaluate the working-set size of all methods, i.e., the number of bricks they each
require to be resident in the cache under the same viewing conditions, by visualizing
the working-set size for each pixel. Since page-table hierarchies require all values in a
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(a) Multi-channel page-table hierarchy

(b) Octree

(c) Residency octree

Figure 9.4: Number of bricks required to be resident in the cache. Brighter
values indicate more bricks are required to be kept in memory for a pixel. Page-table
hierarchies only have limited empty-space skipping capabilities. They access bricks that
contain values that are outside of the currently visible range (a). Octrees require lower
resolutions to be resident in the cache in order to render higher resolutions (b). The
residency octree has neither of these limitations and only requires bricks that are visible
under the current viewing conditions to be in the cache (c).
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brick to be zero in order to skip it, they require bricks to be in the cache that contain
non-zero values, even though they might not be visible with the current transfer function.
For example, when rendering the Kingsnake data set, many transparent bricks near the
image border are unnecessarily kept in memory, as shown in Figure 9.4a.

The residency octree supports transfer-function independent empty-space skipping. It
only requires bricks that contain values in the visible range under the current viewing
conditions to be resident in the cache. Octrees share this characteristic but require
low-resolution bricks to be resident in the cache in order to render higher-resolution ones.
In the case of the Kingsnake data set, many low-resolution bricks around the snake’s
skeleton are kept in the cache even though only high-resolution bricks actually contribute
to the rendered image (Figure 9.4b). Because a residency octree’s nodes are not tied to a
single resolution, it does not have this limitation. This greatly reduces the number of
bricks that are required to be resident in the cache for residency octrees in comparison
to the two reference implementations as illustrated in Figure 9.4c.
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CHAPTER 10
Discussion and Limitations

In this chapter, we discuss the advantages and disadvantages of our approach. Section 10.1
lists the limitations of the method and highlights aspects that could be improved in
the future. The findings of the evaluation are discussed in Sections 10.2 and 10.4. The
general advantages of our approach for multi-channel rendering in web-based contexts
are discussed in Sections 10.3 and 10.4. Finally, in Section 10.5, we discuss the method’s
support for mixing different resolutions.

10.1 Limitations
The memory required for storing the residency octree scales linearly with the number
of channels that can be visualized at the same time, because residency information is
stored in the same way in each node for each channel. This is problematic for data
sets with a large spatial extent and many channels to be visualized at the same time.
Combining multiple channels into a single channel (e.g., by using dimensionality reduction
techniques) could help avoid this issue. Additionally, for cache coherency, storing multiple
channels in an interleaved manner, e.g., using a four-component texture format, might
be beneficial.

The implementation uses minimum and maximum values for empty-space skipping. While
this works well for unimodal transfer functions, a bitfield representation of a node’s value
range as proposed by Faludi et al. [FZZ+22] is better suited for multimodal transfer
functions.

Furthermore, in the implementation, we currently let the user set the importance of
each channel. We leave for future work investigating different methods to automatically
determine the resolution range per channel and region in the volume based on its frequency
content.
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10.2 Residency Octrees Combine Advantages of
Page-Tables and Octrees

Our method shares characteristics of existing out-of-core volume-rendering methods
such as page tables and octrees, but combines their advantages while avoiding their
disadvantages. Like page-table-based approaches, residency octrees support direct access
to volume bricks of a desired resolution, instead of having to unnecessarily keep lower
resolutions resident in the cache. However, page-table hierarchies have poor empty-space
skipping capabilities, due to bricks of any resolution level being accessed directly instead of
traversing a hierarchy. For example, a ray sample may fall into a small empty region in the
volume. If the resolution level chosen for the sample is low and the brick accessed spans
a larger, non-empty region, the small empty region is not skipped. Additionally, bricks
are typically only flagged as empty if they only contain zero values to keep the memory
requirements of page-table hierarchies low [HBJP12, FSK13, SCRL20]. Furthermore,
page-table hierarchies lack a clear strategy for substituting missing high-resolution data
with bricks from another resolution level. A missing brick can either not be substituted
at all, or other resolutions have to be searched in the hope of finding one that is currently
available instead. Residency octrees do not have these drawbacks. Since the spatial
subdivision of a residency octree is independent of the resolution levels in the data set as
well as the bricking granularity, they support more efficient empty-space skipping than
page-table hierarchies as demonstrated in Section 9.5 As shown in Section 9.6, by storing
transfer-function independent culling metadata in residency-octree nodes, bricks that
are completely transparent under the current viewing conditions do not have to be kept
in the cache. In case of cache misses, residency information stored in residency-octree
nodes is used to substitute missing bricks with bricks from another resolution level. As
discussed in Chapter 7, resolutions, for which the node is known to be partially mapped,
can be directly queried using the bitmap stored in each node. This avoids unnecessary
texture lookups for resolutions that are guaranteed to not be resident in the cache.

Similar to octree-based approaches, our tree data structure supports more efficient
empty-space skipping than page tables. But by decoupling the resolutions in the data
set from the spatial subdivisions determined by the tree, our approach allows for more
fine-grained empty-space skipping than previous approaches do. At the same time, it
is more flexible in terms of data-access patterns, producing smaller working sets than
previous approaches.

10.3 Suitability for Web-Based Contexts
The system is designed for web-based environments where the data that is rendered
may be provided by a third party. In such cases, the bricking granularity is not in the
client-side renderer’s control. For example, brick sizes may be large, e.g., 2563, in order
to keep the number of HTTP requests low on the server side. Since residency octrees
decouple the bricking granularity of a data set from the spatial subdivision used for
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empty-space skipping, they are not affected by these constraints. Instead, they may use
any arbitrary spatial subdivision scheme that is best suited for the data set as shown in
Section 9.5. As discussed in Section 10.2, this is not possible with previous approaches
which are fully coupled to the brick size used for a data set.

10.4 Efficient Multi-Channel Rendering
Previous octree-based approaches either require traversing the tree structure for each
sample and channel, or they have to check each channel at each tree traversal step. This
is inefficient, especially for large numbers of channels, e.g., more than four. Page-table
hierarchies, on the other hand, do not require a hierarchy traversal for each sample.
Instead, each channel has to only be tested once per sample. However, as shown in
Section 9.6 and discussed in Section 10.2, they exhibit only poor empty-space skipping
capabilities due to being tied to the bricking granularity and being able to skip transparent
bricks if they contain only zero values. As discussed in Chapter 7, the mixed-resolution
multi-volume renderer traverses the octree only once for each sample. By doing this we
minimize the performance cost of traversing a hierarchy when rendering multi-volume
data as demonstrated in Sections 9.4 and 9.5. Because of this and the arbitrary spatial
subdivision supported by residency octrees that can be optimized for each data set,
our method is better suited for rendering volumes with large numbers of channels than
previous approaches.

Furthermore, by virtualizing multiple channels our approach supports data sets with an
arbitrary number of channels. Only the number of channels that can be visualized at
the same time is constrained by the bit-width of the data type used for brick IDs as
discussed in Section 5.4. This makes it feasible for streaming in multi-channel data from
a remote server on demand, and efficiently switching out channels at run-time.

10.5 Flexible Mixing of Different Resolutions
In comparison to previous methods, residency octrees are more flexible in mixing different
resolutions, while also skipping empty space in an efficient manner. Our method not only
makes it possible to mix resolutions in rendering a single channel but also when rendering
multiple channels. This makes it possible to optimize cache utilization by reducing
the resolution for less important channels, or channels with less frequency content, and
instead prioritizing channels that require higher quality rendering. Our implementation
employs user-controlled upper and lower bounds of allowed resolution levels per channel
to control importance. However, because our approach defines an abstract function to
determine the importance of a channel, this could also be computed based on other
parameters such as the current viewpoint, or the frequency content of an octree node.
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CHAPTER 11
Conclusion and Future Work

In this chapter, we conclude the thesis by recapitulating our approach and findings and
exploring potential avenues for future research.

11.1 Conclusion
In this work, we have presented the Residency Octree, a hybrid data structure combining
page-table hierarchies and octrees, that is well-suited for client-side web-based out-of-core
volume rendering of data sets with a large number of channels. The main outstanding
characteristic of our approach is that the cache residency of multi-resolution data is
decoupled from a resolution-independent spatial subdivision determined by the tree.
Instead of being tied to a single brick of a single resolution, each residency octree node
keeps track of the cache residency of a set of bricks in each resolution. This makes it
possible to efficiently and adaptively choose and mix resolutions, adapt sampling rates,
and compensate for cache misses by rendering other resolutions that are resident in the
cache. At the same time, this decoupling allows residency octrees to support fine-grained
empty-space skipping, independent of the data subdivision used for caching. Furthermore,
residency octrees are constructed incrementally, i.e., subtrees that are never visible on
screen are never constructed.

We have shown that residency octrees produce smaller working sets, i.e., require fewer
bricks to be cache resident than previous approaches based on octrees or page-table
hierarchies alone, and are thus scalable with respect to the size of a data set. Furthermore,
we found that residency octrees allow for more efficient empty-space skipping than previous
approaches. This is due to their support for spatial subdivisions that are more fine-grained
than the bricking granularity in the data set. This characteristic of our data structure is
also beneficial for scenarios where the bricking granularity can not be controlled by the
rendering application, e.g., in web-based contexts.
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We also presented a mixed-resolution multi-volume rendering algorithm to efficiently
skip empty space when rendering multiple channels at once. This is achieved by only
traversing the octree hierarchy once per sample instead of once per sample and channel.
Our algorithm exploits the facts that multiple channels in a residency octree share the
same spatial subdivision, and that all channels have to be transparent for a region to be
skipped. Once the hierarchy has been traversed for one channel, processing subsequent
channels can thus proceed by continuing the tree traversal from the same node, eliminating
the need to restart the traversal from the root node.

We have shown that our approach allows for more efficient empty-space skipping than
previous work and scales well with respect to the number of channels. On the other hand,
due to the tight coupling of resolutions in the data set and the spatial subdivision of
their tree structure, previous octree-based approaches require restarting the hierarchy
traversal for each sample and channel. This scales poorly to large numbers of channels in
a data set. Page-table hierarchies have only limited empty-space skipping capabilities in
general. However, for very dense volumes where only a few regions are fully transparent,
their simplicity may outweigh the cost of a hierarchy traversal for each sample.

In conclusion, residency octrees and our mixed-resolution multi-volume rendering al-
gorithm are more efficient than previous approaches for volumetric data sets with a
large number of visible channels, especially when optimizing the tree’s subdivision for
empty-space skipping. Their support for arbitrary spatial subdivisions decoupled from
the bricking granularity dictated by the data set, makes residency octrees more suitable
for web-based, client-side rendering. This is especially beneficial if the data set belongs
to a third party and the brick size can not necessarily be expected to be tailored to the
needs of a renderer. Furthermore, residency octrees require fewer bricks to be resident in
the cache than previous approaches and optimize cache usage for large-scale rendering.

11.2 Future Work
We have shown that residency octrees and mixed-resolution multi-volume rendering offer
an effective and scalable approach to web-based volume rendering for data sets with an
arbitrary number of channels. The ability to mix different resolutions on a per-sample and
a per-channel basis opens up promising new directions for further research. In the future,
we intend to experiment with adaptively choosing the resolution for rendering a channel
based on measures other than taking only a user-controlled importance into account. For
example, a channel’s frequency content could be considered to determine bounds for the
appropriate resolution levels and corresponding sampling frequencies for rendering. Doing
this not only globally for the whole channel, but taking into account the frequency content
of individual octree nodes, i.e., in the region in the volume represented by the node,
could further optimize cache utilization by producing even smaller working sets than our
current approach. We also intend to experiment with other spatial subdivision schemes
to exploit the benefits of decoupling data resolutions and subdivisions further. Moreover,
exploring novel methods for representing volume data and efficiently combining multiple
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channels in both the brick cache and octree nodes could be beneficial in optimizing cache
coherency during rendering.

83





List of Figures

1.1 Overview of our method. Volume bricks of different resolution levels and
channels are streamed into a brick cache (a), and referenced via a multi-
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5.1 Multi-resolution page-table hierarchy. The page-table hierarchy (here:
Multi-Resolution Page Directory) virtualizes the volume. It consists of one
page table per resolution level in the data set (here: l = 0, l = 1, and l = 2)
which keep track of the current location of their corresponding bricks in the
brick cache. During ray casting, the page-table hierarchy is used for address
translation. Missing bricks are reported in a hash table. In case the page-table
hierarchy is virtualized itself, page tables are stored within a page-table cache.
Source: [HBJP12] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
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