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Kurzfassung

Unter Radiogenomik versteht man die kombinierte Erforschung von bildgebenden Merk-
malen namens Radiomik und Gen-Sequenzierungsdaten, der sogenannten Genomik. Zu
den Herausforderungen der Datenanalyse zählen die Größe, Heterogenität und Kom-
plexität der Datensätze. Diese Herausforderungen machen die Analyse des verfügbaren
Informationsraums für Krebsexpert_innen zu einer mühseligen Aufgabe und behindern
die Erforschung sowie den Erkenntnissgewinn von Informationen. Dies wird zusätzlich
erschwert, wenn klinische Informationen in die Analysen miteinbezogen werden müssen.
Visual Analytics (VA) kombiniert automatisierte Analysetechniken, wie maschinelles
Lernen oder Statistik, mit interaktiven visuellen Schnittstellen. VA ermöglicht es Einblicke
in komplexe Daten zu gewinnen, um effektive Entscheidungen zu treffen. Im Kontext
der Radiogenomik-Analyse in Kombination mit klinischen Daten bieten VA-Ansätze
vielversprechende Ergebnisse für die Erstellung von Tumorprofilen. Allerdings wurden
VA-Ansätze, die radiogenomische und klinische Daten in einem interaktiven, flexiblen,
visuellen Tool vereinen, bisher nicht untersucht. In dieser Arbeit ermöglichen wir die inte-
grierte Erforschung und Analyse von Radiogenomik-Daten und klinischen Informationen
zur Wissensfindung und Hypothesenbewertung in einer großen Kohorte von Prostatakrebs-
Patient_innen. Wir behandeln fehlende Daten durch Imputationstechniken und wenden
unüberwachtes maschinelles Lernen für die Dimensionalitätsreduktion und das Clustering
der Daten an, um die Datenverarbeitung und Visualisierung zu vereinfachen. Als Ergebnis
präsentieren wir ein interaktives visuelles Tool für zwei Zielgruppen: Krebsexpert_innen,
sowie biomedizinischen Datenwissenschaftler_innen. Unser Tool ermöglicht es Krebsex-
pert_innen, Einblicke in die Daten zu gewinnen, indem neue Muster oder Korrelationen
in den Datensätzen aufgedeckt werden. Diese können Hypothesen, die ihnen zu den
zugrunde liegenden Datensätzen vorschweben, interaktiv bewerten und verfeinern. Für
biomedizinische Datenwissenschaftler_innen bietet unser Framework die Möglichkeit, die
Analysekomponenten zu verstehen und ihre Auswirkungen auf das Ergebnis interaktiv zu
erforschen. Wir bewerten die unbeaufsichtigten maschinellen Lernmodelle anhand von
Ähnlichkeitsmaßen wie dem Silhouettenkoeffizienten. Um die Funktionalität des Frame-
works zu evaluieren, führen wir Anwendungsszenarien durch, die von Krebsexpert_innen
bestätigt werden. Das Feedback unserer Fachpersonen zeigt, dass unser Tool flexibel und
geeignet ist, um Einblicke in große heterogene radiogenomische Daten in Kombination
mit klinischen Daten zu erlangen. Es fördert den Wissensgewinn und unterstützt bei der
Aufstellung, Überprüfung, sowie Verfeinerung von Hypothesen. Unser Tool umfasst die
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Integration von interaktiver Visualisierung und automatisierten Analysekomponenten. Es
unterstützt die mit uns kooperierenden Fachexpert_innen der Medizinischen Universität
Wien dabei, neue Einblicke in ihre Daten zu erhalten und gleichzeitig ihre Hypothesen
zu untersuchen.



Abstract

Radiogenomics refers to the combined study of imaging-derived features, called radiomics
and gene sequencing data, called genomics. Challenges in the analysis of radiogenomic
data include the size, heterogeneity, and complexity of the datasets. These challenges
make the analysis of the available information space tedious for cancer experts and hinder
the exploration and sensemaking of patient information. This is further hampered when
additional clinical information needs to be included in the analyses. Visual Analytics (VA)
combines automated analysis techniques, such as machine learning or statistics, together
with interactive visual interfaces. It allows users to gain insights into complex data
and make effective decisions. In the context of radiogenomics analysis with respect to
clinical data, VA approaches offer promising directions in tumor profiling. However, VA
approaches that bridge radiogenomic and clinical data in an interactive and flexible visual
framework have not been investigated before. In this work, we enable the integrated
exploration and analysis of radiogenomic data and clinical information for knowledge
discovery and hypothesis assessment in a large cohort of prostate cancer patients. We
handle missingness in the data through imputation techniques and apply unsupervised
machine learning for the dimensionality reduction and clustering of the data to facilitate
data handling and visualization. As a result, we present an interactive visual interface
for two target audiences: cancer experts and biomedical data scientists. Our framework
enables cancer experts to gain insights into the data by revealing new patterns or
correlations in the datasets. It allows them to interactively assess and refine any hypothesis
in mind for the underlying datasets. For biomedical data scientists, our framework offers
the possibility to understand the analysis components and interactively explore their
impact on the outcome. We evaluate the unsupervised machine learning models through
similarity measures such as the silhouette coefficient. To assess the usability of the
framework, we perform usage scenarios that we confirm by our cancer experts. The
feedback from our domain experts reveals that our framework is a suitable and flexible
technique to gain insights into large and heterogenous radiogenomic data with respect to
clinical data. It promotes knowledge discovery as well as hypothesis creation, assessment,
and refinement. Interacting with the different visualization and analysis components
enhances the understanding of the data and the resulting visual representations. Our
approach incorporates the integration of interactive visualization and automated analysis
components. It supports our collaborating domain experts at the Medical University of
Vienna to obtain new insights into their data, while investigating hypotheses at hand.
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CHAPTER 1
Introduction

Radiogenomics refers to the combined study of imaging-derived features, called radiomics,
with gene sequencing data, called genomics [SRY+21]. Visual Analytics (VA) combines
automated data analysis approaches with interactive visual interfaces that allow the
user to gain insight into complex data and make effective decisions [KMSZ09]. In this
work, we apply visual analytics to support the correlative exploration of radiogenomic
data in a prostate cancer cohort and the sensemaking process of cancer experts trying
to understand these data or biomedical data scientists working on the analysis of these
data. Our cancer experts consist of pathologists, biologists, biochemists, or nuclear
medicine physicians. Our biomedical data scientists comprise bioinformaticians or data
scientists working with these data. We present the motivation and problem statement
in Section 1.1, while we summarize the goals of our work in Section 1.2. We provide
an overview of the research question and tasks in Section 1.3. Finally, we outline the
methodological steps and evaluation of our approach in Section 1.4.

1.1 Motivation and Problem Statement
Radiomic features are extracted from medical imaging data that show tumor characteris-
tics as indicators of metabolic activity or metastasis. Genomic data decode functional
information of Deoxyribonucleic Acid (DNA) or Ribonucleic Acid (RNA) sequences. The
analysis of radiogenomics with respect to clinical data, such as the age or Body Mass
Index (BMI) of patients is recently investigated as a potential enabler of prostate cancer
risk stratification [SRY+21]. In this process, each patient is assigned a risk status that
supports a better understanding of the tumor aggressiveness and is an indication of the
treatment process. However, the size, heterogeneity, and complexity of radiogenomic
data [SRY+21] make the analysis of the available information space tedious for cancer
experts or biomedical data scientists working with these data. These challenges hinder
the exploration and sensemaking of patient information. In the context of radiogenomics
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1. Introduction

analysis with regard to clinical data, visual analytics approaches have not been applied
before, although they offer promising directions. We provide a visual analytics strategy
that supports the correlative exploration and analysis of radiogenomic data in a cohort
of 89 prostate cancer patients.

1.2 Goals of this Work
In this thesis, we investigate, design, and implement a visual analytics approach that
enables our collaborating domain experts of cancer experts and biomedical data scientists
from the Medical University of Vienna to gain insights into radiogenomic data with
regard to clinical data. Furthermore, we highlight correlations and patterns in the data
that support the stratification of patient cohorts and have an impact on the treatment
process. We propose an integrated analysis of radiomic features with mutation data of
genomes and clinical data. We follow a user-centered strategy and integrate domain
knowledge into a semi-automated analytical approach based on unsupervised machine
learning to identify patterns in the complex, heterogeneous data that is provided by our
collaborating domain experts. These data consist of 153 radiomic features and 10 307
gene mutations for each of the 89 patients. The clinical data comprises 18 features for
144 patients. We visualize the identified correlations and patterns through an interactive
interface that supports the exploratory process in a free and a hypothesis-driven manner.

The most related visual analytics techniques of the state of the art investigate imaging-
derived features [RvdHD+15], radiomic [GDKB17, MWH+20], or genomic data [LSKS10,
LSS+12] only separately. Gutenko et al. [GDKB17] and Mörth et al. [MWH+20] pro-
vide visual analytics approaches for the analysis of radiomic features. Gutenko et
al. [GDKB17] analyze the changes in the spleen organ and enable the comparison of
features in a linked view. They use clinical data, radiomic features, and surface meshes
to visualize the change of the organ over time. Similar to this approach, Mörth et
al. [MWH+20] implement multiple linked views and combine radiomic features with
clinical cohort data. In contrast to the approach of Gutenko et al. [GDKB17] and Raidou
et al. [RvdHD+15], Mörth et al. [MWH+20] identify and visualize relations between the
radiomic tumor profile and clinical and histological markers. Furthermore, the approach
of Raidou et al. [RvdHD+15] does not use radiomic features but imaging-derived features
for tumor tissue characterization from pharmacokinetic modeling. Different to these
approaches, Lex et al. [LSS+12, LSKS10] do not analyze radiomic features, but genomic
data alone [LSKS10] or with respect to clinical data [LSS+12].

In contrast to these approaches, we support the exploratory analysis of radiomic features
and genomic data with respect to clinical data in a unified framework. We expect
that this combination leads to new insights into the data for domain experts. To the
best of our knowledge, radiomics and genomics were never bridged together in a visual
interactive framework for knowledge discovery and hypothesis confirmation before. This
poses significant challenges with respect to the size, heterogeneity, and complexity of
radiogenomic data [SRY+21]. Other challenges include the missingness of patient values
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1.3. Research Question and Tasks

or the mixed data types. The clinical data contains missingness in patient scores that
must be adequately handled through data imputations. Besides quantitative numerical
values, the clinical data also consist of qualitative ordinal and nominal values that
must be encoded into numerical values to allow an automated data processing through
unsupervised machine learning approaches. On top of this, domain experts do not work
on a single dataset. Each available dataset may contain diverse radiogenomic or clinical
information from various tumor localizations, where different clinical hypotheses are of
relevance. We strive to propose a unified, generalizable solution that is applicable to
varying cancer scenarios and contexts.

1.3 Research Question and Tasks
The main goal of this work corresponds to the design and implementation of a visual
analytics framework for the exploration and analysis of radiomic features and genomic
data with respect to clinical data for a cohort of prostate cancer patients. This aims to
support the sensemaking process of the high-dimensional and heterogeneous radiogenomic
and clinical data. Cancer experts and biomedical data scientists want to explore and
understand the complex and heterogenuous radiogenomic data with respect to clinical
parameters for knowledge discovery and hypothesis confirmation. This leads to our main
research question and the tasks stemming from this research question.

Research question:

(R) How can visual analytics support domain experts to gain insight into the large
and complex radiogenomic and clinical data of prostate cancer patient cohorts?

Tasks:

(T0) Preprocessing: The data needs to be prepared to enhance its quality and
facilitate the automated analysis and visualization. This task requires iden-
tifying and resolving inconsistencies in the data, handling mixed data types,
imputing missingness in data values, detecting outliers, and scaling feature
ranges.

(T1) Cohort stratification: Domain experts want to get insight into the high-
dimensional and complex data of prostate cancer patients. Cohort stratification
entails the data analysis to identify groups of patients with similar radiomic,
genomic, or clinical profiles. It requires a dimensionality reduction and cluster-
ing step of the data to reduce the high-dimensional data into two dimensions.
These dimensions are then visualized on screen to identify patterns in the data.

(T2) Forward analysis: The forward analysis supports the discovery of new
knowledge from the data. It allows the user to freely explore the data without
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1. Introduction

having a specific hypothesis in mind. The user gets the possibility to interact
with the data by selecting subsets of patients on a visualization depending on
interesting radiogenomic or clinical profiles. Furthermore, the user is presented
characterizing and differentiating features, patient distribution values, and the
most frequent genes, which provides insights into the stratified data.

(T3) Backward analysis: The backward analysis allows domain experts to confirm
or reject a present hypothesis. After formulating a hypothesis, the user can filter
the radiomic, genomic, or clinical data to verify the correctness or incorrectness
of the hypothesis for the underlying data. This task includes processing any
subset of features in the dimensionality reduction and clustering of the data.
Furthermore, the user can highlight patient values or specify conditions to
highlight, process, and explore the matching subset of patient data.

1.4 Methodological Steps and Evaluation
Our main contribution in this work includes the design and development of an interactive,
flexible visual analytics approach to bridge three datasets of radiomic, genomic, and
clinical features together in a visual interactive interface. This allows domain experts
to gain insights into the high-dimensional and heterogenuous datasets. It supports the
sensemaking process of users in discovering new knowledge or confirming hypotheses
within cohorts of prostate cancer patients.

Answering our research question (R) requires the design and development of four
methodological task components:

1. Data preprocessing and imputation: Preparation of the data and sub-
stitution of missing values in patient scores to enhance the data quality and
enable an automated data processing and analysis.

2. Dimensionality reduction: Transformation of the data into a low-dimensional
feature space to facilitate the data handling, visualization, and analysis.

3. Cluster analysis: Division of the patient data into groups with similar
properties by an unsupervised machine learning approach.

4. Visualization: Interactive visual exploration of the data to support the
discovery of correlations and patterns in multiple linked views.

Specifically, data imputation is required to substitute missing patient scores in the clinical
data. Furthermore, we require a dimensionality reduction and clustering step of the
data by an unsupervised machine learning approach to identify groups of patients with
similar or different characteristics. We determine and visualize the characteristics and
differences of the identified groups to support the understanding and sensemaking of the
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data. To allow the user to interact with the data, for example, by selecting a subset
of the data or by filtering the data, we represent the processed data in an interactive
visual interface. We assess the clustering results and the usability of the application
by evaluating it with cluster metrics and by continuous feedback from domain experts.
The data preprocessing and imputation component (1) is applied to Task (T0), while
the methodological components (2)–(4) are applied to the tasks (T1)–(T3). While the
imputation, dimensionality reduction, and cluster analysis are unified for all tasks, the
visualization components adapt to the specific problem domain and subtask.

Evaluation of our visual analytics framework: We evaluate the unsupervised
machine learning model by the Silhouette Coefficient [Rou87] for the analysis of the
cluster definition. Furthermore, we use the Calinski-Harabasz index [CH74], and the
Davies-Bouldin index [DB79] that indicate the separation of clusters. The higher the
Silhouette Coefficient and the Calinski-Harabasz index is, the better are the clusters
defined. In contrary, a lower Davies-Bouldin index is related to a better separation of
clusters. To assess the usability of the application and its efficiency for clinical research,
we perform a qualitative evaluation with domain experts [Mun09, LBI+12].
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CHAPTER 2
Clinical Background

In this chapter, we present the clinical background of the thesis. As we work with the
data of prostate cancer patients, we give a short introduction into prostate cancer, and
its causes in Section 2.1. The diagnosis and treatment process of prostate cancer leads to
the three datasets of radiomics, genomics, and clinical data. We present the radiomic
data in Section 2.2, the genomic data in Section 2.3, and the clinical data in Section 2.4.
While radiomic data is acquired from imaging scans, genomic data is obtained from
prostate tissue, and clinical data is retrieved from patient screening. The analysis of
these complex and heterogenuous datasets enables cancer experts to gain insights into
the data to support the decision and treatment process.

2.1 Prostate Cancer
Cancer is a malignancy that leads to genetic abnormalities [SRY+21, SRM+22]. Body
cells affected by cancer grow uncontrolled and spread over the body [NCI21, Bro08], as
shown in Figure 2.1. As a result, patients suffer from a decreased quality of life [Su10].
The mortality rate of cancer is low if medical experts detect it in patients at an early
stage and treat it curatively [Su10, SRM+22].

Figure 2.1: Malignant cancer cells compared to normal cells [brg22].
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2. Clinical Background

Prostate cancer affects the prostate organ in the reproductive system of the biological
male human body [NCI21]. It is after breast cancer the second most frequent cancer type
worldwide [WHO22]. Figure 2.2 from the World Health Organization (WHO) visualizes
the age-standardized incidence rates of cancer types worldwide for all ages and genders
in 2020. Due to the aging population and economic growth, the incident rate is supposed
to increase further in the upcoming years [WHO22, WLH+22]. Moreover, prostate cancer
is the fifth leading death cause among biological males worldwide [WLH+22, SRM+22].

Figure 2.2: Incidence rates of cancer types world wide in 2020 [WHO22].

As the body has a lower ability at an increased age to eliminate cells with damaged
DNA before cancer is developed, prostate cancer often occurs when the biological male
population gets older [NCI21]. The highest incident rates are reached at an age starting
from 65 years [Raw19], while the disease mainly affects biological males starting from the
age of 45 years [SRM+22]. Besides the age, the risk factors of prostate cancer comprise
the family history, ethnicity, obesity, and environmental factors [SRM+22, NCI21]. The
family history includes inherited gene mutations as a frequent cause of cancer [SRM+22].

Prostate cancer is a heterogeneous disease concerning the epidemiology and genet-
ics [SRM+22]. It is often asymptomatic in an early stage, which raises the importance of
an early screening [Su10, NCI21]. The diagnosis of the disease includes imaging scans from
which radiomic data is retrieved. Additionally, DNA or RNA sequencing leads to genomic
data, while health screening determines the clinical scores [SRM+22, NCI21, LXNR19].
Radiomic data indicate, for example, the shape characteristics of the tumor, while ge-
nomic data represent changes in the DNA or RNA sequence of genes. Clinical scores
embrace, for example, the Prostate Specific Antigen (PSA) that is measured in the blood
and could indicate cancer.

The analysis of radiomics, genomics, and clinical data supports the diagnosis and treat-
ment process of prostate cancer and improves clinical decision-making [SRY+21, LXNR19].
It shows potential for precision medicine that aims to enable customized approaches in
patient care by considering individual patient characteristics [LXNR19, SRY+21].
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2.2. Radiomic Data

2.2 Radiomic Data
The analysis of radiomic data supports the evaluation of disease characteristics and helps
clinical experts to understand biological processes [LXNR19]. As a result, the discovery
of characteristics for diagnostic or predictive values of diseases is encouraged [LXNR19,
SRY+21]. These insights into the data lead to the potential to improve clinical decision
support and aid the diagnosis and treatment of diseases, including cancer [LXNR19].

As part of the diagnosis and treatment process of diseases, including prostate cancer,
medical imaging is applied [SRM+22, NCI21, LXNR19]. Imaging techniques are divided
into anatomical methods and functional methods [MV98]. While anatomical imaging
measures structural information, functional imaging also captures temporal information.
Anatomical methods involve Magnetic Resonance Imaging (MRI) and Computed Tomog-
raphy (CT). Functional imaging methods include Positron Emission Tomography (PET).
MRI generates an image by sending radio waves through the body. This imaging technique
has a high spatial resolution and no limit on tissue penetration. A further advantage is
that it does not make use of harmful radiation. Its downside is the high magnetic force,
besides the low sensitivity and contrast [LY15]. CT is a nuclear imaging method that uses
X-rays to creates cross-sectional images of the body. It has a high spatial resolution and
depth penetration. Its disadvantages reveal in the radiation risk and low contrast [LY15].
PET uses radioactive tracers, which are injected into the body and absorbed by organs
and tissues. It captures functional information and has a high sensitivity and penetration
depth [LY15]. Multimodal imaging such as PET/MRI acquire and combine functional
PET information with structural MRI information simultaneously to gain the combined
advantages of both modalities [PWKJ08]. Figure 2.3 shows a PET/MRI scan of the
prostate with a tumor roughly located within the white drawn area. From these imaging
scans, radiomic features are retrieved for further analysis.

Figure 2.3: PET/MRI scan of a prostate tumor within the drawn area [DoNM22].

9



2. Clinical Background

Radiomic data represents quantitative features extracted from medical imaging [ZLVL20,
LXNR19]. These features characterize the content of a Region of Interest (ROI) such
as a tumor region on the scan non-invasively [ZLVL20, ABCA22]. They describe the
characteristics of the tumor, including its size, shape, volume, or texture on the image.

Figure 2.4 shows the radiomic pipeline to acquire these features. First, the raw imaging
data is converted by using the Standardised Uptake Values (SUV) [HDH+18, ROC+17]
or the Target to Blood Pool Ratio (TBR) [CD15]. The TBR is derived from the SUV
divided by a constant that represents the venous blood pool to correct the values for the
blood uptake [CD15]. Then, the data is processed and segmented to determine the ROI.
The ROI is interpolated to the same grid as the image and then split into an intensity
and morphological mask. Finally, radiomic features are calculated from the whole image,
the extracted ROI, or the ROI discretized by intensity values [ZLVL20].

Figure 2.4: Radiomic pipeline to calculate quantitative features of image data [ZLVL20].

To support the reproducibility and validation of radiomic features, the Image Biomarker
Standardisation Initiative (IBSI) standardized the nomenclature and definitions of ra-
diomics [ZLVL20]. The standardized feature families by IBSI are shown in Table 2.1.
While the statistical (STAT) feature family describes first-order statistics, these families
also include features of higher-order statistics to characterize the shape or texture of the
tumor on the image [SGB+21, VVTT20, MML+20].
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Table 2.1: Radiomic feature families standardized by IBSI [ZLVL20].

Abbreviation Full name
STAT Intensity-based statistical features
LOC Local intensity
IH Intensity histogram
IVH Intensity-volume histogram
GLCM Grey level co-occurrence matrix
GLDZM Grey level distance zone matrix
GLRLM Grey level run length matrix
GLSZM Grey level size zone matrix
NGLDM Neighbouring grey level dependence matrix
NGTDM Neighbourhood grey tone difference matrix
MORPH Morphological features

First-order features are based on single pixel or voxel analysis [MML+20]. In contrast,
higher-order features capture spatial relationships of pixel or voxel pairs in different
directions [MML+20, SGB+21, ABCA22]. Figure 2.5 shows four examples of higher-order
features that capture spatial relations of pixels.

Figure 2.5: Radiomic feature families that capture spatial relations [SGB+21].

Intensity-based statistics (STAT) features describe the intensity distributions within a
ROI [ZLVL20]. Examples of this feature family include, the mean, variance, or skewness
of the intensity distribution. These features indicate whether the intensity distribution
within a ROI is continuous [ZLVL20]. They are calculated based on the pixel intensities
and do not consider the relationship between neighborhood pixels [ABCA22].

Grey level co-occurrence matrix (GLCM) features represent statistical information about
the distribution of pixel pairs and operate on discretized intensities [SGB+21, ZLVL20].
They allow the assessment of the surface texture in images [ZLVL20].

Grey level distance zone matrix (GLDZM) features count the number of linked voxels
with a common discretised grey level value that have the same distance to the ROI
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edge [ZLVL20]. They represent the relation between the voxel location and its discretized
intensities [ZLVL20].

Grey level run length matrix (GLRLM) features represent the length of consecutive voxels
with the same intensity in one direction in the image [SGB+21]. This is called the run
length and represents the distribution of discretised intensities [ZLVL20].

Grey level size zone matrix (GLSZM) features quantify connected voxels with the same
gray level intensity [SGB+21, ZLVL20]. These features represent the homogeneity of the
image ROI [SGB+21].

Neighbouring grey level dependence matrix (NGLDM) features consider the number of
connected voxels that depend on the center voxel [SGB+21]. These features represent
the coarseness of the texture and are rotationally invariant [ZLVL20].

Neighbourhood grey tone difference matrix (NGTDM) features describe the difference
between a gray value from the average value of its neighbors [SGB+21]. It operates on
the discretized intensities [ZLVL20].

Local intensity (LOC) features represent local intensity features within a neighborhood
around a center voxel. The center voxel has to be inside the ROI, while the neighborhood
considered also comprises pixels outside the ROI [ZLVL20]. This family includes two
features for the local and global intensity peaks. While the local peak is calculated for
the voxel with maximum intensity inside the ROI, the global intensity peak is calculated
for all ROI pixels and represents the highest peak value. These features aim to reduce
the variance of SUV values [ZLVL20].

Intensity histogram (IH) features are calculated from the discretized intensity distribution
into bins. Besides the mean, max, or the skewness of the discretized intensity bins, they
also include the maximum histogram gradient intensity [ZLVL20].

Intensity-volume histogram (IVH) features of voxel intensities in the ROI describe the
relation between the discretized intensity and the volume fraction that contains at least
the discretized intensity [ZLVL20]. It is a measure to analyze the heterogeneity of the
image [NGA+09].

Morphological features (MORPH) features represent the geometry of the ROI [ZLVL20].
They include, for example, the tumor area, volume, diameter, or sphericity and describe
the shape characteristics of a tumor that is an indication of its malignancy [VVTT20].

Analyzing these quantitative radiomic features can lead to new insights into the data in
a non-invasive way [AVL+14]. These imaging features can reveal prognostic information
in diseases that have an association with genomic and clinical data [AVL+14].
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2.3 Genomic Data
Cancer changes the genome of cells, which leads to mutations in the DNA or RNA [Bro08].
If these cell mutations affect the cell growth and occur at a high rate, they can be
dangerous [Bro08]. Genomics deals with the behavior of a set of genes in the genome
to analyze and understand the molecules of the biological system [Chr12, oPC23]. It is
related to genetics that considers individual genes and their inheritance throughout the
generations, but deals with a complete set of genes in the cell or an organism [oPC23,
Chr12]. Genomic testing aims to provide information on the behavior of cancer that
affect the treatment process. In case of prostate cancer, it is performed on a sample
of prostate tissue gained from biopsy or on the tissue of the whole prostate, when the
prostate is extracted from the patient after surgery [oPC23]. As a result, the genomic
data is retrieved through DNA or RNA sequencing for further analysis.

Figure 2.6 shows the DNA and RNA in comparison, which represent molecules in cell
biology responsible for genetic information [Mac22]. The DNA is made of two strands in
the shape of a double helix. In contrary, the RNA consists of only one strand. These
strands are made of subunits called nucleotids [Mac22]. The DNA consists of the four
bases Adenine (A), Cytosine (C), Guanine (G), and Thymine (T), while the RNA
entails the base Uracil (U) instead of Thymine (T). Apart from the bases, the DNA and
RNA consist of sugar and phosphates [Mac22]. The correct ordering and pairing of the
molecule bases is essential for their biological function [Mac22]. DNA or RNA sequencing
determines the order of the nucleotides or bases of the molecule [Ada23, NHG19]. From
these sequences, the genomic data is retrieved, which represents the human genome in a
readable form [Ada23]. A challenge is understanding the meaning of this information for
the human health [Ada23]. This makes further analysis of the data necessary.

Figure 2.6: DNA and RNA molecules and their bases [Mac22].
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2.4 Clinical Data
The collection and analysis of clinical data has an impact on the decision-making process
in the healthcare domain [Gro20]. Clinical data includes demographic data such as the
Age, Weight, or BMI of patients. In addition, it consists of scores for patient management
such as the Prostate-Specific Antigen (PSA). The PSA represents a substance of the
prostate that is measured in the blood [fDCP22]. Patients with higher values have a
higher probability of having a problem in the prostate [fDCP22]. However, the PSA value
is also affected by medications or infections without having prostate problems [fDCP22].
This makes the investigation of other diagnosis methods necessary.

A further indication of prostate disease is the Gleason score (GS). It is determined through
tissue that is extracted from the prostate and investigated under the microscope [fDCP22,
NCI21]. This score describes the derivation of the extracted cells from normal cells and
represents how likely a present tumor will spread [fDCP22, NCI21]. Figure 2.7 shows a
schematic representation of the Gleason grades. The higher the values are, the more the
analyzed tissue differs from normal tissue. The GS score is grouped further through the
International Society of Urological Pathology (ISUP) grade into five categories based on
the Gleason patterns [SDE+16].

Figure 2.7: Schematic representation of the gleason grades [HSC+07].
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Clinical data also comprise prognosis data such as the Biochemical Recurrence (BCR) that
might be an indication of the disease progression [LS09]. BCR is defined as the increase of
the PSA levels [LS09] and is followed by an operation called radical prostatectomy [LS09].
In this operation, the prostate is removed from the patient as part of the treatment
process [Med23].

Tumor staging is the process of determining whether cancer cells have developed or spread
within the prostate or to other parts in the human body [fDCP22, oSA23]. The staging
process also includes determining the location of the primary tumor, the size, and extent
of tumors, or the involvement of lymph nodes in the disease [oSA23]. Clinical staging
determines the amount of cancer cells available in the body. It is performed through
physical examination, imaging tests, or biopsies [oSA23]. Pathological staging is retrieved
when a patient has an operation for tumor removal as it combines clinical staging with
surgical results [oSA23]. The clinical staging values, the GS, and the PSA values are
combined to determine the D’Amico Risk Statification score [DWM+98, HNHP07]. This
score defines three risk groups based on the assessment of 5 years of treatment failure in
prostate cancer [DWM+98, HNHP07]. However, it represents a basic stratification scheme
with limited clinical relevance for patients with multiple risk factors [HNHP07, Sch22].

2.5 Radiogenomic Data
Each of the three datasets of radiomic, genomic, or clinical data includes indications
of prostate cancer but is not expressive alone. Therefore, a combined analysis of these
three datasets opens the potential to support clinical experts in understanding the
complex and heterogeneous data. The analysis of radiogenomic data together with
clinical data is expected to improve clinical decision support and to assist the diagnosis
and prognostic assessment for diseases, including cancer treatment [LXNR19, SRY+21].
An essential application is precision medicine, where radiogenomics supports the therapy
process and the evaluation of clinical outcomes [SRY+21]. Radiogenomics analysis
has the advantages of being cost-effective and repeatable [SRY+21]. It further allows
the detection of continuous changes and can be applied as a replacement for invasive
interventions [SRY+21].
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CHAPTER 3
State of the Art

Visual Analytics (VA) combines automated analysis techniques, such as machine learning
or statistics, together with interactive visual interfaces. It allows the user to gain insight
into complex data and make effective decisions [KMSZ09]. In this work, we introduce a
VA application that enables the integrated exploration and analysis of radiogenomic data
together with clinical information in one framework. None of the existing approaches
bridges radiomics and genomics together in a visual interface for flexible knowledge
discovery and interactive hypothesis confirmation. However, VA approaches exist that
analyze radiomics or genomics alone or with respect to clinical data. In this chapter,
we summarize the state of the art of related VA approaches for radiomic, genomic, and
clinical data analysis. We group these approaches based on their main focus in employing
radiomics in Section 3.1, genomics in Section 3.2, or clinical data in Section 3.3.

The combined analysis of radiogenomic data with respect to clinical data opens the
potential to understand complex and heterogeneous datasets to support data sensemaking.
Therefore, we summarize analysis approaches for radiogenomic data in Section 3.4.
Although studies exist that conduct a combined analysis of the three datasets, they lack
interactivity and flexibility that allows the user to explore the data to gain insights and
knowledge from it. This represents the main difference to our visual interactive interface.

3.1 Visual Analytics for Radiomics
Radiomic data analysis encourages the discovery of characteristics for diagnostic or
predictive disease values [LXNR19, SRY+21]. It has potential to improve clinical decision
support and to aid the diagnosis and treatment of cancer diseases [LXNR19]. Existing VA
approaches analyze radiomic data either separately or in relation to clinical data. Mörth
et al. [MWH+20] present an application named RadEx to identify and visualize relations
between the radiomic tumor profile and clinical and histological markers. RadEx supports
the generation of a hypothesis by interactively exploring the data in multiple linked views.
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Raidou et al. [RvdHD+15] present a technique for tumor tissue characterization that also
supports the generation and confirmation of hypotheses. In contrast to the approach of
Mörth et al. [MWH+20], Raidou et al. [RvdHD+15] explore and analyze the features space
of imaging-derived data of tumor tissue characteristics. Similarly, Corvo et al. [CCW+21]
present the tool IIComPath to employ imaging-derived features instead of radiomics and
support the hypothesis generation through an interactive selection and analysis of patient
groups. Moreover, they provide a provenance mechanism to ensure the reproducibility of
defined subcohorts. Yu et al. [YJY+17] adopt and extend the radiomic features defined
by Aerts et al. [AVL+14] with first order statistics, shape, size, and texture features
to describe tumor phenotype characteristics. Similarly, Tautz et al. [TZH+20] extend
radiomics to capture morphological and dynamic heart characteristics. Yu et al. [YJY+17]
present an application named iVAR to explore the radiomics feature space and analyze
relations between the features. Contrary to these approaches, Gutenko et al. [GDKB17]
use radiomic features to support the alignment of temporal organ data. They present an
application named AnaFe that allows the observation of trends in the radiomic data over
time to identify predictors for the organ change. Bannach et al. 2017 [BBJ+17] present
the tool VA4Radiomics to analyze the radiomic data of patient cohorts. They allow a
refinement of the cohorts through data filtering.

These presented radiomics approaches utilize multiple linked views to analyze and visualize
the radiomic data in an interactive visual interface. They aim to support the exploratory
process to gain insights into the data or identify potentially interesting features. An
overview of the disease, datasets, and the underlying imaging modalities utilized in the
presented approaches is given in Table 3.1. Tautz et al. [TZH+20] analyze radiomic data
only separately, while the other approaches link the imaging-derived or radiomic features
together with clinical data. Gutenko et al. [GDKB17] and Raidou et al. [RvdHD+15]
test the applicability of their approach to prostate cancer that is investigated through
MRI data, while the other approaches are validated only on different cancer or disease
types. For extracting features from imaging scans, MRI and CT are mainly used. In
general, none of these approaches exploits genomic datasets.

3.1.1 Imaging-Derived Datasets and Radiomics
Radiomic features are a set of quantitative image features [BBJ+17]. These features
are extracted from imaging data, including multimodality imaging such as PET/CT or
PET/MRI. The analysis of these features offers a promising role in diagnosing diseases
and predicting the patient outcome [CLTC+21]. In this section, we summarize the
different imaging modalities from which radiomic features or imaging-derived features
are extracted in related work. Table 3.1 shows an overview of the datasets and imaging
modalities employed.

Raidou et al. [RvdHD+15] present a visual analytics approach for tumor tissue charac-
terization. Instead of radiomic features, they use imaging-derived features from Dynamic
Contrast Enhanced (DCE) and Diffusion-Weighted (DW) MRI images. Their approach
can also be generalized to CT and PET images. They extract per-voxel features by phar-
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Table 3.1: Disease, data, and modality used in related radiomics approaches.

Paper Disease Data Modality
Raidou et al. [RvdHD+15] Prostate and cervical tumor IDF + C MRI
Bannach et al. [BBJ+17] Head and neck cancer R + C CT
Gutenko et al. [GDKB17] Spleen, prostate cancer R + C CT, MRI
Yu et al. [YJY+17] Lung cancer R + C MRI
Mörth et al. [MWH+20] Gynecological cancer R + C MRI
Tautz et al. [TZH+20] Cardiac diseases R CT
Corvo et al. [CCW+21] Breast cancer IDF + C WSI

Data: Imaging-derived features (IDF), radiomics (R), clinical data (C)
Modality: Magnetic resonance imaging (MRI), computed tomography (CT),
whole slide image (WSI)

macokinetic models that describe tumor tissue characteristics. Corvo et al. [CCW+21]
also use imaging-derived data that they extract from a vast number of tissue samples
called Whole-Slide Images (WSI). They mention that their methodology can be applied
on radiomic features. Gutenko et al. [GDKB17] use radiomic features extracted from
CT or MRI images. They group these features into four categories. These categories
describe measurements of the organ, shape descriptors, intensity represented by density
values, and texture features that describe cluster prominence. Bannach et al. [BBJ+17]
use CT based radiomic features and group them into five classes. These classes consist of
statistical, geometry, texture based, Laplacian of Gaussian (LoG), and wavelet radiomic
features. Statistical features include the mean, median, or standard deviation of tumor
intensity values. Geometric features characterize the tumor shape, such as the surface
area or volume of the tumor. Texture features are related to statistic features, but analyze
the tumor on a voxel level by considering only the nearest neighbors. LoG features focus
on areas with significant intensity changes by applying the laplace operator on an image.
Wavelet features decompose the image into low and high frequencies using a low- or high-
pass filter in x- and y-direction. Similar to Bannach et al., Yu et al. [YJY+17] analyze CT
based radiomic features, while Tautz et al. [TZH+20] use radiomic features from Cardiac
Magnetic Resonance (CMR) imaging to explore diseases affecting the heart or blood
vessels. Mörth et al. [MWH+20] extract radiomic features from multiparametric MRI
images to identify tumor characteristics responsible for a possible outcome. According to
Cutaia et al. [CLTC+21], the future direction in extracting radiomic data moves towards
multimodality imaging. This leads to an integration of image information of different
scales of the anatomical and molecular level that helps to overcome the limitations of
single techniques in identifying tumor properties [CLTC+21].
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3.1.2 Radiomic Data Analysis
For the analysis of radiomics, dimensionality reduction methods are applied to re-
duce the high-dimensional data to a low-dimensional space. This reduces the complex-
ity of the data, mitigates the curse of dimensionality, and facilitates data visualiza-
tion [SRY+21, LXNR19]. Clustering methods divide the data into groups with similar
intra-characteristics and different inter-characteristics to highlight the underlying patterns
in the data [ESA+21, SGTB13]. Statistics and machine learning techniques are utilized
to compare subclusters of the data and identify their similarities or differences.

Dimensionality reduction Raidou et al. [RvdHD+15] reduce the dimensionality of
the radiomic data by a 2D t-Distributed Stochastic Neighbor Embedding (t-SNE) to
preserve local structure in the features space and analyze intrinsic feature characteristics.
In contrast, Mörth et al. [MWH+20] apply 1D t-SNE to keep one axis for a clinically
meaningful feature selection. They also test Principal Component Analysis (PCA), but t-
SNE leads to more suitable results for their scenario and data. They state that this choice
may vary dependent on the problem domain. Corvo et al. [CCW+21] rely on Principal
Component Analysis (PCA) as a simple method to reduce the feature space. Differently,
Bannach et al. [BBJ+17], Gutenko et al. [GDKB17], and Tautz et al. [TZH+20] select a
series of carefully abstracted attributes or robust radiomic features that are of interest for
the physicians or clinicians. According to Gutenko et al. [GDKB17] this avoids preferring
a particular feature type in the data analysis. Yu et al. [YJY+17] enable an interactive
selection of the feature dimensions of interest to ensure the interpretability of these
features for domain experts without requiring statistics or machine learning knowledge.
However, considering only selected features does not ensure that these features include
the most indicative ones in the data.

Clustering For data clustering, Corvo et al. [CCW+21] provide k-means and hierarchi-
cal clustering as basic clustering methods but claim that considering different methods
could overcome limitations with the assumption of data distribution. Yu et al. [YJY+17]
apply hierarchical clustering on heatmap values to identify outliers and features with
similar radiomic data that might be of interest. Gutenko et al. [GDKB17], Tautz et
al. [TZH+20], and Bannach et al. [BBJ+17] do not apply automated clustering techniques
on the data. Tautz et al. [TZH+20] mention that clustering correlated features or a
filtering functionality could be helpful in the exploration process. Clustering could
support the user in choosing features to display, while a filtering functionality could
reveal remarkable data ranges to highlight. Raidou et al. [RvdHD+15] and Mörth et
al. [MWH+20] achieve visual clusters through the t-SNE dimensionality reduction.

Cluster comparison Raidou et al. [RvdHD+15] compare two selected clusters through
Linear Discriminant Analysis (LDA) to show features that differentiate between them.
This leads to a vector that maximizes the linear separation of cluster means, while mini-
mizing the variance within clusters [RvdHD+15]. Gutenko et al. [GDKB17] compute the
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similarity of temporal sequences by the cosine similarity of feature vectors in combination
with the distance measure Dynamic Time Warping (DTW) that is based on the cosine
similarity. Bannach et al. [BBJ+17] compare distributions of a selected cohort with the
patient population through the Goodness-of-Fit measure to determine relations between
the two groups.

3.1.3 Visualization of Radiomic Data
The results of the data analysis are visualized in an interactive VA framework through
multiple linked views. These views mainly include scatterplots, heatmaps, parallel
coordinate charts, or bar plots to highlight patterns or relations in the data. Interaction
with the views is reached through data filtering, selections on the visualizations, hovering,
clicking, or zooming in visualizations, updating sliders, or linking and brushing.

Mörth et al. [MWH+20], Raidou et al. [RvdHD+15], and Gutenko et al. [GDKB17]
visualize radiomic or imaging-derived data through a scatterplot. Mörth et al. [MWH+20]
allow the selection of patients on the scatterplot through unit charts that depict clinical
features. They sort the unit charts based on the influence of the clinical features on the
outcome. Raidou et al. [RvdHD+15] use a density plot to select points on the scatterplot
that are not well defined. They indicate density regions through a heated body colormap.
Gutenko et al. [GDKB17] use a scatterplot to visualize measurement metrics over time
points, while they represent feature vectors for each subject through heatmaps. Figure 3.1
shows the similarity comparison of Gutenko et al. [GDKB17] based on all radiomic
features. They visualize the data that is similar to a selected subject through scatterplots
of the measurement progression over time, temporal 3D organ data, and heatmaps.

Yu et al. [YJY+17] provide a heatmap and correlation matrix for all features to inter-
actively select the feature dimensions of interest. Parallel coordinate plots are used by
most of the approaches. Corvo et al. [CCW+21] integrate a parallel coordinate plot for
an overview of the data distributions. Tautz et al. [TZH+20] visualize seven pre-selected
radiomic features in a parallel coordinate plot. Mörth et al. [MWH+20] use parallel
coordinate plots to show correlations between clinical features. Raidou et al. [RvdHD+15]
employ a parallel coordinate plot to highlight relations beyond two dimensions.

Gutenko et al. [GDKB17] visualize clinical data through bar charts, while Corvo
et al. [CCW+21] employ bar charts to display distributions of values. Bannach et
al. [BBJ+17] rely on multiple linked bar charts to visualize single patients, patient cohorts,
and the distribution of a selected patient subset of a cohort. Raidou et al. [RvdHD+15]
use stacked bar charts to visualize feature combinations that contribute the most to the
cluster separation, in addition to the separate and joint cluster distributions. The cluster
analysis and comparison view of Raidou et al. [RvdHD+15] is shown in Figure 3.2. They
abstract each cluster into a sphere. Then, they visualize the cluster cohesion by the area
and opacity of a sphere, the cluster separation by a glyph between two spheres, and the
average silhouette coefficient that combines both scores through a luminance color scale.
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Figure 3.1: Similarity comparison of a selected subject based on all features [GDKB17].

Figure 3.2: Cluster analysis and comparison [RvdHD+15].

3.2 Visual Analytics for Genomics
Sequencing technologies lead to extensive amounts of genomic data. Analyzing and
visualizing these data aims to acquire a clear and understandable data representation for
clinicians and medical experts interacting with these data [QLN+19]. Getting insight
into genomic data and uncovering hidden patterns in these data supports clinical experts
in interpreting the data, formulating a hypothesis, and determining the treatment needs
of patients [QLN+19, NHG19]. Visualizing genomic data faces challenges due to the long
sequences, sparse distributions, interaction between distant sequences, and diverse data
types [NHG19]. These challenges must be addressed in the design of a visual interface
and make the data analysis through algorithmic tools necessary [NHG19].

Schneider et al. [SKT+19] present an application called ClinOmicsTrail for breast cancer
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decision support to identify clinical markers by combining genomics with clinical data. In
contrast to this approach, Lex et al. [LSKS10] present the tool Caleydo to combine gene
expression data with models of biological processes called pathways. They focus on the
relationship between gene expression data with pathways and between multiple pathways
to interpret individual effects and identify different subtypes of diseases. When significant
differences exist between cancers from the same tissue, these differences are characterized
by biomolecular properties and are called cancer subtypes [TLS+14]. Lex et al. [LSS+12]
analyze genomic datasets to identify subtypes in combination with clinical data in their
application called StratomeX. Turkay et al. [TLS+14] present the combined applica-
tion Caleydo StratomeX to analyze and discover relations between genomic and clinical
data. In contrast to the approaches of Lex et al. [LSKS10, LSS+12], Caleydo StratomeX
focuses on breast cancer patients instead of combining different cancer datasets. However,
it solves the limitation of StratomeX in identifying characteristic genes of cancer sub-
type candidates, which could be the target of a therapy or diagnosis process [TLS+14].
Nguyen et al. [NNH+14] allow a patient-to-patient analysis by providing an overview
of the patient population in the similarity space. They show detailed views of selected
genes and patients on demand.

An overview of the diseases and datasets used in the most related genomic approaches
is given in Table 3.2. While Lex et al. [LSKS10] analyze only genomic data, the other
approaches combine genomic data with clinical data. None of these approaches employs
radiomic data or tests the applicability of their interface specifically on prostate cancer
datasets. Qu et al. [QLN+19] mention that analyzing genomic data has potential in the
personalized therapy of any cancer type.

Table 3.2: Disease and data utilized in genomics approaches.

Paper Disease Data
Lex et al. [LSKS10] Cancer subtypes G
Lex et al. [LSS+12] Cancer subtypes G + C
Nguyen et al. [NNH+14] Leukemia G + C
Turkay et al. [TLS+14] Breast cancer G + C
Schneider et al. [SKT+19] Breast cancer G + C

Data: Genomics (G), clinical data (C)

3.2.1 Genomic Data Analysis
Lex et al. [LSKS10] perform the data analysis by filtering out inconspicuous genes in the
data and applying clustering algorithms. They cluster the data by k-means clustering,
affinity propagation, or hierarchical clustering to assign genes with similar functions into
groups [LSKS10]. Similarly, Nguyen et al. [NNH+14] apply k-means++ clustering as an
extension of the k-means algorithm. This extension chooses initial values that avoid a
poor clustering outcome. In their approach, the number of clusters is defined through
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the interface. Turkay et al. [TLS+14] select the most significantly underexpressed and
overexpressed genes through statistical properties. They perform a dual analysis as
shown in Figure 3.3 by applying statistics, such as the calculation of the mean, median,
or standard deviation, on the dataset rows and the columns separately. For identifying
significant differences in the data, they perform a two-sample Welch’s t-test [Rux06],
which does not require an equal variance between subsets and is therefore suitable for
genomic datasets [TLS+14]. The user performs the patient stratification manually by
selecting subclusters of interest. Their application does not allow the comparison of
more than two clusters and does not employ dimensionality reduction methods [TLS+14].
In contrast, Schneider et al. [SKT+19] reduce the dimensionality of the genomic data
through Principal Component Analysis (PCA) and 2D t-SNE.

Figure 3.3: Dual analysis of the dimensions space through statistics and of the items
space through multivariate analysis (MVA) by iteratively selecting items and dimen-
sions [TFH11].

3.2.2 Visualization of Genomic Data
Genomic data is mainly visualized through scatterplots, matrix heatmaps of clustered
data, or genomic coordinates [QLN+19]. Genomic coordinates visualize the data based on
their physical location mapped to a reference genome to indicate their function [QLN+19,
SGPLB13]. Genomic coordinates can be visualized as a genome browser or a circular
plot and represent various alternation types in tumor samples [SGPLB13]. Figure 3.4
shows a heatmap (left) and genomic coordinates (right) in comparison. The genomic
coordinates are visualized as a genome browser, while the clinical data is displayed
vertically to allow sorting and grouping of the genomic data. In the heatmap example,
the columns represent the tumor samples, while the genes are shown in the heatmap rows.
To bring distant genomes of interest together, the rows or columns of the heatmap are
clustered by clinical features. The color in the heatmap indicates a measurement of the
mutational status or expression level of genomic data [SGPLB13]. Furthermore, network
visualizations, as depicted in Figure 3.5, represent functional relationships between genes
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or pathways linked with clinical data [SGPLB13]. Emerging methods for genomic data
visualizations include Artificial Intelligence (AI) for predicting and evaluating models or
Virtual Reality (VR) to make the data interaction more intuitive [QLN+19].

Figure 3.4: Matrix heatmap of genomic and clinical data (left) and genomic coordinates
to map the gene location on its chromosomes (right) [SGPLB13].

Figure 3.5: Network to visualize cluster nodes representing high interconnections of genes
or pathways and the interactions between them [SGPLB13].

Lex et al. [LSKS10] use hierarchical heatmaps to visualize the clustered genes, and
parallel coordinate plots to link the genes to experiments. They combine these views
in an open bucket in 2.5 dimensional space to visually link relations between the visual
representations as shown in Figure 3.6. In a subsequent work of Lex et al. [LSS+12], they
split the patient stratification result into visual bricks that represent candidate subtypes,
clusters, or categories based on the genomic data loaded into their framework. They
allow the user to switch the visual representation between heatmaps, parallel coordinates
plots, or histograms on demand. For the default visual representation, they choose
a heatmap as it is the most suitable for their primary goal of characterizing cancer
subtypes. A schematic representation of the comparison of datasets with different patient
stratifications and their subtypes is shown in Figure 3.7.
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Turkay et al. [TLS+14] visualize the two spaces of their dual-analysis statistics through
two scatterplots linked to a heatmap. They allow a selection of samples through the
heatmap and highlight differences in genes between selected and unselected samples on
the scatterplot. Similarly, Nguyen et al. [NNH+14] visualize genes of interest through a
heatmap and the clustered data as a scatterplot. Schneider et al. [SKT+19] provide an
overview of tumor characteristics through a sunburst chart to place pathways and their
genes on a circle, as depicted in Figure 3.8. They show up to eight circles in the chart
with genomic, clinical data, and sample-specific measurements.

Figure 3.6: Visual representations are placed in an open bucket view in the 2.5 di-
mensional space. They are linked together through the yellow marks to highlight their
relations [LSKS10].

Figure 3.7: Schematic representation of dataset comparison [LSS+12].
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Figure 3.8: Sunburst chart to provide an overview on tumor characteristics [SKT+19].

3.3 Visual Analytics for Clinical Data

Clinical data is essential for research and the healthcare domain [Gro20]. It ranges
from demographic data to disease registries or clinical trials [SRY+21, Gro20]. In this
section, we summarize three approaches to highlight possible directions of clinical data
analysis. Interaction with the data is reached in these approaches through sorting scores,
dragging and dropping datasets to the view of choice, brushing on the views to filter the
data, or hovering over views to display additional information on demand. Bernhard et
al. [BSM+15] visualize histories of prostate cancer patients, while Müller et al. [MSO+20]
work with patient-specific data of laryngeal cancer for decision support. Differently,
Angelelli et al. [AOH+14] analyze brain measurements for cognitive aging. Angelelli
et al. [AOH+14] present a data-cube-based model to handle heterogeneous data of a
longitudinal study by linking spatial and nonspatial views. Each person is examined
twice to acquire three datasets of brain measurements that they visualize in a cube.
Bernhard et al. [BSM+15] focus on visualizing single and multiple patient histories to
support physicians in medical research. They design an interactive visualization to define
patient cohorts and compare their histories. Müller et al. [MSO+20] assist physicians
in clinical decision support by providing transparent recommendations for the diagnosis
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or therapy plan. These recommendations are generated based on examination findings
and clinical knowledge modeled by experts or acquired through machine learning. An
overview of analyzed diseases in the presented clinical work is given in Table 3.3.

Table 3.3: Disease and data of clinical data analysis approaches.

Paper Disease Data
Angelelli et al. [AOH+14] Cognitive aging C
Bernhard et al. [BSM+15] Prostate cancer C
Müller et al. [MSO+20] Laryngeal cancer C

Data: Clinical data (C)

3.3.1 Clinical Data Analysis
Müller et al. [MSO+20] analyze the data through a causal Bayesian network for decision
making. Figure 3.9 shows a network for differential diagnosis of laryngitis and laryngeal
cancer. Each node uses the variable values of its parent nodes as an input and outputs a
probability distribution saved in a table. The conditional probability table depicts, for
example, how tobacco and alcohol influence laryngeal cancer development [MSO+20].
Differently, Angelelli et al. [AOH+14] create data cubes with categorical data as dimen-
sions and quantitative numerical values as measures that they access through dimension
coordinates. They work with heterogeneous brain measures with only a partial overlap in
the dimensions. Therefore, they use multiple normalized data cubes and a statistical ag-
gregator, such as the average score, to combine uncommon cube dimensions. Figure 3.10
shows this aggregation process of the dimensions.

Figure 3.9: Bayesian network for differential cancer diagnosis [MSO+20].
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Figure 3.10: Data cubes with categorical data as dimensions and quantitative numerical
values as measures accessed through dimension coordinates. The uncommon cube
dimensions marked in red are processed through a statistical aggregator. [AOH+14].

3.3.2 Visualization of Clinical Data

Bernhard et al. [BSM+15] visualize large sets of patient histories through a list-based
visualization. They present each patient history by a list and allow users to sort these
lists by the well-being status of patients that they encode in green, yellow, or red color.
To visualize multiple patients at once, they bundle patient information of the list-based
visualization through a box plot or area chart. For dynamic cohort queries, they show
distributions of patient attributes through bar charts. Müller et al. [MSO+20] employ
bar charts to visualize observed evidence items. To present the probability distributions
of the Bayesian network, they use donut and pie charts. They encode increased and
decreased probabilities through a line texture on the charts to compare distributions
resulting from different evidence items. Differently, Angelelli et al. [AOH+14] provide a
scatterplot, curve view, and histogram for brain measures and allow the user to select
the view of choice.
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3.4 Radiogenomics Analysis
Studies and technical surveys demonstrate that radiogenomic data analysis has the poten-
tial to identify correlations [IAI+17, SRY+21], predict cancer [IAI+17, SRY+21, SJG+22,
HHD+21], and has diagnostic performance comparable to expert knowledge [HLY+23].
It supports understanding cancer biology and behavior, and provides a precise progno-
sis [SJG+22, SRY+21]. Moreover, it allows clinical experts to discover new knowledge
from the data [SJG+22, PPL+19, SRY+21]. Patient stratification entails a meaningful
grouping of patients based on similarities or differences in their profiles [SRY+21]. For
radiogenomic data, patient stratification through machine learning approaches presents
the state-of-the-art in precision medicine [SJG+22, PPL+19].

However, radiogenomics data is diverse, complex, and high-dimensional, which makes the
analysis in advanced frameworks, techniques, and algorithms necessary [SRY+21, IAI+17].
Machine learning is suitable for managing and analyzing large and complex data [SJG+22,
SRY+21, PPL+19]. Features extracted are often redundant and contain unnecessary
information, which leads to overfitting [SRY+21, LXNR19]. This makes the machine
learning model not generalizable for new data. Therefore, a dimensional limitation
or feature selection is essential to maintain imaging characteristics that have strong
correlation with clinical data [SRY+21, LXNR19, SJG+22]. The relevance of features can
be evaluated through rank criterion or the use of a weighted sum to maximize relevance
and minimize redundancy [SRY+21]. To identify patient groups with highly correlated
features, clustering methods are applied. This corresponds to an unsupervised analysis
that divides the data into subgroups based on the similarity between samples that is
determined through distance measurements such as the Silhouette Coefficient [Rou87].

Unsupervised machine learning does not require knowledge of a clinical label and has
therefore broad application areas. In contrast, supervised machine learning is used when
the treatment endpoints, such as tumor control or toxicity grades, are known [SRY+21].
However, supervised machine learning approaches require a large number of training
samples to avoid overfitting [SRY+21]. When large amounts of labeled cohort samples
are available, deep learning is applicable and the preferred method as it performs better
on unstructured data [SRY+21, LXNR19].

Radiogenomics studies can be exploratory or hypothesis-driven [SRY+21]. In exploratory
studies, hierarchical cluster analysis is widely applied to gene expression data [SRY+21].
It groups similar objects into distinct clusters and shows hierarchical relationships
between the clusters through a dendrogram. Hypothesis-driven approaches are based on
imaging phenotypes collected by medical researchers that they investigate with a specific
hypothesis in mind [SRY+21, LXNR19].

Future directions of radiogenomic data analysis go towards the creation of interpretable
models [SRY+21]. Without interpretability, radiogenomics analysis is inconvenient
and not applicable in clinical practice [SRY+21, HLY+23]. Furthermore, radiogenomic
approaches must be validated on independent cohorts to assess their clinical trans-
formability [HLY+23, LXNR19]. This faces challenges in the heterogeneity of cancer
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diseases [SJG+22] and requires the identification of signatures of intra- and inter-tumor
heterogeneity in an anatomic context [IAI+17]. Clinical applicability requires robust
approaches based on multi-institutional data that offer generalizable and cross-validated
results [SJG+22]. An inter-disciplinary collaboration between clinicians and technical
researchers helps in combining technical perspectives of analysis approaches with clinical
relevance [BTNK+19].

A first step in combining and analyzing radiogenomic data with respect to clinical data
in one framework is performed by Zanfardino et al. [ZCP+21] for breast cancer patients.
They present a framework named MuSA that is based on the MultiAssayExperiment data
structure of the R package to store and handle multiple heterogeneous data types and
facilitate the selection of features in the dataset. They allow the user to filter the data by
features of interest or by selecting the patient subset with complete data without invalid
values. They do not offer an imputation of missing data, but exclude missing values
from the analysis, which leads to a loss of patient information. After filtering the data,
they optionally perform a data normalization on the resulting subset and apply PCA to
compare different data normalization methods as depicted in Figure 3.11. They do not
offer other dimensionality reduction methods than PCA. Their interface focuses on the
data preprocessing steps and performs a preliminary data analysis through statistical
methods [ZCP+21]. They offer a clustering analysis, a correlation analysis, and feature
selection. For the feature selection and clustering analysis, the user chooses the features
of interest to display them in a heatmap. The distance method, the cluster linkage, and
the number of clusters are specified through the interface. The correlation analysis is
performed through a correlation plot between selected radiomic and genomic features for
different tumor stages. Using this framework requires the set-up of a configuration file
to tag radiomic and genomic datasets. A further limitation is that it does not support
the use of gene mutation data [ZCP+21]. Although MuSA combines radiogenomic and
clinical data in one framework, it focuses on data preprocessing and offers limited analysis,
visualization, and interaction capabilities. It does not allow free exploration of the data
to gain new insights for knowledge discovery, which is one of the main goals of our work.

In comparison, we provide a visual interactive interface that allows users to perform a
free selection and repeated analysis of patients or features of interest. We determine
and visualize characteristics and differences of patient clusters, and encourage the user
to freely interact with visualizations to support the sensemaking of the data and the
identified patterns. These interaction capabilities include, for example, the investigation
of distribution plots or highlighting feature combinations on the visualization. We test
and compare different imputation, dimensionality reduction, and clustering methods, and
allow the identification and removal of outliers on demand. The outcome of these options
can be freely explored through the interface, while we provide presets for the preferred
settings based on evaluating the outcome of the different machine learning algorithms by
cluster separation metrics. Moreover, we allow the users to assess any hypothesis in mind
for the underlying data and to highlight the resulting patient subset on the visualization
that the users can freely process and explore further.
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Figure 3.11: Comparison of the datapoints on the scatterplot before and after normaliza-
tion. The points are reduced through PCA. The table on the bottom shows the data
values after processing [ZCP+21].

Our main contribution to the state-of-the-art is therefore the combination of radiogenomic
and clinical data in a visual analytics framework to support the data exploration and
sensemaking process. We investigate, design, and develop a visual interactive interface
that enables cancer experts and biomedical data scientists to obtain new insights and
knowledge from the data and understand the underlying analysis and visualization
components. Moreover, our interface allows them to interactively confirm, reject, or
refine their hypotheses within cohorts of prostate cancer patients.
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CHAPTER 4
Visual Radiogenomics Analysis

In this chapter, we present our approach for the integrated exploration and analysis of
radiogenomic data together with clinical information in a visual interactive interface.
Figure 4.1 gives an overview on the main tasks of our application.

Figure 4.1: Main steps of our visual radiogenomics analysis approach.

We work with datasets that contain mixed data types and missing values. To process
the data automatically, we first clean up the data by identifying and replacing any
undesired symbols, encoding the categorical data values, and imputing missing values in
the data (Figure 4.1, Preprocessing). Our data has a high dimension of 10 478 features.
Therefore, we reduce its complexity by applying dimensionality reduction algorithms to
it. We identify patterns in the data by clustering the data through unsupervised machine
learning methods. This results in a cohort stratification, based on different or similar
patient profiles, that highlights patterns in the data (Figure 4.1, Cohort Stratification).
We support users in understanding these patterns through the forward analysis step that
allows users to freely explore the data for knowledge discovery. This includes investigating
the main characteristics and differences of clusters, or selecting and processing any subset
of the data. Furthermore, we show feature distributions on demand to understand why
features characterize or differentiate patients (Figure 4.1, Forward Analysis). The last
step of the pipeline represents the backward analysis to confirm or reject any present
hypothesis on the underlying data. This is performed through interactively filtering the
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data and allows the user to refine a hypothesis by identifying feature thresholds that lead
to the correctness or incorrectness of a hypothesis (Figure 4.1, Backward Analysis).

4.1 Data – Users – Tasks Analysis
This section gives an overview of our datasets, users, and tasks. We present the radiomic,
genomic, and clinical data that we work with in Subsection 4.1.1 and outline the target
users of our application in Subsection 4.1.2. Our task definition follows the typology of
Brehmer and Munzner [BM13] that we illustrate in Subsection 4.1.3.

4.1.1 Data Characteristics
In this work, we combine radiomic, genomic, and clinical data from a cohort of 89 prostate
cancer patients. Our radiomic data is gained from PET/MRI scans. The genomic data
represents gene mutation, and the clinical data consists of demographic data and patient
management scores determined through clinical assessments. Table 4.1 provides an
overview of the number of features per dataset and their main characteristics. We
combine the data of 18 clinical parameters, 153 radiomic features, and 10 307 genomic
features in the analysis process. The datasets are organized in tables, where each row
represents a patient, and each column represents a feature. An integrated analysis of
all datasets leads to a dimension of 10 478 features for 89 patients, as illustrated in
Figure 4.2.

Table 4.1: Number of features and main characteristics of the datasets.

Number of
features

High
dimensional Missingness

Clinical data 18 – ✓
Radiomics 153 ✓ –
Genomics 10 307 ✓ –

When the number of features exceeds the number of patient samples, the data is charac-
terized as high dimensional [Nar20]. Therefore, the radiomic and genomic datasets are
high dimensional, but not the clinical dataset, which has a dimension of 18. However, the
clinical data have their challenges in the missingness of patient scores and in including a
combination of different data types. Table 4.2 gives an overview of the mixed data types
of the clinical table and the number of missing values per data type. In comparison,
the radiomic and genomic data consist all of quantitative continuous values without
missingness. The radiomic data can be grouped into 11 feature families, while the genomic
data are sparse as most of the elements are zero. A grouping of the genomic data can be
performed alphabetically as they consist of gene names starting with alphabetical letters.
Furthermore, the genomic data consists of repetitions in parts of the gene names as they
represent different mutations. Each patient has 14 to 3 236 gene mutations, while 6 162
gene mutations occur only in one patient with a value higher than zero.
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Figure 4.2: Representation of our three datasets as matrix tables.

Table 4.2: Mixed data types of the clinical table and their missingness.

Quantitative Qualitative
Discrete Continuous Ordinal Nominal

Clinical data 3 6 3 6
Missingness 1 2 0 3

The term big data is used in varying contexts with no uniform definition [DMGG15,
AMAK19]. De Mauro et al. [DMGG15] analyze approaches in this context and identify
topics ranging from data that include complex information to data with a large feature
or observation size, as well as data that require innovative information processing and
visualization techniques for insight. Based on the most prominent definitions, they
suggest using the term for data with high volume, velocity, and variety that require
analytical methods to be transformed into valuable information, which applies to our high-
dimensional datasets. Volume refers to the amount of data, velocity to the processing
speed, and variety to different data types or sources [AMAK19]. Furthermore, our
datasets must be analyzed and visualized to gain insight into them and transform the
tables into valuable information.

Dirty data refers to data that consist of duplicates, missingness, inconsistencies, or errors,
which lead to wrong results or misleading statistics [GGAM12, KCH+03, RD00]. Based on
this definition, our datasets are considered as dirty, as they contain missingness in feature
values, and inconsistencies such as mixing dot and comma symbols in numerical features,
that need to be handled properly in order to be interpreted correctly. Furthermore, an
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early version of the data consist of duplicates in patient information that we resolved
with our domain experts. To enhance the data quality and prepare it for the analysis
phase, these data needs to be cleaned by identifying and correcting its inconsistencies
and missingness [RZ19, GGAM12]. The validation and verification of these corrections
must involve domain experts of the data field [RZ19].

4.1.2 Target Users

Our visual analytics application targets two main user groups. On the one hand, we
address cancer experts, such as pathologists, biologists, biochemists, and nuclear medicine
physicians. On the other hand, we target data scientists and bioinformaticians working
with cancer experts on the data. Cancer experts want to investigate and understand the
mechanisms behind the data. By identifying correlations and patterns in the data and
highlighting features that explain these patterns, they get deeper insights into the data
that encourage knowledge discovery and data sensemaking. They further desire to check
the correction of any hypothesis or biological mechanism they have in mind involving
features of the different datasets or to create and refine new hypotheses on the data.
These insights support them in getting a better understanding of how different tumor
types work and help them to specify clinical markers that might be relevant for cancer
research, diagnosis, and treatment. Furthermore, data scientists and bioinformaticians
want to use our application to get insight into the data and the underlying analysis
algorithms. They want to interactively change and compare different algorithms and data
analysis methods to understand how these changes affect the resulting patterns, feature
distributions, or hypotheses of interest. Moreover, they are interested in understanding
the automated data analysis components of our framework.

4.1.3 Typologies and Tasks

Task typologies provide a model to specify aspects and goals of tasks in a unified and
precise way [BM13, RAW+16]. They allow the comparison and evaluation of visualization
approaches and justify the creation of suitable visual representations [RAW+16, SNHS13,
BM13]. Schulz et al. [SNHS13] present five design dimensions to characterize the main
aspects of tasks. Besides specifying why and how a task is performed, they describe the
data through three dimensions representing the characteristics, target, and cardinality
of visualization tasks. Similarly, Brehmer and Munzner [BM13] present a typology
that is based on specifying why and how tasks are performed. Different than Schulz
et al. [SNHS13], Brehmer and Munzner [BM13] represent the data of tasks by a what
dimension that characterizes the task inputs and outputs. Rind et al. [RAW+16] also
present a three-dimensional task typology. In contrast to the approaches of Brehmer
and Munzner [BM13] and Schulz et al. [SNHS13], they do not aim for an intermediate
level that captures all task aspects, but describe tasks on a higher level that emphasizes
diverse task concepts.

We define our tasks based on the multi-level typology of Brehmer and Munzner [BM13]
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that closes the gap between high- and low-level tasks. It allows the expression of complex
tasks as sequences of independent simpler tasks through concise and flexible descriptions.
Tasks are chained together by using the output of a prior task as an input to subsequent
tasks, which enables the visualization of complex relations [BM13]. Figure 4.3 represents
our main tasks and the inter-relationships between them depicted through red arrows.
The cohort stratification includes dimensionality reduction, clustering, and visualization
steps. These steps are also required by the forward and backward analysis as depicted by
the red arrows. Furthermore, the backward analysis can be applied on the result of the
cohort stratification or a processed subset resulting from the free analysis. Similarly, the
free analysis can be applied on the data selected through a hypothesis resulting from the
backward analysis, on the automatically created data clusters resulting from the cohort
stratification, or on the unstratified data by manually selecting a subset of interest to
compare its characteristics, differences, and distributions with other patients, or apply
the cohort stratification on it.

In the upcoming sections, we present the tasks and their subtasks in more detail and
describe how we fulfill them. We illustrate the subtasks of the preprocessing in Section 4.2,
of the cohort stratification in Section 4.3, of the forward analysis in Section 4.4, and of
the backward analysis in Section 4.5.

4.2 Preprocessing (T0)
Why: produce data with enhanced quality

How: derive a cleaned data representation, encode mixed values, impute missingness
in the data, identify outliers

Input: data of mixed type with missingness

Output: high-dimensional numeric data without missingness

For the data analysis, we process the data tables automatically through statistical
measures or unsupervised machine learning algorithms. This requires data cleansing,
encoding, imputation, outlier detection, and scaling to produce data with enhanced
quality by correcting errors, inconsistencies, and missingness in the data, by detecting
outliers on demand and scaling all datasets to the same ranges. For each of the subtasks,
we derive a data representation that matches the respective goal. The encoding and
imputation step is only required for the clinical data to handle categorical values and
missingness in the data. In contrast, the further preprocessing steps are applied on all
datasets. We automatically process all tables separately and combine them by default to
use them as an input for the cohort stratification or free analysis tasks.
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Figure 4.3: Our main tasks and their inter-relationships depicted by red arrows, according
to the multi-level typology of Brehmer and Munzner [BM13].

38



4.2. Preprocessing (T0)

4.2.1 Data Cleansing (T0a)

Why: produce a data representation to process the data automatically

How: derive a representation with checked types, format, and symbols in data

Input: uncleaned high-dimensional data

Output: cleaned data with consistent symbols and the correct data types

Data cleansing enhances the data quality by identifying and correcting errors and
inconsistencies in the data [RZ19, GGAM12]. In this subtask, we determine and remove
undesired symbols in numerical fields and produce a consistent representation of all
data types. Our clinical data contains, for example, the expression < X, where X
represents a constant number. To process this field as a number, we must replace
the less-than < symbol and reduce the numeric value by a constant specified with our
domain experts. Other examples include qualitative values concatenated by a plus +
symbol and not depicted in a uniform order, while their order has no clinically relevant
meaning. After importing the data, we derive a cleaned data representation by resolving
these cases through replacement rules that we define and confirm together with our
collaborating domain experts. Kim et al. [KCH+03] provide a taxonomy to identify
misspelled, inconsistent, or wrong data for replacement. Alternative methods for cleansing
big data are based on machine learning techniques or knowledge-bases to discover error
patterns in the data and possible solutions [RZ19]. However, the identified inconsistencies
in our data are limited and we want to ensure that our domain experts are aware of
these cases and confirm with the replacement rules as depicted by Ridzuan et al. [RZ19].
Therefore, the rule-based method we implemented is the most suitable for our use case.

4.2.2 One-Hot Encoding for Categorical Features (T0b)

Why: produce a data representation to process the data automatically

How: derive a representation that encodes categorical values

Input: cleaned data from subtask(T0a)

Output: one-hot encoded data with numerical values only

Besides quantitative values, our clinical data consist of qualitative ordinal and nominal
values. In our data, the ordinal values are already encoded by numbers considering
their natural order. Therefore, this task addresses the encoding of qualitative nominal
values. The most common technique for encoding qualitative values with minimal
processing, is the one-hot encoding algorithm [HK20, Lu20, CV22]. We apply one-hot
encoding on nominal values of the clinical data to produce a data representation with
only numerical values. To derive this representation, we split each nominal option
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into an own binary-encoded feature as specified through the algorithm. Figure 4.4
illustrates this process by a Therapy feature with two options that is splitted into two
separate binary-encoded features. One-hot encoding leads to a higher dimensionality
of the data, which is a disadvantage for features with high cardinality as it increases
the complextity and processing time [Lu20, CV22]. Advanced algorithms overcome
this limitation through low-dimensional or quasi-orthonormal encodings [Lu20, CV22].
However, as the cardinality of the affected features in our data is limited to five options,
the slightly increased dimensionality is negligible for our data.

Figure 4.4: One-hot encoding of the Therapy feature by splitting it into separate TRUP
and ADT features to transform the nominal values into numerical ones.

4.2.3 Data Imputation (T0c)

Why: produce a data representation to process the data automatically

How: derive a representation that imputes missing values

Input: cleaned, encoded data with missingness from subtask (T0b)

Output: imputed data without missingness

The clinical data consist of six features with missing values. Figure 4.5 shows the affected
features and their percentage of missingness. Three of them are quantitative values.
These are the discrete feature BCR time, and the continuous features Post PSA and
BCR PSA. In addition to the quantitative values, the data includes three qualitative
values with missingness, from which the Tumor margin and BCR status are binary, while
the Pre-OP therapy is a nominal feature with five possible options. The Pre-OP therapy
feature has the smallest missingness with 1.52 %. In contrast, the BCR PSA has the
highest missingness score of 69.7 %.

Missing data can be categorized by the following three types [ANI+20, van18]:

• Missing Completely At Random (MCAR)
• Missing At Random (MAR)
• Missing Not At Random (MNAR)
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Figure 4.5: Percentages of missingness in clinical data per feature.

MCAR applies, when there is no semantic reason for the missingness in the data [ANI+20].
This could be the case when the sample tube with blood breaks [ANI+20] or the weighing
scale runs out of batteries and hinders the measurement [van18]. For this missingness
type the observed data are expected to be unbiased and to match the distribution of the
random subset of missing scores [ANI+20, van18].

MAR occurs when the missing data depend on observed variables and can be explained
through it [SWC+09]. An example is a blood measurement that is performed only for
old patients, while the observed data also consist of young patients. This may cause
bias in the data as the distribution of the missing and observed data is expected to be
different [ANI+20].

MNAR is the case when the missing data depend on the data, but the missingness cannot
be explained through the observed variables [ANI+20, van18]. In this case, the variables
that could have explained the missing data are not observed. An example is a blood
measurement that is performed only for old patients, while the age is not documented to
make this clear. Therefore, the distribution of the missing and observed data is expected
to be different, which leads to bias in the data [ANI+20].

We consider most of the missingness in our data to be MCAR as all measurements
are usually performed for these patients, independent from other clinical scores. These
measurements are missing as, for example, patients did examinations partially at different
hospitals. However, we identify a dependency pattern between the BCR PSA feature,
which has the highest missingness, and the BCR status. In our case, all values that have
a BCR status of zero, have a missing BCR PSA value. Therefore, we consider this feature
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as MNAR and substitute it with a constant for all cases that have a BCR status of zero
to not induce a biased distribution.

The difference between the missingness types, especially between MAR and MNAR, is not
always clear and depends on background knowledge and assumptions on the data [ANI+20].
MNAR is the most complex situation that is resolved through measuring additional data
and analyzing the sensitivity of the results in different scenarios [van18]. In contrast,
MCAR is the easiest to handle as it allows deleting or ignoring the missing data, which is
not expected to affect the distribution. However, this handling leads to reduced statistical
power and a loss of valuable data samples [van18, ANI+20]. Furthermore, deletion is
not a suitable solution for MAR [van18]. Therefore, it is advisable to conduct data
imputation to predict and replace missing values [van18, ANI+20]. The most frequent
approaches apply single imputations, which replace the missingness with the mean or
median value of the feature. However, this reduces the variability of the distribution
and therefore leads to a biased estimation [ANI+20]. Advanced options that deliver
an appropriate level of accuracy and bias use multiple imputation algorithms, which
also consider the dependency between variables [ANI+20, van18]. This includes the
algorithm Multivariate Imputation by Chained Equations (MICE). It starts with a simple
imputation and learns a regression model for the missing values to replace them with
predictions from the regression model. This process is repeated for a maximum number
of iterations [ANI+20].

Garrison et al. [GMS+15] test five different imputation methods to assess the robustness
of their approach. In their work, MICE and Principal Components Imputation lead to
a similar result. The general patterns in the data are preserved, which confirms the
robustness of their approach. However, each imputation algorithm leads to a different
outcome. They perceive most of the differences in the imputation of binary features.
Stavseth et al. [SCR19] compare six methods for multiple imputation. They mention
that all methods perform well for sample sizes above 1000, while for sample sizes smaller
than 200 the result depends on the amount of missingness in the data.

To identify the most suitable imputation method for our data, we test, evaluate, and
compare the error metrics of seven different imputation methods. Similar to Moritz et
al. [MSB+15], we simulate missingness on the complete patient subset of our clinical data.
We evaluate the imputation errors by the Root Mean Square Error (RMSE) and the
Mean Absolute Percentage Error (MAPE) between the imputed and the true value that
we remove for testing. For this experiment, we simulate missingness percentages ranging
from 5 % to 95 % in the data to assess the robustness of the algorithms. Then, we choose
the best method and parameters that lead to the smallest errors based on the missingness
percentage of the respective feature in our data and by considering the data type of the
feature. We set the best option we determined as the default imputation method in
our interface that the user can change on demand. In most cases, RMSE and MAPE
indicate the same result. If this is not the case, we give preference to the RMSE. We
compare single imputation methods by using the mean, median, or most frequent value
in the non-missing data feature. Furthermore, we apply linear regression, and multiple
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imputation methods, such as MICE and KNN. For multiple imputations, we test imputing
the values by using all feature dimensions of the clinical data, or by considering only the
numeric features through excluding binary and string features. Additionally, we test the
imputation using all features in the clinical data that have the same type. For example,
we test imputing discrete numerical features by considering only all features with discrete
numerical data type. This option leads in most cases to the lowest error rates of the
multiple imputation methods, while single imputation methods create the smallest errors
in our experiment. We present our results and evaluation of the imputation methods in
Subsection 5.2.1.

4.2.4 Outlier Detecion (T0c)

Why: produce a data representation with enhanced quality that contains no outliers

How: derive a representation that removes outliers on demand

Input: imputed data from subtask (T0c)

Output: data without outliers (if desired)

Outliers represent single points or small clusters that are different or inconsistent compared
to the remaining set of data [DXLL09]. Keeping and analyzing them could be of interest
due to their uniqueness [BZA20, DXLL09]. However, outliers may also affect the accuracy
and stability of automated data analysis and influence the cluster structure [LLWF21].
When applying clustering on the data, outliers might not belong to any of the existing
groups [LLWF21]. This subtask allows users to identify, highlight, remove outliers, or
compare them with the remaining data points on demand, when combined with the
upcoming forward and backward analysis steps.

Outlier detection can be performed globally or locally [BZA20]. Local methods detect
points based on their characteristic differences to their neighborhood, while global
methods analyze differences compared to the whole dataset [BZA20]. We deploy the
unsupervised machine learning method isolation forest for global outlier detection and
removal. This algorithm has linear time complexity and low memory requirement [LTZ08].
Therefore, it is suitable for high-dimensional data and data with a large number of less
prominent attributes [LTZ08]. For local outliers, we use the density-based local outlier
factor algorithm. Basd on Cheng et al. [CZD19], it performs well in detecting local
outliers. However, each method focuses on detecting outliers either globally or locally.
Cheng et al. [CZD19] propose an extension by combining both algorithms in a progressive
two-layer method. Figure 4.6 shows global (top right) and local (bottom right) outlier
removal plots applied on the input (left) in comparison. On the global outlier plot (top
right) small points represent local outliers that would have been removed by applying
local outlier removal. In contrast, global outliers are highlighted by a red circle on the
input (left) and the local outlier removal plot (bottom right). After removing outliers, we
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reduce the dimensionality of the remaining points in this figure through Multidimensional
Scaling (MDS) for demonstration purposes.

Figure 4.6: Global (top right) and local (bottom right) outlier removal applied on the
input (left) in comparison. Global outliers are marked by a red circle. Small points in
the top right plot represent local outliers detected on the global outlier removal plot.

4.2.5 Data Scaling (T0d)

Why: produce a scaled data representation

How: derive a representation that normalizes or standardizes data

Input: data after outlier detection from subtask (T0c)

Output: scaled data through normalization or standardization

Values of datasets include measurements in different units. Analyzing each measurement
in its data-dependant scale affects the outcome of the analysis process as values would
dominate over others [THFM14]. Data standardization improves the signal-to-noise ratio
and the discrimination power of the dataset [Ng17]. In data standardization, the mean (µ)
of the data is subtracted from each value (X), and it is divided through the standard
deviation (σ) of the data [MAF14]. We depict this through the following formula for the
standardized data point xstand:

xstand = X − µ

σ

Data standardization is preferable for data with a Gaussian distribution and outliers.
If the data distribution is not known or the data is not Gaussian distributed, data
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normalization should be preferred. Data normalization eliminates bias in features with
large values compared to features with low values [Ase22]. It scales all data values
to a specific range, such as the range between 0 and 1 [MAF14]. In this case, the
minimum value (xmin) is substracted from the data values (X) and the result is divided
through the differences between the maximum and minimum values (xmax − xmin) of
data points [Ase22]. The following formula demonstrates this for the normalized data
point xnorm:

xnorm = X − xmin

xmax − xmin

As the distribution of the radiomic and genomic features in our dataset varies from a
Gaussian distribution, we set data normalization as the default option. However, we
provide both options to enable users to examine and compare the resulting patterns of
both scaling techniques on demand.

4.3 Cohort Stratification (T1)
Why: produce meaningful groups of patients with similar characteristics

present the identified clusters

How: derive a reduced and clustered dataset
encode clusters in a visual representation

Input: high-dimensional data from subtask (T0d)

Output: visualization of the reduced and clustered data

After the preprocessing steps, we identify and visualize patterns in the datasets through
cohort stratification. This process divides patients into meaningful groups based on
similarities in their radiogenomic and clinical profiles. It requires dimensionality reduction,
clustering, and visualization of the data. In the dimensionality reduction and clustering
steps, we produce data in a reduced and clustered way, while in the visualization
step, we present the data and its identified patterns. Therefore, we derive a data
representation that matches the respective goal and encode the identified clusters in a
visual representation.

4.3.1 Dimensionality Reduction (T1a)

Why: produce low dimensional data to facilitate the processing and visualization

How: derive data with low dimensionality from the high dimensional data

Input: high-dimensional data from subtask (T0d)

Output: two-dimensional data
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Radiogenomic data is complex and high-dimensional, which hinders the identification of
patterns in the data. Extracted radiogenomic features contain redundant and unnecessary
information that lead to overfitting in the data analysis so that the machine learning
is not generalizable for new data [SRY+21, LXNR19]. Eliminating features that lack
robustness against variability sources can avoid overfitting [LLD+17]. This is performed
by applying dimensionality reduction algorithms on the data [LLD+17]. A reduced
dimensionality of the data also helps to maintain imaging characteristics that strongly
correlate with clinical features [SRY+21, LXNR19, SJG+22].
We tested and compared the following five dimensionality reduction methods:

• t-distributed Stochastic Neighbor Embedding (t-SNE)
• Uniform Manifold Approximation and Projection (UMAP)
• Factor Analysis of Mixed Data (FAMD)
• Principal Component Analysis (PCA)
• Multidimensional Scaling (MDS)

PCA is the most widely used algorithm [XWY+21, EMK+21]. It is a linear method that
focuses on the global structure of the data and highlights interclass differences. [XWY+21,
EMK+21]. It detects patterns dominating in the data and identifies linear combinations
that maximize the variance in the data. Therefore, its dimensions represent the data
components with the largest variance in the data. In contrast to PCA, t-SNE is a non-
linear method that reveals the local structure of the data by minimizing the divergence
between two distributions [XWY+21, VDM14]. It transforms Euclidean distances between
data points in the high dimensional space into conditional probabilities [XWY+21]. One
distribution measures pairwise similarities of input objects, while the other distribution
measures pairwise similarities of the low-dimensional points in the embedding [VDM14].
FAMD combines PCA with Multiple Correspondence Analysis (MCA). FAMD has the
advantage of being applicable to complex data of mixed types. Therefore, it does not
require the one-hot encoding step of task (T0b) and is better suitable than PCA for
datasets that contain qualitative values or values of mixed datatypes [GMS+15]. In
contrast, UMAP is a non-linear method that reveals the global and local structure of
the data. It bases on the assumption that the data are uniformly distributed [XWY+21,
EMK+21]. Similarly, MDS is a non-linear method that preserves the global and local
structure of the data [EMK+21].
Xiang et al. [XWY+21] compare dimensionality reduction methods for high-dimensional
and sparse genomic data. They evaluate the algorithms on 30 simulated and five
real datasets and identify t-SNE as the method with the highest overall performance
and accuracy. Xiang et al. [XWY+21] also mention that t-SNE leads to the highest
computing cost. They further identify UMAP as the method with the highest stability,
moderate accuracy, and with the second highest computing cost after t-SNE. Garrison
et al. [GMS+15] apply the dimensionality reduction iteratively through a user-driven
approach that allows users to create and interact with dimensional bundles. Their
approach is based on the FAMD algorithm as it allows the combination of mixed data
types without encoding the data beforehand.
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We selected t-SNE as the default dimensionality reduction technique as it leads to the best
cluster separation for our data, as we depict in Subsection 5.2.2. We further allow users to
test the outcome of different dimensionality reduction methods and compare the resulting
patterns on the scatterplot. Furthermore, users can combine methods by repeatedly
applying them to patient subsets to get the advantages of their different characteristics,
such as progressively exploring the local and global structure of a data subset. As
mentioned by Xiang et al. [XWY+21], t-SNE has the highest computational costs in
comparison to the other methods. Therefore, we calculate half of the components through
PCA and use these for the initialization of t-SNE. Moreover, the dimensionality reduction
is applied in our application only once in the beginning and on selected patient or feature
subsets only on demand. We further provide the user visual feedback through a waiting
indicator while the data is processed. Therefore, it does not influence the interactivity
of the application. Figure 4.8–4.16 show the results of the dimensionality reduction
medthods. These are created through the default settings of our framework using the
best imputation method on the data, no outlier removal, and a data normalization as a
scaling technique, as depicted in Figure 4.7. We applied MICE imputation on the t-SNE
default option in Figure 4.17 to investigate its influence on the resulting patterns.

Figure 4.7: Default options used for the dimensionality reduction results. These are the
best imputation method based on our evaluation in Subsection 5.2.1, no outlier removal,
and data normalization as a scaling technique.

The contours on the results represent an estimation of dense regions and are determined
through the Kernel Density Estimate (KDE) of the data points [DLH11]. Furthermore,
dense areas are indicated through a blue color, as shown, for example, in Figure 4.10
for the PCA algorithm. Zooming into these structures reveals more details on the data.
The MDS (Figure 4.8), FAMD (Figure 4.13), and PCA (Figure 4.10) algorithms produce
two outliers, which present the same two patients in all representations. Applying global
outlier removal on the data prior to MDS (Figure 4.8) filters these outliers and opens the
points up in the available space, as demonstrated in Figure 4.9. In contrast to MDS, the
PCA (Figure 4.10) and FAMD (Figure 4.13) algorithms progressively reveal two new
outliers in the data when applying outlier removal algorithms prior to the dimensionality
reduction. In this case, the zooming functionality can be used to open the points up
in the available space and explore the details of the data representations. Figure 4.11
shows a zoomed representation of PCA, which reveals the structure of the data points.
Zooming further into the PCA result leads to Figure 4.12, which provides more details on
the structure of the reduced space. Figure 4.14 shows the zoomed representation of the
reduced space resulting from the FAMD algorithm. The result of UMAP is illustrated in
Figure 4.15, while Figure 4.16 represents the result of the t-SNE dimensionality reduction.
Contrary to the other dimensionality reduction methods we tested, the t-SNE algorithm
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divides the data into two clear groupings, as shown in Figure 4.16.

Figure 4.8: MDS dimensionality reduction is applied on the high-dimensional data. This
reveals two outliers on the left side with a higher distance to the other data points.

Figure 4.9: Global outlier removal is applied prior to the MDS dimensionality reduction
algorithm. This opens up the data points in the available space and reveals details on
the structure of the reduced space. It shows, for example, two points on the right side
with a larger distance to the other data points.
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Figure 4.10: PCA dimensionality reduction is applied to the data. This reveals two
outliers on the top and right sides with a larger distance to the other data points. Most
of the data points are located in a very dense region visualized by the density contours
and highlighted through blue color shading.

Figure 4.11: Zooming into the reduced space resulting from PCA reveals the structure of
the data. The region on the left is dense and consists of overlapping points.
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Figure 4.12: Zooming further into the data space resulting from PCA reveals more details
on dense regions in the data and reduces the number of overlapping data points.

Figure 4.13: FAMD is applied on the data. It can deal with qualitative values without
prior data encoding and reveals two outliers in the data. The majority of the data points
are located in a very dense region on the bottom left of the image, as depicted through
the density contours and the blue color shading of the region.

50



4.3. Cohort Stratification (T1)

Figure 4.14: Zooming into the reduced space resulting from the FAMD algorithm reveals
details on the structure of the data. For example, a small grouping of three points is
shown on the bottom left side.

Figure 4.15: UMAP dimensionality reduction is applied to the data. It focuses on both
the global and local structure of the data.
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Figure 4.16: The t-SNE dimensionality reduction algorithm reveals two subclusters in
the reduced space.

Figure 4.17: MICE imputation in combination with the t-SNE dimensionality reduction
algorithm. Two subclusters are formed in the reduced space.
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4.3.2 Clustering (T1b)

Why: produce clusters of patients

How: derive data divided into groups

Input: two-dimensional data from subtask (T1a)

Output: labels to assign each patient to a cluster

Clustering summarizes the data based on similarities and improves the data understand-
ing [SEK03]. It supports the analysis of high-dimensional data and helps users to get
insights into the data structure, such as biological processes of genomic data [KBZ+21]. To
overcome the course of dimensionality, we apply clustering on the reduced two-dimensional
data [SEK03, KBZ+21].

We tested and compared the following six clustering methods:

• k-Means (centroid-based)
• mean-shift (centroid-based)
• hierarchical clustering (hierarchical)
• DBSCAN: Density-based spatial clustering of applications with noise (density)
• OPTICS: Ordering points to identify the clustering structure (density-based)
• GMM: Gaussian mixture models (distribution-based)

Clustering algorithms can be categorized as hierarchical, centroid-based, distribution-
based, or density-based [KBZ+21, XT15]. Centroid-based algorithms, such as k-means
or mean-shift, are efficient but sensitive to initial conditions and outliers. However,
they lead to the best results on our data and are therefore chosen as the default option.
We determine and set the number of clusters using the elbow method [MHHWM18].
Density-based methods, such as DBSCAN or OPTICS, are suitable for arbitrary-shaped
distributions. However, they cannot deal with high-dimensional data and varying densities.
They also do not assign outliers to clusters. Distribution-based approaches, such as
GMM, are suitable for Gaussian-distributed data. Hierarchical clustering fits datasets
with a hierarchical structure the best. However, they are time-demanding and sensitive
to their parameterization, such as the linkage criterion that must be defined [RG19]. The
presented algorithms cluster the data based on their distribution [XT15]. An enhancement
are deep learning-based approaches that consider the representation learned on the data
in addition to the data distribution [KBZ+21]. However, their evaluation is hindered due
to the limited amount of labeled data [KBZ+21].

In Subsection 5.2.2, we show the clustering results and evaluation of the cluster separation.
Centroid-based algorithms, in our case, k-means and mean-shift, lead both to the same
clustering result with the highest cluster separation scores. They detect the two visual
clusters on the t-SNE dimensionality reduction result, which we determine as the default
option in subtask (T1a). Figure 4.18 illustrates the clustering result of both algorithms.
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In k-means, the number of clusters must be specified in contrast to mean-shift. However,
in mean-shift, the bandwidth parameter must be defined. We set k-means as the default
option as mean-shift is computationally expensive, especially on a large number of
data samples [HCL+19, ZZ21]. While mean-shift has a quadratic time complexity, the
complexity of the k-means algorithm is linear [HCL+19, ZZ21]. In Figure 4.19, we
demonstrate the result of the k-means algorithm on the MDS reduced space, where
it assigns the data points to two clusters. The different clustering algorithms can be
explored through the interface on demand. Combined with the forward and backward
analysis tasks, they can be applied to the complete dataset or any subset of patients or
features.

Figure 4.18: Clustering through the k-means or mean-shift algorithm on the data reduced
through the t-SNE dimensionality reduction method.

Figure 4.19: Clustering the MDS reduced space through the k-means algorithm.
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4.3.3 Visualization (T1c)

Why: present the identified clusters of (T1b) in a visual representation

How: encode cluster similarities and differences as a visual representation

Input: two-dimensional data from subtask (T1a), clusters from subtask (T1b)

Output: visual cluster representation

We visualize the reduced and clustered data through a scatterplot to visually present the
patterns identified in the data as shown in Figure 4.18 and in Figure 4.19. Furthermore,
we highlight the density of points through density contours and shading as a visual
feedback on dense areas on the plot and the separation of clusters. Visualizing the
high-dimensional data through a scatter matrix or a heatmap matrix of all feature
correlations instead would capture only pairwise relations and does not identify complex
patterns in the data. In Figure 4.20 we visualize a subset of the clincal features through
a scatterplot matrix for demonstration purposes. We select one point on the scatter
matrix and highlight this point in all views by applying transparency on the not selected
points. However, the number of our features is larger than 10400, which hinders the data
exploration in these visual encodings. They do not allow efficient pattern recognition
and affect the performance of the application.

Figure 4.20: Pairwise correlations of a clinical feature subset.
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4.4 Forward Analysis – Free Exploration (T2)
Why: explore the data selected in a visualization

discover patterns and correlations in the data visualization
present the selected data in a visual representation
lookup and identify data points selected in the visualization
identify data with top characteristics or differences

How: select patterns of interest in the visualization
encode the selected data in a visual representation
navigate in the visualization through zooming or by showing details on demand
arrange the data by ranking scores

Input: visualization of clusters from subtask (T1c)

Output: visualization of the selected data subset, its distributions, and the top features
and gene mutations

After identifying and visualizing data patterns in the cohort stratification, we allow
users to interact with these patterns through patient selections or subset processing and
comparisons to explore and understand the data for knowledge discovery. This task
further encourages hypothesis generation by identifying features that differentiate or
characterize the clustered data. We highlight the density of the scatter points through a
KDE plot of contours on the scatterplot. Figure 4.21 shows an enlarged view of these
contours for the t-SNE reduced space. The contours reveal a subgrouping in the green
points. In Figure 4.22, we demonstrate the KDE contours for FAMD. They have a
detailed structure and reveal groupings in subsets of the orange data points. Moreover,
we show details on the patients or feature distributions on demand by using tooltips.

Figure 4.21: KDE contours on the t-SNE reduced space.
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Figure 4.22: KDE contours on the FAMD reduced space.

4.4.1 Analysis of Patient Stratification (T2a)

Why: identify and explore similarities and differences of patient groups

How: annotate patient groups with similar or different features

Input: data visualization from subtask (T1c)

Output: data visualization with annotation of groups with similar or different features

We analyze the patient stratification to explain why the identified clusters are similar
or different. By applying Shapley Additive Explanations (Shap) to the clustering re-
sult [LL17], we predict features that impact the clustering the most. We determine the
top features of each cluster and combine them in the heatmap to provide users with
an overview of these features as shown in Figure 4.23. On demand, we offer a detailed
bar chart view that allows users to filter features by the radiomic, genomic, or clinical
data, as depicted in Figure 4.24. Moreover, users can select any of these features through
the heatmap or bar chart to highlight their values on the scatterplot, as illustrated in
Figure 4.25. We implement Linear Discriminant Analysis (LDA) and Stochastic Gradient
Descent (SGD) to pairwise determine the differentiating features between the identified
clusters [OH21]. LDA fits a Gaussian density to each class, while SGD fits a linear
Support Vector Machine (SVM). Both are linear methods, but SGD works with data
represented as dense or sparse, which matches our sparse genomic or dense radiomic
data. SGD further reveals more significant differences for our default preset of t-SNE,
especially for genomic data. Therefore, we set SGD as the default method and allow users
to explore LDA on demand. We sort the data by their relevance through the predicted
impact on the clustering and combine the top 0.5% of the resulting feature subset in a
heatmap to provide a visual and compact overview of the characteristics and differences
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of the identified clusters, as depicted in Figure 4.23. The higher the value is, the higher
is its relevance in characterizing or differentiating clusters. The red values in the first two
lines in Figure 4.23 represent the characteristics of the green or orange cluster. The red
values in the third line of the heatmap represent the differences between both clusters.
This allows the user to get an overview of all relevant features and compare their impact
through all clusters and their pairwise differences. We use an exponential color scale and
normalize all values in the range -1 to 1 to make them comparable and emphasize the
diverging values at the beginning and end of the ranges. Using a linear or logarithmic
color scale instead, leads to almost uniform colors on the heatmap that do not clearly
depict the relevance of features for a cluster.

Figure 4.23: Heatmap view on characteristics and differences of a cluster.

Figure 4.24: Characterizing features of the green cluster sorted by their relevance.
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Figure 4.25: Radiomic feature values of the morphological diameter highlighted on the
scatterplot. This reveals that values on the top right cluster are lower than the values on
the bottom left cluster.

4.4.2 Data Selection on the Visualization (T2b)

Why: explore the data selected, discover patterns in the selection on the visualization
present the selected data

How: select data in the visualization through a lasso-selection (or through a hypoth-
esis as part of the backward analysis)

Input: data visualization from subtask (T1c)

Output: visualization of the selected data subset

We allow users to select any patient subset on the scatterplot through a lasso selec-
tion [BC87]. Compared to a rectangular selection, a lasso selection provides more flexible
selection shapes that are not necessarily connected or neighbored on the scatterplot.

Figure 4.26: Lasso selection on the scatterplot.
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4.4.3 Most Expressed Gene Mutations (T2c)

Why: identify data with top genes, and discover patterns in the visualization

How: arrange genes by their occurrence, filter the genes, and encode them visually

Input: matrix of genes and the persons that have them

Output: visual representation of the top genes in the interface

Our domain experts are interested in understanding the gene mutation data and identi-
fying relevant gene mutations for the patients. Therefore, we determine and show the
top gene mutations of any active patient subset selection on the scatterplot, as shown in
Figure 4.27. The subset can be selected either manually through a lasso selection on the
scatterplot or through a hypothesis-based selection as part of the backward analysis.

Figure 4.27: Top gene mutations of an active selection on the scatterplot.

4.4.4 Navigation in the Visualization and Details on Demand (T2d)

Why: lookup details on demand to discover patterns in the data (distribution,
additional information on data points, number of gene mutations)

How: navigate in the visualization through zooming or by showing details on
demand e.g., by hovering

Input: data visualization from subtask (T1c)

Output: visualization with details on demand and navigation possibilities

Users can navigate the visualization by zooming in or out on the scatterplot. We further
show patient distributions on the heatmap on demand through a tooltip and display
patient scores when moving the mouse over a patient in the scatterplot, as demonstrated
in Figure 4.28.
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Figure 4.28: Tooltip on the heatmap show patient distributions of the respective heatmap
feature. On the scatterplot, the tooltip reveals clinical scores of a patient.

4.4.5 Presets Selection and Parameter Change (T2e)

Why: explore the data of the option selected, discover patterns in the data

How: select predefined options through the interface (dropdowns, radio buttons)

Input: data visualization from subtask (T2b)
reduced data from subtask (T1a)
imputed values from subtask (T0c)
data without outliers from subtask (T0d)

Output: data of the selected options shown in a visualization

Users are provided presets for the data analysis based on evaluating the analysis and cohort
stratification options and identifying the most suitable parameters for the underlying
datasets. Furthermore, users can manually change any analysis option through the
interface to explore how this affects the revealed patterns in the data. We show the
presets and default options in Figure 4.29.

Figure 4.29: Presets and data analysis options are shown on demand for an extended
analysis and exploration of the data.
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4.5 Backward Analysis – Hypothesis-based
Exploration (T3)

Why: discover whether a hypothesis is confirmed or rejected
lookup features of interest (e.g., genes, radiomic features, clinical data)
identify the selected subset based on a hypothesis
explore features of a selected cluster or patient
compare the selected and filtered data points and features with each other

How: select or filter the radiomic, genomic, and clinical data based on a hypothesis
encode the selected or filtered data in a visual representation
arrange features to select based on their distribution or alphabetic order

Input: data visualization from subtask (T1c) and a user-defined hypothesis

Output: Filtered visualization based on a hypothesis

In the backward analysis, we allow users to assess the correctness of a hypothesis by
filtering the data based on a hypothesis in mind. Users can interactively filter, select, and
compare data subsets [Shn94]. This enables users to identify thresholds for hypothesis
assessment or to determine a new hypothesis for the underlying data, as illustrated in
Figure 4.32. The resulting subset of data points is selected on the scatterplot and can be
used for further forward or backward data exploration.

4.5.1 Radiomic, Genomic, and Clinical Data Filtering (T3a)

Why: discover whether a hypothesis is confirmed or rejected
lookup, identify, and explore the desired data in a visualization

How: filter the data based on a hypothesis (below, above threshold, define range)
arrange features to select based on their distribution or alphabetic order

Input: data visualization from subtask (T1c) and a user-defined hypothesis

Output: filtered visualization based on a hypothesis

This task aims to discover whether a hypothesis is confirmed or rejected for the
underlying data. We want to lookup and identify the features of interest to highlight
them in the visual representation that the user can explore. To fulfill this task, we filter
and arrange the features matching a partial input of the feature name by alphabetic
order and filter the data based on the selected features and the defined ranges [Shn94].
The backward analysis allows users to assess the correctness of any hypothesis in mind
on the visual representation.
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4.5.2 Feature Subset for Visual Hypothesis Assessment (T3b)

Why: discover whether a hypothesis is confirmed or rejected based on the cohort
stratification of a feature subset

How: select feature subset and visualize the outcome of a hypothesis on it
arrange features to select based on their distribution or alphabetic order
Example: analyze and visualize clinical, radiomic, or genomic data separately,
or use any combination of their feature subset

Input: data visualization from subtask (T1c) and a user-defined hypothesis

Output: filtered visualization based on hypothesis

Based on the hypothesis defined in (T3a), we allow users to explore the resulting
patient subset and the feature distributions of this resulting subset. Users can apply the
stratification on only the identified patient subset, as illustrated in Figure 4.30.

Figure 4.30: Apply cohort stratification on only the patient subset that fulfills the
hypothesis. The resulting patients are shown on the scatterplot.

Furthermore, users can compare the characteristics and differences of the patient subset
that fulfills the hypothesis with patients that do not fulfill the hypothesis, as shown in
Figure 4.31. To accomplish this task, we automatically select patients matching the
conditions specified through a hypothesis, and allow users to cluster the data based on
the selected patients.
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Figure 4.31: Comparison of patients that fulfill the hypothesis (orange cluster) with
patients that do not fulfill it (green cluster) by investigating the characteristics and
differences of both groups on the heatmap on the bottom of the view.

4.5.3 Hypothesis-based Comparison of Patients and Features (T3c)

Why: compare patients selected through a hypothesis with not selected patients
compare interactively how selected feature ranges affect the patient selection
on the scatterplot

How: select data in a visualization through a hypothesis
filter features, and update the differences and characteristics on the heatmap

Input: data visualization from subtask (T1c) and a user-defined hypothesis

Output: characteristics and differences of selected subset based on a hypothesis

To interactively compare the impact of changing feature thresholds on the visual
representations and to refine a hypothesis, we allow users to interactively select thresholds
for each hypothesis feature through sliders, as depicted in Figure 4.32. This enables users
to explore how each change conveys to the resulting patient subset on the scatterplot.

Figure 4.32: Hypothesis creation and refinement through interactively changing sliders.
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4.6 Development Environment and Libraries
We implement our framework as a web application through Python and JavaScript. On
the backend, we use Python due to its high machine learning and analysis capabilities
through available libraries. This allows us to flexibly test, compare, and provide different
analysis options on the data. For the frontend, we utilize JavaScript, which has a higher
performance than Python and is therefore advantageous for interactive tasks. We use the
D3 library of JavaScript to create the visualization and interaction components of our
framework. It allows free customization of all visual aspects, such as the axis, legends, or
the integration of additional visual elements and glyphs. The communication between
the frontend and backend is performed through the Flask web framework of Python
as HTTP requests. Figure 4.33 gives an overview of our workflow. We read, process,
and analyze the data on the backend through Python. This includes all subtasks of the
preprocessing (T0) and cohort stratification (T1) tasks. Then, we transfer the analysis
results to the frontend through the Flask web framework, where we implement the HTML
page structure and content, the CSS page layout and design, as well as the Javascript/D3
visualization and interaction components. Therefore, the forward analysis (T1) and the
backward analysis (T2) tasks are performed on the frontend.

Figure 4.33: Simplified illustration of our implementation structure. We read, process,
and analyze the data on the backend through Python. Then, we transfer the analysis
results to the frontend through the Flask web framework, where we implement the HTML
page structure and content, the CSS page layout and design, as well as the Javascript/D3
visualization and interaction components.

For the machine learning part, we mainly use the Scikit-learn library for the data encoding,
imputation, outlier detection, dimensionality reduction, clustering, and prediction of the
characterizing and differentiating features of the identified clusters. Additionally, we
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test the Impyute, AutomImpute, MiceForest, and FancyImpute libraries for extended
imputation capabilities. We utilize Pandas and Numpy for the data management and
computations on the data. Further, we use the Chardet library for character encoding.
For the UMAP dimensionality reduction, we employ the umap-learn library. To reduce
the dimensionality of the data through the FAMD algorithm, we utilize the prince library.
On the frontend, we use the D3 plugins d3-lasso for the lasso selection on the scatterplot,
d3-contour for integrating density-based contours on the scatterplot and d3-tip to show
the heatmap tooltip of the distribution plots on demand. We perform the data filtering,
sorting, and interaction components on the frontend to allow users to interactively receive
feedback on the visualization. If users desire to apply the cohort stratification on a subset
of patients or features, we do this on the backend, which requires a waiting time of up
to 7 seconds depending on the concrete task and processing steps required. During this
time, we show a waiting indicator in the framework to visually inform the user about
the ongoing processing of the data. We implement predicting the characterizing and
differentiating clustering features on the backend and therefore update the heatmap
during interactive tasks only on demand to support the interactive exploration of the
data.

4.7 Overview on our Framework Components

We divide the interface into three main views and show tooltips for the heatmap and scat-
terplot points on demand to reveal additional information on the data without cluttering
the view and with a clear relation to the respective feature or patient. Furthermore, we
integrate five tabs to visualize feature values, the top clustering features, or the most
expressed gene mutations. Our tabs also consist of a processing view to specify data
subsets for the analysis or a hypothesis view to visually assess or create hypotheses on
the data by combining features and ranges of interest to filter the data interactively.
Figure 4.34 gives an overview of our framework and its interactive views, while Figure 4.35
summarizes the functionality of the five tabs (Figure 4.34, B) of our framework.

Component (A) – (T0–T3) We show a scatterplot view with the result of the cohort
stratification, where each patient represents one scatter point. The color of the points
indicates the cluster the patient is assigned to and matches the color in all other views.
On the top right of the view, three buttons are revealed when a selection of patients is
made on the scatterplot. These allow users to zoom in to the selection, to process and
stratify only the points of this selection, or to set an active selection as its own cluster to
investigate its features in relation to the not selected points through the heatmap (C) or
in the Clusters and Top gene views (B).

Component (B) – (T2–T3) This view consists of five tabs to visualize feature values
selected on the scatterplot, a ranked list of the top clustering features, or the gene
mutations that occur the most for an active selection on the scatterplot. A detailed view
of them is given in Figure 4.35.
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Values (T2): This default view allows users to see the distributions of patient values
for an active selection on the scatterplot. The values are grouped per
cluster, which serves as initial feedback on the data and the clustering
scores.

Clusters (T2): By changing to this view, users are presented a ranked list of features
that pairwise differentiate between two clusters. This serves as a
detailed view of the heatmap features that also allows filtering the
features regarding their radiomic, genomic, or clinical data. Users can
also select to show the characteristics of one of the identified clusters
and explore these features further.

Top genes (T2): This view shows a ranked list of the top gene mutations based on the
number of patients that have them. It is displayed by default for the
complete dataset but can be filtered through any selection made on the
scatterplot.

Processing (T3): The processing view allows the selection of any feature subset of the
radiomic, genomic, or clinical data for the analysis process. By default,
all features of all datasets are integrated that can be filtered on demand.

Hypothesis (T3): Users can highlight features of interest on the scatterplot or combine
features to a hypothesis and assess its correctness for the underlying
data. The feature ranges can be interactively and visually defined
through sliders. We allow the combination of multiple features through
a local and or a logical or operation. The resulting subset leads to
a hypothesis-based selection on the scatterplot that can be explored
further by investigating the top genes or features of the selection.

Component (C) – (T2–T3) The heatmap gives an overview of the features character-
izing and differentiating the clusters. It consists of normalized values from -1 to 1 colored
through a scale ranging from blue to red to make the ranking scores comparable and
emphasize the diverging values around the beginning and end values of the ranges. The
higher the value is, the higher is its predicted impact on the current clustering on the
scatterplot.

Component (D) – (T2–T3) On demand, we show a pyramid plot as a tooltip on the
heatmap to compare patient distributions between two clusters depicted on a scatterplot.
It is visualized for a specific heatmap feature on demand to preserve a clean view. When
more than two clusters are available, the distribution of the cluster depicted by the
respective heatmap line is compared with the points outside this cluster.

Component (E) – (T2–T3) Advanced options are available on demand. These allow
users to reveal the current analysis options and adjust them to investigate how each
change affects the patterns, clusters, or top features and gene mutations of the data.
When an active selection is made on the scatterplot, it is kept while changing the advanced
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options or switching the view between tabs to allow users to investigate these points
further and see where they are located after a parameter change. These also consist of
three presets with predefined analysis options that enable users to reset the view back to
the default option through the TSNE preset or explore different dimensionality reduction
methods with predefined parameters.
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Figure 4.34: Main views (A-E) of our visual radiogenomics analysis framework.
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Figure 4.35: Detailed view of the five tabs of our framework.
These represent component (B) of Figure 4.34.
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CHAPTER 5
Results and Evaluation

This chapter presents our visual interactive and flexible framework for the combined
radiogenomic and clinical data analysis. It allows domain experts to gain insights into the
data for knowledge discovery and hypothesis assessment. Figure 5.1 shows our resulting
framework.

Figure 5.1: Our visual radiogenomics framework.

We summarize evaluation techniques in Section 5.1 and present our quantitative feedback
in Section 5.3 as well as our qualitative evaluation with domain experts in Section 5.3.
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5.1 Evaluation Techniques
Evaluation is essential to understand whether a visualization tool achieves its goals [Mun09].
This process requires a thorough understanding of the visualization components and their
complex processes [LBI+12]. Munzner et al. [Mun09] presents a model with four nested
layers for the design and evaluation of visualizations, as shown in Figure 5.2. This model
characterizes the domain problem and data (level 1), which are mapped into abstract
operations and data types (level 2). The visual encoding and interaction techniques for
the operations and data types are designed (level 3), and the algorithm for the visual
encoding and interaction design is specified (level 4) [Mun09]. Figure 5.3 summarizes
threats that could arise in each level of the nested model and their validation methods,
from which a subset can be considered in evaluating visualization approaches [Mun09].
Examples of the proposed validations include the observation of target users, the justifica-
tion of visual encodings and interaction design, the computation of time and complexity
of algorithms, as well as qualitative or quantitative evaluation of the resulting analysis.
An appropriate validation approach for the resulting analysis is the qualitative discussion
through images [Mun09].

Lam et al. [LBI+12] present seven scenarios to evaluate information visualizations. These
include, for example, the evaluation of visual data analysis, visualization algorithms,
or user performance. Isenberg et al. [IIC+13] extend the evaluation scheme of Lam et
al. [LBI+12] by qualitative result inspections. These consist of qualitative discussions
and assessments of visualization results that address viewers. They comprise showing
images of the end results together with a problem description and justification to clarify
how the specified goal is met [IIC+13]. For frameworks that tackle data analysis,
knowledge discovery, or knowledge management, Lam et al. [LBI+12] and Isenberg et
al. [IIC+13] propose the evaluation through Visual Data Analysis and Reasoning (VDAR).
This category includes usage scenarios as a validation technique that describes how a
hypothetical domain expert could use the visualization tool. When domain problems
are handled through close collaboration between visualization researchers and domain
experts, or reports are created on domain experts interacting with the visualization tool,
it is considered as a case study instead [IIC+13].

As suggested by Lam et al. [LBI+12] and Isenberg et al. [IIC+13], we conducted the
qualitative evaluation through VDAR as usage scenarios. Our usage scenario screenshots
and descriptions can be further perceived as qualitative result inspection as they describe
the problems and demonstrate their solutions within our tool through images and
justifications [IIC+13]. We presented the tool in several iterations to our domain experts,
who freely commented on it. Furthermore, our tool emerged through collaboration
with domain experts. It was tested by one of our cancer experts, who interacted with
the framework and described her thoughts on its functionality and usability, which we
documented in parallel. Regarding the definition of Isenberg et al. [IIC+13], this is
considered as a case study from domain experts and close collaborators. Our quantitative
evaluation includes determining error scores for the imputation methods and clustering
separation scores based on similarity measures.
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Figure 5.2: Nested four-level model for visualization design and evaluation [Mun09].

Figure 5.3: Threats and validation of the nested design and evaluation model [Mun09].

5.2 Quantitative Scores
We quantitatively evaluate our imputation approach through determining the MAPE
and RMSE for different missingness percentages on the trainingset of our data, as
presented in Subsection 5.2.1. Moreover, we evaluate the cluster separation through
the Silhouette coefficient [Rou87], the Calinski-Harabasz index [CH74], and the Davies-
Bouldin index [DB79]. In Sectiion 5.2.2, we show the evaluation results of the clustering.

5.2.1 Imputation Scores
For the data imputation, we divide the subset of patients with complete features into a
training and test set. We randomly simulate missingness in the datasets and calculate
the RMSE and MAPE of the result. We repeat this process five times with randomly
simulated missingness percentages and data splitting to ensure its robustness and plot
the mean error of these five iterations. Figure 5.4 – Figure 5.9 show the distribution of
the features before imputation and with the three main options we provide through the
interface. These options are BEST, MICE, and KNN. The BEST imputation applies the
best suitable method on each feature considering the data types and RMSE evaluation.
MICE and KNN are applied on all features with missingness when these options are
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selected. The RMSE behaves similarly for features of the same data type. Therefore, we
demonstrate in this thesis only the RMSE for one representative feature of each data
type on the training and test set. Figure 5.10 and Figure 5.11 show the RMSE for the
binary BCR status feature on the training and test set. The y-axis depicts the RMSE,
while the x-axis shows the missingness percentages simulated in the data. Figure 5.12
and Figure 5.13 depict the RMSE for the discrete BCR time feature. Figure 5.14 and
Figure 5.15 illustrate the RMSE for the continuous post PSA feature. In general, these
three methods are stable for our default t-SNE preset as they do not affect the clustering
of the patients. Even imputing the missingness through a constant value leads to a
deviation of only one patient that is assigned to a different cluster compared to using
other imputation methods.

Figure 5.4: BCR status feature distribution before and after imputation.

Figure 5.5: Tumor margin feature distribution before and after imputation.
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Figure 5.6: Post PSA feature distribution before and after imputation.

Figure 5.7: BCR time feature distribution before and after imputation.
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Figure 5.8: BCR PSA feature distribution before and after imputation.

Figure 5.9: Pre-OP therapy feature distribution before and after imputation.
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Figure 5.10: RMSE error for imputing a binary feature on the training set.

Figure 5.11: RMSE error for imputing a binary feature on the test set.
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Figure 5.12: RMSE error for imputing a discrete feature on the training set.

Figure 5.13: RMSE error for imputing a discrete feature on the test set.
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Figure 5.14: RMSE error for imputing a continuous feature on the training set.

Figure 5.15: RMSE error for imputing a continuous feature on the test set.
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5.2.2 Clustering Results and Evaluation
Table 5.1 shows the evaluation of the cluster separation scores. We calculate the Silhou-
ette coefficient [Rou87], the Calinski-Harabasz index [CH74], and the Davies-Bouldin
index [DB79] for all clustering and dimensionality reduction methods. The higher the
Silhouette Coefficient and the Calinski-Harabasz index is, the better the clusters are
defined. In contrary, a lower Davies-Bouldin index is related to a better separation of
clusters.

Table 5.1: Cluster separation scores. The first line for each clustering method represents
the Silhouette coefficient, the second line depicts the Calinski-Harabasz index, and the
third line represents the Davies-Bouldin index.

t-SNE MDS FAMD UMAP PCA

k-means
(2 clusters)

0.89
414.15
0.40

0.42
37.70
1.30

0.97
104.65
0.03

0.65
111.35
0.81

0.89
118.47
0.02

Silhouette coefficient
Calinski-Harabasz index
Davies-Bouldin index

mean-shift
0.89
414.15
0.40

0.89
414.15
0.40

0.94
3671.70
0.13

0.60
98.33
0.79

0.98
29195.39
0.0039

Hierarchical
(4 clusters)

0.52
255.10
0.92

0.36
38.67
1.06

0.94
3671.70
0.13

0.50
86.18
0.89

0.83
44959.24
0.31

Hierarchical
(6 clusters)

0.47
219.86
0.89

0.47
45.97
0.86

0.49
4467.11
0.44

0.44
82.32
0.88

0.58
85453.22
0.37

OPTICS
0.21
10.51
1.41

-0.39
0.53
4.32

-0.44
2.08
2.01

0.21
33.47
2.84

-0.31
0.20
2.09

GMM
0.50
239.68
0.88

0.36
33.19
1.13

0.94
2408.29
0.21

0.56
90.58
0.82

0.81
44417.79
0.32

For t-SNE, k-means and mean-shift lead to the best cluster separation. Both methods
detect the two visual clusters in the data. For MDS, mean-shift leads to the highest
separation score. However, mean-shift defines one cluster with only one point assigned,
which is not the desired space division. The next methods with the highest separation
values are k-means and hierarchical clustering. While k-means identify two clusters
in the data, the hierarchical clustering algorithm determines the number of clusters
specified. For FAMD, k-means leads to the highest separation. However, it determines
two clusters, where one of them consists of only one point. Mean-shift and hierarchical
clustering lead to the next highest scores. Mean-shift identifies five clusters that also
match the visual grouping of the data through the FAMD algorithm. For UMAP, the
k-means and mean-shift algorithms identify both two clusters. However, they differ in the
structure and are not well separated. PCA has the highest separation scores for k-means
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and mean-shift, but both of them consist of clusters that contain only outliers, which
is not the desired space division. The next highest score for PCA is reached through
hierarchical clustering by using four clusters. The results of these clustering algorithms
applied to the dimensionality-reducted data are shown in Figure 5.16 – Figure 5.40. We
set three dimensionality reduction and clustering combinations as presets in the interface
to facilitate applying them to the data. Furthermore, we allow users to freely investigate
different methods by applying them to the data.

Figure 5.16: K-means and mean shift clustering lead both to the same clustering on the
t-SNE dimensionality reduction result.

Figure 5.17: Hierarchical clustering with four clusters applied to the t-SNE dimensionality
reduction result.
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Figure 5.18: Hierarchical clustering with six clusters applied to the t-SNE dimensionality
reduction result.

Figure 5.19: OPTICS clustering applied to the t-SNE dimensionality reduction result.
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Figure 5.20: GMM clustering applied to the t-SNE dimensionality reduction result.

Figure 5.21: K-means clustering applied to the MDS dimensionality reduction result.
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Figure 5.22: Mean-shift clustering applied to the same clustering on the MDS dimension-
ality reduction result.

Figure 5.23: Hierarchical clustering with four clusters applied on the MDS dimensionality
reduction result.
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Figure 5.24: Hierarchical clustering with six clusters applied on the MDS dimensionality
reduction result.

Figure 5.25: OPTICS clustering applied on the MDS dimensionality reduction result.
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Figure 5.26: GMM clustering applied on the MDS dimensionality reduction result.

Figure 5.27: K-means clustering applied to the FAMD dimensionality reduction result.
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Figure 5.28: Mean-shift clustering and hierarchical clusters with four clusters lead both
to the same clustering result when applied to the FAMD dimensionality reduction result.

Figure 5.29: Hierarchical clustering with six clusters applied on the FAMD dimensionality
reduction result.
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Figure 5.30: Zoomed result of the hierarchical clustering with six clusters applied on the
FAMD dimensionality reduction result.

Figure 5.31: OPTICS clustering applied on the FAMD dimensionality reduction result.
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Figure 5.32: Zoomed result of the OPTICS clustering applied on the FAMD dimensionality
reduction result.

Figure 5.33: GMM clustering applied on the FAMD dimensionality reduction result.
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Figure 5.34: Zoomed result of the GMM clustering applied on the FAMD dimensionality
reduction result.

Figure 5.35: K-means clustering applied to the UMAP dimensionality reduction result.
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Figure 5.36: Mean-shift clustering applied to the same clustering on the UMAP dimen-
sionality reduction result.

Figure 5.37: Hierarchical clustering with four clusters applied on the UMAP dimension-
ality reduction result.
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Figure 5.38: Hierarchical clustering with six clusters applied on the UMAP dimensionality
reduction result.

Figure 5.39: OPTICS clustering applied on the UMAP dimensionality reduction result.
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Figure 5.40: GMM clustering applied on the UMAP dimensionality reduction result.

5.3 Qualitative Evaluation
We qualitatively evaluate our framework through usage scenarios, through a cancer expert
testing and commenting on our application, and through regularly presenting the progress
of the application to domain experts and receiving comments on its functionality and
clinical applicability. We summarize the feedback of domain experts in Subsection 5.3.2
and present a selection of ten usage scenarios out of sixty in Subsection 5.3.1.

5.3.1 Usage Scenarios
To evaluate the data analysis, knowledge discovery, or knowledge management capabilities
of our framework, we create usage scenarios based on the hypothetical view of domain
experts as described by Isenberg et al. [IIC+13] and Lam et al. [LBI+12]. We mainly
include the cases that our domain experts communicate as being of interest in the
scenarios. Furthermore, we validate the importance of the scenarios with them and
receive extensive comments and extended cases for further scenarios that we included.
This resulted in 60 usage scenarios, from which we select ten examples together with our
cancer experts to demonstrate the usage of our application for knowledge discovery and
hypothesis assessment.
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Free selection of patients on the scatterplot By clustering the data, the patients
are grouped into two groups with similar radiogenomic and clinical profiles. To understand
why the two clusters differ, we show the top features characterizing or differentiating
them. To further reveal why these features characterize or differentiate the clusters, we
visualize their distributions for both clusters on demand. We additionally allow users to
see feature distributions of patients grouped by the identified clusters as initial feedback
on the data. By default, we show the values of the complete data to highlight differences
between the clusters. Users can then make any free selection of patients on the scatterplot
to filter the distribution plots for the selected patients. Figure 5.41 shows a selection
of three orange points in the center and a subset of green points that visually form
a subcluster on the top right. These are indicated through the inflated points in the
scatterplot. This reveals that in the orange cluster, the selected patients all have low
PSA-pre OP values, while the PSA-pre OP values of the selected patients in the green
cluster also include higher scores as shown in the pyramid plot that is brought into the
view on demand. Furthermore, this highlights that the distributions of the age or ISUP
grade of these patients differ between the orange and green cluster and that none of the
selected patients has an ISUP grade of 1.

Figure 5.41: Free patient selection on the scatterplot to see the feature distributions for
the selected patients.
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Characteristics of a patient cluster Under the Clusters tab, we show an enlarged
view of the characteristics or differences of clusters. By default, we show the differences
between the identified clusters. In Figure 5.42, the green cluster (the grouping on the top
right of the scatterplot) is selected to display its characterizing features. In this case, all
top features are from the radiomic dataset. We allow users to filter the datasets to see also
the characterizing genomic or clinical features through checkboxes. In Figure 5.42, the
first radiomic feature is selected, which represents the entropy of the intensity histogram.
Entropy is a measure of uncertainty or randomness in the image that characterizes the
image texture [TLM08]. It can characterize heterogeneity or homogeneity of the tumor
and might indicate tumor regression [DAB+17, MAM+23]. In this example, the patients
in the green cluster (on the top right of the scatterplot) have higher entropy values
compared to patients in the orange cluster (on the bottom left of the scatterplot).

Figure 5.42: Investigation of the radiomic feature ih.entropy as one of the characteristics
of the green cluster. Its values are higher in the green cluster (top right of the scatterplot)
compared to the data points on the bottom left.
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Top genes based on a specified condition The Top genes tab highlights the top
gene mutations for all patients or an active patient selection on the scatterplot. These
represent gene mutations that occur for most patients with a value higher than zero. In
Figure 5.43, all patients with an ISUP grade of four or five are selected to investigate
their top gene mutations. Furthermore, the first gene mutation, in this case PLEC, is
highlighted on the scatterplot to show its values for the selected patients (large scatter
points that have an ISUP grade of four or five) and the not selected patients (small
scatter points that have an ISUP grade of one to three) in comparison. The points
with no filling do not have this gene mutation, while all colored points have it. Larger
points are the ones that also match the current hypothesos. PLEC ist of relevance as it
maintains tissue integrity that regulates cell survival [RTS+19, WBKA21].

Figure 5.43: Investigation of the top genes of all patients with an ISUP grade of four or
five (large points on the scatterplot) and selection of the PLEC gene mutation. Filled
scatter points represent patients with the PLEC gene mutation.
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Comparison of clusters formed through a specified condition In the scenario
in Figure 5.44, patients with an ISUP grade of four or five are selected (black selection
in the histogram). The heatmap features are updated to compare patients that match
this condition of having an ISUP of at least four with patients that do not match it and
have an ISUP of three or smaller. This allows users to identify features that differentiate
or characterize the specified groups. For example, the BCOR gene mutation occurs
only for patients that match the specified condition. BCOR indicates aggressive cancer
diseases [AFM+19].

Figure 5.44: Comparison of patients with an ISUP grade of four or five (large points on
the scatterplot with an orange border) with patients that have lower ISUP grades. The
heatmap shows which features characterize or differentiate these two ISUP groupings
the most. For example, the BCOR gene mutation is a characteristic of patients with an
ISUP of four or five located in the bottom left cluster. Filled scatter points represent
patients with the BCOR gene mutation.
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Assessment of a hypothesis involving a gene and clinical score A scenario for
the assessment of the following hypothesis is shown in Figure 5.45:

All patients that have the MED12 gene mutation, have an ISUP grade of at least 2.

This hypothesis is confirmed for the underlying data, which is revealed through in-
teracting with the feature sliders. After selecting all patients that have the MED12
gene mutation (black selection on the histogram), and adding the ISUP grade feature
to the hypothesis (textbox with suggestions on top of the histograms), moving the
minimum limit of the ISUP grade slider to 1 keeps the selected patients on the scatterplot
unchanged. In contrast, a higher grade leads to a filtering of the selected patients on the
scatterplot. Users can freely choose any thresholds for the features of interest (through
the histograms) to interactively explore how this selection influences the result.

Figure 5.45: Assessment of a hypothesis involving the MED12 gene mutation and the
ISUP grade. All patients that have the MED12 gene mutation have an ISUP grade of at
least two, which is revealed by interactively changing the ISUP grade sliders.
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Assessment of a hypothesis involving two genes This scenario assesses the fol-
lowing hypothesis as shown in Figure 5.46:

All patients that have the PLEC gene mutation do not have the MED12 gene mu-
tation.

This hypothesis is rejected for the patient depicted by the red arrow (Figure 5.46)
as this patient has both gene mutations. However, it is confirmed for all other patients.
Users can further adjust the limits to identify, for example, patients that do not have any
of the two gene mutations or have at least one of them and freely combine the resulting
subset with other features of interest. The heatmap on the bottom supports users in
identifying features of relevance for the current clustering on the scatterplot.

Figure 5.46: Assessment of a hypothesis involving the PLEC gene mutation and the
MED12 gene mutation. Only one patient (depicted by the red arrow) has both gene
mutations, while all other patients that have the PLEC gene mutation do not have the
MED12 gene mutation. This is revealed through interacting with the feature sliders.
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Hypothesis generation and refinement Figure 5.47 shows a scenario to create and
refine a hypothesis based on features of interest. The users are interested in high PSA-pre
OP scores with no concrete hypothesis in mind. By adding all features of interest, users
can interactively identify and refine ranges that are true for high PSA-pre OP scores. In
this case, we identify the following true statement for the underlying data:

Patients that have the highest PSA-pre OP values starting from 665, have post PSA
values starting from 36 and BCR PSA values starting from 8 and do not have the MED12
gene mutation and they have an ISUP grade of 5.

This statement is generated through adding histograms for the features, and interactively
selecting the threshold ranges (marked in black on the histograms). The resulting patient
subset is then highlighted on the scatterplot (three large orange points in this case).

Figure 5.47: Identification of feature ranges for patients with a high PSA-pre OP value.
Users can add features of interest and interactively identify ranges for a matching
condition.
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Filtering based on features of different datasets The scenario in Figure 5.48
combines 19 features as a hypothesis example with a larger number of features. In
general, we allow users to combine, explore, and interact with any number of features
of the radiomic, genomic, or clinical dataset for hypothesis filtering. These features
can be connected through a logical and or a logical or operation. We evaluate the
statement always from the left side to the right side, which is relevant when mixing
different operators in one statement. As an example, the statement A or B and C for
three features A, B, C is evaluated as ((A or B) and C), which does not necessarily lead
to the same result as (A or (B and C)).

Figure 5.48: Our framework supports adding any number of features of the radiomic,
genomic, or clinical dataset to the hypothesis. This example combines 19 features for
demonstration purposes.
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Highlighting feature values on a hypothesis result We allow users to select any
subset of radiomic, genomic, and clinical data features to apply the preprocessing steps
and cohort stratification on it. As the radiomic features dominate when combining all
features of the three datasets, the scenario in Figure 5.49 excludes the radiomics data
from the analysis to see how this affects the grouping of the features. In this example, all
genomic and clinical features are included in the analysis through the Processing tab,
but none of the radiomics features. Filtering is applied to show patients with a pT and
BCR status of 1 and an ISUP grade starting from 1. In this example, the identified
feature combination and ranges correlate with the green cluster (on the top part of the
scatterplot). We highlight the ISUP grade feature on the data to get an overview of the
ISUP grade values on the scatterplot. This also shows that the ISUP grade has higher
values for patients in the green cluster than those in the orange cluster. The user can
explore the data further by selecting different datasets to process to explore how this
affects the resulting patterns.

Figure 5.49: Hypothesis selection (large points on scatterplot) of patients with a pT
and BCR status of 1, and ISUP grades starting from 2 to identify whether this subset
correlates with a cluster using only the genomic and clinical data. The values of the
ISUP grade are highlighted on the scatterplot.
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Investigating presets and advanced options on demand Figure 5.50 shows
advanced options displayed on demand. Contrary to the nine previous scenarios, this
scenario addresses biomedical data scientists instead of cancer experts. Biomedical data
scientists working with these data are interested in comparing and understanding how
different parameters influence the resulting patterns and clusters and which analysis steps
are applied to the data. In this example, the MDS preset is used that involves a global
outlier removal and hierarchical clustering with four clusters on the complete radiogenomic
and clinical data by default. This results in four different clusters highlighted on the
scatterplot. Their characterizing and differentiating featurs are further shown on the
heatmap. For example, the radiomic feature for the morphological area has a dark red
color and therefore high relevance on the heatmap for the pink cluster. In contrary, it has
a dark blue and therefore lower impact on the clustering outcome in the violett cluster.
The user can investigate any features further by moving the mouse over them to show
their distributions or by clicking on them to visualize their values on the scatterplot. We
allow exploring different patient or feature subsets, imputation methods, outlier removal
options, data scaling, dimensionality reduction, clustering, and the interclass methods
used for pairwise cluster comparison on demand.

Figure 5.50: Advanced options can be investigated on demand. These include selecting
predefined presets or changing the imputation, outlier removal method, scaling, dimen-
sionality reduction, clustering, or interclass method. In this example, the MDS preset is
used, which applies hierarchical clustering to the data.
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5. Results and Evaluation

5.3.2 Feedback from Domain Experts

One cancer expert interacted with the tool to explore the data. She was sent usage
scenarios before that showed the basic functionality of the tool and knew it from demon-
stration videos and meetings, but she has not tested it herself before. She found the
clear cluster separation on the scatterplot interesting and would desire to see all patient
IDs on the scatterplot at a time to get an overview of the patients that are grouped
together. We currently show the patient IDs and scores only on demand, as these would
otherwise clutter the view, especially in dense regions of the scatterplot. Therefore, we
identified an export function of the patients per cluster as a better suitable solution.
Furthermore, she was interested in the differentiating and characterizing features shown
in the heatmap and would like to understand why the radiomic features are unevenly
distributed between the two clusters. She tested the feature highlight function for the
ih.entropy and post PSA values. She commented on it as being helpful in revealing
where the points with high or low values are located in the cluster. Highlighting the post
PSA on the scatterplot identified three red scatter points with high values that she was
interested in comparing with the other patients to determine features that differentiate
between them. She commented on the function of comparing a free selection on the
scatterplot with other not selected patients as being practical. She would like to export
a selection of features shown there to analyze them further and confirm their relevance.
She tested this functionality also through a hypothesis to determine the characterizing
and differentiating features between patients that have a low ISUP grade and patients
that have a high ISUP grade in combination with patients that have the PLEC gene. She
showed the detailed bar chart view of the differentiating features and filtered the radiomic
data to see also the relevant genomic and clinical scores. Finally, she investigated the
top gene mutations of the active hypothesis and would also desire to export these for
further analysis. In general, she could deal with the interface and liked its interactivity.
She expects it to help her effectively generate new hypotheses and insights on the data
and comment on its interactivity as being of great value that cannot be perceived just
through screenshots or demonstration videos.

During the progressing development of this framework, we further received feedback from
domain experts after demonstrating the functionality of our framework at meetings or
presentations. Our domain experts commented that the resulting interface was very clear
and easy to understand. However, they do not interactively test or use the framework
themself. They commented on it as being helpful for them in getting an understanding or
feeling for the data and in checking a hypothesis or the role of any feature combination
on an interactive visual basis. Regarding the data imputation and outlier removal steps,
they were afraid that these cause bias in the data or remove outliers they are interested
in. However, the outlier removal is only performed on demand and can also be applied
to detect outliers and explore them further. The imputation is evaluated on the data
and can be changed to a different method to see how it influences the resulting clusters
or patterns. For our default preset of t-SNE the result is very stable on all imputation
methods except the imputation through a constant, which assigns one of the patients
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5.3. Qualitative Evaluation

to a different cluster. We allow users to select the complete subset of patients with no
imputed values to identify and explore these patients further. In general, they commented
that the framework indicates that the data consist of more aggressive tumors that show
specific gene mutations and radiomic features.
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CHAPTER 6
Conclusion and Future Work

In this work, we address the problem of getting insights into large, high-dimensional,
and complex radiogenomic data with respect to clinical data. We investigate, design and
develop a flexible interactive visual interface that combines radiogenomic data and clinical
data into one framework for cancer experts and biomedical data scientists. We offer a
preprocessing step to prepare the data for automated analysis and visualization. This step
includes resolving data inconsistencies, handling mixed data types, imputing missingness
in data values, detecting outliers in the data, and scaling feature ranges. Our cohort
stratification divides patients into groups with similar radiomic, genomic, or clinical
profiles to identify patterns and correlations in the data. It includes a dimensionality
reduction and clustering step that we evaluate based on clustering separation scores.
Based on our evaluation, we suggest the best suitable options for the data through presets.
Furthermore, we allow domain experts to investigate and compare different imputations,
outlier detection techniques, scaling methods, dimensionality reduction algorithms, and
clustering approaches on demand. To explain the identified patterns and help our domain
experts to understand the data, we determine and visualize the most characterizing and
differentiating features per cluster and show feature distribution plots on demand as
part of the forward analysis. In the forward analysis, we allow our domain experts to
gain knowledge from the data by freely interacting with the data through exploring and
comparing the characterizing and differentiating features of patient subsets or applying
the processing steps and cohort stratification on only a selected patient subset for further
exploration. Finally, we allow domain experts to interactively assess a hypothesis in
mind on the data or to create and refine hypotheses by exploring characterizing and
differentiating features and top gene mutations of the data. As part of the backward
analysis, users can interactively test and identify feature thresholds for their hypotheses.
They can further define any feature subset of the radiomic, genomic, and clinical data
to base the analysis on and interactively investigate and compare the resulting patterns
and correlations in the data. We qualitatively evaluate our framework with one of our
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cancer experts and by regular feedback on its progress from our domain experts. The
feedback from our domain experts shows that our framework is a suitable technique to
get insights into the data and supports the data sensemaking process.

In future work, we plan to apply our approach to datasets of different cancer types to
assess its clinical applicability. Furthermore, using datasets with a larger sample size
would confirm the scalability of our technique and might lead to more insights. To allow
cancer experts to test the causality of the identified correlations or patterns through
extended data examinations and analysis outside our framework, an export function
for selected features, genes, patients, and clusters is helpful for them. Moreover, the
visualization of gene pathways or integration of pathway data in the analysis is of interest
to our cancer experts but is beyond the scope of this thesis.
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