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Kurzfassung

In den letzten Jahren hat Radiomics die klinische Beurteilung von Tumoren revolutioniert.
Durch das Extrahieren von quantitativen Merkmalen aus medizinischen Bildern bietet
dieser Ansatz eine objektive Analyse von Tumorgewebe, was letztlich medizinischen Ex-
pertinnen und Experten bei Entscheidungsfindungsprozessen in Bezug auf Diagnose und
Behandlung hilft. Radiomics ist jedoch in hohem Maße von der Qualität der Tumorseg-
mentierung abhängig. Unterschiedliche Tumorabgrenzungen, die sich aus der Variabilität
innerhalb und zwischen den Beobachterinnen und Beobachtern ergeben, können die
Ergebnisse der Radiomics–Analyse erheblich beeinträchtigen. Unseres Wissens wurde
bisher noch nicht untersucht, wie sich die Unterschiede zwischen den Beobachterinnen
und Beobachtern bei der Tumorsegmentierung auf die Radiomics-Analytik auswirken.

Diese Arbeit untersucht, wie verschiedene Tumorsegmentierungen die Radiomics–Analyse
beeinflussen. Wir entwickeln daher das Visual Analytics–Tool ProSeRa (Probabilistic
Segmentation on Radiomics, übersetzt: Probabilistische Segmentierung auf Radiomics),
das Visual Analytics zur Erforschung der Auswirkungen probabilistischer Tumorsegmen-
tierung auf Radiomics bietet. Wir befähigen die Benutzerinnen und Benutzer dazu, die
Ergebnisse unserer Radiomics-Analyse mit Bezug auf klinischen Daten in Anlehnung an
Schwellenwerten für die Segmentierungsgenauigkeit, die wir anhand der Übereinstimmung
der Beobachterinnen und Beobachter berechnen, zu untersuchen. Wir bieten Möglichkei-
ten zur Erkundung und Analyse der Radiomics-Daten, u.a. mithilfe von Algorithmen
zur Dimensionalitätsreduktion und Mechanismen zur Clusteranalyse in Verknüpfung mit
effektiven und aussagekräftigen Visualisierungen. ProSeRa erleichtert die Bewertung der
Robustheit der Radiomics-Analyse und unterstützt die Erforschung der Auswirkungen
der Segmentierung auf die Analyse.

Basierend auf der Evaluierung unserer Ergebnisse können wir schlussfolgern, dass, wie
erwartet, die Variabilität bei Tumorsegmentierung die Ergebnisse der Radiomics-Analyse
erheblich beeinflusst. Die Auswirkung war besonders deutlich in der Clusteranalyse, die
unterschiedliche Ergebnisse für verschiedene Schwellenwerte der Segmentierungsgenauig-
keit geliefert hatte. Dabei haben wir festgestellt, dass zusätzliche Variablen, wie z.B. das
Gesamttumorstadium, für die Gruppierung von Patienten in Cluster entscheidend sind.
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Abstract

In recent years, radiomics has revolutionized the clinical assessment of tumors. By
extracting quantitative features from medical images, this approach provides an objective
analysis of tumorous tissues, which ultimately aids medical experts in decision-making
processes regarding diagnosis and treatment. However, radiomics is highly dependent
on the quality of tumor segmentation. Different tumor delineations resulting from intra-
and interobserver variability may significantly affect the results of radiomics analysis.
To our knowledge, no prior research has been conducted on the impact of interobserver
differences in tumor segmentations on radiomic analytics.

This thesis aims to investigate how different tumor segmentations influence radiomics
analysis. We therefore design and propose the visual analytics tool ProSeRa (Probabilistic
Segmentation on Radiomics), which provides visual analytics strategies for exploring
the impact of probabilistic tumor segmentation on radiomics. We empower the users
to examine the results of our radiomics analysis with respect to clinical data based on
segmentation accuracy thresholds, which we calculate based on the observers’ agreement.
We provide ways to explore and analyze the radiomics data using, among others, di-
mensionality reduction algorithms and cluster analysis mechanisms in conjunction with
effective and expressive visualizations. ProSeRa facilitates the assessment of the robust-
ness of the radiomics analysis and supports the exploration of the impact of segmentation
on the analysis.

Based on the evaluation of our results, we conclude that, as anticipated, variability in
tumor segmentations considerably influences the radiomics analysis results. The impact
was especially prominent in the cluster analysis, which provided different outcomes for
different segmentation accuracy thresholds. Thereby, we detected additional variables,
such as the overall tumor stage, being crucial for grouping patients into clusters.
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CHAPTER 1
Introduction

Radiomics is an emerging field which deals with extracting a large number of quantitative
features from medical images [MML+20]. By means of these so-called radiomic features,
the characteristics of tumors such as shape and tissue heterogeneity are assessed, with
the scope of supporting the decision-making process and the prediction of treatment
outcomes. This approach thus complements the conventional workflow of radiologists
and oncologists qualitatively describing tumor phenotypes, since it additionally provides
computational algorithms to objectively analyze tumors. Radiomics has been proven to
boost the task of uncovering patterns which may have been previously unknown to the
naked eye [MML+20, YA16].

A challenging problem which arises in this domain is the high dependency of radiomics
extraction performance on the quality of image segmentation. In oncology specifically,
segmentation requires the delineation of tumors, which can be manually conducted by
radiologists or (semi-)automatically with sophisticated algorithms. Since automatic
segmentations are not completely robust yet, manual segmentations are considered as the
state of the art [RBR+18, TMB+18, vTCTL+20]. As this is usually done slice-by-slice,
however, it is incredibly cumbersome and time consuming. Another problem of manual
delineations is reproducibility: experts also may perceive tumor borders differently on
medical images, resulting in both intra- and interobserver differences. This again may lead
to a considerable variability in the extracted radiomics feature values, the computation
of which relies on the segmentation outcome [SvCT+20].

To our knowledge, no research to date has investigated the aspect of interobserver
variability and, more generally, tumor segmentation accuracy in the context of radiomics.
Previous research did both investigate segmentation variability and propose approaches
for radiomics analysis, but focused on these topics separately. It is therefore in our strong
interest to explore the effect of tumor probability on the radiomics analysis, as it may
provide valuable information on the robustness of radiomics as part of the workflow of
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1. Introduction

tumor analytics. We aim to execute this through visual analytics to provide deep insight
onto radiomics data and their dependency on segmentation accuracy.

1.1 Aim of this Work
In this master thesis, we examine the following research question:

“To what extent does variability in tumor segmentations and the consideration of
segmentation probability influence the outcome of radiomics analysis?”

We answer this by developing a visual analytics tool which supports the exploration of
radiomics data with respect to clinical data and probabilistic tumor segmentation. We
particularly investigate the effect of interobserver variability in tumor segmentations by
resorting to a data set containing tumor delineations by multiple radiation oncologists
[WAKD19]. Our goal is to empower the user to flexibly analyze the impact of different
segmentations on the radiomics analysis – also within a probabilistic context. Based
on a varying set of tumor segmentations, we further analyze which radiomic features
are highly relevant for predicting a good segmentation as close as possible to available
ground truth. Our visual analytics tool is expected to support the users to fulfill the
following three tasks:

A Visualize and analyze radiomic features together with respective clinical data
(ground truth)

B Investigate the effect of probabilistic tumor segmentations on the radiomic features
analysis

C Provide user interaction to assess the radiomics analysis of probabilistic tumor
segmentations with respect to clinical data

1.2 Contributions
In order to fulfill the aims of our thesis, we provide the interactive visual analytics tool
ProSeRa (Probabilistic Segmentation on Radiomics). This tool is a web application
which aims to facilitate examining the effects of tumor segmentations on the radiomics
analysis. By means of interactive visualizations, it intends to offer insight into the
correlation between segmentation accuracy with radiomics and clinical data.

The main contributions of this thesis can be summarized as follows:

• We provide an interactive visual analytics tool which supports the exploration of
the impact of probabilistic tumor segmentation on radiomics analytics.
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1.3. Structure

• We design visualizations representing radiomics information together with
clinical data to encourage the identification of correlations and interesting patterns
within a probabilistic tumor segmentation context.

We base our findings on the results of the radiomics analysis for the “NSCLC-Radiomics-
Interobserver1” dataset provided by The Cancer Imaging Archive (TCIA)1. We have
found this dataset to be suitable for our research as it contains tumor segmentations by
multiple radiation oncologists as well as the respective medical images and clinical data.
We performed radiomics analysis on the data by extracting radiomic features before
augmenting our information space with outcomes from automated analysis methods.
Following the visualization of the radiomics analysis data, we integrated the aspect of
probabilistic tumor segmentation and investigated the impact of the latter on the former.
This involved computing segmentations based on the interobserver variability in our
input data followed by the generation of radiomics data for these.

We evaluate our results using Visual Data Analysis and Reasoning (VDAR) [LBI+12]
and Qualitative Result Inspection (QRI) [IIC+13] as our evaluation methods. Whereas
the first determines the quality of data analysis, the latter focuses on the qualitative
discussion of the findings. We highlight the unexpected but also anticipated outcomes by
means of usage scenarios. Our results generally show a considerable influence of tumor
segmentation probability on the radiomics analysis. Based on these, we also state the
limitations of our research.

1.3 Structure
Our thesis will be structured as follows:

Chapter 2 conveys background knowledge about interobserver variability and the field
of radiomics in order to ensure a better understanding of related topics discussed in the
following chapters.

Chapter 3 presents the state-of-the-art of known algorithms and methods for probabilistic
tumor segmentation and available visual analytics tools for radiomics data.

Chapter 4 explains the methodology applied concerning the usage of materials, design
of user interfaces, and the implementation of the visual analytics tool.

Chapter 5 involves the revelation and evaluation of the results followed by the discussion
of the main findings and statement on the limitations of this thesis.

Chapter 6 concludes the thesis by summarizing the main findings of the thesis and
stating the prospects of future challenges.

1TCIA: https://www.cancerimagingarchive.net
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CHAPTER 2
Theoretical Background

Tumor assessment using radiomics is a practice which seeks to improve the prognosis and
diagnosis by means of sophisticated algorithms. While this process is considered objective,
the segmentation of tumors required for the radiomics extraction is regarded subjective
due to this task commonly being done manually. Hence, the results of the radiomics
analysis may be heavily impacted by segmentation variability caused by different human
perceptions of tumors on medical images. This chapter discusses the issue of interobserver
variability in tumor tissue identification and explains the radiomics method including its
workflow.

2.1 Interobserver Variability
In the medical context, interobserver variability refers to the disagreement of tissue
identification among observers. This especially occurs in the manual segmentation of
tumors because of different perceptions of tumor borders on medical images (Figure 2.1).
Reasons for this variation comprise the misinterpretation of similar conditions or the
difference in identification criteria for the condition. These findings were concluded by
Watadani et al. [WSJ+13] in their study of quantifying interobserver variability among
radiologists outlining honeycombing in the lungs. Their results show solely moderate
agreement among readers, regardless of coming from the same geographic region, having
the same experience level or specializing in the same subspeciality. Saha et al. [SGH+16]
also came to a similar conclusion in their study of analyzing interobserver variability
among readers assessing breast tumor tissues. They also observed a moderate variability
and measured 0.6 of average agreement regarding overlap using the Dice coefficient. This
value could be raised to 0.77 when incorporating automatic segmentation algorithms in
addition to the manual process.

Proper tumor segmentations are crucial for an accurate tumor diagnosis. The information
obtained from the delineations are in fact significant markers for treatment planning and
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2. Theoretical Background

Figure 2.1: Interobserver variability present in the manual segmentation of a lung tumor,
with red and black lines representing the tumor delineations conducted by one expert
each [RBR+18]

prediction outcome for cancer patients. As a result, interobserver variability in tumor
delineations would considerably influence the assessment of tumors. This again would
impact the decision-making process and therapy outcome [DS16, EK80].

Tumor delineation also constitutes an important aspect in the effect of stability of radiomic
features. Radiomics metrics may be affected by interobserver variability, resulting in
considerable variation in accuracy [HLD+17]. In their study of measuring the effects
of interobserver segmentation variabilities, Wong et al. [WBW+21] concluded notable
differences in the prediction of certain mutations related to pancreatic cancer based on
various tumor segmentations.

2.2 Radiomics
Radiomics is an emerging field of research which regards the extraction of quantitative
features from clinical images. It aims to support the clinical decision-making process by
finding correlations between both medical images and the respective clinical data. By
means of mathematical algorithms, radiomic features such as shape are obtained, enabling
the disclosure of characteristics which may not be visible to the naked eye. Due to the
advantages of in-depth analyses of tumors, radiomics has been widely used for applications
in personalized medicine and oncology in general such as the differentiation between
benign and malign tumor cells and the prediction of treatment response [LRVL+12,
MML+20, WD17, YA16].
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2.2. Radiomics

2.2.1 The Radiomics Workflow
The radiomics approach of extracting mineable data from clinical images involves a defined,
complex process. It can be divided into the following four steps: (1) image acquisition
and reconstruction, (2) image segmentation, (3) feature extraction and quantification,
and (4) analysis model building. An overview of the radiomics workflow is pictured in
Figure 2.2. Each stage requires a thorough evaluation in order to provide reliable and
stable models for predicting outcomes [RBR+18, TMB+18].

Figure 2.2: Overview of the radiomics workflow consisting of four steps: image acquisition
and reconstruction, image segmentation, feature extraction and quantification, and
analysis model building (based on Rizzo et al. [RBR+18] and Thawani et al. [TMB+18])

Step 1: Image Acquisition and Reconstruction

Image acquisition is part of a typical clinical routine for diagnosing medical conditions.
Techniques represent a variety of parameters, including spatial resolution and number
of excitations. Based on what information is required to be gathered, different imaging
modalities are chosen. The most common ones include Computed Tomography (CT),
Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI). As
the acquired images serve as the basis for extracting radiomics features, the value of
these features are heavily dependent on variables such as image noise. Variations in
reconstruction algorithms and parameters among vendors also affect the quality of
feature extraction. Therefore, the probability of unstable features as a result of certain
reconstruction settings should be taken into account [RBR+18, TMB+18].

Step 2: Image Segmentation

The segmentation of images is considered a crucial step of the radiomics workflow since
it greatly affects the outcome of feature extraction. Generally, the delineation of the
so-called Region of Interest (ROI) for two-dimensional (2D) images and Volume of Interest
(VOI) for three-dimensional (3D) images is considered particularly challenging due to
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2. Theoretical Background

tumors often exhibiting unclear borders. In order to overcome this difficult task, there
are three ways to perform tumor segmentation: manually, semi-automatically or fully
automatically [RBR+18, vTCTL+20].

Manual segmentations have the advantage of ensuring accuracy, with experts choosing
the ROI/VOI by hand. However, major limitations include not just the high demand in
time and efforts but also the intra- and inter-observer variability of tumor assessment.
The latter also applies to segmentations done semi-automatically, which are based on
standard delination algorithms such as thresholding [SV16] or region-growing [PT01].
Even though these methods allow the process to be more time-efficient, some require the
expert to manually select seed points regarding their view of ROIs, resulting in bias among
observers. On the contrary, fully automatic segmentation is considered relatively fast and
neutral as it bypasses the intra- and inter-observer bias. No human interaction is required
as it is based on deep-learning algorithms, hence relying on generalizability. However, this
factor may present significant drawbacks when dealing with certain datasets, with the
possibility of retrieving completely inaccurate results. Therefore, choosing the suitable
segmentation method is critical for reaching the required robustness and reproducibility
of features [TMB+18, RBR+18, vTCTL+20].

Step 3: Feature Extraction and Qualification

Following image segmentation, the main part of the radiomics workflow, the feature
extraction, can be executed. This step deals with the calculation of radiomic features
[TMB+18]. Considering that this may be done in multiple ways, it is advised to comply
to the Image Biomarker Standardization Initiative (IBSI) guidelines [ZVA+20], which
present a consensus on standardized calculations for radiomic features. The extraction
step can be accompanied with the usage of image filters which can help improve the
quality of images for a more optimized extraction. For example, the Gaussian filter
may be used to reduce noise in images [RG21]. There are several open-source libraries
which support the extraction of radiomics features in clinical images. One example is
PyRadiomics [vGFP+17a], which is an open-source platform implemented in Python
aiming for feature extraction done in an easy and reproducible way. Further information
about the types of extractable radiomics features are described in Subsection 2.2.2.

Step 4: Analysis and Model Building

The fourth and final step of the radiomics process consists of selecting appropriate features
for analysis purposes and ultimately building a prognostic model. This stage can generally
be divided into two substeps: (1) feature selection and dimension reduction and (2)
analysis and model building. The first substep concerns including reproducible features
and excluding non-reproducible and non-relevant ones in order to obtain results which are
generalizable. For example, features which are prone to manifest intra- and interobserver
variability should not be considered into the selection. Usually, unsupervised approaches
are utilized for this substep, with the most commonly known including:

8



2.2. Radiomics

• Principal Component Analysis (PCA): A smaller set of uncorrelated variables
is extracted from a larger set with correlated variables in order to show variations
within the data [Jol02].

• Cluster Analysis: Similar features are grouped together showing redundancy
and correlations of each group. Heatmaps (Figure 2.3) are often used to visualize
relationships [WF09].

• Multi-dimensional Scaling (MDS): Similarity or dissimilarity data are repre-
sented as distances in geometric spaces. The aim is a low-dimensional data represen-
tation which is mindful of the distances in the initial space [BG97, Kru64a, Kru64b].

• t-distributed Stochastic Neighbor Embedding (t-SNE): Similar data points
are transformed to joint probabilities. In doing so, it is strived for the minimal
Kullback-Leibler (KL) divergence [Kul68] between these probabilities. The KL
divergence, which is also known as relative entropy, is a unit of measure used to
quantify the similarity between two density distributions [vdMH08].

Subsequently, supervised approaches are followed for the analysis and model building.
The selected set of relevant, uncorrelated features are utilized for training the predictive
model. The following algorithms are one of the most commonly used for this purpose:

• Random Forest: Tree predictors consisting of trees which are dependent on
random vector values are combined [Bre01].

• Linear Regression Analysis: The relationship between the independent variable
X and the dependent variable Y is shown in a coordinate system. Whereas the
values for the first are represented by dots, the latter is illustrated as a linear line
known as the regression line [SHB10].

• Neural Networks: Imitating the neurons of a brain, neural networks consist of
model neurons which accept an input, assigns weight to it and sums all of these up.
These networks can be trained in order to solve problems more efficiently [Kro08].

The resulting trained model is expected to adequately predict an outcome. This result
very important as it ultimately governs the diagnosis, prognosis and chosen therapy
for (cancer) patients. Prior to being applied within a clinical setting, however, the
stability of the model is required to be assessed. One way to validate is to checking
the model with multiple cohorts which are independent from one another. Services
such as The Cancer Genome Atlas (TCGA)1 and The Cancer Imaging Archive (TCIA)2

offer a wide range of publicly available data which can be used for such validation tasks
[RBR+18, vTCTL+20].

1TCGA: https://www.cancer.gov/tcga
2TCIA: https://www.cancerimagingarchive.net
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2. Theoretical Background

Figure 2.3: Cluster analysis of radiomic features using a heatmap which represents the
correlation (ranging from 0 - low to 1 - high) between each pair of radiomic features,
with each single-colored block representing one cluster (e.g., yellow block on upper left
corner) [RBR+18].

2.2.2 Extracted Radiomic Features

Features extracted from medical images can generally be of qualitative or quantitative
nature. Qualitative features are usually linked to semantic descriptions of physical trauma,
meaning wounds and lesions. In contrast, quantitative features are derived from clinical
images through computational algorithms. These elements include, among others, the
shape or texture of tissues. Radiomic features refer to the extracted quantitative features
[RPB+16, LvTdJ+17, YA16]. When talking about radiomic features, the quantitative
features extracted from medical images is indicated.

Radiomic features can be classified into the following categories: (1) statistical, (2)
shape-based, (3) model-based, and (4) transform-based [Haj04]. The following subsections
describe each feature class. An overview of radiomic features are displayed in Figure 2.4.

10



2.2. Radiomics

Figure 2.4: Overview of radiomic features [WZZ+19].

Statistical Features

Statistical features rely on the statistical descriptors in an image such as mean, median,
and variance of pixel or voxel intensities. This category can be further divided into (1)
first-order statistics or histogram-based, (2) second-order statistics or texture-based, and
(3) higher-order statistics [MML+20, TMB+18].

First-order statistics or histogram-based features define the distribution of individual
pixel or voxel values within an image. They rely on characteristics which are based on
the statistical measures of an image histogram. These include the simple descriptors
mean, median, minimum, maximum, variance, and percentiles of individual pixel or
voxel intensities in gray-level images. The more complex measures describe the shape
of the intensity distribution of an image. These encompass kurtosis (flatness), skewness
(asymmetry), entropy (randomness) and uniformity (energy) [RBR+18, Haj04, ZVA+20].

Second-order statistics or texture-based features consider the neighborhood of each pixel
and voxel. The focus lies on the spatial relationship of intensities within an image which
especially supports exploring (tumor) heterogeneity. This category include the following
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2. Theoretical Background

measures [BKG+14, RBR+18]:

• Absolute Gradient: The extent of gray-level intensity of pixels or voxels varying
throughout an image [ZVA+20].

• Gray-Level Coocurrence Matrix (GLCM) or Haralick features: The spatial arrange-
ments of two neighboring pixels or voxels are described with an gray-level histogram
of second-order [Haj04, HSD73, ZVA+20].

• Gray-Level Run-Length Matrix (GLRLM): The spatial distribution of consecutive
pixels or voxels in a run with the same gray level depending on the direction are
analyzed [Gal75].

• Gray-Level Size Zone Matrix (GLSZM): Similar to GLRLM, but instead of runs,
groups or zones of neighboring pixels or voxels are analyzed [TAM14].

• Gray-Level Distance Zone Matrix (GLDZM): As an extension to GLSZM, this
method also requires the pixels or voxels to be at the same distance from the edge
of the ROI/VOI [TAM14].

• Neighborhood Gray-Tone Difference Matrix (NGTDM): The sum of gray level
differences between a pixel or voxel and the mean of the adjacent pixel or voxel is
calculated [AK89].

• Neighborhood Gray-Level Dependence Matrix (NGLDM): Similar to NGTDM, but
the neighborhood of a pixel is more strictly defined with a predefined distance and
dependence criteria [SW83].

Higher-order statistics features are acquired by using filters or mathematical transforms
followed by statistical methods. This approach can facilitate the identification of patterns
as well as extraction of features from noisy images [RBR+18]. Examples of filters or
transforms applied include the Minkowski functionals which supports the analysis of tumor
structure [LCK+14] or the Gaussian filter in combination with Laplacian transforms,
which aim to suppress noise in images [PS17].

Model Features

Model features focus on the characterization of shapes or objects based on gray-level
information in space. They are defined by the estimated parameters which are retrieved
from a model computed for the texture generation of a certain ROI/VOI. This so-called
auto-regressive model is calculated using the gray levels of four adjacent pixels surrounding
one pixel for the gray-level estimation of this pixel [Haj04].
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2.2. Radiomics

Transform Features

Transform features or wavelet features aim to explore image properties including gray-level
patterns within various spaces. These include methods such as the Fourier, Haar, and
Gabor transforms which help with the investigation of gray-level patterns. Transform
features are particularly valuable for the analysis of frequency patterns and variability
within an image [Haj04, MML+20, TMB+18].

Shape Features

Shape features define the shape including its geometric attributes of ROI/VOI. This
includes the volume, (maximum) surface, (maximum) diameter, tumor compactness,
and sphericity. Specifically the calculation of properties for surface and volume is based
on using meshes, which basically are small polygons. Considering compactness and
sphericity, the difference between the tumor in the ROI/VOI and a circle (2D) or sphere
(3D) is examined [MML+20, ZVA+20, RBR+18].

2.2.3 Applications and Limitations
Radiomics has been applied in various fields including oncology, neurology, and epidemi-
ology. These include applications for providing prognostic models for Multiple Sclerosis
lesions [LPL+22] and COVID-19 [SSP+22]. Due to their potential to provide an objective
and quantitative assessment of tumor phenotypes, radiomics has particularly been utilized
in the field of oncology and personalized medicine. Multiple studies suggest that radiomic
features may deliver crucial information for the prognosis of cancer treatment response
and outcome. By means of their characteristics they also have been valuable for the
identification of tumor tissues based on their malignancy as well as differentiating tumor
stages [YA16].

However, radiomic analytics also exhibit technical limitations. These include the suscep-
tibility to varying image acquisitions resulting in large variability among the extracted
features. As seen in Figure 2.5, variability concerning tumor segmentation is one exem-
plary case that may contribute to this issue. Regarding the computations of radiomic
features, variations may also appear due to different implementations and general insta-
bilities of these characteristics, which means that the outcome of radiomics analysis will
be inconclusive or erroneous [MML+20, YA16].
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2. Theoretical Background

Figure 2.5: Interobserver variability in tumor segmentations resulting in variability among
segmented tumors and respective characteristics which again influence the radiomics
feature analysis (Input images from Wee et al. [WAKD19] were visualized with 3D
Slicer3).

33D Slicer: https://www.slicer.org
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CHAPTER 3
Related Work

As probabilistic tumor segmentations and radiomics data are often of complex nature,
visual analytics is commonly utilized in order to support the analysis of these. By means
of interactive visual representations, the findings of potential patterns within images
needs to be facilitated. In this chapter, statistical techniques and visualizations for
probabilistic tumor segmentations will be introduced before presenting selected visual
analytics tools for radiomics data.

3.1 Probabilistic Tumor Segmentation
Numerous studies resorted to probability approaches to boost the reliability and precision
of tumor delineations. By means of statistical techniques, the issue of ambiguity and
disagreement due to interobserver variability (Section 2.1) is supposed to be tackled. In
this way, information about segmentation estimations and accuracy is gathered.

Naz et al. [NMI10] reviewed fuzzy clustering, particularly Fuzzy C-Means (FCM) tech-
niques which investigate the degree of pixels or voxels affiliated with certain segments.
They concluded that FCM produced promising results, provided that the conventional
algorithm was altered using spatial data. These results were also produced in images
with artifacts (e.g., noise), meaning that their approach is considered robust against
image artifacts. However, this advantage may only apply to MRI images, as Naz et al.
did not investigate the effectiveness of their technique in other medical imaging types
such as CT in their research.

Lelandais et al. [LGM+14] created the Estimation of Imperfect Information (EVEII)
method which is based on the Belief Function Theory (BFT) and uses spatial information.
The certainty of voxels believed to reflect tumor tissue is represented by means of color
intensities. Similar to the approach by Naz et al., their proposed method was also robust
against noise in images. When it comes to images with large quantity of noise, it even

15



3. Related Work

Figure 3.1: The three steps of the ProbExplorer by Saad et al. [SMH10], consisting of
preprocessing, voxel selection, and highlighting and editing for the analysis of probabilistic
segmentation.

outperformed other approaches using FCM. As Lelandais et al. only considered a smaller
database, the exact robustness of their method has yet to be assessed with larger input
data.

Saad et al. [SMH10] developed an interactive visualization tool for analyzing probabilistic
segmentation in clinical images named ProbExplorer, incorporating the aspect of user
engagement. The framework involves three steps: (1) preprocessing including the
extraction of quantities, (2) voxel selection implicating the specification of ROI/VOI, and
(3) highlighting and editing comprising the application of specific actions on the chosen
voxels. For the second step, ProbExplorer provides the following three widgets presenting:
(1) an interaction overview showing a segmentation summary and its connectivity in a
graph layout, (2) an uncertainty interaction overview displaying a statistical summary
about tissue interactions in a spreadsheet, and (3) uncertainty distribution presenting the
distribution of probability vectors in 2D histograms. Following the ROI/VOI selection,
distinct colors are used for each class (e.g., left kidney, right kidney). In order to provide
context, the surrounding tissues are presented in gray levels. With ProbExplorer, Saad
et al. devised a novel way of displaying segmentation probability by means of visualizing
information about probability and semantics on interactive widgets. Examples of their
designed visualizations are illustrated in Figure 3.2, which shows results from a case
study on abnormal renal behavior in the left kidney.

Due to latest progresses and successes of artificial intelligence in medical image seg-
mentation, more recent studies followed deep learning techniques. The most popular
architecture used are U-Nets developed by Ronneberger et al. [RFB15]. It is a convolu-
tional network specifically developed for biomedical image segmentation and has shown
great performance in delivering both fast and precise segmentation [RFB15].

Chotzoglou and Kainz [CK19] explored the relationship between interobserver variability
and deep network segmentation ambiguities. Using U-Nets, they have found correlations
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3.1. Probabilistic Tumor Segmentation

(a) Coronal/frontal slice of kidney. (b) Uncertainty interaction overview widget.

(c) Selection of ROI over left kidney.
(d) Visualization of highlighted voxels which
are labeled left kidney.

Figure 3.2: Widgets for case study on abnormal renal behavior in the left kidney with
ProbExplorer [SMH10].

between annotator and models in delineation uncertainty and stress the benefit of
reevaluating uncertain segments manually after the automatic delineation. Similar findings
were made by Chlebus et al. [CMT+19], who aimed to reduce interobserver variability
by means of manual corrections of automatic segmentations based on convolutional
neural networks (CNN) with a U-Net like architecture. Their approach reduced the time
of image delineation significantly without compromising the quality, as the resulting
segmentations were comparable to those obtained manually.

Jungo et al. [JME+18] also investigated these fusion techniques, but with the observers
delineating the tumors first before combining these inputs for the automatic generation
of labels. In other words, they used multi-observer annotations to train deep-learning
models for estimating parameter uncertainty within clinical images. In doing so, they
have explored different fusion techniques of input such as the intersection of the labels
or inclusion all labels (no fusion). They concluded the profit of using fusion methods
to be highly dependent on the segmentation precision of observers, regardless of the
type of fusion technique itself. Figure 3.3 shows the comparison of uncertainty estimates
resulting from five different fusion techniques.

Considering our aims and the existing literature, we plan to evaluate the effect of
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Figure 3.3: Uncertainty estimations using five fusion techniques (no fusion, majority vot-
ing, STAPLE, union of segmentations by all observers, intersection) on both unperturbed
and perturbed images [JME+18].

probabilistic segmentation on the radiomics analysis. As the calculation of segmentation
probabilities is not the main focus of our thesis, we will consider less complex estimation
algorithms which are not based on deep learning approaches. Instead, we will focus
on observing generating segmentation probability thresholds based on interobserver
variability present in the data set used [WAKD19]. We subsequently explore the effect of
different segmentation accuracies on our radiomics analysis, which is the main goal for
our research.

3.2 Visual Analytics of Radiomics Data

Radiomics data often comprise large amounts of information, making its analysis particu-
larly challenging [MWLH+20]. Especially the high dimensionality of the derived features
aggravate the process of understanding data and finding underlying patterns [MML+20].
Even though radiomics does improve the analysis of clinical imaging data, the extracted
information has to be visualized properly so that underlying patterns may be unraveled,
contributing to predicting patient outcome [MWLH+20, YJY+17].

Previous studies have presented visual analytics tools for observing radiomic features.
Most of these are interactive, making it possible to explore relationships between features
more freely and eventually revealing correlations with clinical data. The multiple views
available within a tool also allow the exploration of different types of data obtained from
patient cohorts. The following subsections present visualizations found in visual analytics
tools for radiomic features. They will be introduced based on type of task, which are
(1) feature distribution (Subsection 3.2.1), (2) feature correlation (Subsection 3.2.2), (3)
cluster analysis (Subsection 3.2.3), and (4) interaction (Subsection 3.2.4). As the field of
radiomics is relatively new, there were no specific criteria for the selection of papers.
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3.2.1 Feature Distribution

The distribution of radiomic features is helpful for the verification of found patterns
within the imaging data. The idea is to provide an overview of relationships between
quantitative features. Due to the numerical characteristic of this task, prior research
have restorted to statistical chart visualizations such as bar charts [YJY+17].

Yu et al. [YJY+17] used frequency plots for visualizing the distribution of radiomics
features among a patient cohort (Figure 3.4). Based on the extracted feature, the scaling
of the chart axes is adjusted. For example, the distribution of the Volume feature
is presented with a volume size range (x-axis) in relation to the number of patients
exhibiting the volume size (y-axis). By means of the the curve connecting the respective
values as well as the blue-colored area below the curve, Yu et al. provided a clear overview
of the frequency distribution of each feature regarding its value.

Figure 3.4: Feature distribution of the features Volume (top left), Compactness (top right),
Long Run Low Gray Level Emphasis (bottom left), and Run Length Non Uniformity
(bottom right) showing the frequency of certain values across all patients [YJY+17].

In their visual analytics framework called AnaFe, Gutenko et al. [GDKB17] utilized
feature histogram charts for visualizing the distribution of features (Figure 3.5). Similar
to the frequency plot described before, the horizontal axis (x-axis) represents ranges of the
measurement of the feature (e.g., length), whereas the vertical axis (y-axis) describes the
number of subjects exhibiting the specific range of measurement. Each bin or segmented
column consists of stacked rectangles which can be colored in four different color schemes:
(1) age (shades of violet), (2) gender (blue for “male” and pink for “female”), (3) disease
status (green for “healthy” and violet for “sick”), or (4) unique subject (one color per
individual subject). As Gutenko et al. also considered the feature progression of the
subjects over time, each feature comes with two visualizations. Whereas one is presenting
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the distribution of absolute measurement recorded at a specific time, the other shows the
relative changes within a period of time.

Figure 3.5: Feature histogram charts for the average craniocaudal length and average
change in craniocaudal length per subject in four color schemes (unique subject, biological
sex (female/male), health status (healthy/sick), and age), respectively [GDKB17].

3.2.2 Feature Correlation

Investigating the relationship between features is crucial for building prediction models.
Information about which features correlate with one another allow the deduction of
dependencies between two or more dimensions. Based on the number of features which
are set into correlation, past studies have utilized visualizations of different complexity
[YJY+17]. The following subsections present representations categorized by number of
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features considered, namely pairwise correlation (2D) and multidimensional correlation
(going beyond plain 2D).

Pairwise Correlation

When investigating the pairwise correlation among features, the focus is set to analyzing
the linear relationship between two features respectively. Previous studies fulfilled this
task by providing an overview of pairwise in one total representation or producing
one visualization for each feature pair. While the first typically consists of a matrix
organization with color encoding, the latter usually takes the form of a scatterplot. The
following examples show visualizations of both types.

Raidou et al. [RvdHD+15] explored the pairwise correlations among features by means of
a scatterplot matrix (SPLOM) (Figure 3.6). This visualization type provides an overview
of correlations between two features through a matrix organization. In order to further
simplify the SPLOM, Raidou et al. calculated the Pearson correlation for each pair
of features. The Pearson correlation or Pearson ρ, is a measure of linear relationship
between two variables, ranging from −1 (total negative or inverse correlation) to 1 (total
positive correlation), whereas 0 means that there is no correlation [WHL+20]. The
rectangles in the SPLOM are colored in a red-to-blue color scheme. So for example, if one
rectangle is colored dark blue, the respective features X and Y are positively correlated
with one another, meaning that both variables change in the same direction.

Figure 3.6: Simplified SPLOM in a red-to-blue color scheme [RvdHD+15].

As seen in Figure 3.7, Yu et al. [YJY+17] focused on providing more details by using
correlation matrices (Figure 3.7a) as well as scatterplots (Figure 3.7b). They considered
radiomic features, or more specifically, shape and size, first-order statistics, and texture
features, as well as clinical features. Similar to the work of Raidou et al. [RvdHD+15],
they also use a red-to-blue color map in the correlations matrix to show the calculated
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Pearson correlation, but with an inverted scale. This means that in this representation,
red implies that there is a positive correlation (ρ = +1), whereas blue signifies a negative
correlation (ρ = −1). In addition to the correlation matrix, Yu et al. also provided
scatterplots for each pair of features. These show a more detailed view by displaying the
relationship between two variables of each data subject through a point. Based on the
distribution of the data points, the strength of correlation between the features can be
derived.

(a) Correlation matrix showing the Pearson corre-
lation between pairs of features.

(b) Scatterplots showing the correlation be-
tween selected feature pairs.

Figure 3.7: Two visualization types for representing pairwise radiomic feature correlation
[YJY+17].

As our thesis aims to investigate the effect of segmentation probability on the radiomics
analysis, we do not intend to particularly focus on the correlation of feature pairs.
We anticipate the interobserver variability affecting the radiomic feature calculation
significantly, hence producing different results for each segmentation conducted by one
observer. As a result, we shift the focus from solely investigating feature correlations
to the variability of feature values based on interobserver variability and the respective
segmentation probability.

Multidimensional Correlation

In contrast to pairwise correlations, multidimensional correlations consider more than
two features in the relationship analysis. When analyzing multidimensional correlations,
the degree of relation between features as well as their interdependency are explored. Due
to more dimensions being involved, the respective visualizations for multidimensional
correlations analysis also become more complex. For this task, several studies employed
parallel coordinate plots (PCP) [Ins85]. This visualization type is very commonly used
for this purpose as it facilitates the detection of high-dimensional patterns. It consists of
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several vertical axes, whereas each represents a variable, or in this specific case, features.
The values for the variables are represented as polylines, which are lines connected across
each axis. In the context of radiomics, a polyline represents the values captured from
one patient. It should be noted that the design of the PCP plays an essential role in
the quality of analysis information acquired. Consequently, it is crucial to adequately
scale the feature axes as well as consider the order of these when producing PCPs. This
is due to feature dimensions visually further apart and with not standardized scaling
dimensions being hard to compare [ID90, MWLH+20, RvdHD+15].

A number of authors have produced PCPs for analyzing clinical and radiomic features
(Figure 3.8). Color schemes were also considered in the representations to highlight
interesting patterns within the plots. Raidou et al. [RvdHD+15] employed PCPs for
exploring intra-tumor tissue characterizations (Figure 3.8a). For readability reasons,
they rendered the polylines with a low opacity and used a color map consisting of white,
green and black to further mark clusters. Yu et al. [YJY+17] also used colors to denote
clusters in their PCPs but with sharply rendered polylines and a red-and-blue color
scheme (Figure 3.8b). To further assist the correlation analysis process, they considered
brushing approaches. These allow closer investigations on correlation trends between
two dimensions by filtering polylines based on their values in a dimension. So in other
words, “brushing” an axes signifies means to only focus on data which lie within a defined
value range in that dimension. Yu et al. mark the brushed area by means of a green
semi-opaque rectangle on the axes. As seen in Figure 3.8b, the negative correlation is
more noticeable after brushing. Similarly, Moerth et al. [MWLH+20] visualized sharp
polylines and incorporated brushing techniques. In their visualization, the brushed
axes are marked with red rectangles which may be connected in case two axes were
brushed. Accordingly, the filtered polylines which lie within the selected ranges are
colored blue, whereas the other lines are colored grey. This color scheme is also utilized
in the corresponding scatterplot which Moerth et al. provided in addition to the PCP.
In the scatterplot, each patient is represented by a data point containing a small glyph
which shows the tumor characteristics shape and size.

3.2.3 Cluster Analysis
The analysis of clusters plays an important part in revealing patterns within data
[PLG+15]. It supports the identification of both significant and stable radiomic features for
prognostic prediction as well as the discovery of groups which exhibit similar characteristics
[YJY+17]. Past research utilized various types of visualizations including dendrograms
and heatmaps to clearly represent cluster analysis data.

In their visual analytics tool iVAR, Yu et al. [YJY+17] utilized heatmaps (Figure 3.9)
for the exploration of feature and patient clusters. Their clustering results are obtained
using unsupervised hierarchical clustering, which is a method that produces partitions of
data based on hierarchy [Hal18]. The map conveys information about the feature values
through color, using a green-to-black-to-red color scheme. The cluster information is
communicated by means of the two dimensions, with the vertical axis showing patient
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(a) PCP with low opacity and a white, green, and black color scheme [RvdHD+15].

(b) PCP with a red and blue color scheme without (top) and with brushing feature (bottom)
[YJY+17].

(c) PCP and scatterplot in blue and grey color scheme with brushing feature [MWLH+20].

Figure 3.8: Overview of PCPs used for investigating multidimensional correlations in
radiomics data.
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clusters and the horizontal axis representing feature clusters. In this way, Yu et al.
support a simultaneous cluster analysis of patients and also features, both in terms of
similar feature values.

Figure 3.9: Heatmap showing cluster information about patients through the vertical axis
(e.g., blue box) and features through the horizontal axis (by means of color/values, e.g.,
yellow box), using a green-to-black-to-red color scheme to represent the feature values
[YJY+17].

Moerth et al. [MEH+22] visualized hierarchical cluster data by means of a dendrogram
(Figure 3.10) in their tool ICEvis. The visualization represents hierarchical structure of
clusters, with the links between subclusters determining the distance between each other.
It also includes a dashed horizontal line, which does not represent information about the
cluster information per se, but indicates the number of clusters selected in their visual
analytics tool.
Raidou et al. [RvdHD+15] revealed clustering data beyond hierarchical structure and
cluster distribution by providing metrics about the validity of clusters. By this, they
aimed to facilitate the comparison between clusters in terms of their internal structure.
Thereby, they used the commonly-used metrics cohesion (WSS), which represents the
relation within one cluster, separation (BSS), which shows the distinction between clusters,
and average silhouette coefficient (s), which represents the validity of a cluster regarding
cohesion and separation [TSK05]:
Cohesion (WSS) is defined as

WSS =
�
x∈C

(x − m)2 (3.1)
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Figure 3.10: Dendrogram representing hierarchical clustering and the distance between
clusters through the length of vertical lines [MEH+22].

whereas C reflects one cluster, x the vector of feature values, and m the vector of mean
feature values within one cluster.

Separation (BSS) is defined as

BSS =
�

i

|Ci|(m − mi)2 (3.2)

whereas Ci reflects the selected clusters, i the respective size of the clusters, m the vector
of overall mean feature values, and mi the vector of mean feature values for the selected
clusters.

Average silhouette coefficient (s) is defined as

s = BSS − WSS

max(BSS, WSS) (3.3)

which ranges between 0 and 1 and can usually be defined in categories (e.g., 0 – 0.25:
bad-defined, 0.26 – 0.5: weak, 0.51 – 0.75: reasonable, and 0.76 – 1: excellent).

The results were visualized by means of a sphere for each cluster (Figure 3.11). The
appearance of the sphere is dependent on the metrics, with cohesion being reflected
through size, separation through distance, and silhouette coefficient through color shade.
Furthermore, each sphere is filled with a different color to make the clusters easily
distinguishable. Ultimately, the approach by Raidou et al. enables a thorough cluster
analysis by giving visual insights about the cluster distribution as well as their validity
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in an abstracted manner. However, this abstraction does not scale well if many clusters
are present in the data.

Figure 3.11: Cluster analysis using spheres to represent clusters, whereas the size, distance,
and color shade is dependent on the metrics cohesion (WSS), separation (BSS), and
average silhouette coefficient (s) [RvdHD+15].

We strive for providing a thorough but also simple cluster analysis in our thesis. Therefore,
we will follow the approach presented by Raidou et al. [RvdHD+15] in order to obtain
information about the validity of clusters through calculated metrics. We will then
visualize these results using dendrograms, as employed by Moerth et al. [MEH+22]. In
this way, we show the hierarchical structure of clusters as well as the validity of these
through one visual representation.

3.2.4 Interaction
Recent studies increasingly provided interactivity within their visual analytics tools. This
is due to radiomics data usually being complex, which make it hard to analyze patterns
and therefore predict clinical outcome. The possibility to customize the information
displayed allows an optimized exploration of radiomic features and their relationships
with each other. In this section, the interaction aspects found in the previously presented
visual analytics tools are elucidated.
In their visual analytics tool called AnaFe, Gutenko et al. [GDKB17] provided the
possibility to zoom, filter, and customize query parameters as interaction features. In this
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way, they allow the user to visually hide data not significant for the analysis, avoiding
information overload on visualizations. Furthermore, they have also provided clarity
through only presenting information when users hover over certain elements in the
representations. For example, the rectangles in the aforementioned histogram chart
(Figure 3.5) exhibit the feature to show additional information about the respective value
range when hovering over them.

Both Yu et al. [YJY+17] and Moerth et al. [MWLH+20] assured interactivity in their
visual analytics tools through multiple interactive linked panels [YJY+17]. So when
filtering or brushing data (Subsection 3.2.2) in one visualization, the connected views
are updated accordingly. The brushed area specifying the ranges on an axis can be also
be adjusted anytime by moving the corresponding rectangle. This interaction feature
allows the users to customize the panels visualizations interactively, aiding them in their
exploration and formulation of hypotheses. Figure 3.12 shows examples for brushing and
the corresponding results on PCPs compared to the original result.

Figure 3.12: PCPs for five features showing the original plot (top) and the plot after
brushing (middle and bottom) by means of a green rectangle on the “Survival time”
feature axis [YJY+17].

For the visual analytics part of our thesis, we plan to provide visualizations for analyzing
the distribution and correlation of radiomic features and clinical data. Similar to the
planned visualizations for the probabilistic segmentation task, we also intend to use color
schemes and interaction possibilities to strengthen user engagement. We will link our
views with each other similar to the tools designed by [YJY+17] and [MWLH+20]. As we
explore the effects of probabilistic segmentations on radiomic features, the visualizations
for both the segmentation and the radiomics part will be linked. This ensures the
possibility to directly explore the influences of different tumor delineations on the
radiomics data.
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3.3 Summary
The literature review shows several studies which have been published in the past years.
The studies on probabilistic tumor segmentation comprised simple techniques such as
FCM but also more complex algorithms involving deep learning mechanisms using U-
Nets. Current research on visual analytics of radiomics data show different visualization
designs for similar tasks, which include visualizing feature distribution, feature correlation
and cluster analysis. Most of these also exhibit interaction possibilities which support
customization and, related to this, also the analysis process. In Table 3.1, the reviewed
papers are summarized and compared to meeting the aims of the thesis. As mentioned
in Section 3.1, the reviewed papers on probabilistic segmentation based on deep learning
(e.g., [CMT+19, CK19, JME+18]) are not considered for this thesis and therefore are not
be included in the table.

Despite various research published on these topics, previous studies have almost exclusively
focused on either solely visualizing probabilistic segmentations or analyzing radiomic
features, but not the influence between both tasks. To our knowledge, no prior studies
aimed to examine this topic. Thus, we focus on exploring the impact of interobserver
variability in tumor segmentations on the visual analytics of radiomic features.
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Table 3.1: Overview of reviewed literature compared to aims of thesis: A (Visualization
of radiomics with regard to clinical data), B (Investigation of the effect of probabilistic
tumor segmentation on the radiomics analysis), and C (User interaction).

Literature
(Author, Year)

Subject Aims Fulfilled
(Section 1.1)

Naz et al., 2010 [NMI10] Probabilistic Segmentation □ A □✓B □ C

Saad et al., 2010 [SMH10] Probabilistic Segmentation □ A □✓B □ C

Lelandais et al., 2014
[LGM+14] Probabilistic Segmentation □ A □✓B □ C

Raidou et al., 2015
[RvdHD+15]

Visual Analytics on Ra-
diomics □✓A □ B □ C

Gutenko et al., 2017
[GDKB17]

Visual Analytics on Ra-
diomics □✓A □ B □ C

Yu et al., 2017 [YJY+17] Visual Analytics on Ra-
diomics □✓A □ B □✓C

Moerth et al., 2020
[MWLH+20]

Visual Analytics on Ra-
diomics □✓A □ B □✓C

Moerth et al., 2022
[MEH+22]

Visual Analytics on Ra-
diomics □✓A □ B □ C
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CHAPTER 4
Methodology

The focus of this thesis is the development of the visual analytics tool ProSeRa which
investigates the effect of tumor segmentation on the radiomics analysis. We thereby
aim to provide visualizations for the analysis of radiomics with respect to clinical data
(Aim A), explore the radiomics analysis with regard to probabilistic segmentation (Aim
B), and enable user interaction in ProSeRa for thorough analysis possibilities (Aim C).
In order to reach these aims, we searched for appropriate data sets, preprocessed the
data, and designed and implemented visual interfaces. This chapter elucidates the used
materials, the design as well as the implementation of ProSeRa.

4.1 Materials
Before starting with the implementation of ProSeRa, we searched for appropriate data sets
for investigating the effect of probabilistic tumor segmentation on the radiomics analysis.
Based on aims A (Visualize and analyze radiomic features together with respective
clinical data), and B (Investigate the effect of probabilistic tumor segmentations on the
radiomic features analysis), we set the following search criteria for a data set: The desired
data set should (1) contain medical images of several cancer patients from which we can
extract radiomics features, (2) comprise clinical information (e.g, histology) to assess our
results based on ground truth, and (3) include tumor segmentations by different observers
or algorithms to explore interobserver variability and the corresponding segmentation
probability.

Based on our search criteria, we chose the NSCLC-Radiomics-Interobserver1 data set
[WAKD19], which was published in The Cancer Imaging Archive (TCIA)1. This collection
consists of Computed Tomography (CT) images from 22 non-small cell lung cancer
(NSCLC) radiotherapy patients, respective tumor segmentation data by five radiation

1TCIA: https://www.cancerimagingarchive.net
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oncologists, and clinical patient data. In the following subsections, both data types,
namely imaging data including segmentations and clinical data are described in more
detail.

Image and Segmentation Data

The NSCLC-Radiomics-Interobserver1 data set consists of CT images from 22 NSCLC
radiotherapy patients prior to treatment. The CT data for one patient contains roughly
154 to 178 CT slices, with each having a resolution of 512 × 512 pixels. In the data set,
the patients are referred to as interobsXX, whereas XX stands for a patient number,
which is not in order and ranges from 5 to 34. In addition to the medical images, the
collection comprises tumor segmentation data for 21 out of 22 patients. This includes
manual delineations as well as semi-automatic delineations by five radiation oncologists.
The latter was performed with an automatic tool followed by manual adaptions of the
segmentation by the same observers.

All image and segmentation data were provided as Digital Imaging and Communications
in Medicine (DICOM) files. The segmentation data was extracted into two DICOM
modalities, namely RTSTRUCT and SEGMENTATION. Whereas DICOM RTSTRUCT
consists of contour points of the tumor outline, DICOM SEGMENTATION comprises
binary masks of the tumor as delineation information.

The segmentation data comprises numeral tags which denote information about the tumor
borders, the type of segmentation (manual or semi-automatic) and the radiation oncologist
performing the segmentation. We used the tool 3D Slicer2 to visually observe the tumor
delineations within an anatomic context. An example is illustrated in Figure 4.1. The
following taxonomy was established [WAKD19]:

• “GTV-1”: Index tumor, particularly the gross tumor volume (GTV)

• “vis”: Manual segmentation by radiation oncologists

• “auto”: Semi-automatic segmentation by an automatic tool followed by manual
edits by radiation oncologists

• “1” ... “5”: Individual radiation oncologist

Clinical Data

Aside from the imaging and segmentation data, the NSCLC-Radiomics-Interobserver1
collection comprises clinical patient data which was provided in a comma-separated
values (CSV) file. For each of the subjects, information about sex, age, histology (adeno-
carcinoma, NSCLC, large cell carcinoma, squamous cell carcinoma, or undifferentiated
lung carcinoma), tumor location, clinical T-stage, clinical N-stage, clinical M-stage, and
overall stage are disclosed. An excerpt of the CSV file is presented in Figure 4.2 .

23D Slicer: https://www.slicer.org
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Figure 4.1: Axial view of interobs12 on slice 107 showing the tumor segmentations
(top) and the respective taxonomy (bottom).

Figure 4.2: Excerpt of clinical data from [WAKD19].

4.2 Design of ProSeRa

Our visual analytics tool ProSeRa is a web application. We have opted for this due to
the availability of various open source frameworks such as Angular3 for creating web
applications, which provide compatibility to libraries such as D3.js4, which we use for
designing the visualizations. These frameworks also enable us to create modern and
contemporary web applications with user interface (UI) component toolkits such as
Angular Material5 and Bootstrap6, which we both use for designing our web application.

3Angular: https://angular.io
4D3.js: https://d3js.org
5Angular Material: https://material.angular.io
6Bootstrap: https://getbootstrap.com
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In order to assure that all aims (Section 1.1) are fulfilled, we design our web application
involving all planned visualizations and user interactions. This includes wireframes of
the user interface as well the interactive aspects of these. Based on the aims of the thesis,
we state the contributions to the functionalities and the intentions behind the chosen
visual representations.

4.2.1 Design of User Interface
As already stated in Section 1.1, we aim to create an interactive tool which visualizes
radiomics data to empower clinical researchers to explore the effect of probabilistic tumor
segmentation on the radiomics analysis. We pursue these aims by providing a web
application containing several visualizations which are interconnected with each other.
All information are displayed on one page in order to enable a comprehensive analysis of
various aspects of our data without navigating to other web pages. In order to ensure a
clear presentation of data with such high complexity, we split the information based on
analysis focus (e.g., cluster analysis) on different components.

We pursue Aim A by planning visualizations which represent radiomics data with respect
to clinical data. Our goal is to provide a thorough radiomics analysis to the user, hence
planning two components which focus on different aspects of our results. One component
concerns the correlation of radiomics data including the details about the patient cohort
(Figure 4.3), whereas the other component focuses on the cluster analysis (Figure 4.4).

Figure 4.3 shows the wireframe for the UI component which primarily provides an
overall insight into the potential correlations and clusters of radiomics with clinical
data. For the sake of clarity, we plan two separate visualizations: One for showing
the correlation between radiomics data (Annotation 1 ) and another for representing
statistical information about the patient cohort (Annotation 2 ). By this, we enable the
investigation of potential patterns with regard to clinical information. We also consider
the option to customize the first mentioned visualization through settings (Annotation
3 ) to facilitate the radiomics analysis. For this we provide a dropdown containing

patient-related categories such as histology or age and also a checkbox for highlighting
potential clusters found in the radiomics data.

The wireframe shown in Figure 4.4 illustrates the user interface for the radiomics cluster
analysis. Again, we plan two visualizations, this time for representing the cluster
distribution (Annotation 4 ) and for displaying the radiomics feature distribution for one
cluster (Annotation 5 ). Through these visual representations, we allow the observation
of which patients exhibit similar radiomics feature values as well as the investigation
of differences in feature values based on the segmentation. To further strengthen the
cluster analysis, we provide information about the features which contributed to the
cluster formation the most (Annotation 6 ). For this, we resort to the SHapley Additive
exPlanations (SHAP) method [LL17].

Figure 4.5 depicts the wireframe of the UI component which specifically fulfills Aim B,
which concerns probabilistic tumor segmentation and its effect on the radiomics analysis.
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Figure 4.3: Wireframe of the UI component comprising the visualization of correlations
within radiomics data ( 1 ), the respective settings ( 3 ), and the visualization of cohort
statistics ( 2 ).

Figure 4.4: Wireframe of the UI component for the cluster analysis consisting of a
visualization of the cluster distribution ( 4 ), the SHAP features ( 6 ), and a visualization
of the distribution of feature values ( 5 ).

For this component, we plan one visualization which represents information about the
segmentations based on segmentation probability (Annotation 7 ), which again is based
on the interobserver variability present in our data set. In order to investigate the
effect of delineation probability, we furthermore provide the option to select the desired
probability threshold via a dropdown and a button to calculate the radiomics data based
on the selection (Annotation 8 ).

The designed user interface enables user interactivity for the assessment of radiomics
analysis of probabilistic tumor segmentations, as defined in Aim C. We consider cus-
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tomizability options for the visualization of correlations between radiomics data through
settings (Annotation 3 in Figure 4.3). This also applies to the list of SHAP features for
each cluster (Annotation 6 in Figure 4.4), which empowers the users to select the feature
of which they want to analyze the value distributions (Annotation 5 in Figure 4.4).
Most importantly, we enable the selection of segmentation probability through a dropbox
and the calculation of the radiomics analysis for the selected threshold, which is triggered
by pressing a button (Annotation 8 in Figure 4.5).

Figure 4.5: Wireframe of UI component for the analysis of probabilistic tumor segmenta-
tion ( 7 ) and the calculation of radiomics analysis based on probability threshold ( 8 ).

4.2.2 Visualization Design and Interaction
We strive for the visualizations to present valuable insights into the potential correlation
of radiomics and clinical data and to show the effect of different tumor segmentations
(Aim A and B) on the radiomics analysis. We anticipate the that the tumor assessments
to have a considerable impact on the radiomics analysis. Thus, we update the radiomics
information presented on the visualizations based on a chosen segmentation probability
threshold. By means of user interaction, we trigger the visual interfaces to be updated
(Aim C). In total, we plan five visualizations which are all linked with each other.

Design for Aim A: Visualization of radiomics with regard to clinical data

Aim A refers to the visualization of radiomics data with respect to clinical data. We aim
to reach this goal by providing four visual representations focusing on different aspects
of data. First, we show the correlations within radiomics data between patients to show
potential patterns in our results. We strengthen the analysis of finding similarities and
connections in our cohort by providing clinical information about the patient. Second,
we display statistics of the patient cohort in another visualization. By this, we convey
information about the patients regarding categories such as histology, age, sex, and
overall tumor stage so that the users get a deeper insight into our entire cohort data.
Third, we present the distribution of clusters as part of our cluster analysis. In our case,
a cluster is generally a group of patients which are similar in terms of their calculated
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radiomic feature values. We choose to visualize the cluster distribution to mainly provide
an overview of clusters which among other benefits, facilitates the comparison between
similar and also dissimilar patients. Last, we design a visualization which presents the
distribution of radiomics feature values for each patient. We opt for this to show the
different calculated values resulting from different segmentations related to each patient.

In general, there are several alternatives to show the correlation of data in terms of
visualizations. Depending on the dimensionality, we can for example use correlation
matrices and scatterplots to show pairwise correlations or PCP to show multidimensional
correlations, similar to Yu et al. [YJY+17] or Moerth et al. [MWLH+20]. Considering
that we want to visualize radiomics data that contain hundreds of features or dimensions,
one may consider visualizations only suited for high dimensionality such as PCP. However,
we are not restricted to these per se. As a solution, we can also perform dimensionality
reduction on the radiomics data and obtain a lower dimensionality, usually limited to
two or three dimensions. In this way, we can visualize high-dimensional data using
visual representations such as scatterplots, which are usually used for presenting pairwise
correlations. Additionally, this approach also reduces the complexity of the analysis as
well, as such visualizations appear simpler and clearer.

We decide to represent the correlations within radiomics data by means of scatterplots,
using two “modes” of representation: One mode shows the radiomics data within a patient
context referring to all patients in the cohort, whereas the other mode focuses on the
segmentation context for an individual patient. This allows a hierarchical representation
of our cohort data, without compromising simplicity. Thus, we reduce complexity of
the multidimensional radiomics data by performing dimensionality reduction, which
we discuss in more detail in Subsection 4.3.2, prior to visualizing with a scatterplot.
This results in a clear overview of data in form of data points. Each data point in a
scatterplot either represents a patient (patient-based mode) among other patients or a
segmentation (segmentation-based mode) among other segmentations for one particular
patient. By clicking on a data point in the patient-based mode, the user can view the
segmentation-based radiomics data of the particular patient. In order to get back to the
patient-based mode, the user can click on the “Back to Overview” button. We illustrate
our idea for the scatterplot in Figure 4.6.

In order to provide additional information about the patient cohort as well as the
segmentations, we resort to the usage of colors and tooltips. We color-encode the data
points in the scatterplot based on clinical data, particularly sex, age group, histology, and
overall stage for the patient-based context, while for the segmentation-based context we
color-encode based on the radiation oncologist and segmentation type. Thereby, the data
points only correspond to one category at the same time, which can be easily identified
through its assigned color. We also use different color schemes for each of these categories
and make them consistent with the visualization for the patient cohort statistics which
will be described later. This is done for aesthetic reasons, but also to prevent confusion
between different categorizations. Further, we provide additional textual information
to the data points by means of tooltips. When hovering over a data point, we show
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Figure 4.6: Idea for the patient-based and segmentation-based mode of the radiomics data
visualization showing correlations within our data. The modes can be switched by clicking
on one data point (patient) in the patient-based mode to view the segmentation-based
data for the selected patient, or by clicking on the “Back to Overview” button in the
segmentation-based mode.

the exact coordinates (x and y value) of the data point. Depending on the mode of the
scatterplot, we display the information which is conveyed by means of color as text. With
the tooltips, we want to avoid information overload on the scatterplot.

Considering the statistical analysis of the patient cohort, we provide visual representations
combined with textual information. Examples of statistical visualization graphs include
bar charts and doughnut charts, which are a variation of pie charts ([HR07]). One
advantage of bar charts over doughnut charts may be the simple comparison between
data based on the bar height compared to angles of a circle ([Dan14]). However, doughnut
charts may be more suitable for representing data as part of a whole ([Dan14]).

We ultimately choose to use doughnut charts to emphasize each portion belonging
to a whole, or in this context, the patient cohort. Each doughnut chart represents the
distribution of data for each clinical category, resulting in a total of four visualizations
for sex, age group, histology, and overall stage. For each doughnut chart, we choose to
add the list of categories including its percentage of the whole in a descending manner.
This should specifically facilitate the comparison between parts of the data, while it also
supports chart readability.

As previously mentioned, we incorporate colors into the doughnut charts to represent
the clinical information about our patient cohort. In order to ensure consistency, we
apply the same color schemes used in the scatterplot, which represents correlations within
radiomics data. For the color encodings of all categories, we use the color schemes
provided by D37, which include all scales from the commonly-used tool ColorBrewer8.
Based on which clinical information we present, we use different color scale types, as

7D3 Color Scheme: https://observablehq.com/@d3/color-schemes
8ColorBrewer: https://colorbrewer2.org
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illustrated in Figure 4.7. Due to the categories “(biological) sex”, “histology” and “overall
stage” representing nominal data, we utilize qualitative or categorical color schemes
which comprise clearly distinguishable colors (Figure 4.7a). These are appropriate for
this type of data as they do not imply an implicit order, which is particularly important
for nominal data [RTB96, SSM11]. Concerning the category “age group”, we resort to
sequential color scales. Due to these implying order, these are suitable for ordinal data
which are usually related to numerical values such as age [SSM11]. For this, we utilize a
sequential blue color scheme, with the lightest blue shade designating the youngest and
the darkest blue shade designating the oldest age group (Figure 4.7b).

(a) Categorical or qualitative color scale for
nominal data (e.g., sex).

(b) Sequential color scale for ordinal data (e.g.,
age).

Figure 4.7: Design of doughnut charts and respective legends in two different color scales
showing different types of data.

Considering that we anticipate to find similarities or trends between patients or segmen-
tations within the radiomics data, we provide visualizations for supporting the cluster
analysis. First, we visually represent the structure of the cluster distribution. Alterna-
tives for visualizing such data include heatmaps [YJY+17] and dendrograms [MEH+22].
Second, we provide insight about the distribution of the calculated radiomics feature
value for each segmentation belonging to one patient within a selected cluster. For this
case, boxplots or violin plots may be used [SWRT14]. Due to dendrograms and boxplots
being more common and more straightforward visualization types in terms of simplicity
compared to the other suggested alternatives, we use these for our cluster analysis.

We choose a dendrogram for visualizing the cluster distribution to provide a simple
overview of which patients belong to which cluster (Figure 4.8). In our case, we consider
a cluster a group of similar patients regarding their calculated radiomics feature values.
In the visualization, one node represents one patient cluster, whereas the area size of the
node is also matched to the size of the cluster, meaning its number of patients. Regarding
the tree-like structure of the dendrogram, this means that the root is equivalent to the
total patient cohort, whereas the leaves, which are the last and smallest nodes in the
structure, mirror one patient. In a broader sense, we may regard one patient as a “cluster”
of segmentation, considering our data consists of multiple segmentations for each patient
resulting in multiple feature values.

In addition to the cluster distribution, we provide information about the validity of clusters.
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Figure 4.8: Design of dendrogram including the color encodings for representing the
silhouette classifications and appropriate sizing based on the number of patients in a
cluster. The last nodes in the structure (leaves) signify a “cluster” of segmentations of
one patient, whereas the other nodes signify a group of patients (actual cluster).

We do this to enable the comparison between clusters regarding their internal structure.
Similar to the approach by Raidou et al. [RvdHD+15] presented in Subsection 3.2.3, we
use the metric average silhouette coefficient (s = BSS−W SS

max(BSS,W SS)), which describes how
cohesive one cluster is (WSS) compared to the other clusters (BSS) [TSK05]. In our
context, the average silhouette coefficient represents the cohesion of one patient in terms
of the segmentations compared to the other patients within the same patient cluster. This
means that we calculate s for one patient, who we consider “cluster” of ten segmentations,
with the exception of one patient (interobs19), which consists of five segmentations.
An illustration of our concept is represented in (Figure 4.9). For each patient cluster
(consisting of several patients), we calculate the mean of the silhouette values for each
patient within the cluster with sC = 1

nC

�
p∈C sp, where C signifies a cluster of patients,

nC the number of patient in a cluster, p a patient in the cluster C, and sp the silhouette
coefficient for each patient within the cluster.

Due to the silhouette coefficient (s) values being numerical, we apply a sequential color
scale, similarly to the scheme used for the age group category in the scatterplot. As
mentioned in Subsection 3.2.3, the values for s range between 0 to 1 [TSK05]. We
categorize these values into four groups as presented by Raidou et al. [RvdHD+15],
which are: (1) 0 − 0.25: bad-defined, (2) 0.26 − 0.5: weak, (3) 0.51 − 0.75: reasonable,
and (4) 0.76 − 1: excellent. Based on these definitions, we color-encode each node with
a sequential purple color scale. As shown in Figure 4.8, bad-defined cluster nodes are
filled with the lightest purple shade and the excellent cluster nodes with the darkest
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Figure 4.9: Concept of dendrogram structure (left) with a detailed illustration of one
patient cluster consisting of multiple patients, whereas each patient is considered a
“cluster” of segmentations (right).

purple shade. We choose purple in order to avoid the usage of the same color schemes for
different visualizations focusing different topics. Besides the color-encodings, we again
utilize tooltips to convey information about the size and silhouette coefficient of one
cluster.

Since the scatterplot only presents the radiomics data after dimensionality reduction,
we employ a boxplot which shows the distribution of values for each of the radiomic
features. We opt for a boxplot containing several groups and showing individual data
points (Figure 4.10). In this context, this means that the visualization shows the value
distribution of one feature for all segmentations (i.e., point) of each patient (i.e., group).
As this visual interface is part of the cluster analysis, we want the boxplot to enable the
comparison of feature value distribution between patients within one cluster. Regarding
the dimension, the x-axis corresponds to the patients in one cluster, whereas the y-axis
is mapped to the values of one radiomics feature.

In order to further strengthen the cluster analysis, we also calculate the five most
important SHapley Additive exPlanations (SHAP) features [LL17] for each cluster.
SHAP is a unified framework which supports the interpretations of predictions of a model
by determining the importance value for each feature [LL17]. SHAP values therefore
express how much each feature contributes to the formation of a model, which, in our case,
is a cluster. We decide to solely provide boxplots for these so that we avoid information
overflow and the user can focus on the features which are most prominent within a
cluster.

Design for Aim B: Investigation of the effect of probabilistic tumor
segmentation on the radiomics analysis

The goal of investigating probabilistic segmentation and the effect on the radiomics
analysis is stated with Aim B. Specifically for the probabilistic segmentation task, we
provide one visualization representing the total share of pixels with which the segmen-
tations coincide. In other words, we show the agreement among oncologist observers
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Figure 4.10: Design of boxplot with each group representing the value distribution of one
selected feature for one patient within a cluster. Data points (white dots) are added for
each group to show the exact value for each segmentation.

regarding which pixels represent part of a tumor, which can be an indication of a robust
segmentation. Alternatives for the visualization of this purpose include line or area charts
([SSM+16, DSD+21]). When the data includes several groups to be represented each,
line charts may be more suitable as the overlap of colored areas in area charts may not
convey meaningful information.

Due to the larger number of patients, we use a line chart in which one line represents
the share of pixels over the tumor segmentation probability of one patient. We visually
illustrate our idea in Figure 4.11, which shows the concept of segmentation accuracy
(Figure 4.11a) and of the line chart (Figure 4.11b). Whereas the x-axis represents the
tumor probability and ranges from 0.1 (= 10%) to 1.0 (= 100%), the y-axis correlates
with the share of pixels (in absolute numbers). As we generally have ten segmentations
for each patient, we decide to look at the probability in 0.1 steps. This results in a
straightforward approach regarding the calculation of the share of pixels, since one
segmentation represents a 0.1 probability, given that we have 10 segmentations in total.

Considering the impact on the radiomics analysis, we provide the option to interactively
switch the segmentation probability threshold one wants to observe and explore the effect
of this change to the analysis in real-time. Based on this setting, the components for
the radiomics analysis described in Section 4.2.2 are updated. As this feature relates to
the goal of providing user interaction stated with Aim C, it will be described in the
following section in more detail.
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(a) Venn diagramm for the segmentation prob-
ability concept.

(b) Concept for line chart representing the share
of pixels over the segmentation probability.

Figure 4.11: Concept for the visualization of probabilistic tumor segmentation illustrated
in an example with two segmentations.

Design for Aim C: User Interaction

Aim C focuses on providing user interaction specifically for assessing the impact of
probabilistic tumor segmentation on the radiomics analysis. In order to reach this
goal, we incorporate interactive features within our visualizations. The main interaction
techniques in ProSera are filtering, which enables the observation of a data subset based
on filter criteria, [Spe07], brushing and linking, which allows the examination of subsets
within a data in another linked visualization [Kei02], and focus-plus-context, which enables
the view of one object in detail while still providing contextual information [CMS99].
These empower the customization of our visual interfaces, resulting in the opportunity of
thoroughly analyze our results based on the desired focus aspects. In Figure 4.12, we
illustrate the used interaction techniques which we describe in detail in this section.

Due to our results being comprised of large amounts of information, we provide filtering
to enable the observation of our data based on selected criteria. We do this in our
scatterplot, for which we allow the selection of patient category (biological sex, age group,
histology, overall stage) and segmentation category (oncologist, segmentation type). The
selection triggers changing the conveyed information based on the chosen category, hence
also modifying the color schemes of the data points.

We incorporate the technique of brushing and linking for most of our visual interfaces. In
the line chart representing probabilistic segmentation, we enable the option of brushing
through the probability thresholds to highlight the data of interest. Further, the selection
of one segmentation accuracy threshold of interest triggers updating the data represented
in all visualizations for the radiomics analysis based on the threshold (linking). We also
include the functionality in our scatterplot representing correlations of radiomics data. As
we have already mentioned, this representation comprises two modes, the patient-based
and the segmentation-based mode. When clicking on one data point representing one
patient in the patient-based mode, the scatterplot switches into the segmentation-based
mode for the selected patient. We also implement brushing and linking in the visual
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Figure 4.12: Interaction techniques used in our scatterplot: filtering of patient categories,
focus-plus-context (F+C) by means of focused data points, tooltips and cluster markings,
and brushing and linking (B/L) through clicking on one data point (patient) to switch to
the segmentation-based view of the selected patient.

interfaces for the cluster analysis. By clicking on the nodes representing one patient
cluster in the cluster distribution dendrogram, the cluster context for boxplot should be
updated as well. This also applies to the list of most significant SHAP features, which
differ for each cluster. This list in turn corresponds to the boxplot as well, as the selection
of one feature triggers updating the boxplot regarding the distribution of values for the
specific feature.

We employ the focus-plus-context technique in order to provide detailed information of
one object of interest in an overview. We do this specifically by displaying tooltips when
hovering over data points in the scatterplot, nodes in the dendrogram, and data points
and boxplots in the radiomic feature distribution visualization. For example, the tooltip
for a data point in the patient-based scatterplot shows information about the patient,
the respective clinical data and the x and y-coordinates of the data point. Furthermore,
we also indicate the focus of one object by visually highlighting it from the other objects
in the same context. We apply this in our scatterplot and the boxplot, where we increase
the size of a data point when the user hovers over it. Similarly, we highlight the nodes
representing one patient cluster by encircling them with a border. In addition to the
increased size of focused elements, we also include the option to show or hide cluster
information in the scatterplot.

4.3 Implementation
We ultimately provide an “offline” web application regarding the computation of radiomics
data. In other words, we calculated all data for the radiomics analysis for each probabilistic
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threshold in advance. The main reason for this decision was the fast retrievability of
radiomics data, resulting in an instant information availability. This method allows
a fast response from the web application which would have been much slower if the
radiomics data were calculated on demand. In the following sections, we describe the
implementation procedure for the tasks for data preprocessing followed by the user
interface and visualizations.

4.3.1 Radiomics Feature Extraction
As core part of the radiomics analysis, we extracted the radiomic features from medical
imaging. For this purpose, we used the open-source Python package PyRadiomics
[vGFP+17b], particularly the “Feature Extractor” class. The package supports several
radiomics feature classes, including first order, shape, GLCM, and GLSZM.

Before we started with the extraction, we needed to prepare the segmentation and medical
imaging data especially regarding compatibility with the extractor. In this case, we
transformed DICOM files into nearly raw raster data (NRRD) files using the open source
software 3D Slicer9 as well as the Python packages Pydicom10 and Pydicom-Seg11.
We used the first mentioned tool to convert all 2D CT slices of each patient into 3D
volumetric data but also to gain an initial insight into the input data. By means of the
Pydicom and Pydicom-Seg packages we then read the DICOM segmentation files for
each patient and created an NRRD file for each annotated segmentation.

We extracted the radiomic features from the generated NRRD files using the PyRadiomics
package. As seen in Listing Listing 4.1, we initialized the radiomics feature extractor
with the setting geometryTolerance. This was necessary due to a slight image/mask
geometry mismatch potentially caused by small deviations in space in the used data set.
Since we used a very small value for the increase of geometry tolerance, we expect no
negative consequences on the validity of the radiomics analysis. We saved the extracted
radiomics values of all segmentations of all patients into a single CSV file. We also added
patient clinical information for each row for the designing the visualization later. In
general, the CSV file consists of thirty-two dimensions (patient, sex, age, histology, tumor
location, T-stage, N-Stage, M-Stage, overall stage, segmentation, 22 different diagnostic
information such as original image size) and 107 domains equivalent to 107 radiomic
features. In total, the file consists of 205 rows (excluding the header), with each row
designated to one segmentation for one patient. It should be noted that the 22 dimensions
for diagnostic information were provided by the feature extractor by default. These
values were not relevant and therefore not taken into account for the radiomics analysis.

93D Slicer: https://www.slicer.org
10Pydicom: https://pydicom.github.io
11Pydicom-Seg: https://razorx89.github.io/pydicom-seg
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Listing 4.1: Initialization of Radiomics Feature Extractor
1 from pyradiomics import f e a t u r e e x t r a c t o r
2

3 s e t t i n g s = { ’ geometryTolerance ’ : 0 .0001}
4 e x t r a c t o r = f e a t u r e e x t r a c t o r
5 . RadiomicsFeatureExtractor (∗∗ s e t t i n g s )

4.3.2 Dimensionality Reduction

With regard to reducing dimensionality within our generated data, we also consider
each patient as an entity besides looking at each segmentation separately. Thus, we
employed data wrangling on our CSV file containing the extracted radiomic features.
Data wrangling denotes the process of transforming data to prepare them for analysis
[FGL+16]. Regarding our data specifically, we “merged” each row belonging to one
patient into one row. In order to avoid duplicate column variables, we only appended the
radiomics feature values to each patient row and appended the segmentation annotation
to the name of the radiomics feature. As a result, we ended up with 21 rows for the
“patient-based” CSV file, whereas one row is designated for one patient.

In order to find the most appropriate reduction method for the input data, we investigated
three dimensionality reduction techniques, which are: (1) Principal Component Analysis
(PCA), (2) t-distributed Stochastic Neighbor Embedding (t-SNE), and (3) Uniform
Manifold Approximation and Projection (UMAP). Whilst PCA is a technique which
preserves the global structure of data regarding distance, t-SNE preserves the local
distances [PHPQACPQ20]. UMAP manages to balance between preserving global and
local distances by including consistent and stable structures [PHPQACPQ20]. As the
range of values regarding all radiomics feature values altogether is quite large, we have
normalized these values prior to dimensionality reduction.

We utilized the Scikit-learn software machine learning library [PVG+11] and UMAP-
learn [MHM18] for implementing the dimensionality reduction. We have used the
“StandardScaler” class from the sklearn.preprocessing package to normalize the
radiomics feature values. For performing PCA and t-SNE, we have used the “PCA”
class from the sklearn.decomposition package and the “TSNE” class from the
sklearn.manifold package, respectively. As the name says, we have used UMAP-
learn for performing the UMAP. Aside from the reduction technique itself, the appropriate
parameters for these algorithms are also of great importance. As we have anticipated
t-SNE and UMAP to fit the nature of our data the most, we have also compared different
values for the critical parameters perplexity (t-SNE) and neighbors (UMAP). The values
were adjusted based on quality of the results. All results from our investigation can be
seen in Figure 4.13. It can be seen that UMAP with the parameter neighbor set to two
produced the most meaningful data. Compared to the other results, a desired formation
of visual clusters is visible. As already mentioned, we planned to reduce the dimensions
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for both patient-based as well as segmentation-based data. Again, the results were stored
in CSV files.

The final step of the dimensionality reduction task consisted of applying a cluster algorithm
on our data to retrieve meaningful groupings of patients. Alternatives for clustering
include k-Means [HE03] and density-based spatial clustering of applications with noise
(DBSCAN) [EKSX96]. Whereas the first is based on partition regarding different groups
in data, the latter is based on density regarding space. We have ultimately decided to use
k-Means due to it being partition-based, as we anticipate our data to form clusters based
on specific traits such as sex, histology or age. We again resorted to Scikit-learn for
clustering data, particularly the “KMeans” class from the sklearn.cluster package.
Finally, we added the resulting cluster information to the dimensionality reduction data.

4.3.3 Cluster Analysis
For the cluster analysis, we evaluated the dimensionality reduction results including the
generated clustering data by means of simple metrics. In our case, these help to facilitate
the comparison between clusters and patients within a cluster. Common metrics include
the Hopkin’s statistic [HS54], which checks the clusterability of projections regardless
of cluster labels, and silhouette coefficient or score [Rou87], which validates quality of
cluster formation based on known clusters.

We use the silhouette coefficient metric since we have already defined data clusters using
UMAP dimensionality reduction [MHM18] followed by k-Means clustering [HE03]. The
simplicity and straightforward characteristic of this metric also contributed to our decision.
We manually calculated the silhouette coefficients in Python. For the calculation of the
average silhouette coefficient, we have regarded one patient as a “cluster” of segmentations
[TSK05]:

sp = BSS − WSS

max(BSS, WSS) (4.1)

where p represents a patient, BSS the separation, which shows the distinction of the
patient within a cluster of patients, and WSS the cohesion of the patient regarding
its segmentations. We discussed these metrics in detail in Subsection 3.2.3. We then
calculated the mean of all patient silhouettes within each cluster:

sC = 1
nC

�
p∈C

sp (4.2)

where C reflects a cluster of patients, nC the number of patients in the selected cluster,
p the patient in a cluster C and sp the silhouette coefficient for a patient. It should be
noted that we use a linear metric for on the results generated by the non-linear approach
UMAP, however, we did again employ the linear k-Means algorithm on these results.
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(a) Results for PCA.

(b) Results for t-SNE with perplexity 2, 4, 5, and 6.

(c) Results for UMAP using neighbors 2, 4, 6, and 8.

Figure 4.13: Results of different dimensionality reduction approaches on patient-based
radiomic features using different parameterization. The legend seen in (a) applies to all
plots.
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As we wanted to further define our the clusters context of radiomic features, we chose to
determine the features which contributed most to the formation of each cluster. In this
way, we aim to empower the observers to focus on a much smaller amount of radiomic
features. For this purpose, we calculated the SHAP [LL17] values for every cluster, which
gives us information about the most significant radiomic features. We did the calculations
in Python by using the SHAP package12. The SHAP value determination signifies the
last task regarding calculations for the cluster analysis.

4.3.4 Probabilistic Tumor Segmentations
In order to obtain tumor segmentation data based on probability, we compared the
binary masks of all segmentations for every patient. In other words, we superimposed
all segmentations for each patient based and calculated the tumor probability of each
pixel. We did this by counting the number of agreements of one pixel belonging to one
tumor (meaning, where one pixel in the binary mask equals to 1) and divided by the
number of segmentations conducted for the patient. In our case, we have a total of 10
segmentations for each patient, with the exception of one patient (interobs19), for
whom five segmentations are available. Based on this approach, we generated one NRRD
file for each patient containing the probability of one pixel being a tumor based on the
provided segmentation data.
By means of the results from the masks comparison, we generated probability density
function (PDF) for each patient so that the share of pixels for each probability threshold
is evident. Therefore, we have omitted the background within the images by only
considering the pixel values which are not 0. We then calculated the PDF using the
formula:

Pt = nt

Np
(4.3)

where Pt represents the probability function for a user-selected threshold t, nt represents
the number of pixels with probability threshold t, and Np represents the total number of
pixels which potentially designate a tumor for patient p. We define this as the union of
pixels in all tumor segmentations for one patient:

Np = s1 ∪ s2 ∪ ... ∪ sn (4.4)

where sn signifies the (number of pixels for) n-th tumor segmentation for one patient.
As we have generally have ten segmentations for each patient, the PDF for one patient is
represented by a 10 × 1 matrix. For example, the PDF for interobs05 is defined as:

t : 0.1 t : 0.2 t : 0.3 t : 0.4 t : 0.5 t : 0.6 t : 0.7 t : 0.8 t : 0.9 t : 1.0

⌈0.17 0.10 0.04 0.03 0.03 0.02 0.03 0.03 0.05 0.49⌉
12SHAP package: https://shap.readthedocs.io
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4. Methodology

For instance in this example, there is an 100% agreement on 49% of the segmented pixels
belonging to a tumor.

As we have gained information about the segmentation probabilities, we then focused on
providing segmentation data for the radiomics analysis for each probability threshold.
First, we determined which “step” size between each treshold we wanted. Since we
generally have ten segmentations for each patient, we consequently decided on ten
thresholds, with the step size being 0.1 (or 10%) for the range from 0 to 1. Second, we
generated masks or “new” segmentations for each probability threshold. We did this
by again comparing all pixels from the binary masks but only including the ones which
apply to the specific threshold value. In total, we have generated 205 × 10 segmentations,
resulting in 2050 NRRD segmentation files. We have then used these files as input for
performing the radiomics analysis for each probability threshold and saving the results
accordingly.

There were few obstacles concerning the extraction of radiomics features from of the
probabilistic segmentation data. As some segmentation files only contained a very small
number of segmented pixels, the radiomics extraction was not always feasible. In some
cases, some radiomic features could not be extracted, whereas in other cases, no radiomic
features could be extracted at all. We resolved these issues by simply removing all
calculations for one segmentation if it the radiomics feature extraction was incomplete.
We have also done this due to these entries not being comparable anyway due to lacking
data. Thereby, it should be noted that not all radiomic features extraction files include
the calculations of all segmentations. This is caused by some segmentations simply not
having segmented pixels to which certain probability thresholds apply.

4.3.5 User Interface and Visualizations

The implementation of the visual analytics tool involved designing visualizations and
also preprocessing data, specifically radiomics and segmentation data. This means that
we also dealt with the extraction of radiomic features, the dimensionality reduction
of radiomics data, the analysis of clusters, and the calculation of probabilistic tumor
segmentations. The technology stack for fulfilling these tasks stack includes D3.js, which
was used for the visualization task, Angular, which was used for the frontend or user
interface, and Python, which was used for the data processing task. We resorted to
PyCharm and Visual Studio Code as our integrated development environment (IDE) for
the calculation and visualization tasks, respectively.

As already mentioned, we used the framework Angular together with D3.js to implement
the user interface as well as the visualizations. For the UI elements specifically, we have
utilized the UI component library Angular Material13. Figure 4.14, Figure 4.15, and
Figure 4.16 show screenshots of ProSeRa, which consists of the following:

13Angular Material: https://material.angular.io
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1. Probabilistic segmentation component (Figure 4.14), including the toolbar or
header of the web application and the probabilistic segmentation settings.

2. Dimensionality reduction component (Figure 4.15), including banner showing
the selected probabilistic threshold, the scatterplot and respective settings.

3. Cluster analysis component (Figure 4.16), including the dendrogram for the
cluster distribution, the list of calculated SHAP values for the selected cluster, and
the boxplot for the feature value distributions.

Figure 4.14: Screenshot of application toolbar and probabilistic segmentation component
including line chart and probability threshold setting.

Figure 4.15: Screenshot of probabilistic threshold information and dimensionality re-
duction component including scatterplot (patient-based data), doughnut charts (cohort
statistics), and scatterplot settings.

51



4. Methodology

Figure 4.16: Screenshot of cluster analysis component including dendrogram (cluster
distribution) and boxplot (feature distribution).

All visualizations for the radiomics analysis are triggered by changing the probability
threshold in the probabilistic segmentation component. This can be done in two ways:
By simply selecting the desired threshold in the dropdown or by clicking on the line
chart, as seen in Figure 4.17. When hovering over the line chart with the mouse, the
rectangle showing the considered probability threshold changes according to the x-point
of the mouse. By clicking on the “Calculate Radiomics” button, the radiomics analysis
component are updated based on the selected threshold.

Figure 4.17: Brushing and linking interaction of the line chart to select the probability
threshold.

As we already mentioned in Subsection 4.2.2, the scatterplot in the dimensionality
reduction component provides two modes: The patient-based mode, where one point
represents one patient, and the segmentation-based mode, where one point represents
one segmentation, as seen in represented in Figure 4.18. We additionally implemented
tooltips when hovering over the points of interest and an overview of patient information,
including displaying one CT scan of the patient. In order to leave this view, we further

52



4.3. Implementation

provided a “Back to Overview” button to head back to the patient-based scatterplot
mode.

Figure 4.18: Segmentation-based scatterplot view for interobs06, including tooltips
(brushing and linking) and display of patient information (focus-plus-context).

Considering the cluster analysis component, we also implemented interaction features
within the visualizations. By clicking on a cluster circle in the dendrogram, the boxplot
including the list of most important SHAP features are updated. The boxplot is also
updated according to the selected SHAP feature for which the distribution of values
should be displayed. Similar to the scatterplot, we implemented a tooltip for both
dendrogram and boxplot when hovering over a circle or a box, respectively. The tooltip
provides detailed information about the hovered element which may not be visible by
the naked eye such as the statistical values of a boxplot.

Figure 4.19: Cluster analysis visualizations after changing cluster through brushing and
linking and SHAP feature and including a tooltip in the boxplot (focus-plus-context).
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CHAPTER 5
Results and Discussion

In this chapter, we present our results using five usage scenarios which we defined based
on significant and unexpected findings. We evaluate the outcomes using evaluation
methods appropriate for answering our research question. Subsequently, we discuss our
approach followed by stating the limitations of our work.

5.1 Results
Prior to presenting our results, we want to state and briefly describe alternatives for
evaluation methods and which of these we plan to apply. The literature proposes
several approaches to evaluate information visualizations such as the nested model
for visualization design and validation [Mun09], Visual Data Analysis and Reasoning
(VDAR)[LBI+12], and Qualitative Result Inspection (QRI). [IIC+13]. Munzner [Mun09]
introduces a nested model which supports the selection of appropriate evaluation methods.
For each of the four nested layers, the model determines the threats to validity and suggests
evaluation approaches to overcome these. Lam et al. [LBI+12] propose VDAR, which
determines the support of a visualization tool on the quality of data analysis including
knowledge gain in a specific domain. It assesses the contribution to supporting data
exploration, knowledge discovery, hypothesis generation, and decision-making processes
by methods such as case studies. Isenberg et al. [IIC+13] present QRI assessments which
concentrate on evaluating and discussing visualization results in a qualitative manner.
In contrast to VDAR it focuses on validating the image quality, visual encodings, and
system behavior or interaction (walkthrough).

As we target the evaluation of our results based on how well the interactive visualizations
in ProSeRa support the radiomics analysis, we chose VDAR [LBI+12] and QRI [IIC+13]
as our evaluation scenarios. In the context of our work, this means that we assess the
visual analytics tool based on (1) its quality in supporting the investigation of probabilistic
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segmentation on the radiomics analysis and (2) the quality of its visualizations. We
evaluate our results by means of usage scenarios on interesting and remarkable findings.

5.1.1 Usage Scenario 1: Correlation between Tumor Segmentation
Probability and Cluster Formation

As we anticipated an influence of tumor segmentation probabilities on clustering, we
particularly investigated the size of clusters and a potential categorization of clusters
based on clinical data. We therefore compared how the visualizations of the correlations
(scatterplot) are impacted by different tumor segmentations. We came to the findings
that (1) a 100% probability relates to the highest cluster formation, and (2) the clinical
categorization of clusters not being completely blatant.

Generally, the segmentation probability was found to closely correlate to the formation
of clusters as well as the respective cluster sizes. As seen in Table 5.1, the cluster size
does not increase continuously with an increasing or decreasing segmentation probability,
meaning that there is not direct or inverse proportionality. However, the highest amount
of clusters was indeed formed with a 100% segmentation probability, with the smallest
cluster consisting of two, and the biggest cluster consisting of four patients. The second
most number of clusters was found at an 80% probability, with six clusters having at
least two and at most five patients. Apart from these thresholds, the number of clusters
range from four to five, with the smallest minimum cluster size being two and the highest
maximum cluster size being ten.

Regarding the characterization of clusters based on clinical data, we could not find any
clear patterns concerning histology or age group. In Figure 5.1, we provide screenshots
of patient-based radiomics visualization with age group and histology as classification
category for 80% (Figure 5.1a and Figure 5.1b) and 100% (Figure 5.1c and Figure 5.1d).
It can be seen that most clusters cannot be linked to one particular classification for age
group or histology. In case for the age group, cluster 0 in Figure 5.1a for example includes
patients from the age 50 up to 79. There are minor exceptions where some clusters only
comprise patients of one age group, such as cluster 1 and 5 to which patients from the
age group 70 – 79 belong. For the most part, however, clusters cannot clearly be linked
to one age group. This is also the case for histology, were the distribution among clusters
is even more dispersed. Nevertheless, we did expect this particular behavior for this
category. This is due to some of the histology classifications being subtypes of others,
such as squamous cell carcinomas, adenocarcinomas, and large cell carcinomas being
subtypes of NSCLC. Also, the fact that adenocarcinomas can be found in each cluster
can be explained through the fact that adenocarcinomas make up 40% of the NSCLC
[TBN+15].

Despite not finding any patterns for the classification of clusters according to age and
histology, we did discover some clusters which could be assigned one classification
regarding biological sex and overall tumor stage. As seen in Figure 5.2, four out of six
clusters (Figure 5.2a), and four out of seven clusters (Figure 5.2c) can be classified as
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5. Results and Discussion

Table 5.1: Overview of number of clusters and minimum and maximum cluster size
regarding tumor segmentation probability.

Segmentation
Probability

Number of
Clusters

Minimum
Cluster Size

Maximum
Cluster Size

- 4 3 8

0.1 (10%) 5 3 6

0.2 (20%) 4 4 7

0.3 (30%) 5 3 5

0.4 (40%) 5 2 8

0.5 (50%) 4 2 7

0.6 (60%) 5 2 10

0.7 (70%) 4 3 8

0.8 (80%) 6 2 5

0.9 (90%) 5 2 7

1.0 (100%) 7 2 4

entirely male or female at 80% and 100% tumor probability, respectively. Similarly, three
out of six clusters (Figure 5.2b) and four out of seven clusters (Figure 5.2d) comprise
patients diagnosed with stage III (IIIa and IIIb) cancer. As a result, we can deduce that
the tumor phenotypes for lung cancer may look similar or produce similar radiomics
feature values among patients with the same sex or overall tumor stage.

5.1.2 Usage Scenario 2: Correlation between Tumor Segmentation
Probability and Cluster Silhouettes

In addition to exploring the formation of clusters, we also wanted to investigate the cluster
silhouette based on tumor segmentation probability. In doing so, we have compared the
visualization for showing the cluster distribution (dendrogram) for different probability
thresholds. We specifically focused on the calculated silhouette values representing how
well a cluster is defined.

Similar to Usage Scenario 1, the cluster definition is neither directly nor inversely pro-
portional to the segmentation probability threshold. Figure 5.3 compares the cluster
distribution including the patient silhouettes at different probabilities. It shows that
the silhouette of one patient cluster is not necessarily dependent on the probability
threshold, with 40% segmentation probability producing generally excellently-defined
clusters (Figure 5.3a), 60% producing worse defined clusters in comparison (Figure 5.3b),
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and 80% producing better defined clusters again (Figure 5.3c). Of course, 100% segmen-
tation probability resulted in solely excellently defined clusters (Figure 5.3d). Since this
threshold includes no discrepancies within the segmented tumors, the silhouettes for each
patient cluster equal to 1.0.

Despite not detecting any patterns regarding proportionality, we did observe occasional
abnormalities within clusters regarding the silhouette classifications. Occasionally, there
are occurrences of bad-defined patients among otherwise mostly well- or excellently-
defined patients within the same cluster (Figure 5.4). For example, this is the case for
cluster 0 and 2 at a 50% segmentation probability (Figure 5.4a) or for cluster 1 and 3 at
a 70% probability (Figure 5.4b). We explain this as follows: (1) The concerning patients
deviate from other patients within the clusters based on radiomics feature values, or (2)
there was a high interobserver variability in the tumor segmentation for the concerning
patient. The last reason may apply to patient interobs15, who produced bad-defined
silhouette values at 50% threshold (s15 = 0.25), 70% threshold (s15 = 0.03), and 80%
threshold (s15 = 0.15).

Furthermore, we also discovered a profound influence of probabilistic segmentation onto
the silhouette classifications. In Figure 5.5, we have compared the cluster distribution
generated from all segmentation data (Figure 5.5a) to the distribution generated with
the consideration of a 60% threshold, which produced the worst values compared to other
thresholds (Figure 5.5b). When looking at the silhouette values calculated from all input
data, meaning that no threshold is selected, we can observe three reasonably-defined
(75%) and one excellently-defined cluster (25%). This is significantly worse compared to
the silhouette classifications computed for any probability threshold, which exhibited at
least 40% of clusters being excellent-defined (60% probability threshold). More details
will be provided in Usage Scenario 3.

5.1.3 Usage Scenario 3: Radiomics Analysis When Including All
Tumor Segmentations

With this usage scenarios we wanted to provide a thorough analysis of radiomics data
calculated from all segmentation data. We investigated all visualization components
so that we can gain insight on the original input data without taking the probability
threshold into consideration. In this way, we can explore the degree of interobserver
variability within patients’ segmentations as well as its effect on the radiomics feature
extraction.

The radiomics data after dimensionality reduction resulted in four clusters separating
21 patients (Figure 5.6). When looking at the inter-cluster level, we can see that the
clusters are very distant from one another. This means that these can be considered
being quite distinct in terms of radiomics feature values. At the same time, this also
signifies that patients could be grouped based on the radiomics data extracted from their
tumor segmentations, hinting at similar or similar-looking phenotypes. When observing
the data within the clusters itself (intra- cluster level), however, we could not find a clear
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5. Results and Discussion

(a) 50% probability

(b) 70% probability

Figure 5.4: Comparison of cluster silhouette classifications at different probabilities.

coherence among the patients regarding histology (Figure 5.6a) or age (Figure 5.6b).
Nevertheless, we could categorize some clusters based on biological sex. As seen in
Figure 5.6c and Figure 5.6d, cluster 0 and 3 solely consists of male patients with stage
IIIa lung cancer. This indicates that NSCLC patients of the same sex diagnosed with the
same cancer stage may show similarities regarding their tumors and tumor phenotypes.

As we also wanted to examine on the separation and coherence (i.e., silhouette) of clusters,
we observed both the just described scatterplot (Figure 5.6) and the dendogram showing
the silhouette classifications (Figure 5.7). Overall, the cluster sizes range from three to
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(a) No threshold (All data included)

(b) 60% probability threshold

Figure 5.5: Comparison of cluster silhouette classifications regarding the consideration of
probability threshold.

eight patients per cluster, with cluster 1 being the largest. The mean of silhouettes for
each cluster are defined as “reasonable”(0.55 <= sC <= 0.63) except for cluster 3, which
is categorized as “excellent” (s3 = 0.85). This particular cluster is the smallest one with
three patients, who are all male, between 69 – 77 old and were diagnosed with either
an undifferentiated lung carcinoma or a squamous cell carcinoma. Compared to the
other clusters, cluster 3 can be considered the most coherent in terms of clinical patient
data. In contrast to this, cluster 2 can be considered the most incoherent cluster 2 with
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s2 = 0.55. This is not just evident from the silhouette values shown in the dendrogram
but also from the clinical patient data in the scatterplot.

Figure 5.7: Cluster distribution including silhouette classification for all input data.

We further observed the feature value distributions of SHAP features by means of the
boxplot (Figure 5.8). In doing so, we specifically examined the feature distributions
for “Dependence Variance (Gray-Level Dependence Matrix (GLDM))” for the most
incoherent cluster, cluster 2. As expected, there are conspicuous variances within each
patient’s segmentations (white data points). Especially patient interobs27 shows a
great variance with values between 14 and 25 and the white data points being separated
the most compared to the ones for the other patients. In contrast, interobs33 shows
the least variances but has one noticeable outlier located above all other values. This
means that the one segmentation, in this case the manual segmentation by oncologist 2
(as seen in the tooltip in Figure 5.8), significantly diverges from the other segmentations
in terms of the Dependence Variance feature. Moreover, we also noticed a variance in the
feature values between the patients as well, as each boxplot is plotted at different heights.

5.1.4 Usage Scenario 4: Consistency and Coherence of Cluster
Formation Regarding Tumor Segmentation Probability

By means of usage scenarios 4 we aimed to investigate how different segmentation
probabilities influence the stratification of our data. We specifically were interested in
whether clusters stay together different throughout accuracy thresholds. In this way, we
also aspired to detect “strong” clusters so that we can deduce which patients are very
similar to one another regarding their radiomics feature values.
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Figure 5.8: Distributions for “Dependence Variance (GLDM)” values for cluster 2, with
a tooltip showing segmentation information about the outlier for interobs33.

Altogether, we found the segmentation probability having a tremendous impact on
the stratification (clustering). Figure 5.9 shows this impact by comparing the cluster
distribution for a 10% segmentation accuracy (Figure 5.9a) to a 90% segmentation
accuracy (Figure 5.9b). Despite having the same number of clusters formed, the allocation
of patients to the clusters is significantly different for some cases. For example, patients
interobs11 and interobs15 form one cluster (cluster 4) at 90% accuracy but assigned
to different clusters (cluster 2 and 3) at 10% accuracy. Similar behavior is also reflected
for cluster distributions for other probability thresholds.

However, there is one group of patients which particularly stood out to us regarding
cohesion. Interobs06, 10, 11, 27, and 33 (Cluster 3 in Figure 5.9a) always formed one
cluster for the probability thresholds 10% – 50% as well as when there was no probability
threshold set. At 60%, the cluster was split into two clusters, with interobs11 and
interobs27 being divided from the other patients. Similar behavior is also shown for a
70% – 90% accuracy, with one or more completely different patients being occassionally
added to the (sub-)clusters. At 100% segmentation accuracy, the initial cluster was
divided into three clusters, with other patients being added to these. The patients which
were consistently put into the same cluster were interobs10 (Female, 47, NSCLC,
IIIa) and interobs30 (Male, 58, Adenocarcinoma, IIIa). We provided an overview in
Figure 5.10, comparing the cluster distribution at 20% (Figure 5.10a), 50% (Figure 5.10b),
80% (Figure 5.10c), and 100% accuracy (Figure 5.10d).

Even though the cluster formation for interobs06, 10, 11, 27, and 33 stayed coher-
ent for the most part, the SHAP features for the cluster(s) with respect to different
segmentation accuracy diverged significantly. For example, the clusters for the patients
generated with 10% and 50% segmentation threshold exhibit completely distinct SHAP
features, despite containing the exact same patients. There were some overlaps such as
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(a) 10% probability

(b) 90% probability

Figure 5.9: Cluster formation for different probability thresholds with same number of
clusters but different cluster allocation.

the “Maximum 3D Diameter” feature being listed in the SHAP feature list for a 10%
and 80% probability. However, these were only limited in number. The clusters 1, 3,
and 6, which include interobs06, 10, 11, 27, or 33 at 100% tumor probability, do
not have any (top five most important) SHAP features in common. Nevertheless, we
could detect that most of these features belong to the category GLRLM and GLDM. We
provided an overview of the most important SHAP features for each cluster which includes
interobs06, 10, 11, 27, and 33 at 100% segmentation probability in Table 5.2. We
also illustrate the boxplots for the most prominent SHAP features for each cluster in
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(a) 20% probability (b) 50% probability

(c) 80% probability (d) 100% probability

Figure 5.10: Cluster distribution for interobs06, 10, 11, 27, and 33 at different
accuracy thresholds.

Figure 5.11, with each boxplot showing the feature value distributions for each patient
within the same cluster (Figure 5.11a, Figure 5.11b, and Figure 5.11c).

5.1.5 Usage Scenario 5: Patients with Low versus High Sensitivity to
Changes in the Probability Threshold

Besides observing the influence of tumor segmentation probability on clustering, we
wanted to focus on how individual patients are affected by segmentation accuracy. For
that, we particularly explored the silhouette values as well as the segmentation-based
radiomics data after dimensionality reduction and compared the results for each accuracy
threshold. Generally, we did not find any patient in our data whose silhouette was
consistently bad- or weakly defined. However, we did observe some patients being barely
affected (low-sensitivity), while others being highly affected (high-sensitivity) regarding
segmentation accuracy. We will present and discuss these through by means of one
example for each category in the following paragraphs.

We start with introducing the patients with the lowest and highest sensitivity to provide
insight into the clinical data as well as their range of silhouette values. Interobs14
(Male, 77, Undifferentiated lung carcinoma, IIIa) appears to being affected by the
segmentation accuracy the least. This patients exhibits an excellent silhouette for all
probability thresholds, with values ranging from 0.92 (worst) to 1.0 (best), meaning
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Table 5.2: SHAP features for clusters containing interobs06, 10, 11, 27, and 33
(marked in bold) at 100% tumor segmentation probability.

Patients Cluster Top Five Most
Important SHAP Features

• interobs11

• interobs14

• interobs15

• Small Dependence Low Gray Level Emphasis (GLDM)

• Long Run Emphasis (GLRLM)

• Long Run High Gray Level Emphasis (GLRLM)

• Dependence Non Uniformity Normalized (GLDM)

• Dependence Entropy (GLDM)

• interobs06

• interobs20

• interobs27

• Dependence Non Uniformity Normalized (GLDM)

• Long Run Low Gray Level Emphasis (GLRLM)

• Small Area Low Gray Level Emphasis (GLSZM)

• Dependence Variance (GLDM)

• Surface Volume Ratio (Shape)

• interobs10

• interobs33

• interobs34

• Long Run Emphasis (GLRLM)

• Run Length Non Uniformity (GLRLM)

• Voxel Volume (Shape)

• Gray Level Non Uniformity (GLRLM)

• Long Run Low Gray Level Emphasis (GLRLM)
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(a) “Small Dependence Low Gray Level Emphasis (GLDM)” feature value distributions for cluster
containing interobs11, 14, and 15.

(b) “Dependence Non Uniformity Normalized (GLDM)” feature value distributions for cluster
containing interobs06, 20, and 27.

(c) “Long Run Emphasis (GLRLM)” feature value distributions for cluster containing
interobs10, 33, and 34.

Figure 5.11: Boxplots showing the feature value distributions for the most prominent
SHAP feature of clusters containing interobs06, 10, 11, 27, or 33 at 100% probability
(Table 5.2). Note here that the values for each segmentation are the same at 100%
probability (no segmentation disagreement), hence each group in the boxplots being
represented as a line.

that the values remain consistent. In contrast, interobs31 (Male, 73, Squamous cell
carcinoma, IIIa) shows a high variance in silhouette based on segmentation probability,
with values ranging from 0.02 (worst) to 1.0 (best). The silhouette does not continuously
increase with a higher segmentation accuracy but varies without any particular pattern.
In Table 5.3 we have compared the silhouette values between these patients with regard
to the segmentation probability. We illustrate the silhouette values for interobs14
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Table 5.3: Comparison of silhouette values between interobs14 (low-sensitivity patient)
and interobs31 (high-sensitivity patient) with respect to segmentation probability.

Segmentation
Probability

Silhouette for interobs14
(Low-sensitivity patient)

Silhouette for interobs31
(High-sensitivity patient)

- 0.84 0.33

0.1 (10%) 1.0 0.86

0.2 (20%) 0.99 0.31

0.3 (30%) 0.99 1.00

0.4 (40%) 1.0 0.46

0.5 (50%) 0.98 0.81

0.6 (60%) 0.97 0.27

0.7 (70%) 0.99 0.97

0.8 (80%) 0.92 0.98

0.9 (90%) 0.94 0.02

1.0 (100%) 1.0 1.0

and interobs31 at 50% and 90% shown in the cluster distribution dendrogram in
Figure 5.12. Figure 5.12a and Figure 5.12b show the silhouette values for interobs14
and interobs31 at 50% segmentation probability, whereas Figure 5.12c and Figure 5.12d
show the silhouette values for interobs14 and interobs31 at 90% segmentation
probability.

We explain our findings with the following reasons: First, tumors of low-sensitivity
patients may exhibit characteristics such as clear borders which are easier to assess
compared to tumors of high-sensitivity patients. As a result, the correlated interobserver
variability regarding the tumor segmentations will be accordingly lower or higher. We
studied this aspect by observing the scatterplot visualizing segmentation-based radiomics
data for each patient (see Figure 5.13). When comparing the results produced with
all segmentation data (Figure 5.13a and Figure 5.13b), we can first and foremost see
that both exhibit clusters containing similar segmentations. When glancing at the scale,
however, we can see that the distance between the clusters differs. For interobs31,
this distance is larger, meaning that groups of segmentations did not produce the same
radiomics features, hinting at a higher interobserver variability. This is even more
apparent at 60% probability threshold (Figure 5.13c and Figure 5.13d), where no clusters
are apparent for the high-sensitivity patient in contrast to the low-sensitivity patient.

Second, the quality of medical imaging also may significantly influence the tumor segmen-
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(a) interobs14 at 50% probability (b) interobs31 at 50% probability

(c) interobs14 at 90% probability (d) interobs31 at 90% probability

Figure 5.12: Silhouette values for interobs14 (low sensitivity) and 31 (high sensitivity)
shown in tooltips 11, 27, and 33 at different accuracy thresholds.

tation process. Factors such as low contrast aggravate the assessment of tumors which
also impacts the variability among observers. In Figure 5.14, we have compared one CT
scan each of the interobs14, which is the low-sensitivity patient (Figure 5.14a), and
interobs31, which is the high-sensitivity patient (Figure 5.14b). The CT scans clearly
show a significant difference in contrast, with the CT scan of interobs31 exhibiting a
much lower contrast compared to the CT scan of interobs14.

5.2 Discussion

The visual analytics tool strongly supported us in investigating the effect of tumor
segmentations on the radiomics analysis. It empowered us to observe the calculated
radiomics data for different segmentation probability thresholds by simply switching the
respective settings. This enabled us to thoroughly analyze the result of each accuracy
threshold and also to compare the results of different thresholds. By means of a dataset
containing tumor segmentations conducted by actual oncologists, we could investigate a
case which reflects interobserver variability in a real-world setting.

Even though radiomics data are known for their complexity, the visual interface enables
an analysis of these in a rather clear and simple way. The preprocessing of radiomics data
largely contributes to this aspect since we principally focused on extracting meaningful
data but also on simplifying information. By this, we refer to tasks such as reducing the
dimensionality of radiomics data after extraction or calculating the silhouette values as
part of the cluster analysis. Besides the preprocessing process, the visualizations also
support a facilitated radiomics analysis by means of appropriate visualization types for
conveying the intended information. We specifically also strived for reducing information
overload by using appropriately designed encodings and simple guidance methods.
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(a) interobs14 (low-sensitivity patient) (b) interobs31 (high-sensitivity patient)

Figure 5.14: Comparison of CT scans between a patients with different sensitivity
regarding segmentation accuracy.

Aside from facilitating the analysis, the visualizations enabled a deep insight into radiomics
data. By this, we refer to the visual interfaces fixating different subject matters, such
as cluster analysis or the correlation of radiomics. For the cluster analysis, we provided
information about the cluster distribution including size and validity of each cluster in a
color-encoded dendrogram. We further determined the SHAP features of each cluster
and visualized the feature value distributions for every patient in a selected cluster.
Concerning the visualization of correlations within radiomics, we designed a scatterplot
which is color-encoded based on clinical data. As mentioned previously, we preprocessed
the radiomics data before visualizing these to ensure simplicity. The broad spectrum
of view points in our radiomics analysis encourages a better understanding of data
and underlying patterns. Furthermore, correlations between several aspects could be
thoroughly inspected, which again helped us to uncover especially unexpected connections
and outcomes.

Our approach helped us in confirming expected results. These encompass our anticipation
of probabilistic segmentation heavily influencing the radiomics analysis as well as certain
clinical data not necessarily correlating with clustering. Usage Scenarios 1, 2, 4, and 5
touch upon the topic of interobserver variability and segmentation accuracy significantly
impacting the radiomics analysis. The findings presented in Usage Scenario 3 match
our expectation of patient category “histology” not explicitly correlating with patient
clusters in our case.

More importantly, our application enabled us to reveal unexpected patterns and outcomes.
In Usage Scenario 1, we unveiled the numbers of clusters not increasing continuously with
higher segmentation accuracy. We also detected similar findings for the cluster silhouette
values with usage scenarios 2. Usage Scenario 4 showed us that cluster formation is mostly
not coherent regarding different probability segmentation thresholds. In Usage Scenario
5, we revealed that some patient are more sensitive to the segmentation thresholds than
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others, which is especially evident in the impact on the cluster analysis.

To sum up, ProSeRa supports the radiomics analysis by means of clear and insightful
visualizations which represent radiomics data from various aspects. It considers clinical
information in the analysis and further enables exploring the impact of different tumor
segmentation probabilities on radiomics. Even though our tool enables us to confirm
anticipated outcomes, we stress that our results should be interpreted in consideration to
the limitations of our work. For example, one important aspect may be the current usage
of a small data set. In the following section, we discuss the limitations of this thesis as
well as the potential influence of these on our results in detail.

5.3 Limitations
As with the majority of research, the design of our visual analytics tool is subject to
limitations. We identified the following shortcomings: (1) the small size of the input data
set, (2) the omission of applying image filters prior to radiomics feature extraction, and
(3) the lack of visualizations for representing tumor segmentations. We perceived these
to have the highest potential impact on our findings and also provide interesting points
for extensions in the future.

The small data set used for the radiomics analysis may have produced results which
have strongly been influenced by the patient cohort and the group of oncologists. The 21
patients may not be representative of NSCLC patients, just the same as the segmentations
by the five oncologists may not be representative of interobserver variability among
radiation oncologist. This would make the results of our radiomics analysis being biased
due to the subjectivity of oncologists as well as the chosen patient cohort (selection bias).
However, our approach is flexible and additional or different data sets can be easily
plugged in and analyzed with our dashboard.

The missing application of filters on medical images represents another limitation of
our research. The usage of image filters prior to radiomics feature extraction may have
enhanced the performance of calculation algorithms. This again could have resulted
in obtaining outcomes which are more precise. This action would have been especially
profitable for medical images which exhibit poor quality such as low contrast, low
resolution or noise.

In contrast to the mentioned limitations which mostly concern the radiomics analysis, the
lack of visualizations of tumor delineations on medical images relates to the analysis of
probabilistic segmentation. Visual representations of all tumor segmentations conducted
by each oncologist may have been beneficial for the investigation of interobserver variability
and comprehension of deviations in tumor delineations. These visualizations could have
enabled a better understanding of including specific (tumor) regions impacting the
radiomics analysis. Such approaches have been previously investigated, for example by
Jalalifar et al. [JSSSN22].
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CHAPTER 6
Conclusion and Future Challenges

This thesis investigated to what extent the variability in tumor segmentations and the
consideration of segmentation probability influence the outcome of radiomics analysis.
We answer the research question formulated in Section 1.1 as follows:

“The variability in probabilistic tumor segmentations significantly influences the
radiomics analysis especially in terms of clustering, which produces varying results
among different segmentation probability thresholds.”

We come to this conclusion based on the results of our visual analytics tool ProSeRa,
which consists of interactive visualizations representing radiomics data from various
aspects. We designed and developed ProSeRa based on three aims. We fulfill the aim
of visualizing and analyzing radiomics features with respect to clinical data (Aim A)
by providing interactive visualizations which show radiomics data from various aspects,
including cluster analysis and correlation. In doing so, we provide color encodings to
convey information about the patient cohort as well as about cluster validity. In order
to explore the effect of probabilistic segmentation on radiomics (Aim B), we used a
data set containing multiple tumor delineations from different radiation oncologists. We
preprocessed the extracted radiomics data resulting from each segmentation accuracy
threshold in order to extract meaningful information prior to visualizing these. By
providing interaction techniques such as brushing and linking and focus-plus-context,
we address user interaction within our tool (Aim C). Based on the evaluation of our
results using VDAR and QRI, we conclude that probabilistic tumor segmentations have
a considerable impact on the radiomics analysis. Especially the cluster analysis was
affected by the consideration of different segmentation accuracies as demonstrated in our
usage scenarios.
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Overall, our results show that tumor segmentations are a crucial factor for the radiomics
analysis outcome. We have proven this by extracting radiomic features, reducing the
dimensionality of these, performing cluster analysis, and computing the probabilistic
tumor segmentations. We visualized our generated radiomics data on appropriate
visualization types combined with the purposeful usage of colors. We thereby prevented
information overflow on the visual interfaces in order to enable a clear analysis of radiomics
information with respect to probability segmentation thresholds. We presented our results
by means of five usage scenarios on remarkable findings. Our visual analytics tool greatly
helped us in both confirming expected outcomes and unveiling unexpected insights into
radiomics with regard to segmentation accuracy. For instance, the latter applies to cluster
formation not being coherent regarding different probability segmentation thresholds.

Nonetheless, the results of our thesis should be regarded in light of its limitations. These
mainly concern the impact on the radiomics analysis performance due to small sample
size or omission of image filters prior to feature extraction. We also considered the missing
visualizations for representing tumor delineations to be potentially disadvantageous for
understanding the effect of including specific tumor regions.

Future work should specifically address the limitations of our current research to gain
more insight on the correlation between probabilistic tumor segmentations and radiomics.
This would include considering bigger data sets for the radiomics analysis. In order to
further improve the performance of the analysis, the usage of suitable image filters prior to
feature extraction should also be explored. Additionally, a more flexible way of conducting
the cluster analysis should enable a more pliable exploration and analysis of the data
set. For example, weighting factors should be taken into account for clustering when
including, excluding, or weighting (clinical) features. In this case, guidance [CAA+20]
and provenance [XAJK+15] could also be useful to support an easy navigation of the
data and the entire analytical process. Finally, a more comprehensive probabilistic
analysis of segmentations [PRW11, MCC+21] would provide additional insights, but
this would require different dimensionality reduction and clustering approaches. For
a better understanding of correlations between specific tumor regions and radiomics
analysis, visualizations of tumor delineations should likewise be considered for future
implementations. The consideration of these suggestions in future work could further
extend the functionalities of ProSeRa, which already presents effective visualizations for
investigating the effect of different tumor segmentations on the radiomics analysis.
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