

Impressum

Vienna University of Technology
Institute of Visual Computing & Human-Centered Technology
Favoritenstra�e 9-11/193
1040 Vienna

ISBN 978-3-9504701-4-7

Welcome to CESCG 2023!

This book contains the proceedings of the 27th Central European Seminar on
Computer Graphics, short CESCG, which continues a history of very successful
seminars.

The long history of CESCG has started in 1997 in a medium-sized lecture room
in Bratislava, bringing together students from Bratislava, Brno, Budapest, Graz,
Prague, and Vienna. The idea found wide appraisal and the seminar moved to
the beautiful castle of Budmerice, where it was held for eight consecutive years,
constantly growing in size and attraction. It was just in the 10th anniversary year
2006 that CESCG had to take a detour to move to �Cast�a-Papierni�cka Centre, while
it was back in Budmerice castle since 2007. Budmerice castle ultimately closed
down for public in 2011. After spending that year in Vini�cn�e, in 2012 we moved
to the beautiful castle in Smolenice. During the COVID pandemics lock-downs in
2020 and 2021, CESCG switched to a virtual mode at Discord and Youtube.

Who are the CESCG heroes who made this year's seminar happen? In no
particular order { because many people were involved equally { we would like to
thank the organizers from Vienna: Michael Wimmer, Max H�o�erer, Annalena
Ulschmid and Diana Marin. Special thanks goes to Martin Il�c��k for extensive
editorial work and event management, keeping the seminar alive for already 15
years. We are very thankful to the CESCG organizers from Bratislava, Zuzana
Berger-Haladov�a, Luk�a�s Hudec and Andrej Ferko, always an inspiration to
CESCG. Stanislav Grigu�s again produced professional promotion videos.

The main idea of CESCG is to bring students of computer graphics together
across boundaries of universities and countries. We focus on sustainable academic
and research development in the �eld of Computer Graphics in Visegrad Countries
and Austria. Our mission is to support undergraduate talents in their future
careers. We have 10 participating institutions and a tight time schedule of 12
student papers and 6 posters. We welcome groups from Bratislava (Comenius and

STU), Slovakia; Prague (Charles and �CV�UT), Czech Republic; Budapest (BME),
Hungary; TU Graz and Vienna (Uni, TU and VRVis), Austria; University of
Ljubljana, Slovenia; and University of Sarajevo, Bosnia and Herzegovina. Martin
Il�c��k from TU Wien led the virtual workshop on \Scienti�c Storytelling\ right
after the students received the �rst feedback to their papers. The keynote talk
\(Privacy-Preserving) Visual Localization" will be held by Torsten Sattler from
the Czech Technical University in Prague.

We assembled an International Program Committee of 11 members, allowing us
to have each paper reviewed by two IPC members during the informal reviewing
process. Students also cross-reviewed their papers. We would like to thank the
members of the IPC for their contribution to the reviewing process:

Ji�r�� Bittner Ji�r�� Hlad�uvka Selma Rizvi�c
Ciril Bohak Luk�a�s Hudec L�aszl�o Sz�ecsi
Daniel Cornel Martin Il�c��k Michael Wimmer
Jan Egger Lukas Lipp

The reviewing process was further supported by: Andreas Buttinger-Kreuzhuber,
Ladislav �Cmol��k, Petr Felkel, David Hahn, Vlastimil Havran, Jakub Hendrich,
Fabian H�orst, Martin Kacerik, Peter Kapec, Stefan Ohrhallinger, Kostiantyn
Rudenko, L�aszl�o Szirmay-Kalos, Annalena Ulschmid, Marton Vaitkus, Juraj Vinc�ur,
Maria Wimmer.

With the 20th anniversary of the seminar in 2016, Martin initiated the CESCG
EXPO project. This year we restarted the EXPO with companies and research
institutions specialized on visual computing presenting their innovative products
in an interactive exhibition. The exhibitors are:

Additive Appearance, Prague Prusa Research, Prague
Canon, Bratislava Vectary, Bratislava
Escape Motions, Pie�s�tany VR Group, Brno
Nanographics, Vienna WildRealm, Bratislava
Procedural Design, Vienna

For 2020 Martin initiated the ACADEMY project to o�er tutorials and lectures
by international experts to stimulate knowledge exchange in a way similar to a
summer schoool. The COVID pandemics interrupted these plans, so the zero-year
o�ered just a reduced set of workshops virtually. The �rst real ACADEMY took
place 2022, o�ering a day with 5 tutorials right after the seminar. This year the
ACADEMY �nally got its intended shape with 12 tutorials and lectures given in
4 parallel tracks over the course of 2 full days:

Real-Time Rendering : Introduction to Vulkan (Johannes Unterguggenberger, TU
Wien), Terrain Rendering (Adam Celarek, TU Wien), WebGPU (�Ziga Lesar¹,
Lucas Melo² and Lukas Herzberger², University of Ljubljana¹ and TU Wien²)

Games : Designing Thinky Games (J�an T�oth)

Reconstruction : Photogrammetry (Peter Mydliar, Canon), Airborne Optical Sectioning
(Oliver Bimber, JKU Linz)

Music : Math and Music { How Synthesizers work (Peter Mindek, Nanographics),
D[{ A Music Programming Language (Martin Il�c��k, Procedural Design)

Neural Graphics : A Brief Introduction to NeRFs (Torsten Sattler, �CV�UT Prague)

Geometry : Combinatorial Maps and Rapid prototyping using ThreeJS (Paul Viville,
Strasbourg University)

Creative Production : VR Production (Selma Rizvi�c and Bojan Mijatovi�c), YouTube
{ From One to a Million (Stanislav Grigu�s, SG-production), Creative Photo Walk
(Tobias Rittig, Charles University)

The organization of such a large event requires additional funding. We are very
thankful to the partners of CESCG 2023 for supporting us �nancially and by
donating prizes for awarding the best student results:

iv

{ KAUST, King Abdullah University of Science and Technology,
{ VRVis, Research Center for Virtual Reality and Visualization,
{ Canon, digital imaging solutions,
{ Prusa Research, making more than just amazing 3D printers,
{ SISp, Slovak Society for Computer Science,
{ Epic Games, cutting-edge games and cross-platform game engine technology,
{ Escape Motions, developer of innovative visual tools,
{ IEEE Women in Engineering, promoting women engineers and scientists,
{ Procedural Design, adaptive content creation,
{ SG-production, promoting science.

Please note that the electronic version of these proceedings is also available at
https://cescg.org/library/.

April 2023, Martin Il�c��k
Annalena Ulschmid
Michael Wimmer

v

vi

Table of Contents

Extended Reality

AR Postcards as a Learning Tool in Computer Graphics : 3

Aya Ali Al Zayat, Lejla Becirevic. University of Sarajevo

Improving the VR Experience in a Densely Populated Molecular Environment : : : : : : : : : : : : : : 11

Eva Bones. University of Ljubljana

Computer Vision in Medicine

GrowCut under StudierFenster : 21

Alessandra Masur. TU Graz

Weakly Supervised Semantic Cell Segmentation Using Knowledge Distillation : : : : : : : : : : : : : : 29

Ivan Vykopal, Ivana Haberova. Slovak Technical University

Computer Vision and 3D Reconstruction

Distributed Surface Reconstruction : 39

Patrick Komon. TU Wien

Real-Time Rendering

Real-time Rendering of Atmosphere and Clouds in Vulkan : 49

Mat�ej Sakmary. Czech Technical University

Foveated RTX Ray Tracing in Virtual Reality : 57

Uro�s �Smajdek. University of Ljubljana

Optimization

Controlling 2D Laplacian Eigenuids : 67

Barnab�as B�orcs�ok. Budapest University of Technology and Economics

Translucent Material Parameter Estimation : 79

Saip-Can Hasbay. Vienna University

Visualization

Scatterplot Visualization of Hierarchically Clustered Data Points : 91

Daniel Gruncl. Czech Technical University

Interactive Visual Analysis of Anomalies in Simulations of Energy Flow : : : : : : : : : : : : : : : : : : : 99

Fabrizia Bando-Bechtold. TU Wien

Partners of CESCG 2023

viii

Extended Reality

AR postcards as a learning tool in Computer Graphics

Aya Ali Al Zayat*
Lejla Becirevic†

Bojan Mijatovic‡

Supervisor Selma Rizvic§

University of Sarajevo
Faculty of Electrical Engineering
Sarajevo, Bosnia and Herzegovina

Sarajevo School of Science and Technology
Sarajevo, Bosnia and Herzegovina

Abstract

Preserving cultural heritage is a vital part of preserving
the history of a country. Computer Graphics students cre-
ated Augmented Reality (AR) postcards with 3D models
of Bosnia and Herzegovina (BH) cultural heritage objects.
They added various Points of Interest (POIs) related to the
objects with different multimedia content. The content in
the app is just a small glimpse into the vast history of ev-
ery single object picked, purposely designed to be easily
digested by users of all ages. These postcards were inte-
grated into a single app with the goal to present informa-
tion about cultural heritage buildings in a new, interesting
and easily accessible way.

In this paper, we describe the teaching methodology and
resulting AR application. Through the user eXperience
evaluation study, we checked if this approach improves
the overall experience of learning about cultural heritage
objects. The results of this evaluation will contribute to
the development of future AR applications for cultural her-
itage.

Keywords: Computer Graphics education, Augmented
Reality, digital heritage

1 Introduction

Computer Graphics (CG) is a very demanding field for
education as it consists of many very important and di-
verse sub-fields. Starting from so-called ”hardcore” CG
with algorithms for conversion of coordinate systems, ma-
trix transformations, clipping, shading, illumination, and
rendering, it expanded to computer vision, computer an-
imation, multimedia, and mixed reality. It is very dif-
ficult to present all these notions and important applica-
tions of CG within the basic undergraduate course. There-

*aalialzaya1@etf.unsa.ba
†lbecirevic1@etf.unsa.ba
‡bojan.mijatovic@ssst.edu.ba
§srizvic@etf.unsa.ba

fore teachers need to make certain compromises. At the
Faculty of Electrical Engineering, University of Sarajevo,
computer graphics is studied in the Computer Science de-
partment. Students are offered a basic CG course at the
Bachelor level and two elective courses at the Masters
level. A common feature of all these courses is that they
are more oriented to CG applications and less to graph-
ics algorithms and programming. The reason behind such
a decision is that students of this Department have plenty
of programming courses to attend and not much oppor-
tunity to learn skills such as 3D modeling and animation
and Virtual/Augmented Reality applications development.
Another particularity of teaching CG at the University of
Sarajevo is offering students the basics of graphic design,
so their visual presentations and user interfaces (UI) would
fulfill the expectations of their users without the necessity
to include graphics designers in the software development
team.

The main contribution of this paper is the novel ap-
proach to teaching computer graphics, which involves
adding the artistic aspect of the topic and offering stu-
dents to obtain application development skills instead of
sole graphics programming. In that terms, we present
the teaching methodology of a basic Computer Graphics
course at the undergraduate level with particular empha-
sis on an Augmented Reality lab project that was later
turned into a digital cultural heritage application. In that
project, students were requested to design and implement
AR postcards with the most interesting BH cultural mon-
uments. The paper structure is as follows: in the Related
work Section we describe the relationship between CG ed-
ucation and AR applications for cultural heritage, Section
3 presents the structure and teaching methodology of the
course we describe, and Section 4 shows how the students
are being marked. Section 5 describes the AR lab project
workflow, while Section 6 shows the novelty of our teach-
ing and explains how it can be used for creating a digital
cultural heritage application. We also present results of
preliminary user experience evaluation to show the appre-

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)

ciation of created application by different users. In the last
Section, we offer our conclusions and lessons learned.

2 Related work

While the use of novel technologies serves as a catalyst for
student engagement in education [6], it is equally impor-
tant to evaluate the perspective of educators. The survey
[13] reveals that teachers are open to the idea of incorpo-
rating AR tools into the classroom and are motivated to
expand their skills through continued professional devel-
opment and training sessions. Despite limited prior expe-
rience with 3D modeling, the teachers expressed a strong
desire to learn and even to contribute to the creation of new
AR-based learning tools.

This is not present only in the AR field but many oth-
ers in computer graphics, as teaching methods can be very
diverse. As authors [11] point out: “Computer graphics
is often regarded an exciting and enjoyable subject due to
it combining technology, art and creativity”. This is why
many teachers have different approaches to teaching meth-
ods and even some smaller changes can be quite refreshing
[14]. However, it is also important to follow what others
are learning in computer graphics and fill the gaps of so
large area as authors show in [2]. Further research shows
that thematic AR and VR courses are still rare and frag-
mented [8] showing us that more good practice is needed
in this area.

Since the past decade, AR applications were utilized for
cultural heritage preservation. The most active countries
in the field of AR use in cultural heritage are Italy, Greece,
Spain and the UK [3].

Authors in [12] present an application that demonstrates
the value of digital heritage in tourism. Here, the AR ap-
plication exploits the concept of gamification in order to
aid the process of learning history.

Author in [4] presents an AR application in an educa-
tional context for a design course. The app is found to aid
students in concentrating, self-learning, and also to raise
students’ confidence.

Additionally, AR can provide more interactive and co-
operative communication ways between students [9].

The authors compared mobile learning by means of an
AR application on a tablet used in real fieldwork learn-
ing to traditional e-learning that takes place in a classroom
with a regular desktop computer in using heritage elements
of the city Santiago of Chile in [7]. The study found that
the mobile learning process significantly enhanced educa-
tional outcomes.

In [1] the focus of the mobile AR multi-user game ap-
plication is historical knowledge gain, and the application
was used both in an indoor and outdoor setting.

3 Computer Graphics Course at the
University of Sarajevo

Every student in their third year of the Bachelor program at
the Faculty of Electrical Engineering, University of Sara-
jevo, developed an AR application as part of a Computer
Graphics Course supervised by graduate teaching assis-
tants. The goal of the course is for students to acquire
theoretical and practical knowledge of the basics of com-
puter graphics, such as raster and vector graphics, coordi-
nate systems, geometric transformations, perspective pro-
jection, clipping, color theory, color systems, 3D model-
ing, scene illumination, texture mapping, shading and ren-
dering, UI design and evaluation, and augmented reality.

The course was delivered over one semester and con-
sisted of lectures (2 hours per week) and tutorials (45
minutes per week). Lectures have covered the follow-
ing topics: raster and vector graphics, color theory and
graphics design basics, 3D modeling techniques, basics of
Human-Computer Interaction and usability, shading, clip-
ping, anti-aliasing, basics of Unity 3D scripting, 3D scene
illumination algorithms, and techniques, Virtual and Aug-
mented Reality and Virtual Reality video.

In order to be able to create the requested lab projects
students were offered the following tutorials presented by
a graduate teaching assistant and had corresponding writ-
ten materials for them:

1. Introduction to Blender (getting started with blender:
user interface, creating simple objects)

2. Object modeling (using modifiers, proportional edit-
ing, tools for mesh editing)

3. Materials and texture mapping (creating new materi-
als, using various built-in materials, shading editor,
using an image as texture and UV editing, adding
multiple materials to one object)

4. Lighting and rendering (using different built-in light
sources, three-point lighting rule, emission shader,
adding ambiance with High-Resolution Light (HDR)
probes, camera settings, and using cycles as render
engine)

5. Preparation of objects for exporting (simplification of
objects using collapse, unsubdivide and planar modi-
fiers)

6. Introduction to Unity (getting started with Unity: im-
porting .fbx object to Unity, user interface, game, and
scene view)

7. AR development (setting up Vuforia engine, image
recognition)

8. Scripting in Unity (using colliders, adding multime-
dia content on object click such as 3D text, images
and image gallery and video)

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
4

9. UI in Unity (creating canvas: adding buttons, panels,
images)

10. Particle systems

4 Exams and marking methods

Students were marked during the semester on incremental
work on their projects. Each mark for 5 separate assign-
ments represented 2% of their final grade and was given
for: a document describing the plan of project develop-
ment, renders of the 3D object, successful image recogni-
tion, POIs and scripting, and UI layout and controls.

The final version of every student project went through
a detailed revision that consisted of reviewing: the renders
of the main object (10%), the model appearance after im-
porting to Unity (5%), POIs and scripting (10%), UI (5%),
application layout, ease of use, readability, color harmony,
and creativity (10%). This final revision represented 40%
of the final grade.

The exams consisted of multiple-choice questions about
theoretical and practical knowledge obtained during the
course. We organized two partial exams (20% each) and a
final exam (40%). Students could pass the course if they
obtained at least half of the maximum points at both par-
tial exams or the final exam. They got two opportunities
for remedial exams.

Marking creativity is particular for CG courses in our
University, while other courses are marked through the
standard computer science marking schemes. We intro-
duced it to differentiate extremely talented and dedicated
students from those who just learned the requested tech-
niques and skills without new ideas, just to get a good
mark. Creative students showed that such thinking yields
better and more visually appealing results, which, in the
end, sell the software product on the market and make it
different from other similar products. Students had the
freedom of choosing which POIs to use and the multi-
media content that was linked to the object, as well as
choosing to add elements to the object surroundings which
were not a requirement. Additionally, they had complete
creative liberty to choose the color, style, scale, layout,
and function of every UI element. There were no prede-
fined visual elements for the student applications. After
the best projects were chosen to be integrated into the BH
Heritage AR application the UI layout of the individual
student projects was made uniform throughout the appli-
cation.

5 AR lab project

At the beginning of the course, students chose an object
which represents a cultural heritage site in Bosnia and
Herzegovina. Following the selection process, students
wrote detailed documents about their projects which in-
cluded:

• basic information and photo documentation about the
chosen object

• the description of points of interest (POI) objects that
are thematically associated with the main object, and
the multimedia content that is to be displayed when
POI is clicked

• application design plan which includes a layout
mockup

The students began the project by creating the 3D model
of the chosen object, after which they added materials and
textures, lighting, and finally made rendering images of
the object from different angles in Blender. After the mod-
eling phase, the object was exported in the .fbx format
and imported to Unity. The next phase was adding im-
age recognition using the Vuforia engine which included
creating a postcard of the object, and adding it as an image
target that would display the 3D object model after being
scanned. The phase that followed consisted of adding POI
objects and scripting the behavior of displaying the de-
fined multimedia contents on object click. The final phase
was creating the application UI, consisting of the basic in-
formation about the cultural heritage object, help and exit
buttons.

The students were supervised by graduate teaching as-
sistants each week in the form of laboratory sessions dur-
ing which they showed their progress and presented prob-
lems and difficulties they encountered.

The goal of the students’ projects was to create an AR
application about a cultural heritage object that presents
information about the object in a new, interesting and eas-
ily accessible way.

6 BH heritage AR application

Interaction methods in AR play a crucial role in making
this experience possible, and there are several ways in
which AR can be made interactive.

Touch and Gesture-Based Interaction

One of the most straightforward interaction methods
in AR is touch and gesture-based interaction. This type of
interaction involves using touch and gestures on a device,
such as a tablet or smartphone, to control and interact
with digital objects in the physical world. It can be a
single-touch or multi-touch interaction [10]. This type
of interaction is intuitive and can be especially useful
for users who are not familiar with other types of input
methods, such as a keyboard or mouse.

Voice-Based Interaction

Another popular interaction method in AR is voice-
based interaction. This method allows users to interact

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
5

with digital objects using voice commands. Voice-based
interaction can be especially useful for hands-free sce-
narios or when users are unable to physically touch their
devices. Voice-based interaction can also be more natural
and intuitive than touch or gesture-based interaction,
as users can simply use their voice to control the AR
experience.

Image and Object Recognition-Based Interaction

Image and object recognition-based interaction is
another method oftentimes used in AR applications. This
type of interaction involves using a device’s camera to
recognize images or objects in the physical world. Once
an image or object is recognized, the device can display
digital information or objects associated with it, allowing
for an interactive experience [5]. This type of interaction
is useful for applications such as product labeling, where
digital information about a product can be displayed when
the camera recognizes the product’s label.

Spatial Mapping and Tracking

This type of interaction involves creating a digital
representation of the physical environment, which can
then be used to place and track digital objects in the real
world. Spatial mapping and tracking allow for a more
seamless AR experience, as digital objects can be placed
in the real world and remain in place even as the user
moves.

Motion Control Interaction

This type of interaction involves using the motion of
the device, such as tilting or shaking, to control and
interact with digital objects in the physical world. Motion
control interaction can be especially useful for games
and other interactive experiences that require physical
movement.

These interaction models can also be combined to
create a more seamless and engaging experience. This
approach is much more common as it allows for more
creativity and a better user experience. Our application
was created in a similar way combining some of the
known models into a fully structured application.

6.1 Application description

The application is available in two languages, Bosnian
and English so that it can be used by locals and foreign-
ers alike. After choosing the language, the user is pre-
sented with an interactive map of Bosnia and Herzegov-
ina as shown in Figure 1, which showcases various ob-
jects of interest. Each object is represented by a photo and
its name, allowing the user to obtain a visual and written
overview of the object. The map also visually presents the

various locations of the cultural heritage objects through-
out Bosnia and Herzegovina.

Figure 1: Interactive map of Bosnia and Herzegovina

The user can then interact with the map by clicking
on the individual objects, providing them with a more in-
depth experience. By clicking on the object, the user is
taken to a tracking screen, where they can use AR tech-
nology to scan an image called AR postcard related to the
object (Figure 2) that the user obtained by downloading
the postcard from the free link online and printing it.

Figure 2: AR postcard related to the chosen object (free to
download)

This allows the user to experience an immersive and in-
teractive view of the object, as shown in Figure 3, enhanc-
ing their overall understanding and appreciation of the ob-
ject by seeing it in full, from every angle, which is some-
times hard to do on-site.

The touch and gesture-based interaction method is uti-
lized with the POI objects by showing related multimedia
content after the user clicks on the POI. POIs that are as-
sociated with objects, along with their accompanying mul-
timedia content, provide additional and detailed informa-
tion about them by utilizing the touch and gesture-based
interaction method. When the users click on a specific
POI, they are presented with the corresponding multime-
dia content, such as images, videos, or audio content (Fig-
ure 4), that provides further information and insight about
the object. This enhances the overall understanding and

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
6

Figure 3: User view of the object after scanning the corre-
sponding AR postcard

appreciation of the object, as well as offers a more com-
prehensive experience.
The application features a Help button, which upon acti-

Figure 4: Display of image as the linked multimedia con-
tent to the specific POI

vation, displays an image of POIs related to the object and
the description of which multimedia content will be shown
on click (Figure 5). This allows the user to easily navigate
and understand the information available within the appli-
cation.

Additionally, the application has an Information button

Figure 5: Display of POI images and description of multi-
media content shown after clicking the help button

that, when selected, presents the user with basic informa-
tion regarding the object and the students who developed

the application. This allows the user to quickly and easily
access a general overview and background of the object,
thereby enhancing their overall understanding and appre-
ciation of the object, as well as learning about the individ-
uals behind the creation of the application.

6.2 User experience evaluation

To check if this approach improves the overall experience
of learning about cultural heritage objects, we conducted
a User eXperience evaluation study. The results of this
evaluation will contribute to the development of AR appli-
cations for cultural heritage preservation by determining
which introduced elements are beneficial and which can
be discarded or changed. Interaction methods we used in
this application were a mix of Touch and Gesture-Based
interaction since users are navigating the application on
their mobile phones touch screen and Image and Object
Recognition with Motion Control interaction. Users are
able to see the object on the screen and even walk around
it while it is being tracked with the camera so we could
track the reaction of the users and how do they navigate
the application itself. The research question of our user
experience evaluation was the following:
Does the BH Heritage AR application increase the overall
experience of learning about cultural heritage buildings?
The experiment included 17 participants engaged by in-
vitation, all of which were BH citizens. Subjects were
invited with balanced demographic features in mind, re-
garding gender, IT background, and hardware possession.
Immediately after evaluating the application, participants
were invited to fill out the questionnaire. The question-
naire was organized in three sections:

• Introduction, containing questions related to demo-
graphic data

• Section dedicated to measuring (1) the increase in
cultural heritage knowledge, (2) the benefits of added
content, and (3) application intuitivity.

• Additional comments and critiques regarding their
evaluation.

The measurement of the variables of interest was per-
formed using a 5-point Likert scale with the following
structure: 2 items for the increase in cultural heritage
knowledge, 3 items for experience, and one item for ap-
plication intuitivity.

The results of the evaluation are presented in Table 1,
with an average value and standard deviation per each
question: Regarding the measurement of our ultimate
goal, user experience, we hypothesized that users would
have an overall more immersive experience with the appli-
cation and would have an easy time learning information
about various cultural heritage sites, with the intuitive UI
in the application. Therefore, the expected outcomes were
high values for Increase in cultural heritage Knowledge,
Benefits of Added content, and Application Intuitivity.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
7

Avg. St. dev.

K1
On a scale of 1-5, rate your knowledge about the chosen cultural heritage
object before using the app 2.88 0.99

K2
On a scale of 1-5, rate your knowledge about the chosen cultural heritage
object after using the app 4.41 0.79

A1 I think that POIs contribute to the interest of the application and individual objects 4.71 0.59
A2 I think that the info button helped in learning new information about the object 4.71 0.59

A3
I think that the help button helped in easier determination of POIs and their
related multimedia content 4.88 0.33

I1 I think that working in the application was intuitive 4.82 0.39

Table 1: Questionnaire structure and overview of statistical measures. Questions related to the Increase in CH Knowledge
are marked by Kx, questions related to the benefits of Added content are marked by Ax and questions related to app
Intuitivity are marked with Ix. The responses were conveyed based on a 5-point Likert scale ranging from strongly
negative to strongly positive.

The results strongly indicate that the use of the BH
Heritage AR application increases the overall experience
of learning about cultural heritage objects by immersing
users with added content and an easy-to-use interface.

The results of this experiment indicate that the utiliza-
tion of an AR application with supplementary multimedia
content and a user-friendly interface enhances the learning
experience of its users. Additionally, it is evident that all
the introduced elements to the BH Heritage AR applica-
tion enhance and are beneficial to the overall user experi-
ence. The POIs contributed to the interest of the applica-
tion and individual objects by providing users with a vari-
ety of ways in which to interact with the object, be it by
scrolling through a gallery of pictures, reading a text about
objects, prominent figures, and historical events linked to
the main object, seeing videos about the object or hear-
ing related audio content. The information button further
aided in the learning of new information about the objects
by providing them in concise, easily understood segments.
And finally, the help button helped in easier determining
POIs and their related multimedia content by providing a
clear visual aid seen in Figure 5.

The participants have not expressed any dissatisfaction
or noted any faults in the application. Future evaluations
should include more participants, both local and foreign to
provide for a more strict statistical analysis of the results.

7 Conclusions

In this paper, we presented a novel methodology for teach-
ing computer graphics, consisting of including basic artis-
tic knowledge such as color theory and graphics design ba-
sics and developing specific skills in 3D modeling and AR
applications development. The student surveys and marks,
as well as the results of the BH Heritage AR application’s
initial user evaluation, show good results of this method-
ology. Out of 83 students attending the course, in the end,
we had sixteen 10s, thirty-eight 9s, twenty-five 8s, four 7s,
and no 6s or fails (passing marks are from 6-10). Students

appreciated very much that their lab projects did not only
serve for passing the course, but they remained as useful
parts of a digital cultural heritage application that informs
about BH cultural heritage and attracts visitors to cultural
monuments in Bosnia and Herzegovina.

This is one of the very few courses in our Computer
Science Department that encourages and develops the cre-
ativity of students, instead of teaching them dry algorithms
and marking them according to a standard computer sci-
ence pattern. This way of teaching CG encouraged many
students to choose CG elective courses at the Masters
level and expand their knowledge with computer anima-
tion, game development, and Virtual Reality.

In the future, we will expand the topic of the lab projects
to other AR technology applications in education. For ex-
ample, our students can create AR applications for learn-
ing biology, physics, mathematics, and geography that can
be used in elementary and high schools to make the learn-
ing process more interesting.

References

[1] Anastassia Angelopoulou, Daphne Economou, Vas-
siliki Bouki, Alexandra Psarrou, Li Jin, Chris
Pritchard, and Frantzeska Kolyda. Mobile aug-
mented reality for cultural heritage. In Mobile Wire-
less Middleware, Operating Systems, and Applica-
tions: 4th International ICST Conference, Mobil-
ware 2011, London, UK, June 22-24, 2011, Revised
Selected Papers 4, pages 15–22. Springer, 2012.

[2] Dennis G. Balreira, Marcelo Walter, and Dieter W.
Fellner. What we are teaching in Introduction to
Computer Graphics. In Jean-Jacques Bourdin and
Amit Shesh, editors, EG 2017 - Education Papers.
The Eurographics Association, 2017.

[3] Răzvan Gabriel Boboc, Elena Băutu, Florin
Gı̂rbacia, Norina Popovici, and Dorin-Mircea
Popovici. Augmented Reality in Cultural Heritage:

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
8

An Overview of the Last Decade of Applications.
Applied Sciences, 12(19):9859, 2022.

[4] Yuh-Shihng Chang. Applying the arcs motivation
theory for the assessment of ar digital media design
learning effectiveness. Sustainability, 13(21):12296,
2021.

[5] Juergen Gausemeier, Juergen Fruend, Carsten
Matysczok, Beat Bruederlin, and David Beier. De-
velopment of a real time image based object recog-
nition method for mobile AR-devices. In Proceed-
ings of the 2nd international conference on Com-
puter graphics, Virtual Reality, visualisation and in-
teraction in Africa, pages 133–139, 2003.

[6] Juan Camilo Gonzalez Vargas, Ramon Fabregat, An-
gela Carrillo-Ramos, and Teodor Jové. Survey: Us-
ing augmented reality to improve learning motiva-
tion in cultural heritage studies. Applied Sciences,
10(3):897, 2020.

[7] Jorge Joo-Nagata, Fernando Martinez Abad, José
Garcı́a-Bermejo Giner, and Francisco J Garcı́a-
Peñalvo. Augmented reality and pedestrian naviga-
tion through its implementation in m-learning and e-
learning: Evaluation of an educational program in
Chile. Computers & Education, 111:1–17, 2017.

[8] Alexandra Klimova, Anna Bilyatdinova, and An-
drey Karsakov. Existing teaching practices in aug-
mented reality. Procedia Computer Science, 136:5–
15, 2018. 7th International Young Scientists Con-
ference on Computational Science, YSC2018, 02-06
July2018, Heraklion, Greece.

[9] Enrui Liu, Changhao Liu, Yang Yang, Shanshan
Guo, and Su Cai. Design and implementation of an
augmented reality application with an English Learn-
ing Lesson. In 2018 IEEE International Conference
on Teaching, Assessment, and Learning for Engi-
neering (TALE), pages 494–499. IEEE, 2018.

[10] Theofilos Papadopoulos, Konstantinos Evangelidis,
Theodore H Kaskalis, Georgios Evangelidis, and
Stella Sylaiou. Interactions in Augmented and
Mixed Reality: An Overview. Applied Sciences,
11(18):8752, 2021.

[11] Thomas Suselo, Burkhard Wünsche, and Andrew
Luxton-Reilly. The journey to improve teaching
computer graphics: A systematic review. 12 2017.

[12] Kian Lam Tan and Chen Kim Lim. Digital heritage
gamification: An augmented-virtual walkthrough to
learn and explore historical places. In AIP confer-
ence proceedings, volume 1891, page 020139. AIP
Publishing LLC, 2017.

[13] Stavroula Tzima, Georgios Styliaras, and Athanasios
Bassounas. Augmented reality applications in edu-
cation: Teachers point of view. Education Sciences,
9(2):99, 2019.

[14] Jun Zhou, Ming Ye, and Chun-Lun Huang. Reform
of computer graphics teaching method. volume 3,
pages 222 – 225, 08 2010.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
9

10

Improving the VR Experience
in a Densely Populated Molecular Environment

Eva Boneš*

Supervised by: Ciril Bohak†

Faculty of Computer and Information Science
University of Ljubljana

Ljubljana / Slovenia

Abstract

Virtual Reality (VR) technology has the potential to
provide a highly immersive experience when navigating
through densely populated environments, such as macro-
molecular models. However, current solutions lack the
ability to provide both a sense of immersion and a clear
overview of the environment. In this study, we propose
improvements to the existing systems for an automatically
generated guided tour through a molecular model that ad-
dress these limitations and enhance the overall experience.
We propose a sparsification technique based on implicit
quadric equations, providing seamless transitions between
a closed, enveloping experience and an open, spacious one
for improved spatial awareness. Additionally, we give
users more control over the tour to alleviate feelings of
being overwhelmed in a crowded environment. Our sub-
jective, qualitative results indicate that these methods can
improve the overall VR experience compared to existing
solutions and provide a more enjoyable tour. However,
more research is needed to further enhance the experi-
ence and provide an even more engaging and informative
guided tour through densely populated molecular environ-
ments within VR.

Keywords: sparsification, virtual reality, dense environ-
ment, molecular model

1 Introduction

The COVID-19 pandemic has increased public awareness
and interest in molecular assemblies. Scientists now have
better ways to depict biological structures using 3D model-
ing approaches, but the use of scientifically accurate mod-
els in educating the general public remains limited. One
of the reasons being that without proper explanation, the
resulting images or videos are often confusing for those
without scientific knowledge and can only be fully grasped
with some sort of guidance from an expert. This highlights
the need for a new approach to science communication,

*eb1690@student.uni-lj.si
†ciril.bohak@kaust.edu.sa

one in which the user can visualize, investigate, and ulti-
mately understand a complex scene, such as a molecular
model, in a non-expert setting. To address this issue, re-
searchers have recently developed new systems [6, 1] that
allow the creation of interactive scientific documentaries
using multi-scale, multi-instance, and dense 3D molecular
models.

These systems provide a journey through a very
crowded environment filled with proteins, lipids, fibers,
genetic material, and other structures of various colors,
shapes, and sizes. For instance, one of the models shows a
SARS-CoV-2 virus with all its parts, such as the spike pro-
teins, the envelope, the membrane, and the RNA, floating
in a ”box” filled with blood plasma and all its components.
As the camera guides us to key locations within the model,
a voice-over explains what these structures are and what
functions they perform.

While both systems provide a unique, interesting, and
educational experience of a guided tour through a molec-
ular model, there are some issues regarding both of them
that were pointed out during a user study conducted by the
authors of Nanotilus [1]. One key distinction between the
two, from a user experience perspective, is the way each
system handles a crowded environment, specifically the
sparsification of it. Molecumentary [6] uses a vertical clip-
ping plane set at a particular distance from the viewer and
thus avoiding collisions with any objects. Nanotilus on the
other hand uses a camera-centric sparsification technique
that removes instances in an ellipsoid shape around the
user. The different sparsification techniques can to some
extent be seen in Figure 1.

Users reported that with Molecumentary, they did not
see a huge added value in being inside a VR as opposed to
seeing a video play on a screen. The clipping plane spar-
sification made the scene seem flat. In contrast, Nanotilus
provided a more immersive experience within a 3D model,
but at the cost of compromised spatial awareness. Besides
that, users also reported feeling overwhelmed with all the
information presented to them at the same time and not
having enough control to look at and explore the space
around them.

In this paper, we present our efforts towards improving

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)

(a) Molecumentary (b) Nanotilus

Figure 1: Different sparsification techniques from Molecumentary (a) and Nanotilus (b) on a SARS-CoV-2 model sur-
rounded by blood plasma. We can see the vertical clipping plane through the whole scene in Molecumentary and the more
up-close, full scene in Nanotilus. The difference is much more apparent inside the VR.

the VR experience inside a guided tour through a crowded
molecular model, namely:

• A novel sparsification approach based on quadric sur-
faces that combines the immersive experience with
good spatial awareness.

• An innovative ”landing plane” sparsification tech-
nique to better connect the real-world standing en-
vironment with the VR flying experience.

• Limited user interaction to mitigate the overwhelm-
ing effects of excessive information.

In Sections 2 and 3, we introduce the field, outline the
foundational systems on which our research is based, and
present an analysis of a user study that highlights their lim-
itations. In Section 4, we elaborate on the new techniques
we have created to overcome these limitations. We then
evaluate the effectiveness of these methods in Section 5,
by analyzing their impact on the perception of crowded en-
vironments and the user experience of navigating through
them. Finally, in Section 7, we provide a summary of our
work and propose potential areas for future research and
improvement.

2 Related Work

Visualization in scientific communication

Visualization plays a critical role in scientific communica-
tion, used for experiment validation and data exploration.
Many people believe that its significance will increase
even further in the future, with the potential to lead to new
breakthroughs in research [2]. For many years, visualiza-
tion has been recognized as an important tool for promot-
ing understanding of science [5], particularly in presenta-
tions of the cosmo- or micro-scale world and associated
processes, as people can rely only on illustrations, interac-
tive simulations, and animations as visual aids. Given that,

virtual reality (VR) has emerged as a powerful tool that is
more than simply a better version of 3D visualization [16]
as it enables us to form a conception of and understand
things that 2D or even desktop 3D graphics cannot. As a
result, VR has been applied in various fields such as biol-
ogy [18, 19, 12], medicine [9, 15], and other areas [13].
Although classical VR applications offer a valuable learn-
ing experience by enabling users to examine objects from
a different perspective, they often lack the necessary guid-
ance to enhance their understanding of complex structures.
Tools such as the one described in [14] have been devel-
oped to allow the creation of VR applications that incorpo-
rate storytelling elements, either through written or spoken
narration. However, creating a narrated story manually re-
quires substantial time and expertise, leading to the devel-
opment of new methods like the ones our work is based
on and are further discussed in Section 3, which aim to
automate the creation process for narrated VR tours.

Occlusion management in VR

As we delve into the microscopic world through molec-
ular models, we discover that the environment is densely
populated with elements. To realistically depict this in-
formation in our models and VR experiences, while also
giving the user some breathing room and preventing colli-
sions, we need some sort of occlusion management. While
there are numerous different approaches to this, falling
into five design patterns as identified by Elmqvist and Tsi-
gas [4], researchers most often deal with it using sparsi-
fication, which involves removing some of the instances
inside the model. One way to manage occlusion is to use a
cutting plane that divides the scene into visible and hidden
parts. However, to keep important objects visible, an ex-
tension that exempts certain objects from being cut away
was used by authors of Molecumentary in this and previ-
ous [7] research. Le Muzic et al. [10] proposed a tech-
nique called the visibility equalizer, which also considers

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
12

the type of instance being removed, enabling the removal
of more abundant objects. A downside to using clipping
planes is that they can remove large portions of visualiza-
tion which reduces the sense of crowdedness in one part of
the environment. To avoid this, smart sparsification meth-
ods that remove individual instances using different im-
portance measures have been proposed, such as the one
presented in [17] by Lesar et al. Another technique for
managing occlusion was proposed by Elmqvist [3], who
suggested distorting space with a spherical force field that
repels objects around the 3D cursor. Similarly to this, Nan-
otilus uses a centralized sparsification technique that re-
moves instances in concentric zones around the user. In
addition, Nanotilus utilizes an automatic visibility equal-
izer that guides the sparsification process using heuristics.

No single method is inherently superior to the other.
The method we choose depends entirely on our use case.
For certain visualizations, a clear cutting plane may pro-
vide a better model overview, while in other cases, we may
prefer to experience the sense of crowdedness. As a guided
tour is dynamic, we encounter various scenarios within it,
which may call for different sparsification techniques de-
pending on what we aim to see. To address this, we pro-
pose a technique that combines both a selective clipping
plane and local centralized sparsification.

3 Background

We based our work on two recently published systems,
both providing a VR experience of narrated documentaries
of molecular models.

Kouřil et al. introduced the concept of adaptable doc-
umentaries in their work on Molecumentary [6]. They
presented a system comprising of real-time visualization,
automated exploration, and synthetic commentary to cre-
ate an adaptable and automated narrated tour. The system
consists of two steps: story graph foraging and narrative
synthesis.

The first step involves automatically compiling infor-
mation about the biological model into a story graph that
holds model elements, their relationships, and verbal de-
scriptions. The second step utilizes the story graph to
generate a sequence of story elements with corresponding
commentary using text-to-speech technology. Subcompo-
nents of the model are brought to life using camera ani-
mations and occlusion management. The order of model
elements shown is determined by either an algorithmic ap-
proach that produces a self-guided documentary or by fol-
lowing a storyline supplied as a written text input, making
the molecumentary more responsive to user choices. The
authors’ approach automates the entire process without the
need for a domain expert’s involvement.

Alharbi et al. published Nanotilus [1] as a follow-up to
previous research, where they aimed to address the lim-
itations of existing visibility and occlusion management
strategies for navigating dense 3D structures. They in-

troduced a new sparsification method that offers an endo-
scopic inside-out perspective, maintaining the immersive
quality of virtual reality, instead of the previously used
outside-in view. Since this is the aspect that we focused
more on in our paper, the mechanics of it are described in
more detail in Section 4.1.

The authors also changed the journey planning part of
the pipeline, which roughly replaces the story graph for-
aging in Molecumentary. They included the use of void
spaces as the navigation through them minimizes the num-
ber of instances to sparsify, preserving the model realism
and increasing the participants’ immersion. The process
of journey planning starts with identifying the instances
that the journey should visit and then generates a path that
connects them while traversing through the void spaces.

A user study comparing the two systems was conducted
with 29 participants who viewed guided tours of meso-
scopic biological models of SARS-CoV-2 and HIV using
both of them. The primary aim of the study was to eval-
uate the user experience regarding various sparsification
and navigation techniques. User feedback was collected
on engagement and overall user experience, spatial under-
standing of the displayed structures, traversal of the virtual
environment, and the ability to orient oneself in the envi-
ronment and follow the story.

Participants in the user study preferred the inside-out
animation of Nanotilus for its immersive quality, while
also noting that it could be difficult to see the whole struc-
ture at times by commenting ”[...] its more difficult to
understand how all the viral components are positioned.”
and ”Sometimes in the inside view it is too close to see the
whole structure.”. On the other hand, Molecumentary was
criticized for lacking immersiveness with comments such
as ”I honestly feel that this experience doesn’t add much
to what you would get just looking at a video on a good
screen.” and ”[...] it was not that an immersive experi-
ence as the inside-out animation, [...]”. However, users
appreciated Molecumentary’s outside-in approach, which
provides an overview of the virus and displays each com-
ponent clearly. To balance these strengths, we aimed to
create a sparsification method that incorporates both ap-
proaches at appropriate points during the tour.

4 Improving the VR experience

The primary area of possible improvement that we focused
on was sparsification, as it was one of the key distinctions
between the two systems and was a significant point of
feedback in the user study. Additionally, we tried to add a
bit more control over the tour to the user in order to mit-
igate feelings of being overwhelmed, which was another
issue mentioned in the study.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
13

Figure 2: The illustration shows the sparsification proce-
dure, where instances are sparsified based on both impor-
tance of the type (cyan or red) and their shell membership
(source: [1]).

4.1 Sparsification of crowded environments

The authors of Nanotilus focused on developing a lo-
cal, camera-centric sparsification procedure that allows the
viewer to go through a densely packed scene without col-
liding with the instances. It reduces structural occlusion
and provides the user with endoscopic views that convey
scene crowdedness.

The sparsification is controlled with three nested and
concentric shells surrounding the camera, each with its
own visibility percentage. The innermost shell is respon-
sible for hiding instances that may collide with the camera
and is set with a visibility rate of 0.0. The middle and outer
shells have their default visibility rates set to 0.33 and 0.66
respectively, making some instances visible and some re-
moved. A mathematical description of the shell geometry
is used to determine whether an instance in a scene is a
member of a shell or not.

The sparsification is then done in two phases. First,
the visibility values of instances that should be hidden are
updated based on the visibility percentage of the shells.
The algorithm then checks for the number of invisible in-
stances inside the shells and assigns a weight to each vis-
ible instance, which represents its priority to be hidden.
The weight is affected by the distance from the instance to
the camera and the importance of the type. The instances
with the smallest weight are hidden until a certain thresh-
old is achieved. In Figure 2, we can see an example of
selecting instances for sparsifying.

In our implementation, we took the main logic from
Nanotilus that is described above, however, the shell shape
and implementation of it were modified to facilitate uti-
lization for both capsule-type sparsification and the clip-
ping plane. This was achieved using quadric surfaces,
which will be described in detail next.

4.1.1 Quadric surfaces

A quadric surface is a type of surface in three-dimensional
space that can be defined by a quadratic equation.
Quadratic equations are a type of algebraic equation that

(a) 10x2 +10y2 + z2 −1 = 0 (b) x2 + y2 −10z = 0

Figure 3: Ellipsoid (a) and paraboloid (b) drawn using im-
plicit quadric equations.

can be written in the form:

Ax2+By2+Cz2+Dxy+Exz+Fyz+Gx+Hy+Iz+J = 0.

where x, y, and z are the coordinates of a point on the
surface and A, B, C, D, E, F , G, H, I and J are constants.
The constants in a quadric equation are real numbers and
at least one of them has to be non-zero. These surfaces can
be classified into different types depending on the values
of the constants in the equation, such as spheres, cylinders,
cones, etc.

Representing a capsule shape that was already used in
Nanotilus was straightforward, as we just used the implicit
equation for an ellipsoid:

x2

A2 +
y2

B2 +
z2

C2 = 1 ⇒ Ax2 +By2 +Cz2 − J = 0.

For representing the flat clipping plane, we decided on a
paraboloid, because the parameters in the equation can
easily be set up such that the resulting surface resembles a
plane:

z = x2 + y2 ⇒ Ax2 +By2 − Iz = 0.

Both surface representations can be seen in Figure 3.
The logic behind choosing instances that had to be re-

moved remained unchanged from Nanotilus. Individual
instance memberships were determined through a simple
calculation: if the surface equation with the instance’s po-
sition as x, y, and z resulted in a value equal to or less than
0, the instance was considered part of the shell; otherwise,
it was not. In Figure 4, we show the instances inside a sim-
ple molecular model, colored based on their corresponding
shell membership. The innermost shell is colored green,
the middle shell is blue, and the outermost shell is red.

When using the ellipsoid shape, what we call the cap-
sule mode, we kept the three shells with sparsification ra-
tios of 0, 0.33, and 0.66. During the plane mode when
we used the paraboloid shape, we only used one shell with
a sparsification ratio of 0, meaning everything inside was
sparsified.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
14

Figure 4: Hemoglobin instances in a simple box molecular
model colored according to shell membership.

4.1.2 Transitioning

The smoothness of the visual experience in VR is essential
to provide a comfortable and natural-feeling environment.
This is because changes in the real world happen gradu-
ally, not abruptly, and sudden changes in the surroundings
can result in discomfort. To recreate this natural progres-
sion in VR, we implemented smooth transitions between
the two sparsification modes. Reflecting on how the tran-
sitions feel to the user, we refer to the transition from cap-
sule to plane mode as opening up and the reverse transi-
tion from plane to capsule as closing down. Our imple-
mentation of the surface shapes with parametric implicit
equations made calculating the steps between them triv-
ial. For each of the parameters, we divide the range be-
tween the start and end values into the desired number of
steps. Combined with a gradual fade-out of instances as
their membership changes, this produces a smooth and vi-
sually appealing transition between the shapes.

In reviewing the results of the user study and conduct-
ing our own testing of the systems, we tried to determine
the optimal points for transitions and when certain sparsifi-
cation modes were most appropriate within the documen-
tary. We concluded that while the user is moving through
the scene from one target to another, using the capsule
mode makes for a more immersive experience. When stop-
ping at the target and entering a so-called focus scene, the
plane mode provides a better overview of the scene and
gives the user a good perception of the environment. We,
therefore, implemented opening up the sparsification im-
mediately after stopping at the target of the focus scene.
The sparsification then closes down when the user starts
moving toward the next target. Another transition hap-
pens at the beginning of the tour when we want to intro-
duce the model that we’re showing to the user, so we start
with the plane mode and transition to the capsule mode
before moving forward. Although we found that the cap-
sule mode is preferable while moving in most cases, we

observed that when the camera moves backward, the close
proximity of the instances on the left and right and new
instances popping into the scene in front of the user can
cause some discomfort. To address this, we experimented
with opening up the sparsification after we detect that the
camera started moving in reverse.

4.1.3 Landing plane

Another feature that we wanted to test for increasing the
enjoyment inside VR is to add a horizontal plane as a floor,
providing the user with a sense of stability and grounding.
Our hypothesis is that adding a floor plane when the user
is standing still would help bridge the gap between virtual
reality and real-world experiences, as most of the time in
reality we are standing on a two-dimensional plane. By
creating a more realistic virtual environment, we aim to
increase the user’s enjoyment and make the virtual experi-
ence feel less alien.

In order to maintain the density of the scene and avoid
adding unnecessary, false or misleading elements to the
model, we came up with a solution that utilizes existing
instances in the scene to create the floor. This way, the
floor landing plane is just another form of sparsification,
achieved by removing instances that are located above a
horizontal plane and were previously already selected to
be removed through earlier phases of sparsification.

The floor under your feet makes sense only when you
are standing still, not when you are moving around in the
capsule. Therefore, we integrated the floor sparsification
with the plane mode as can be seen in Figure 5, mean-
ing that it toggles on and off with a fading effect when-
ever there is a transition between the sparsification modes.
Since the transition takes place whenever we arrive to the
target instance inside a capsule mode, the floor sparsifica-
tion then has a feeling of landing that capsule. That’s why
we refer to it as a landing plane.

4.2 Bringing more control to the user

Being in a VR environment, where everything is con-
stantly moving and the user has no control over their di-
rection or speed, can be quite disorienting. To enhance the
user’s comfort and overall experience, it’s crucial to give
them some degree of control.

As a simple but effective solution, we added the option
to pause the guided tour at any point during the experience.
This allows the user to take a break, look around, gather
more information about what interests them, or simply
pause for a moment. They can also switch to plane mode
if they feel lost, claustrophobic, or overwhelmed while in
capsule mode. Once they’re ready to continue the tour, the
sparsification automatically returns to the previous mode
and the guided tour resumes.

This feature provides a much-needed sense of control
and comfort, making the overall experience more enjoy-
able and less overwhelming.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
15

Figure 5: Floor and plane sparsification on a SARS-CoV-2 model as seen from a third-person perspective. The green
sphere presents the location of the camera and the red lines the viewing frustum.

5 Results

Our implementation of the system is built upon the Nan-
otilus platform, which utilizes the Marion library [8]. The
application is implemented in C++, OpenGL, and GLSL,
leveraging the Qt library, and employs GLSL compute
shaders. For the presentation of the resulting guided tours,
we utilized both the HTC Vive Cosmos and Oculus Quest
Pro headsets. The support for OpenVR was integrated into
Nanotilus for use with the HTC headset, but we encoun-
tered limitations when using the Oculus. This, along with
the deprecation of OpenVR, has motivated us to explore
the implementation of OpenXR for improved performance
and compatibility in the future.

For developing and testing, we used the SARS-CoV-2
model that was created using a statistical and rule-based
modeling approach [11]. The application was run on an
Nvidia GeForce RTX 4090 graphics card, AMD Ryzen
Threadripper PRO 3995WX 64-core processor, Windows
10, and Qt 5.15.2. with an average framerate of about 25
FPS per eye. Despite being below the typical FPS recom-
mendations for VR, which call for a minimum of about
45 FPS to provide a reasonable experience, and at least
90 FPS for optimal performance, the average framerate
was sufficient for us to test the design and evaluate the
improvements made to the system. However, we are com-
mitted to improving the framerate and overall performance

in the near future.

6 Discussion

We tested our implementation and qualitatively evaluated
the improvements made to the VR experience.

Our testing revealed that the combination of sparsifica-
tion modes enhances the overall experience by offering the
best of both worlds. The user can fully immerse them-
selves in the model, feeling connected with the scene as
they move from one instance to the next, while still main-
taining a sense of their position within the model in the
focus scene. We found the transitions between modes vi-
sually pleasing, with closing down feeling like you get
hugged back into the scene and opening up feeling like
taking a deep breath.

We still have to experiment to determine the optimal
moments for switching between sparsification modes and
when each mode would be most effective during the tour.
Additionally, we may want to test out different surface pa-
rameters to find the best option. Furthermore, we need to
conduct additional tests on the use of the landing plane
within the tour to assess whether it evokes the hypothe-
sized feelings when users have the ability to walk around.
We found that when simply being in the scene having a
plane underfoot doesn’t necessarily enhance the experi-
ence, but it also doesn’t worsen it. The density of the

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
16

model is another crucial factor that affects the success
of the experience, as less dense models may not provide
enough instances to make up the floor, so we may need to
investigate this further.

With the additional option of pausing and resuming the
tour at any time, as well as the ability to toggle between
sparsification modes, the guided tour moves a step closer
to becoming a self-exploratory type of documentary. The
user has slightly greater control and freedom to personal-
ize their experience, which leads to a more enjoyable jour-
ney. Moreover, the pause feature gives the user the ability
to take a break, explore the environment, and gather in-
formation at their own pace. This creates a more relaxed
experience, allowing the user to fully immerse themselves
in the VR world.

The control that we give to the user is fairly limited at
this point, but it is an important aspect that we will focus
on in the future.

Overall, after testing out the system, we have observed
that the implementation of the combination of sparsifica-
tion modes and the added pause feature has indeed had a
positive impact on the overall VR experience. However,
to verify and validate these findings, we plan to carry out
a comprehensive user study that will be conducted on a
larger scale. This will allow us to obtain a more accurate
and representative evaluation of the impact of our work on
the VR experience.

7 Conclusions

In this paper, we proposed improvements to the VR experi-
ence for guided tours through crowded molecular models.
Our improvements aimed to address the limitations of the
existing systems, including the sparsification of crowded
environments and the overwhelming effects of excessive
information. We proposed a novel sparsification approach
based on quadric surfaces, a landing plane sparsification
technique, and gave more control to the user during the
tour. Our evaluation showed that our methods improved
the perception of crowded environments and the user ex-
perience of navigating through them.

In the future, we plan to conduct a comprehensive user
study to better understand the strengths and limitations of
our system. Based on the results of this study, we will fo-
cus on improving the technical aspects of our tour imple-
mentation to enhance the user experience. This includes
optimizing our code to increase the framerate and transi-
tioning from OpenVR to OpenXR to reduce overhead.

Additionally, we want to focus more on adding the ex-
ploration aspect to the now completely guided tour as these
features have the potential to greatly increase the usabil-
ity and impact of this type of science communication. To
achieve this, we plan to add new and exciting features such
as the ability for users to change the story while they are
on the tour, explore structures up close by walking around,
and select and learn more about the structures that inter-

est them. These enhancements will allow users to have
a more interactive and personalized experience while ex-
ploring the wonders of science.

References

[1] Ruwayda Alharbi, Ondrej Střnad, Laura R. Luidolt,
Manuela Waldner, David Kouřil, Ciril Bohak, Tobias
Klein, Eduard Gröller, and Ivan Viola. Nanotilus:
Generator of immersive guided-tours in crowded 3d
environments. IEEE Transactions on Visualization
and Computer Graphics, 2021.

[2] Mohamed El Beheiry, Sébastien Doutreligne,
Clément Caporal, Cécilia Ostertag, Maxime Dahan,
and Jean-Baptiste Masson. Virtual reality: Be-
yond visualization. Journal of Molecular Biology,
431(7):1315–1321, 2019.

[3] Niklas Elmqvist. Balloonprobe: Reducing occlusion
in 3d using interactive space distortion. In VRST ’05:
Proceedings of the ACM symposium on Virtual re-
ality software and technology, volume 2006, pages
134–137, 11 2005.

[4] Niklas Elmqvist and Philippas Tsigas. A taxonomy
of 3d occlusion management for visualization. IEEE
transactions on visualization and computer graphics,
14:1095–109, 09 2008.

[5] Kakonge John Gilbert, Miriam Reiner, and Mary
Nakhleh. Visualization: Theory and Practice in Sci-
ence Education. Springer Dordrecht, 01 2008.

[6] David Kouřil, Ondrej Střnad, Peter Mindek, Sarkis
Halladjian, Tobias Isenberg, Eduard Gröller, and
Ivan Viola. Molecumentary: Adaptable narrated
documentaries using molecular visualization. IEEE
Transactions on Visualization and Computer Graph-
ics, pages 1–1, 2021.

[7] David Kouřil, Tobias Isenberg, Barbora Kozlı́ková,
Miriah Meyer, M. Eduard Gröller, and Ivan Viola.
Hyperlabels: Browsing of dense and hierarchical
molecular 3d models. IEEE Transactions on Visu-
alization and Computer Graphics, 27(8):3493–3504,
2021.

[8] Peter Mindek, David Kouřil, Johannes Sorger,
Daniel Toloudis, Blair Lyons, Graham Johnson,
M. Eduard Gröller, and Ivan Viola. Visualization
multi-pipeline for communicating biology. IEEE
Transactions on Visualization and Computer Graph-
ics, 24(1):883–892, 2018.

[9] Rakesh Mishra, Krishna M.D, Giuseppe Emmanuele
Umana, Nicola Montemurro, Bipin Chaurasia, and

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
17

Harsh Deora. Virtual reality in neurosurgery: Be-
yond neurosurgical planning. International Jour-
nal of Environmental Research and Public Health,
19:1719, 02 2022.

[10] Mathieu Le Muzic, Peter Mindek, Johannes Sorger,
Ludovic Autin, David S. Goodsell, and Ivan Viola.
Visibility equalizer cutaway visualization of meso-
scopic biological models. Computer Graphics Fo-
rum, 35, 2016.

[11] Ngan Nguyen, Ondřej Strnad, Tobias Klein, Deng
Luo, Ruwayda Alharbi, Peter Wonka, Martina Mar-
itan, Peter Mindek, Ludovic Autin, David S. Good-
sell, and Ivan Viola. Modeling in the time of covid-
19: Statistical and rule-based mesoscale models.
IEEE Transactions on Visualization and Computer
Graphics, 27(2):722–732, 2021.

[12] Eric Pettersen, Thomas Goddard, Conrad Huang,
Elaine Meng, Greg Couch, Tristan Croll, John Mor-
ris, and Thomas Ferrin. Ucsf chimerax: Structure
visualization for researchers, educators, and devel-
opers. Protein Science, 30, 09 2020.

[13] Jaziar Radianti, Tim A. Majchrzak, Jennifer Fromm,
and Isabell Wohlgenannt. A systematic review of im-
mersive virtual reality applications for higher educa-
tion: Design elements, lessons learned, and research
agenda. Computers & Education, 147:103778, 2020.

[14] Almir Santiago, Paulo Sampaio, and Luis Fernan-
des. Mogre-storytelling: Interactive creation of 3d
stories. In Proceedings of 2014 XVI Symposium on
Virtual and Augmented Reality, pages 190–199, 05
2014.

[15] Morimoto Tadatsugu, Takaomi Kobayashi, Hiro-
hito Hirata, Koji Otani, Maki Sugimoto, Masatsugu
Tsukamoto, Tomohito Yoshihara, Masaya Ueno, and
Masaaki Mawatari. Xr (extended reality: Virtual re-
ality, augmented reality, mixed reality) technology in
spine medicine: Status quo and quo vadis. Journal
of Clinical Medicine, 11:470, 01 2022.

[16] Andries van Dam, Andrew Forsberg, David Laidlaw,
Joseph Jr, and Rosemary Michelle Simpson. Immer-
sive vr for scientific visualization: A progress report.
IEEE Computer Graphics and Applications, 20:26–
52, 12 2000.

[17] Žiga Lesar, Ruwayda Alharbi, Ciril Bohak, Ondřej
Strnad, Christoph Heinzl, Matija Marolt, and Ivan
Viola. Volume conductor: Interactive visibility man-
agement for crowded volumes. The visual computer,
pages 1–16, 2023.

[18] Jimmy Zhang, Alex Paciorkowski, Paul Craig, and
Feng Cui. Biovr: a platform for virtual reality as-
sisted biological data integration and visualization.
BMC Bioinformatics, 20, 02 2019.

[19] Xiang Zhou, Liyu Tang, Ding Lin, and Wei Han. Vir-
tual & augmented reality for biological microscope
in experiment education. Virtual Reality & Intelli-
gent Hardware, 2(4):316–329, 2020.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
18

Computer Vision in Medicine

GrowCut under StudierFenster

Alessandra Masur*

Supervised by: Jan Egger†

Institute of Computer Graphics and Vision (ICG)
Graz University of Technology

Graz / Austria
Institute for AI in Medicine (IKIM)

University Hospital Essen
Essen / Germany

Abstract

Segmentation is a crucial procedure in medical image
analysis. The usage of automatic algorithms in this field
is an attractive alternative to manual segmentation. One
promising semi-automatic segmentation tool is the Grow-
Cut algorithm, which allows n-dimensional image seg-
mentation, providing interactive and dynamic features.
Currently, using the GrowCut algorithm for medical im-
age segmentation with a user interface is only possible via
medical image analysis software, making it device- and
platform-dependent. The GrowCut algorithm without a
user interface is available via various implementations but
requires a lot of technical knowledge of the user.

The aim of this contribution is to provide a user interface
for the GrowCut algorithm on the basis of a web applica-
tion. This is achieved by implementing an adapted version
of the GrowCut algorithm, the Fast GrowCut algorithm,
into a client/server based, web-hosted 3-dimensional med-
ical image viewer, called StudierFenster. As a result, the
Fast GrowCut algorithm can be used directly inside the
online environment without installing software and with-
out technical knowledge of the user. It is now possible to
use the segmentation tool on any 2-dimensional transverse
slice of a 3-dimensional image. The workflow was made
user-friendly, allowing input to be drawn with a brush onto
the image and loading the output automatically, making it
immediately visible.

Keywords: GrowCut, Fast GrowCut, Segmentation,
Medical Image Analysis, Web Application, StudierFenster

1 Introduction

Image segmentation is one of the most important and com-
mon practices for medical images analysis [1, 2, 3]. Ex-
tracting the region of interest can be done in an auto-
matic or semi-automatic process. The GrowCut algorithm

*alessandra.masur@student.tugraz.at
†egger@icg.tugraz.at

is a widely used semi-automatic segmentation algorithm,
working on n-dimensional images, and uses cellular au-
tomata to calculate the segmentation. As input, seeds
are selected manually inside and outside the region to be
segmented, marking foreground and background, respec-
tively. During execution of the GrowCut algorithm, all
remaining image pixels get sorted into either foreground
or background [4]. It is an attractive segmentation tool be-
cause of its interactive and dynamic features. The Grow-
Cut algorithm has been further developed into the Fast
GrowCut algorithm, by reformulating it as a clustering
problem and approximating the solution, making it sig-
nificantly faster [5]. Different versions of the GrowCut
algorithm are available on medical image computing plat-
forms, such as the 3D Slicer software [6], however, not
on a web-based tool where no installation of software is
needed. Aside from that, a lot of open source implemen-
tations of the GrowCut algorithm are available, which do
not provide a user interface and therefore require a lot of
technical knowledge of the user.

This contribution aims to provide a user inter-
face for segmentation with the GrowCut algorithm
on a device- and platform-independent basis. To
achieve this, the Fast GrowCut algorithm is imple-
mented in the Medical 3D Viewer of the “StudierFenster”
website (http://studierfenster.at/, http:
//studierfenster.icg.tugraz.at/), hereafter
referred to as StudierFenster. It provides visualization and
segmentation tools for medical images and is built as a
client-server model. Its main component is the Medical
3D Viewer, which offers various annotation and segmen-
tation tools [7].

As a result of this contribution, the Fast GrowCut algo-
rithm was successfully implemented into the StudierFen-
ster website as a segmentation feature within the Medical
3D Viewer. It is now possible to use the Fast GrowCut al-
gorithm with a user interface without additional software.
Its implementation was achieved by creating the input and
viewing the output on the client side and running a Python
script with the algorithm on the server side. In the Medi-
cal 3D Viewer, the Fast GrowCut algorithm can be used to

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)

segment 2-dimensional regions of slices in the horizontal
plane.

Giving an overview of this paper, Section 2 gives back-
ground on the topic of StudierFenster. The related work is
presented in Section 3. In Section 4, the methods of imple-
menting the Fast GrowCut algorithm into StudierFenster
are elaborated. Lastly, the results of this contribution are
given in Section 5, followed by a concluding discussion
and an outlook in Section 6.

2 Background

StudierFenster StudierFenster 1 is a website that was
developed in previous work at the Graz University of Tech-
nology in association with the Medical University of Graz.
It is an online environment providing visualization tools
for medical data, manual segmentation tools for medical
images, and tools for calculations. The tools can be used
directly within a web browser which makes them available
to more people and platform- and device-independent.
Furthermore, adaptions or updates to the software can be
deployed directly on the website, without having to dis-
tribute changes to each user as it would be the case with
software. StudierFenster is built as a client–server model,
where some calculations of segmentations are done by
the server part. This makes it unique from other exist-
ing web-based tools that only use a client-oriented ap-
proach. Adding a server back-end provides more com-
plex functionality. A user study conducted by Weber et
al. in 2019 generated positive feedback and StudierFen-
ster has been adapted and worked on since its release [8].
The current functionalities, as of November 2022, include
a Digital Imaging and Communications in Medicine (DI-
COM) browser and converter, the Medical 3D Viewer
with 2D and 3D data visualization and various manual an-
notation tools, automatic aortic landmark detection, aor-
tic dissection inpainting [9], centerline tracking [10], 3D
skull reconstruction [11], 3D face reconstruction and reg-
istration [12], medical virtual reality viewer, and finally
the calculation of the Dice coefficient and Hausdorff dis-
tance [8]. The client side is written with Hypertext Markup
Language (HTML) and JavaScript, also using the Web
Graphics Library (WebGL). The server side is written in
C, C++, and Python, using libraries like Insight Toolkit
(ITK), Visualization Toolkit (VTK), X Toolkit (XTK), and
Slice:Drop. Server requests are processed by a Python
Flask server [7].

GrowCut Algorithm The GrowCut algorithm is a semi-
automatic image segmentation algorithm. It works on n-
dimensional images and the segmentation is an iterative
process, in which the user has the possibility to give addi-
tional input after each iteration. It uses cellular automata
which allows fast and parallel computation. Every pixel

1http://studierfenster.at/

in the GrowCut algorithm has a corresponding three-tuple
(lp,θp,

−→C p), where lp is the label of a pixel, θp is the
strength of a pixel and −→C p stands for the color value [4].
For the initialization of the seed pixels, some pixels are
initialized as foreground lp = 1 and some as background
lp = 0. Additionally, all initialized seed pixels are assigned
the strength value θp = 1. After initialization, the algo-
rithm begins with the iteration process of sorting all other
pixels into either foreground or background [13]. Simpli-
fied, at each iteration step t, each cell tries to “attack” its
neighbors with the intention of spreading the foreground
or background labels. The force of the cells is dependent
on the strength values θp and θq and the distance between
the vectors −→C p and −→C q of the attacking and defending
cells. If an attacker has the greater attack force, its labels
are spread onto its weaker neighbor cells [4]. The compu-
tation is finished when every pixel in the region of interest
is assigned one of two labels [13].

Fast GrowCut Algorithm The Fast GrowCut was devel-
oped by reformulating the GrowCut algorithm as a clus-
tering problem, to which the Fast GrowCut computes a
fast, approximate solution. The clustering problem which
is based on finding the shortest path, can be solved by ap-
plying an adapted version of the Dijkstra algorithm. The
adaptation is introduced because the Dijkstra algorithm is
static, not allowing any user input after it was initiated.
To keep the Fast GrowCut algorithm dynamic and allow
editing, only local regions that are affected by a new in-
put are updated with the adapted version of the Dijkstra
algorithm [5].

3 Related Work

Different versions of the GrowCut algorithm are imple-
mented in the 3D Slicer platform, where they can be used
for 2D and 3D segmentation. 3D Slicer is an open-source
medical image computing platform, offering various seg-
mentation tools [13, 14].

GrowCut in 3D Slicer The GrowCut algorithm is im-
plemented in 3D Slicer as a module called “GrowCutSeg-
mentation”. It is an editor effect that is based directly on
the original GrowCut algorithm first introduced by Vezhn-
evets and Konouchine [4]. The user can color foreground
and background, which are used to compute the segmen-
tation. After the computation is finished, the user can fur-
ther adapt the segmentation by adding additional edits to
the segmentation [6].

One application example is the use of GrowCut in
3D Slicer in research about vertebral body segmentation.
There it was found that, depending on the use case, the
GrowCut algorithm in 3D Slicer can be a more efficient
way to segment medical images than manual analysis. In
a study conducted by Egger et al. from 2017 [13], results

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
22

were compared for segmentation of vertebral bodies in T2-
weighted magnetic resonance images (MRI). The Grow-
Cut in 3D Slicer was shown to only require significantly
less segmentation time and effort than a manual assess-
ment with similar accuracy [13].

Fast GrowCut in 3D Slicer The Fast GrowCut is imple-
mented in 3D Slicer as a module called “FastGrowCutEf-
fect”. It is based on the Fast GrowCut algorithm that was
introduced by Zhu et al. in 2014 [5]. The user can seg-
ment an image by selecting foreground and background
seeds in 3D. After initial segmentation, there is the possi-
bility to refine the segmentation repeatedly until the user is
satisfied with the result. Furthermore, the module allows
multi-label segmentation [15].

The latest version of 3D Slicer, as of October 2022,
uses the Fast GrowCut Segmentation under the name
“Grow from Seeds”, which is an editor that can be found
among other segmentation tools inside the “Segment Edi-
tor” module of 3D Slicer [16].

4 Methods

4.1 Workflow

The workflow of using the Fast GrowCut in StudierFen-
ster can be summarised in three steps “Mask Creation”,
“Executing Fast GrowCut” and “Result Handling”. The
flowchart in Figure 1 displays the usage of the Fast Grow-
Cut in StudierFenster and gives an overview how the three
mentioned steps can be divided further. In Figure 1, blue
fields represent user input, and green fields represent steps
that are executed automatically.

The workflow starts with loading a nearly raw raster
data (NRRD) file in the Medical 3D Viewer in Studier-
Fenster, as it can be seen in Figure 1. The selected file
is loaded in the viewer and shown in four different views:
a 3D view, a sagittal, a coronal, and a horizontal view in
which the Fast GrowCut must be executed. In the horizon-
tal view, the user can start with the creation of the input
by coloring the desired foreground area, which is tinted
red, and the background area, which is tinted green, with
the underlying image still visible. Colored areas can be
erased with an erase brush or the whole segmentation can
be reset. Both brush modes and the eraser mode feature a
round brush with variable size, which can be adjusted by
dragging the “Brush Size” slider.

To start the segmentation, both foreground and back-
ground need to be specified, which is checked by the
implementation. After successful calculation of the Fast
GrowCut, its output is automatically shown to the user.
The user-specified coloration disappears and instead, the
output mask is loaded, coloring the calculated foreground
and background areas in red and green, respectively.

The user has the option to delete the colored back-
ground, leaving only the segmented foreground on display.

Figure 1: Flowchart demonstrating the Fast GrowCut
workflow in StudierFenster. Blue fields represent user in-
put, green fields represent steps executed by the imple-
mentation.

The user can further edit the output mask and potentially
calculate the Fast GrowCut again if the first output was
not satisfactory. Finally, the output mask can be saved lo-
cally as an NRRD file where the segmented foreground is
colored white and everything else is black.

The Fast GrowCut in StudierFenster can be used
through the GrowCut side menu, which contains eight
user interface elements, seven buttons, and one slider. A
screenshot of the menu is included in Figure 2. It is lo-
cated with the other segmentation tools in the Medical
3D Viewer side menu and its style, and the implementa-
tion of some functions was inspired by other segmentation
tools [17].

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
23

Figure 2: The Fast GrowCut side menu in the Medical 3D
Viewer.

4.2 Implementation

4.2.1 Client/Server Architecture

The Fast GrowCut algorithm is implemented in Studier-
Fenster in two parts: a front-end part that is executed
on the client side, and a back-end part that is executed
on the server side. The client/server architecture is dis-
played in Figure 3. The client side consists of its inter-
face in the Medical 3D Viewer, which was implemented
as HyperText Markup Language (HTML), JavaScript, and
Cascading Style Sheets (CSS). The server side consists of
the Fast GrowCut implementation and the Flask Server,
which is used to communicate between the two sides. The
Fast GrowCut is implemented on the server side, because
its computation is very intensive and therefore faster and
more reliable when done on the server. Furthermore, the
algorithm is implemented in a Python script, which cannot
be executed in a browser.

The communication between client and server works as
followed: The input image and the mask, which are gen-
erated on the client side are converted into one JavaScript
Object Notation (JSON) object that is sent to the server via
an Asynchronous JavaScript and XML (AJAX) request.
On the server side, the JSON object is parsed and each of
the files is saved individually as an NRRD file in a tem-
porary folder in the file system. The Fast GrowCut Python
script then loads the NRRD files from the file system, com-
putes the segmentation, and saves the output mask as an
NRRD file in the same folder as the input files. The Python
Flask Server waits for the Fast GrowCut to finish, loads
the output mask from the file system, and converts it into a
JSON object, which is sent back to the client side. Finally,
on the client side, the segmentation mask is automatically
loaded in the Medical 3D Viewer.

4.2.2 Fast GrowCut Python Implementation

The Python implementation of the Fast GrowCut was
adapted from the Python script “growcut cpu.py” by

Figure 3: Client/server architecture of the Fast GrowCut
implementation in StudierFenster.

Shen 2 [18]. It is a Python implementation of Fast Grow-
Cut based on the algorithm by Zhu et al. [5]. The script re-
quires the image data and a seed label array as input [18].
As the Fast GrowCut in StudierFenster is computing two-
dimensional segmentations, only the current layer of the
image is used for input. The seed label array is of the same
size as the two-dimensional input image and contains dif-
ferent labels “1” for foreground and “2” for background.
It is generated from the foreground and background infor-
mation that is drawn by the user that is stored in an HTML
canvas element [19]. The output of the Python script is an
array of the same size as the seed label array, containing
a corresponding “foreground” or “background” label for
each array element [18]. This information is mapped to an
HTML canvas element, again, for viewing and editing in
the Medical 3D Viewer.

5 Results

Figure 4 shows the Medical 3D Viewer with the GrowCut
menu opened on the left-hand side, showing the user in-
terface. The loaded image shows an MRI scan of a human
brain, the horizontal plane being visible in a big window
and the three other views being visible on the right side in
small windows.

Results of the Fast GrowCut algorithm used in Studier-
Fenster to segment an image can be seen in Figures 5
and 6. The input masks are visible in Figures 5(a), 6(a)
and 6(c) and the corresponding Fast GrowCut results are
shown in Figures 5(b), 6(b) and 6(d). In all sub-figures,
the foreground is tinted red and the area surrounding the
region of interest is tinted green. Figure 5 displays the
segmentation of a brain tumor in an MRI head scan and
Figure 6 shows the segmentation of a vertebral body in a
CT chest scan.

In Figure 6 it is shown that the Fast GrowCut output can
be edited before running the Fast GrowCut again with the
additional input. Figure 6(a) shows the initial user input
and Figure 6(b) shows the corresponding Fast GrowCut

2https://github.com/Sherry-SR/fastgc_python/
blob/master/modules/growcut_cpu.py

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
24

Figure 4: Screenshot of the Medical 3D Viewer with the
GrowCut side menu on the left.

output. The output was edited with the “Delete Mode” and
foreground and background brushes, as seen in Figure 6(c)
and the Fast GrowCut was run again. Its output is visible
in Figure 6(d).

6 Conclusion and Outlook

As a result of this contribution, the Fast GrowCut segmen-
tation algorithm was added to StudierFenster, extending
the existing segmentation tools, thereby extending the pos-
sible use cases.

The Python implementation of the Fast GrowCut by
Shen [18] was successfully implemented on the server
side of StudierFenster. It was decided to use this imple-
mentation of the GrowCut because it could be adapted
to consist only of one Python script, which made its ap-
plicability simple. Adding this functionality to the ar-
chitecture of StudierFenster was possible without having
to change much of the original Fast GrowCut code. Its
straightforward implementation made it stand out against
other open-source GrowCut implementations, like the 3D
Slicer’s “Grow from Seeds” algorithm, for example. The
“Grow from Seeds” code is depending heavily on other 3D
Slicer modules and functions, which would have made it
nearly impossible to extract only the “Grow from Seeds”
code, without having to change most of the implementa-
tion [16].

After loading an image into the Medical 3D Viewer of
StudierFenster, Fast GrowCut can be used to segment any
region in the 2-dimensional transverse plane, that has a
different color than its surrounding area. For example, a
specific use case could be using the Fast GrowCut to seg-
ment vertebral bodies, as it was found in a study conducted
by Egger et al. in 2017 [13], in which the GrowCut in 3D
Slicer was used. Some benefits of using the Fast Grow-
Cut in StudierFenster are its platform and device indepen-
dency, compared to other implementations like the “Grow
from Seeds” algorithm in 3D Slicer [16]. The Fast Grow-

(a) User input for tumor segmentation.

(b) Fast GrowCut output of tumor segmentation.

Figure 5: Segmentation of a brain tumor of an MRI head
scan with Fast GrowCut in StudierFenster.

Cut in StudierFenster can be used on various devices, from
various browsers. This Fast GrowCut implementation in
StudierFenster allows a user to use a graphical interface
to select the mask and the output is automatically visible
in the original image. This method does not require the
user to have any knowledge of Python programming, as
opposed to directly using the Fast GrowCut Python script
by Shen [18].

Figures 5 and 6 show that the algorithm successfully
segmented the colored regions, based on the user input.
However, it is visible that the algorithm did not always
find the correct borderline between object and background.
This was especially the case when the two had similar col-
ors, or when the border was more of a transition, rather
than a line. This can be seen in Sub-figure 6(b), where
the red color is spilling outside the region of the vertebral
body. In Figure 6 it is visible that the segmentation out-
put is more satisfactory, after iterative refinement by the
user. Running the algorithm again is significantly faster
than running it for the first time, as the algorithm only it-
erates through pixels that are not colored.

Future research could examine if allowing user input
during the segmentation would accelerate the process of
refining the segmentation. This could lead to more sat-

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
25

(a) First input for vertebral body segmentation. (b) First Fast GrowCut output of vertebral body segmentation.

(c) Second input for vertebral body segmentation. (d) Second Fast GrowCut output of vertebral body segmentation.

Figure 6: Vertebral body segmentation of a CT chest scan with Fast GrowCut in StudierFenster, executing the Fast
GrowCut twice.

isfying results after running the Fast GrowCut only once.
Allowing user input during the execution of the algorithm
would enable users to correct wrongly placed seeds early
on.

Furthermore, the Fast GrowCut in StudierFenster could
be extended to be used for three-dimensional segmenta-
tions, as it is currently only used for two-dimensional seg-
mentations. The implemented Python script of the Fast
GrowCut algorithm already allows n-dimensional segmen-
tation [18], however, the process of the input mask creation
would need to be extended.

There are open questions, regarding the usage of Grow-
Cut in StudierFenster to segment patient data. The current
workflow requires the image data to be stored in the file
system on the server side. As this might be undesirable
when handling confidential data alternatives should be ex-
plored in the future.

Finally, conducting a user study would help to identify
flaws in the proposed workflow and could be of assistance
in improving the current graphical user interface.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
26

References

[1] Alireza Norouzi, Mohd Shafry Mohd Rahim, Ay-
man Altameem, Tanzila Saba, Abdolvahab Ehsani
Rad, Amjad Rehman, and Mueen Uddin. Medical
Image Segmentation Methods, Algorithms, and Ap-
plications. IETE Technical Review, 31(3):199–213,
2014.

[2] Dinggang Shen, Guorong Wu, and Heung-Il Suk.
Deep learning in medical image analysis. Annual re-
view of biomedical engineering, 19:221–248, 2017.

[3] Jan Egger, Christina Gsaxner, Antonio Pepe,
Kelsey L Pomykala, Frederic Jonske, Manuel Kurz,
Jianning Li, and Jens Kleesiek. Medical deep
learning–a systematic meta-review. Computer meth-
ods and programs in biomedicine, page 106874,
2022.

[4] V. Vezhnevets and V. Konouchine. ”GrowCut” - In-
teractive Multi-Label ND Image Segmentation By
Cellular Automata. Graphicon, 1(4):150 – 156,
2005.

[5] L. Zhu, I. Kolesov, Y. Gao, R. Kikinis, and A. Tan-
nenbaum. An Effective Interactive Medical Im-
age Segmentation Method using Fast GrowCut. In
Int Conf Med Image Comput Comput Assist Interv.
Workshop on Interactive Methods., volume 17, 2014.

[6] H. Veeraraghavan and J. Miller.
Modules:GrowCutSegmentation-Documentation-
3.6 - Slicer Wiki. Technical report, 2010. https:
//www.slicer.org/wiki/Modules:
GrowCutSegmentation-Documentation-3.
6, accessed: 2022-10-23.

[7] J. Egger, D. Wild, M. Weber, C. Bedoya, F. Karner,
A. Prutsch, M. Schmied, C. Dionysio, D. Krobath,
J. Yuan, C. Gsaxner, J. Li, and A. Pepe. Studierfen-
ster: an Open Science Cloud-Based Medical Imag-
ing Analysis Platform. Journal of Digital Imaging,
35, 01 2022.

[8] M. Weber, D. Wild, J. Wallner, and J. Egger.
A Client/Server based Online Environment for the
Calculation of Medical Segmentation Scores. In
2019 41st Annual International Conference of the
IEEE Engineering in Medicine and Biology Society
(EMBC), pages 3463–3467. IEEE, 2019.

[9] Alexander Prutsch, Antonio Pepe, and Jan Egger.
Design and development of a web-based tool for
inpainting of dissected aortae in angiography im-
ages. In 24th Central European Seminar on Com-
puter Graphics: CESCG 2020, 2020.

[10] Christina Dionysio, Daniel Wild, Antonio Pepe,
Christina Gsaxner, Jianning Li, Luis Alvarez, and

Jan Egger. A cloud-based centerline algorithm for
studierfenster. In Medical Imaging 2021: Imaging
Informatics for Healthcare, Research, and Applica-
tions, volume 11601, pages 201–206. SPIE, 2021.

[11] Jianning Li, Antonio Pepe, Christina Schwarz-
Gsaxner, and Jan Egger. An online platform for au-
tomatic skull defect restoration and cranial implant
design. In SPIE Medical Imaging Conference 2021,
page 115981Q, 2021.

[12] Florian Karner, Christina Gsaxner, Antonio Pepe,
Jianning Li, Philipp Fleck, Clemens Arth, Jürgen
Wallner, and Jan Egger. Single-shot deep volumet-
ric regression for mobile medical augmented real-
ity. In Clinical Image-Based Procedures, 9th Inter-
national Workshop, CLIP 2020, Held in Conjunction
with MICCAI 2020, Lima, Peru, October 4–8, 2020,
Proceedings 9, pages 64–74. Springer, 2020.

[13] J. Egger, C. Nimsky, and X. Chen. Vertebral
body segmentation with GrowCut: Initial experi-
ence, workflow and practical application. CoRR,
abs/1711.04592, 2017.

[14] Jan Egger, Tina Kapur, Andriy Fedorov, Steve
Pieper, James V Miller, Harini Veeraraghavan, Bernd
Freisleben, Alexandra J Golby, Christopher Nimsky,
and Ron Kikinis. Gbm volumetry using the 3d slicer
medical image computing platform. Scientific re-
ports, 3(1):1–7, 2013.

[15] L. Zhu. Documentation/4.8/Modules/FastGrowCut
- Slicer Wiki. Technical report, 2017. https://
www.slicer.org/wiki/Documentation/
4.8/Modules/FastGrowCut, accessed: 2022-
10-23.

[16] C. Pinter, A. Lasso, K. Sunderland, S. Pieper,
W. Plesniak, R. Kikinis, and J. Miller. Segment
editor - 3D Slicer documentation. Technical report,
2022. https://slicer.readthedocs.
io/en/latest/user_guide/modules/
segmenteditor.html, accessed: 2022-10-23.

[17] D. Wild, M. Weber, and J. Egger. A Client/Server
Based Online Environment for Manual Segmentation
of Medical Images. In The 23rd Central European
Seminar on Computer Graphics (CESCG), pages 1–
8, 2019.

[18] R. Shen. Fast Growcut alogorithm with shortest path.
Technical report, 2019. https://github.com/
Sherry-SR/fastgc_python, accessed: 2022-
12-27.

[19] Mozilla and individual contributors. Image-
Data - Web APIs — MDN. Technical re-
port, 2022. https://developer.mozilla.
org/en-US/docs/Web/API/ImageData, ac-
cessed: 2022-10-19.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
27

28

Weakly Supervised Semantic Cell Segmentation Using
Knowledge Distillation

Ivana Háberová*

Ivan Vykopal†

Supervised by: Dr. Lukáš Hudec‡

Faculty of Informatics and Information Technologies
Slovak University of Technology

Bratislava / Slovak republic

Abstract

This study proposes a new approach for semantic cell seg-
mentation that combines the use of neural networks and
involving humans in the loop with the aim of improving
the current state of digital pathology. The goal is to ob-
tain cell segmentation and classification from heart biopsy
images based on inaccurate data and simultaneously to re-
duce the demands on domain experts - doctors. In the
first step, the approach utilizes a segmentation model and
a combination of different datasets to detect the nuclei of
cells in the patches of whole slide images, which are used
to increase the amount of data. The proposed approach
employs knowledge distillation, a technique that involves
training a smaller ”student” model to mimic the output of
a larger ”teacher” model and their chaining. This is done
to overcome the limitations of having a small amount of
accurate data and a high proportion of inaccurate annota-
tions and to remove inaccuracies through chaining. The
proposed approach is evaluated against traditional meth-
ods and shows that it achieves improved performance in
terms of semantic cell segmentation. This demonstrates
the potential for the approach to be applied in biomedical
image analysis, where accurate and precise segmentation
is essential for downstream analysis.

Keywords: Segmentation, Classification, Knowledge
Distillation, Human-in-the-Loop, Weakly Annotated Data,
Digital Pathology

1 Introduction

The analysis of whole slide images is one of the important
components of pathologists’ diagnosis of Cardiovascular
diseases (CVDs). Research in this area is also progress-
ing because ∼ 17.9M people die each year from CVDs,
according to WHO[1], which is approximately one-third
of all deaths worldwide. CVDs are heart or blood vessel

*ivankahaberova@gmail.com
†ivan.vykopal@gmail.com
‡lukas.hudec@stuba.sk

diseases, such as coronary heart disease, cerebrovascular
disease, and rheumatic heart disease. A heart biopsy is an
effective way to detect changes in the heart muscle. On
the other hand, this procedure is invasive, difficult for the
patient - especially if heart problems occur - and requires
sufficient time for sample collection, tissue processing and
following evaluation by a doctor. Analyzing images after
a heart biopsy can be a challenging task, as the tissue sam-
ples are often small and may be difficult to interpret.

Over the past 20 years, the field of pathology has
made significant advancements in digital imaging through
the development and improvement of whole-slide imag-
ing. Digital pathology is a technology that can benefit
from high-resolution digital images to aid in diagnosis and
treatment planning. It is becoming increasingly popular
in pathology departments, offering advantages over tra-
ditional, microscope-based methods of analyzing tissue
samples. A combination of machine learning and digi-
tal pathology can automate image analysis and hence has
the potential to revolutionise the field of pathology by im-
proving diagnostic accuracy, increasing efficiency, and re-
ducing costs. Currently, there are several automated tools
providing a biomedical image or biomarker analysis like
QuPath [4], MONAI [8], CellProfiler [14], or ImageJ [2].

This work presents a novel training strategy for weakly
annotated data applied in semantic cell segmentation from
histopathological heart biopsy images based on imprecise
annotations. The motivation is mainly to reduce the de-
mands on doctors, who can more easily detect problematic
areas based on accurate classification or, in conjunction
with rigorous quantitative analysis, detect small deviations
earlier and thus bring new knowledge to the given area.
The research is carried out in cooperation with experts
from the Institute for Clinical and Experimental Medicine
in Prague (IKEM).

To summarize, our main contributions are: (1) a robust
model for nuclei segmentation in different organs and res-
olutions; (2) an approach that classifies cells in histopatho-
logical data using knowledge distillation; (3) a teacher
model usable for training other students for different types
of data and different types of annotations; (4) a relatively

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)

small network that is well adapted to a specific task (cell
classification in H&E images).

2 Related work

Identifying individual tissue types or small cells in a
histopathological image is time-consuming and requires
experienced doctors. The solution to this pathology im-
age analysis challenge can be using deep learning algo-
rithms that can process and evaluate the images quickly
and segment effectively the needed areas - tumours, tis-
sues or cells. The main task of (binary) segmentation is
to distinguish the searched tissue from its surroundings,
while there is a semantic segmentation, where individual
segmented tissues have a different meaning. The encoder-
decoder architectures with interconnections known as U-
Net [17] proved effective, outperforming previously used
methods - a combination of sliding window and convolu-
tional networks. U-Net achieves quantitatively and quali-
tatively good results, even on a small amount of biomed-
ical data with extensive augmentation. Olaf Ronneberger
et al. [17] applied U-Net to a cell segmentation task in
light microscopic images as part of the ISBI cell tracking
challenge 2015, where they achieved on different partially
annotated datasets average IoU (Intersection over Union)
77.5% and 92% and significantly outperformed other al-
gorithms. The extension and improvement of the perfor-
mance come with the deeply-supervised architecture of U-
Net++ [20], which added more connections between the
encoder and the decoder along with the intermediate out-
puts.

Classifying cells in histology images is challenging due
to the high intra-class variability and inter-class similarity.
Many papers deal with this problem using various modifi-
cations of convolutional neural networks (CNN). The first
significant improvement in CNN results came with VG-
GNet [19], which demonstrated not only the positive in-
fluence of model depth on classification success but also
the advantages of using relatively small reception fields
(convolutional filters with size 3×3). VGG-16 and VGG-
19 versions differ in the number of VGG blocks (16 vs
19), where one VGG block consists of several convolu-
tion layers followed by a max-pooling layer. In 2016 He
et al. [12] proposed using residual blocks in the neural
network. Applying skip connections or shortcuts made it
possible to go deeper with the architecture and increased
the network’s learning ability. Similar to VGG, there are
several versions of the Deep residual network architecture
or ResNet, such as ResNet-18, ResNet-50 or ResNet-152.
Xception [7] model outperforms on ImageNet classifica-
tion dataset many state-of-the-art models such as VGG-16,
ResNet-152 or Inception V3. This architecture is based
entirely on depthwise separable convolution layers, which
provide great computational efficiency. With the goal of
application in diagnostics, where you cannot rely on high-
performance computers, some authors try to design mod-

els ”as simple as possible”. This is the case with RCCNet
[5], which was created with the aim of colon cancer nu-
clei classification and has 1.5M learnable parameters com-
pared to VGG-16 with 138M parameters.

To deal with weakly annotated data, there is the human-
in-the-loop method, based on domain experts’ involve-
ment in interacting with artificial intelligence to obtain
more accurate annotations[16]. Most of the research in-
volving experts in the process consists of three main
phases: training the preliminary model, predicting unseen
data with the preliminary model, and correcting predicted
annotations using domain experts. Predictions and correc-
tions are performed in the loop until certain conditions are
met. Annotations can be corrected not only by experts but
also through crowdsourcing, either by manual correction
from a domain expert or by marking them as correct or
incorrect [11, 3].

With weakly annotated data or small amounts of data,
training a robust model that achieves the expected results
is challenging. For this reason, different approaches are
used to utilize the currently available resources optimally.
A knowledge distillation approach works with weakly an-
notated data, transferring knowledge between two or more
models. The principle of this approach, called Teacher-
Student architecture, is to train a Teacher on a small
amount of data or weakly annotated data and then train
the student using the trained Teacher. In this case, the an-
notations obtained by the Teacher are used in training the
student. Several methods are based on Teacher-Student
architectures, including Teacher-Student chaining[18] or
substituting Teacher and Student in the training process[6].
Both methods aim to use weak or insufficient annotations
to train the best possible model well generalized to the de-
sired task.

Pathologists in IKEM use QuPath for analyzing data
- nuclei and higher morphological structures. QuPath
can segment cells using parametric methods like color
thresholding based on H&E staining for segmentation,
whereas, for classification, there are three methods: K-
nearest neighbors, Random Forest, and Artificial Neural
Network (ANN). The disadvantage of this tool is the ex-
cessive dependence of the results on the initial setting by
the doctor, which may differ each time based on different
concentrations of staining color and therefore result insuf-
ficient.

3 Dataset

In our study, we work with two publicly available histolog-
ical datasets Lizard[9], MoNuSeg[13] and custom dataset
based on IKEM data. All three datasets contain histolog-
ical images stained with hematoxylin and eosin staining.
Images from each dataset are shown in Figure 1. By com-
bining them, we created the largest dataset for nuclei seg-
mentation in multiple organs with different magnifications
to create a robust model for segmentation.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
30

Figure 1: Comparison of datasets: A - IKEM, B - Lizard,
C - MoNuSeg after normalization using Macenko method.

3.1 Lizard

Lizard dataset [9] consists of regions of interest (ROI)
from Whole Slide Images (WSI) scans of the colon region.
This dataset is designed to segment and classify nuclei and
consists of six different datasets. Lizard is the largest his-
tological dataset, with 238 ROI images and approximately
495K nuclei. The nuclei annotations were generated based
on a multi-step approach consisting of segmentation and
classification by the HoverNet [10] neural network to re-
fine automatic and semi-automatic predictions, with the
pathologist involved throughout the workflow to refine the
segmentations and classifications. Table 1 shows the num-
ber of nuclei in the images.

3.2 MoNuSeg

MoNuSeg is a multi-organ dataset and contains 37 histo-
logical images together with their annotations. Similar to
the Lizard dataset, we work with binary annotations to seg-
ment the nuclei. Table 1 shows the total number of nuclei
in this dataset.

3.3 IKEM dataset

The IKEM dataset contains 25 WSI scans, each compris-
ing three to five tissue sections (called fragments) from the
heart region. The WSI format can store information about
a given tissue in several resolutions with relatively small
memory requirements, where the highest reaches dimen-
sions up to 48724×17910.

Dataset Nuclei count Immune cells Muscle cells Other cells

Lizard 495 179 - - -
MoNuSeg 21 623 - - -

IKEM SSA 470 563 118 950 130 022 221 591
IKEM WSA 469 591 127 521 127 259 214 811
IKEM EA 6 834 1 947 2 794 2 093

Table 1: The number of nuclei in each dataset along with
their classifications.

Cooperating pathologists provide us:

• QuPath project with trained object detectors and clas-
sifiers

• cell annotations as GeoJSON-s obtained by QuPath
automatically

• several Artificial Neural Networks (ANN) classifiers

• 4 335 manual annotations on 6 WSI scans with 6 834
nuclei. We call these annotations expert annotations
(EA).

The pathologists pre-trained the ANN classifier by itera-
tive manual correction of cell classifications. We used this
classifier to generate strong synthetic annotations (SSA).
Then, we randomly selected one significantly weaker clas-
sifier from the previous iterative improvements and gener-
ated weak synthetic annotations (WSA). The resulting dis-
tributions of immune, muscle, and other cells are shown in
Table 1.

4 Proposed method

Our study aimed to create a comprehensive approach for
analyzing nuclei in histological images, from segmenta-
tion to classification and applicable to various tissue and
organ types.

We focus on the problem of weak annotations that are
generated by the QuPath tool using an Artificial Neural
Network that has been trained by doctors. Our method’s
objective is to leverage weak annotations with minimal de-
mands on doctor input effectively.

4.1 Data preprocessing

All data provided by IKEM, whether obtained automati-
cally by QuPath or expert annotations, have the first pro-
cessing step in common.

Preprocessing 1 (Fig. 2) consists of several steps to
ensure efficiency and fast data processing by neural net-
works. The data are stored as multidimensional matrices,
which greatly increases the memory requirements. For this
reason, we chose to save in three resolutions - original, ½,
and ¼. At the same time, with the aim of reducing memory
requirements, images are divided into fragments, where

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
31

Figure 2: Overview of the proposed approach showing individual training phases, together with inputs, data flow and
outputs. The result offers three trained models - one cell segmentation and two cell classification models.

Figure 3: WSI scan with 3 fragments (red marked)
and patch subdivision (grey marked). In preprocessing,
only individual tissue fragments are stored based on their
bounding boxes, so an unnecessary white area is omitted.

the position is chosen according to the smallest possible
bounding boxes of individual parts of the tissue.

After saving the fragments as separate entities in dif-
ferent resolutions, optional image data normalization fol-
lows. We chose Macenko normalization [15] to reduce
bias between datasets, which arose as a result of staining
in another laboratory.

The proposed approach needs annotations in the format
of multidimensional masks, so the original GeoJSONs are
converted to multichannel images. Each channel contains
information about one type of desired nuclei.

The images and corresponding annotations (of all
datasets) are divided into patches of the selected size, in
this case, 512×512, where we use the sliding-window ap-
proach without an overlay as shown in Fig. 3. Lizard and
MoNuSeg images are stored as binary masks (1-nucleus,
0-background), while images of incompatible dimensions
were zero-padded. IKEM data is converted to binary form

when loading images during segmentation training with
regard to their further use in classifications.

The second part of preprocessing (preprocessing 2 in
Fig. 2) uses nuclei segmentation from Phase I. (Fig. 2).
For each nucleus segmented, we identified a class using
generated synthetic annotations and expert annotations.
We assigned each nucleus to one of the classes: other (0),
immune (1), muscle cells (2) and background (3). The
background class was assigned to nuclei identified by our
model but not segmented and classified by QuPath.

To identify the class of each nucleus, a patch is gener-
ated around it and SSA and EA are utilized to determine its
classification. Patch size 16× 16 is used for multiple and
32× 32 for the original image size. For the original size,
we used a larger patch size to contain only one nucleus, as
opposed to multiscale data, where in some cases, a 16×16
patch contains more than one nucleus in the smallest mag-
nification and only part of it in the highest.

When training models in all steps, the data is divided
with a random distribution in the ratio of 70:15:15 into
training, testing and validation parts.

4.2 Nuclei segmentation

In the initial stage of our comprehensive approach, we aim
to segment nuclei in histological images.

In Phase I (Fig 2), we experimented with two tradi-
tional architectures, U-Net and U-Net++, commonly used
in medical data segmentation. We modified both architec-
tures by replacing the Upsampling layer with the inverse
convolution layer, ConvTranspose. The benefit of using

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
32

ConvTranspose, a form of learning upsampling, is that it
results in a larger number of trainable parameters, leading
to a more robust model with a larger capacity.

We train models with all three datasets and a total of
1.93M nuclei in 512× 512 patches. We trained our mod-
els using the Dice Loss function and Adam optimizer. The
training process lasted for 30 epochs using 0.3 as dropout
and 0.0001 as the learning rate. The best model was se-
lected based on the validation loss function.

4.3 Classification

The following steps in this approach focus on obtaining
the classification of the cells found in the images in the
IKEM dataset using the Knowledge distillation approach.
The task of the resulting model is to classify cells into
three classes - muscle cells, immune cells and others. We
chose teacher-student chaining with three models, where
first, the weak ANN trains the complex ResNet-18 model
in phase II. Subsequently, in phase III, the teacher trans-
fers the information to the RCCNet model, fine-tuned in
the phase IV by involving an expert.

The chosen loss function in all classification-trainings is
CrossEntropy, optimized by Adam over 30 epochs.

4.3.1 Classification - Teacher

In Phase II, a network called a teacher is trained, which is
necessary for the next process. After training on weakly
annotated data (WSA and SSA), the goal is to obtain a
robust classification model that can extract the essential
information from weak annotations. The task consists in
assigning each of the cells (based on our nucleus segmen-
tation) to one of the classes required by the experts.

The specificity of this step also lies in the created dataset
(described in 4.1 Data Preprocessing), where based on its
different versions (various patch-size, normalization, vari-
ous resolutions) more experiments were performed.

The selection of architecture focuses on state-of-the-art
classification models with a large learning capacity, such
as ResNet-16, ResNet-18, Xception or VGG. The ResNet
architecture was changed for the needs of the chosen patch
size, and the VGG architecture was modified (using only
one VGG block with two linear layers) to process small
images and preserve information efficiently. All these ar-
chitectures are trained on multiscale data only, which leads
to using the best architecture to classify data in the orig-
inal magnifications to perform all the following steps in
experiments.

In the training process, the demands on doctors are
significantly reduced, especially by the processing of a
weakly annotated dataset created by QuPath, but also by
the fact that we do not require designing or setting param-
eters as QuPath does. The result is a classification model
that can obtain enough important information and features
from weakly annotated data and can thus be used for cre-
ating annotations in the next step.

4.3.2 Classification - Student

Our proposed method is training a network called Student
to obtain a relatively small classification model specified
for the given task. The goal is the same as when train-
ing the teacher (described above) - classifying cells based
on small patches of images of a heart biopsy. However,
the access to the provided data and the training process -
aimed at transferring relevant knowledge from the teacher
to the student, followed by specification by adding an ex-
pert to the loop - is different. We can divide this step into
two phases: training (phase III) and fine-tuning (phase IV).

During the training process, the same patches of im-
ages are used for training as in the initial teacher training.
The difference is that the teacher determines the label for
each segmented nuclei. When training a student, we work
with the highest resolution and use a teacher who has been
trained on images with the highest resolution.

We chose RCCNet as the student architecture. The
training duration depends on the network size, which is
important to optimize as much as possible. The evaluation
is done after each epoch against the SSA, where the model
achieving the best results is saved.

In the last Phase IV, an already partially trained student
model is trained again on expert annotations with the aim
of precise specification for a given task - refining predic-
tions by applying the human-in-the-loop approach.

Fine-tuning differs from training mainly in the data and
its processing, where expert annotations are used in this
step. When training, instead of using all the data, we
look for a suitable lower limit of the count of cells (the
same count from each cell class), which is necessary for
a sufficient improvement of the results. To prevent over-
fitting, which could occur with a small amount of data,
some experiments with different hyperparameters settings
were performed with values for learning rate from interval
≤0.00005, 0.001≥ and dropout rate from ≤0, 0.5≥.

The student obtains more accurate information from re-
liable annotations, which should be reflected in better se-
mantic segmentation and reducing or eliminating the error
from the original weakly annotated data. The result is a
relatively small network that is well adapted to a specific
task, and at the same time, it can be quickly and efficiently
modified by the next round of fine-tuning.

5 Evaluation

We ran all our experiments on a computer with a graphic
card NVIDIA RTX 2080 Ti with 11GB of GPU RAM and
32GB of total memory RAM.

5.1 Nuclei segmentation

For segmentation, we trained U-Net and U-Net++, where
the final nuclei segmentation model is chosen based on the
metrics achieved on the test set. Based on the value of

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
33

Model Accuracy [%] Precision [%] Recall [%] Dice [%]

U-Net 97.75 72.19 90.56 79.66
U-Net++ 97.44 67.92 92.71 78.04

Table 2: Evaluation of segmentation models U-Net and U-
Net++ on test data.

Figure 4: Segmentation results on WSI scans with and
without normalization from the IKEM dataset against
QuPath segmentation.

Dice over the test set, which was 79.66% for U-Net and
78.04% for U-Net++, we selected the trained U-Net model
for further processing. Results are shown in Table 2.

The proposed method for nuclei segmentation was qual-
itatively evaluated and compared to the results obtained
through automatic segmentation using QuPath. The re-
sults showed that the proposed method performed slightly
better than QuPath. QuPath’s approach for segmentation
relies on defining threshold values for each staining and
following statistical methods.

To further evaluate the segmentations, we quantitatively
compared the segmentations produced by our models on
WSI scans with the QuPath tool segmentations using the
metrics Intersection over Union and Dice score. The re-
sults of U-Net and U-Net++ on data without and with
normalization using Macenko’s method are presented in
Figure 4. The evaluation of WSI scans revealed that in
both cases, the U-Net architecture performed better than
U-Net++, both without image normalization and with nor-
malization using Macenko’s method.

5.2 Classification - Teacher

We evaluated strong and weak synthetic annotations
against expert annotations, using metrics such as F1 Score,
Accuracy, Precision and Recall. The evaluation was based
on the cell segmented by the U-Net model. During this
process, 574 segmented nuclei were identified as back-
ground. The results presented in Table 3 showed that weak
synthetic annotations perform better than strong ones.

Data F1 [%] Accuracy [%] Precision [%] Recall [%]

SSA 82.01 81.82 82.44 81.82
WSA 82.34 82.23 82.56 82.23

Table 3: Comparison of classifications obtained using
strong and weak synthetic annotations compared to expert
annotations.

Test set Doctor set
IKEM data F1 [%] Accuracy [%] F1 [%] Accuracy [%]

SSA 86.20 86.24 81.89 81.55
SSA & Macenko 82.90 82.66 81.54 81.24
WSA 85.64 85.34 82.04 81.75
WSA & Macenko 82.57 82.49 81.98 82.00

Table 4: Evaluation of Teacher architecture ResNet-18 on
the test set and doctor annotations.

After evaluating the performance of ResNet-16, VGG-
4 and Xception architectures on multiscale data using
16× 16 patch, we identified that the ResNet-16 architec-
ture achieved the highest F1 Scores. Therefore, we used
the residual block-based architecture for our experiments
on original-size data using 32×32 patch size. Due to the
increase in patch size, we moved to architecture with a
larger learning capacity - ResNet-18 as the Teacher model
in all the following analysis steps.

We trained the selected ResNet-18 architecture on
data without and with normalization using Macenko with
strong and weak synthetic annotations. The results of
training ResNet-18 as a Teacher model on these different
data combinations can be found in Table 4.

When comparing the results of training the ResNet-18
model on data with and without Macenko normalization,
the model performs better on data without applying nor-
malization for both test data and expert annotations. In
our analysis, we also compared the performance of the
ResNet-18 model when training on SSA and WSA from
QuPath. As shown in Table 4, the results indicate that
training on SSA performs better on the test set. However,
in the case of expert annotations, the results are better in
the case of training using WSA. This may be caused by the
fact that the doctors selected the ANN as the best based on
a qualitative evaluation and visual comparison.

5.3 Classification - Student

Our evaluation of the trained models, called students, fo-
cused on the RCCNet architecture. We trained these mod-
els using the previously trained teachers from the previous
step, utilizing different versions of the data, including both
strong and weak synthetic annotations and data with and
without normalization. After evaluating each model on the
test set, we further evaluate the trained model using expert
annotations. The results of the different data versions can
be found in Table 5.

Based on the results presented in Table 5, the RCCNet

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
34

Test set Doctor set
IKEM data F1 [%] Accuracy [%] F1 [%] Accuracy [%]

SSA 85.06 84.16 81.76 81.57
SSA & Macenko 81.84 81.03 82.02 82.02
WSA 85.13 84.96 81.71 81.42
WSA & Macenko 81.88 81.14 82.00 81.88

Table 5: Evaluation of Student architecture RCCNet on the
test set and doctor annotations after training using Teacher
architecture.

F1 [%] Accuracy [%]
Labels count

(per class)
Before

fine-tuning
After

fine-tuning
Before

fine-tuning
After

fine-tuning

100 81.88 80.47 81.90 80.80
250 81.92 80.73 81.95 81.30
400 82.17 79.85 82.25 80.56
550 82.64 81.21 82.79 82.29
750 83.17 80.15 83.43 81.19
850 83.73 78.40 84.13 79.13
1000 84.24 78.89 84.74 80.26
1250 83.55 82.47 84.24 82.62
1500 83.30 84.93 84.23 85.58
1750 82.57 83.99 83.88 84.50
1900 82.73 84.81 85.17 87.23

Table 6: Evaluating the performance of the student archi-
tecture on strong annotations with normalization before
and after fine-tuning.

model performed better on data without normalization and
using SSA within the test set. However, the normalized
data performed better for expert annotations. Using WSA
performed better for the test set and for expert annotations,
the results were better using SSA. The results suggest that
by training the student with the teacher, we achieved a
higher level of generalization in the trained student model,
leading to the improved classification of medical data us-
ing normalization.

Our last evaluation is focused on students fine-tuning
based on gaining information from expert annotations.
Fine-tuning aims to find the smallest number of anno-
tations needed to improve RCCNet students trained by
ResNet-18 teachers. For these experiments, we perform
a grid search over the chosen nuclei counts for each class
concerning the class that contained the smallest number
of annotations. We experimented with nuclei counts of
100, 250, 400, 550, 750, 850, 1000, 1250, 1500, 1750 and
1900. Each of the above values represents the per-class
count, which we divided into training and validation sets.
The test set, over which we computed the metrics for fine-
tuned models, is created from the remaining number of
nuclei in the dataset.

As presented in Table 6, the results indicate that fine-
tuning the pre-trained RCCNet model using SSA and nor-
malized data led to improved performance compared to
the initial training. Specifically, using 1500 nuclei per
class during the fine-tuning process resulted in a higher

F1 Score and Accuracy than before fine-tuning or using
lower nuclei counts. However, utilizing a small sample of
medical data to fine-tune the RCCNet model led to worse
results.

6 Conclusion & Discussion

This study presents a novel robust approach for cell seg-
mentation and classification, evaluated on WSI scans of
heart biopsy. This approach can generally be applied to
any histological images from different organs and different
types of cells. Our method consists of traditional methods
used in medicine combined with novel methods for work-
ing with weakly annotated data.

Using the Knowledge distillation and the Teacher-
Student architecture for nuclei classification, we have
identified that it is possible to improve results by using
this approach under certain conditions. In this work, we
specifically use Teacher-Student chaining. According to
our results, the best use of this technique appears to be in
the case of normalized data. We identified that there might
be an improvement in the results after fine-tuning the stu-
dent model.

An improvement in the results for normalized data was
observed when the number of manually annotated cells per
class reached a threshold of 1500, suggesting it may be a
suitable cut-off point for expert annotations.

A potential limitation is a total number of cells man-
ually annotated by pathologists. If more cells were an-
notated, further experiments could be performed to more
accurately evaluate the impact of fine-tuning the student
model on the medical annotations.

Future research may explore the potential of the
Teacher-Student architecture without relying on ANN an-
notations. This could involve training an initial teacher
model on a set of medical annotations and using it to train
a student model on previously unseen data, allowing for
further analysis and investigation of the approach.

References

[1] Cardiovascular diseases (cvds).
https://www.who.int/en/
news-room/fact-sheets/detail/
cardiovascular-diseases-(cvds).
Accessed: 2023-03-23.

[2] Michael D Abràmoff, Paulo J Magalhães, and
Sunanda J Ram. Image processing with imagej. Bio-
photonics international, 11(7):36–42, 2004.

[3] Saeed Alahmari, Dmitry Goldgof, Lawrence Hall,
Palak Dave, Hady Ahmady Phoulady, and Peter
Mouton. Iterative deep learning based unbiased
stereology with human-in-the-loop. In 2018 17th

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
35

IEEE International Conference on Machine Learn-
ing and Applications (ICMLA), pages 665–670,
2018.

[4] Peter Bankhead, Maurice B Loughrey, José A
Fernández, Yvonne Dombrowski, Darragh G McArt,
Philip D Dunne, Stephen McQuaid, Ronan T Gray,
Liam J Murray, Helen G Coleman, et al. Qupath:
Open source software for digital pathology image
analysis. Scientific reports, 7(1):1–7, 2017.

[5] SH Shabbeer Basha, Soumen Ghosh, Kanchara-
gunta Kishan Babu, Shiv Ram Dubey, Viswanath Pu-
labaigari, and Snehasis Mukherjee. Rccnet: An ef-
ficient convolutional neural network for histological
routine colon cancer nuclei classification. In 2018
15th International Conference on Control, Automa-
tion, Robotics and Vision (ICARCV), pages 1222–
1227. IEEE, 2018.

[6] Sushovan Chaudhury, Nilesh Shelke, Kartik Sau,
B Prasanalakshmi, and Mohammad Shabaz. A novel
approach to classifying breast cancer histopathology
biopsy images using bilateral knowledge distillation
and label smoothing regularization. Computational
and Mathematical Methods in Medicine, 2021, 2021.

[7] Francois Chollet. Xception: Deep learning with
depthwise separable convolutions. In Proceedings of
the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), July 2017.

[8] Andres Diaz-Pinto, Sachidanand Alle, Alvin Ihsani,
Muhammad Asad, Vishwesh Nath, Fernando Pérez-
Garcı́a, Pritesh Mehta, Wenqi Li, Holger R Roth,
Tom Vercauteren, et al. Monai label: A framework
for ai-assisted interactive labeling of 3d medical im-
ages. arXiv preprint arXiv:2203.12362, 2022.

[9] Simon Graham, Mostafa Jahanifar, Ayesha Azam,
Mohammed Nimir, Yee-Wah Tsang, Katherine
Dodd, Emily Hero, Harvir Sahota, Atisha Tank,
Ksenija Benes, et al. Lizard: A large-scale dataset
for colonic nuclear instance segmentation and clas-
sification. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 684–
693, 2021.

[10] Simon Graham, Quoc Dang Vu, Shan E Ahmed
Raza, Ayesha Azam, Yee Wah Tsang, Jin Tae
Kwak, and Nasir Rajpoot. Hover-net: Simultaneous
segmentation and classification of nuclei in multi-
tissue histology images. Medical Image Analysis,
58:101563, 2019.

[11] Noah F Greenwald, Geneva Miller, Erick Moen,
Alex Kong, Adam Kagel, Thomas Dougherty,
Christine Camacho Fullaway, Brianna J McIntosh,
Ke Xuan Leow, Morgan Sarah Schwartz, et al.
Whole-cell segmentation of tissue images with

human-level performance using large-scale data an-
notation and deep learning. Nature biotechnology,
40(4):555–565, 2022.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and
Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778, 2016.

[13] Neeraj Kumar, Ruchika Verma, Deepak Anand, Yan-
ning Zhou, Omer Fahri Onder, Efstratios Tsougenis,
Hao Chen, Pheng-Ann Heng, Jiahui Li, Zhiqiang Hu,
et al. A multi-organ nucleus segmentation challenge.
IEEE transactions on medical imaging, 39(5):1380–
1391, 2019.

[14] Michael R Lamprecht, David M Sabatini, and
Anne E Carpenter. Cellprofiler™: free, versatile
software for automated biological image analysis.
Biotechniques, 42(1):71–75, 2007.

[15] Marc Macenko, Marc Niethammer, James S Mar-
ron, David Borland, John T Woosley, Xiaojun Guan,
Charles Schmitt, and Nancy E Thomas. A method
for normalizing histology slides for quantitative anal-
ysis. In 2009 IEEE international symposium on
biomedical imaging: from nano to macro, pages
1107–1110. IEEE, 2009.

[16] Eduardo Mosqueira-Rey, Elena Hernández-Pereira,
David Alonso-Rı́os, José Bobes-Bascarán, and
Ángel Fernández-Leal. Human-in-the-loop machine
learning: A state of the art. Artificial Intelligence
Review, pages 1–50, 2022.

[17] Olaf Ronneberger, Philipp Fischer, and Thomas
Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In International Conference
on Medical image computing and computer-assisted
intervention, pages 234–241. Springer, 2015.

[18] Shayne Shaw, Maciej Pajak, Aneta Lisowska,
Sotirios A Tsaftaris, and Alison Q O’Neil. Teacher-
student chain for efficient semi-supervised his-
tology image classification. arXiv preprint
arXiv:2003.08797, 2020.

[19] Karen Simonyan and Andrew Zisserman. Very deep
convolutional networks for large-scale image recog-
nition. arXiv preprint arXiv:1409.1556, 2014.

[20] Zongwei Zhou, Md Mahfuzur Rahman Siddiquee,
Nima Tajbakhsh, and Jianming Liang. Unet++: A
nested u-net architecture for medical image segmen-
tation. In Deep learning in medical image analysis
and multimodal learning for clinical decision sup-
port, pages 3–11. Springer, 2018.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
36

Computer Vision and 3D

Reconstruction

Distributed Surface Reconstruction

Patrick Komon, BSc*

Supervised by: Projektass.in Diana Marin, BSc MEng †

Institute of Computer Graphics
Vienna University of Technology

Vienna / Austria

Abstract

As 3D scanning technology is advancing, both quality and
quantity of available point cloud data is increasing. Many
applications require the reconstruction of the surface of
a scanned object as a 3D model. As scans become ex-
ceedingly detailed, point clouds become larger and sur-
face reconstruction more computationally challenging. A
fast and scalable solution for the reconstruction problem
is needed. We constructed and implemented a scalable
distributed surface reconstruction algorithm called DIS-
TRIBUTEDBALLFILTER based on the recently developed
BALLFILTER algorithm. We executed our implementa-
tion on the VSC3+ high performance computing cluster
and empirically analysed its speedup as well as its parallel
scaling behaviour. In our tests for DISTRIBUTEDBALL-
FILTER we achieved running times around five times faster
than with BALLFILTER.

Keywords: Surface reconstruction, Point cloud, Dis-
tributed memory, Parallel computing

1 Introduction

In recent years, 3D scanning technology has become eas-
ier to obtain and use. As a consequence, more scanned
data is made available as part of private or public projects.
One such project is “Wien gibt Raum” [19] in which more
than 100 terabytes of point cloud data was collected. It
is often favourable or necessary to work with 3D models
consisting of points, edges and faces that represent real-
world objects rather than point clouds. Thus the challenge
is to create a model from the point cloud that most accu-
rately represents the scanned object. In computer graphics,
this problem is known as surface reconstruction. Introduc-
ing noise and outliers, as they are present in most real-life
scans, makes solving this problem even more challenging.
Large point clouds require fast and scalable surface recon-
struction algorithms so that a 3D model can be calculated
in reasonable time.

*e11808210@student.tuwien.ac.at
†dmarin@cg.tuwien.ac.at

1.1 Related work

There are several approaches for surface reconstruction.
You et al. [21] categorize the existing surface reconstruc-
tion algorithms based on their methodology into inter-
polation, approximation and learning-based approaches.
While soft-computing approaches are mentioned sepa-
rately, they will not be further explained as they are not
relevant to this work.

Interpolation approaches (also called combinatorial ap-
proaches) try to reconstruct the surface that (exactly) goes
through all sampled points. Usually they use the Delaunay
complex or the Voronoi diagram of the point cloud. The
CRUST algorithm introduced by Amenta et al. [1, 2] is a
well known Delaunay-based combinatorial approach. In
their work, they also introduced the notion of ε-sampling,
relating surface features with the sampling density. It in-
spired multiple variants, each improving reconstruction
quality for specific cases, for example POWERCRUST,
which improves in noisy and under-sampled regions [3].

Approximation approaches try to find the surface by
finding a function that best agrees with all sampled
points, similar to curve fitting. Widely used in prac-
tice, SCREENEDPOISSON surface reconstruction [7] ap-
plies Poisson‘s equation to solve the reconstruction prob-
lem. However, it requires knowledge of the surface normal
for each sampled point.

Learning-based approaches facilitate some form of ma-
chine learning. One recent example is POINTS2SURF [6],
which managed to reduce the reconstruction error by 30%
compared to SCREENEDPOISSON.

1.2 BALLFILTER algorithm and limitations

Recently, Ohrhallinger [12] developed a new Delaunay-
based reconstruction algorithm called BALLFILTER. As
the corresponding paper is not published yet, we cannot
explain its inner workings. In general, it calculates the De-
launay complex and filters its triangles. By design, BALL-
FILTER is a serial algorithm and therefore is limited by the
physical capabilities of a single machine. This effectively
limits the size of data sets it can process in reasonable time.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)

1.3 Distributed approach

In this paper, we address these limitations from a par-
allel computing perspective by introducing a distributed-
memory parallel version of BALLFILTER. DISTRIBUT-
EDBALLFILTER first subdivides the input into a three-
dimensional grid with overlapping cells. Then BALLFIL-
TER is run on each grid cell separately. Finally, all results
are collected and merged together to create the final result.

This removes the memory restriction imposed by using
a single machine. Moreover, it enables scaling the input
size while still maintaining acceptable run times. We aim
at utilizing parallel infrastructure, as is present in state-
of-the-art high-performance computing (HPC) clusters, to
execute BALLFILTER on much larger data sets than pre-
viously possible. We evaluate its performance and scaling
behaviour from a parallel computing perspective and com-
pare it against the original algorithm. Specifically, DIS-
TRIBUTEDBALLFILTER will has been tested and run on
the VSC-3+ cluster [5].

2 Background

In this chapter, we will be revisiting some theoretical ba-
sics. First, we will cover the Delaunay complex. Then, we
will briefly mention important aspects of the BALLFILTER
algorithm. Lastly, we will go over typical assumptions of
the distributed-memory parallel computing model.

2.1 Delaunay complex

Many surface reconstruction algorithms are based on the
Delaunay complex (commonly referred to as Delaunay tri-
angulation). In particular, they operate by examining the
tetrahedrons obtained from calculating the Delaunay com-
plex for the input point cloud. The challenge then becomes
finding the subset of tetrahedrons that most closely recon-
structs the original object.

The Delaunay complex of a three-dimensional point set
S consists of (non-overlapping) tetrahedrons as well as all
of their vertices, edges, triangles. These tetrahedrons must
be constructed from points of S and cover its entire convex
hull. Furthermore, they must fulfil the empty-sphere prop-
erty, that is, the circumsphere of each tetrahedron must not
contain any (other) vertices. For every set of points the De-
launay complex can be calculated in O(n logn) time [9].

2.2 BALLFILTER reconstruction method

Because the paper presenting the BALLFILTER algorithm
is not published yet, we cannot provide details about its
function. The most important steps are calculating the
Delaunay complex and filtering its triangles. It can re-
construct open surfaces and runs in O(n logn) time for n
points.

2.3 Distributed-memory parallel computing

In the distributed-memory parallel computing model there
is a number of p processes that are connected via a com-
munication network. Each process can only access its
own local memory. Processes can only interact with
each other by communicating over the communication net-
work. There are several paradigms, standards and frame-
works providing means for communication. For high-
performance computing, the most used is the Message
Passing Interface (MPI) [10]. It utilizes the paradigm of
message passing. Processes communicate with each other
by explicitly sending and receiving messages [17]. Costs
for such operations are determined by the concrete topol-
ogy of the communication network.

We will be using the notion of speedup. The (absolute)
speedup Sabs of a parallel algorithm is its improvement
over a baseline sequential version, in our case BALLFIL-
TER [15]. The relative speedup Srel measures the improve-
ment of multiple processes over using a single one.

3 Method

In the following, we will explain in detail how the par-
allelization of the algorithm works. First, we will ex-
plore how the input is subdivided. Next, we will discuss
how those parts are distributed among multiple processes.
Then, we will examine the parallel reconstruction step and
derive its parallel runtime complexity. Lastly, we will dis-
cuss how the resulting partial meshes are merged back to-
gether.

3.1 Splitting into overlapping tiles

The approach for input subdivision was developed by
Brunner [4] and is thoroughly explained in their dedicated
work. We will only explain the most important aspects.

Splitting the input into independent parts is necessary
to enable parallelism. We will be splitting the point set
along a regular 3D grid into cells. The grid is axis-aligned,
covers the entire point cloud and the number of grid cells
along each axis is given as input parameters x, y and z, cre-
ating a total of s = x×y×z cells. The grid cell dimensions
are calculated based on the minimal and maximal coordi-
nates present in the point cloud.

However, the union of the Delaunay triangulations of all
grid cells is not equal to the Delaunay triangulations of the
entire point clouds, as triangles constructed from vertices
in different, neighbouring cells will be missing. Visually,
this leads to cuts along the 3D grid in the resulting model.
Put differently, we have to make sure not to miss triangles,
which have vertices in different grid cells.

We solve this problem by considering points in an area
around every grid cell in addition to the points within it.
This area is given by the so-called padding. We call the set
of all points within a grid cell and its surrounding padding

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
40

Figure 1: Delaunay-triangulated 2D point cloud, subdi-
vided into a regular grid. Tiles are highlighted by coloured
borders with varied thickness for readability.

a tile. The set of tiles is not a partition of the point cloud
but a set of overlapping subsets. The number of tiles is
equal to the number of grid cells. The padding is added
to the grid cell dimensions, extending the cell along each
axis in positive and negative directions.

The input subdivision is illustrated in Figure 1. Tiles
are regions with coloured borders. The vertices of red-
coloured triangles belong to the upper left tile. The ver-
tices of green-coloured triangles belong to the upper right
tile. In the overlap region, there are triangles with all ver-
tices belonging to both tiles. These will be part of the De-
launay triangulations in each tile separately and thus be
considered for reconstruction by BALLFILTER. While this
cannot lead to holes in the resulting mesh, it may lead to
redundant triangles. This may be fixed as part of a post-
processing step, see 3.4.

Two vertices of a triangle can only be in two differ-
ent tiles exclusively, if the edge between these vertices is
longer than double the padding. This case is illustrated in
Figure 1, where between green and red tile, there are two
white triangles. These will be missing in the separate De-
launay triangulations of each tile. However, by choosing a
padding relative to the parameters used for BALLFILTER,
we ensure that all triangles that BALLFILTER considers are
also present in the Delaunay triangulation of at least one
tile.

Checking a single point for tile membership requires
checking its coordinates against the grid as well as the
padding. This can be done in O(1), therefore calculating
the memberships of all points can be done in O(n).

The overlap between tiles leads to the duplication of
some points of the input set. In particular, the maximal

number of tiles that may be overlapping each other at any
given location dictates the (maximal) factor of duplication.
Choosing a padding smaller than half the tile dimensions
in each direction would imply a maximum of four overlap-
ping tiles in the 2D case (see Figure 1) and eight overlap-
ping tiles in the 3D case.

Therefore, for DISTRIBUTEDBALLFILTER, any point
of the input set may be part of up to eight tiles and thus be
duplicated up to eight times. The total number of points n′

after splitting is n′ ≤ 8n and is in O(n). From here on we
assume n′ = cn with some constant factor c < 8.

3.2 Work distribution

The next step is to assign the tiles to a fixed number of p
processes (also called machines or nodes). We assume all
processes are capable of performing the same amount of
work in the same time (assumption of identical machines).
The running time of the entire program is determined by
the running time of the slowest process. There is no as-
sumption about the distribution of the points. There may
be significant differences in the number of points between
tiles. We call an execution of BALLFILTER for a single
tile a job. The challenge is to assign jobs to processes in
such a way that the total running time is minimized. This
problem is well known as load balancing [8].

There are various ways of approaching this problem and
generating optimal solutions can be computationally com-
plex. Instead of trying to find optimal solutions, we will
focus on efficiently finding a solution, that is reasonably
close to the optimum, thus approximating it.

Formally, we want to assign jobs in such a way, that the
maximum running time within all processes is minimized.
The running time for processing a tile is dependent on the
number of points it contains. Thus, the goal is to minimize
the total number of points (that is, the sum of the tile sizes)
any single process gets assigned.

To minimize this sum, we will be using list-scheduling
with the longest-processing-time-first (LPT) rule. It is a
simple and fast approximation algorithm for the schedul-
ing problem, that guarantees a 4/3-approximation [20],
i.e. the calculated schedule is slower than the optimal by
factor 4/3 at the most. In each iteration, a job is assigned
to the process with the least number of points to process
yet. The jobs are assigned in order from highest number of
points to lowest. Sorting the jobs can be done in O(s logs),
with s being the number of tiles. The process assignment is
done in O(s log p). As it only makes sense for p processes
to process at least s tiles, it holds that p ≤ s. Therefore,
calculating the assignment is in O(s logs).

3.3 Processing tiles

Each process executes BALLFILTER on every tile it was
assigned. The result of BALLFILTER is a set of triangles,
represented by the indices of the vertices in the original
point cloud. The run time of a single process is the sum

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
41

of the run times of BALLFILTER for the set of all tiles LT
assigned to this process, thus

O

(
∑

ti∈LT
|ti| log |ti|

)
.

The term with the largest tile size dominates this sum, so
the largest tile of each process dictates its asymptotic run
time. The overall run time is determined by the slowest
process, which is the one with the largest tile. Therefore,
the overall bound can be expressed as

O(|ti| log |ti|) with ∀t j ∈ T : |ti| ≥ |t j|.

Hence, the running time of DISTRIBUTEDBALLFILTER
is dependent on the distribution of points within the tiles,
which itself depends on the distribution in the point cloud,
the chosen grid and the padding.

In the best case, every process is assigned exactly an
equal part of all points (after duplication), i.e. a number
of cn

p points. Therefore, the largest tile ti can contain at
most this many points, formally |ti| ≤ cn

p . Since LPT list-
scheduling guarantees a 4/3-approximation and BALL-
FILTER can be done in O(n logn), this implies a bound
for the parallel running time in

O
(

4
3
|ti| log |ti|

)
= O

(
4
3

cn
p

log
cn
p

)
= O

(
4c
3

n
p
(logc+ logn− log p)

)
= O

(
n logn

p

)
.

In the worst case, almost all points are assigned to a
single process. This may happen when the tile sizes are
extremely unbalanced, e.g. if two tiles with sizes cn− 1
and 1 should be assigned to two processes. As the largest
tile may be of size cn, the run time of the slowest process
and thus the parallel running time is in

O(|ti| log |ti|) = O(cn logcn)

= O(n(logc+ logn))

= O(n logn)

which is (asymptotically) equal to running BALLFIL-
TER on the original point cloud. Due to duplicated points
and communication overhead, the actual run times of DIS-
TRIBUTEDBALLFILTER are expected to be higher than
BALLFILTER in this case. However, such cases may be
mitigated most of the time by carefully choosing the pa-
rameters for splitting.

3.4 Merging results and output

Upon finishing executing BALLFILTER on all assigned
tiles, each process sends the resulting triangles to a sin-

gle process, which joins all received sets together and out-
puts the final model. The padding causes all triangles that
are considered by BALLFILTER to be entirely contained
within at least one tile. Therefore, there is no need to ex-
plicitly connect the meshes of neighbouring tiles, the result
is simply the union of all triangle sets.

However, as mentioned in 3.1, reconstructed triangles
may be part of more than one tile. In this case, merging
the results generates redundant geometry in the resulting
mesh. Removal of those triangles is possible as a post-
processing step. We will not take redundant triangle re-
moval into account for running time considerations and
because it does not interfere with the visual quality of the
reconstructed model.

3.5 Summary

To summarize, DISTRIBUTEDBALLFILTER processes a
set of n points using the following steps. Note that the
point duplication caused by tile overlap is assumed to be a
constant factor as discussed in 3.1.

1. Split the input point cloud into tiles in O(n) (on a
single node).

2. Calculate schedule in O(s logs) (on a single node).

3. Perform BALLFILTER in parallel worst case
O(n logn), best case O(n logn

p) (on p nodes).

4. Merge results from nodes in O(n) (on a single node).

The overall asymptotic run time complexity is
O(n logn) in the worst and O(n+ n logn

p) in the best case.

4 Implementation

In this chapter, we will briefly mention the technology
used as well as discuss the implementation structure.

4.1 Technology

For the implementation, C++ has been used as it offers
both, performance and high-level abstractions. As input
splitting involves a large number of simple operations, has
been use CUDA to utilize the large scale shared-memory
parallelism possible on GPUs [11]. For distribution of the
tiles to the processes, we use the distributed file system
of the VSC-3+ cluster, BeeGFS. For the reconstruction
step performed on each tile, the original implementation
of BALLFILTER has been. For the merging step, each pro-
cess’ outputs are sent back to a single node using Open-
MPI [14].

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
42

Schedule MergeBallFilter1 BallFilteri...

BallFilterj BallFilterk...

...

BallFilterl BallFilters...

Schedule

Schedule

Process 1

Process 2

Process p

......

Split

Send all tiles
via distributed

file system

Send results
via MPI call

Split executable Reconstruction executable

Figure 2: Implementation of DISTRIBUTEDBALLFILTER

4.2 Structure

Splitting the input point cloud and performing surface re-
construction are implemented in separate executables. The
output of the splitting step, which is also the input of the
reconstruction step, consists of a set of files, each repre-
senting a tile (tile file). This promotes decoupling of in-
put splitting and reconstruction and allows exchanging im-
plementations as well as introducing additional process-
ing steps. On the VSC3+, tile files are written to the dis-
tributed file system, making all tiles available to all nodes
after the splitting step.

Then the reconstruction executable is started on all
nodes in parallel. Each process calculates the job schedule
(tile file assignment) independently. Compared to calcu-
lating it on a single node and communicating it to all oth-
ers, it is still faster because no communication is required.
Then each process runs BALLFILTER on each of its as-
signed tiles. When finished, all nodes send their results to
the node with the least load. This node then merges the
results and outputs the model. The entire process is vi-
sualized in Figure 2. Notice, the structure differs slightly
from the one proposed in 3.5. We deliberately chose this
approach due to the availability of a distributed file system.

5 Results and Evaluation

In this chapter, we will discuss the results of our imple-
mentation on specific data sets and parameter combina-
tions. First, we will give an overview of the hardware en-
vironment and explain the data sets and parameter combi-
nations selected for testing. Moreover, we will visualize
the running times and reason about the effect of scaling
the number of processes p or the input size n. Finally,
we compare these times to the original implementation of
BALLFILTER.

5.1 Hardware environment and Datasets

The algorithm has been run on the VSC-3+ cluster. It
consists of various types of nodes with different hardware
specifications [5]. We used two different node types. For
the splitting step, we used a single node with a NVIDIA
Pascal GeForce GTX 1080 GPU. For the reconstruction
step, we used a number of identical nodes, containing two
Intel Xeon E5-2660v2 2.2GHz processors with 10 cores
each (so 20 cores in total) and 64GiB of RAM. The recon-
struction step has been run multiple times while varying
the number of nodes used in order to analyse the scaling
behaviour.

As input point clouds for testing, two data sets have
been selected, both obtained via photogrammetry provided
by Pix4D [13]. They were chosen based on their large
size and real world relevance. The point clouds were trun-
cated to create inputs of various sizes n. In order to ob-
serve the running times of DISTRIBUTEDBALLFILTER on
scaled input, n is varied while keeping the number of nodes
p fixed.

5.2 Parameters

The parameters for BALLFILTER only influence the qual-
ity of the resulting 3D model and generally do not signifi-
cantly impact performance. For this reason, we keep them
fixed for all runs at the values recommended in [12].

Splitting the input requires three parameters, x, y and z,
denoting the number of tiles along each axis, respectively.
Correctly choosing these parameters is vital for work dis-
tribution and in turn has a great impact on the overall run
time. Although not strictly needed, information about the
distribution of points in the input point cloud is helpful for
picking concrete values. During testing, these values will
be picked based on the number of nodes to employ.

The number of processes p is closely related to the num-
ber of tiles. Generating less tiles than there are nodes allo-
cated would leave some nodes idle, waiting for the others
to finish, so p ≤ s. Having more tiles allows for better
work distribution and may enable faster overall running

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
43

times. This also depends on how balanced the tiles are to
begin with. However, using more tiles than nodes leads to
overhead by point duplication. At some point, the benefit
of better work distribution is exceeded by the additional
work of processing duplicated points. In our tests, we will
use s = p and s = 2p.

5.3 Measured running times

For a closer examination, we chose the eclepens data
set. The exact running times for various runs with different
parameter combinations are listed in Table 1 as well as
the absolute and relative speedup. Tsplit and Treconstruct are
the times for running the split and reconstruct executables
respectively as shown in Figure 2.

The running time of the split step are consistently very
low. In comparison, the running times of the reconstruc-
tion step are dominating the total running time. As this
paper’s main focus is the reconstruction step, we will ne-
glect Tsplit and refrain from analysing its impact on the
total running time.

Figure 3: Input point cloud (left) and reconstruction (right)
of the eclepens (8 million points) data set calculated
using DISTRIBUTEDBALLFILTER with 16 processes and
32 tiles in 11.43s.

5.4 Scaling behaviour and speed-up

Figure 4 shows the running times of the original (shared-
memory) implementation of BALLFILTER and our im-
plementation of DISTRIBUTEDBALLFILTER ran with 16
nodes and 32 tiles for different versions of eclepens.
The data set has been truncated to specific sizes (from
20 = 1 to 25 = 32 million points) to simulate growing input
size.

BALLFILTER has an asymptotic running time bound of
O(n logn). The asymptotic running time bound of DIS-
TRIBUTEDBALLFILTER is O(n logn) for the worst and
O(n+ n logn

p) for the best case. The distributed version is
in the worst case (asymptotically) as fast as the original al-
gorithm and faster in the best case. The factor by which it
is faster is called absolute speedup Sabs. In reality, the ab-
solute speedup will always be somewhere between 1 and
p, depending on the balance of the tile set which in turn
is based upon the distribution of points in the input point
cloud. If p is considered constant, the asymptotic run time
complexity for DISTRIBUTEDBALLFILTER is O(n logn)
for all cases and matches the one of BALLFILTER. There-
fore, the only difference between both running times lies

12 4 8 16 32
0

50

100

150

Input size n in millions of points

To
ta

lr
un

ni
ng

tim
e

in
se

co
nd

s

shared
linear speedup, p = 16

distributed, p = 16, s = 32

Figure 4: Running times of the original BALLFILTER vs
DISTRIBUTEDBALLFILTER with increasing input size for
eclepens

in the coefficient (which is ignored by asymptotic com-
plexities).

In our example, the distributed version with 16 nodes
was faster than the shared version for all input sets. Both
curves look similar, as their asymptotic running times sug-
gests. The absolute speedup increased with the size of the
input up to a factor of 5.32. The best possible absolute
speedup, i.e. linear speedup, would be 16, which would
lead to running times that are 1

16 th of the original shared
running times.

Now we will investigate how the running times change
when the number of processes p is scaled up. We executed
DISTRIBUTEDBALLFILTER on the eclepens data sets
with 16 and 32 million points multiple times, each time
doubling the number of nodes used. The number of tiles
was set to twice the number of nodes (s = 2p), so that in
cases of imbalance, the scheduling algorithm can balance
out the work between the processes. The running times are
listed in Table 1 and visualized in Figure 5.

For one node, DISTRIBUTEDBALLFILTER was slower
than the original implementation. That is to be expected
because of the overhead required by the distributed im-
plementation. Using two or more nodes, however, signifi-
cantly decreased the running times compared to the origi-
nal implementation.

As the absolute and relative speedup approach a value
of around 6, the running times stay the same even when the
number of nodes is increased. For larger numbers of tiles,
the additional work caused by duplicate points eventually
cancels out the performance gained by parallel execution.

To summarize, DISTRIBUTEDBALLFILTER performed
well on scaling up input size n as well as scaling the num-
ber of nodes p. Specifically, on the original eclepens
data set, when using 16 nodes, it was shown that DIS-
TRIBUTEDBALLFILTER outperformed BALLFILTER by a
factor of 5.66. We also observed that having a higher num-
ber of tiles can, and in many cases will, increase the overall
running time because it enables better work distribution,

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
44

p s = x× y× z Tsplit Treconstruct Ttotal Sabs Srel

eclepens
16 million
points

1 2 = 2×1×1 1.35175 88.8745 90.22625 0.88 1.00
2 4 = 2×2×1 1.59808 53.7387 55.33678 1.43 1.63
4 8 = 2×2×2 1.34450 31.4786 32.82310 2.42 2.75
8 16 = 4×2×2 1.25440 22.4666 23.72100 3.35 3.80
16 32 = 4×4×2 1.56540 14.8993 16.46470 4.82 5.48
32 64 = 4×4×4 1.66721 11.8065 13.47371 5.89 6.70

eclepens
32 million
points

1 2 = 2×1×1 1.56998 168.3390 169.90898 0.86 1.00
2 4 = 2×2×1 1.72504 96.3045 98.02954 1.49 1.73
4 8 = 2×2×2 1.62856 61.7569 63.38546 2.31 2.68
8 16 = 4×2×2 1.75069 36.3197 38.07039 3.84 4.46
16 32 = 4×4×2 1.84338 25.6505 27.49388 5.32 6.18
32 64 = 4×4×4 2.24963 23.7843 26.03393 5.62 6.53

Table 1: Parameter combinations and running times for eclepens

12 4 8 16 32
0

50

100

150

Number of processes p

shared
distributed, s = p
distributed, s = 2p

Figure 5: Absolute running times of the original BALL-
FILTER vs DISTRIBUTEDBALLFILTER with one tile per
process and two tiles per process respectively, run on
eclepens with 32 million points.

despite requiring more duplicated points. Figure 4 shows
that DISTRIBUTEDBALLFILTER is a large improvement
towards linear speedup.

6 Conclusion and Future Work

Finally, in this chapter we will briefly summarize this pa-
per’s results and give a short outlook on future work that
could be done on DISTRIBUTEDBALLFILTER.

6.1 Summary

In this paper, we presented a distributed-memory parallel
algorithm for 3D surface reconstruction. It works by split-
ting the input into overlapping chunks, reconstructing a
mesh from each chunk in parallel using BALLFILTER and
merging the chunk results back together.

We have shown the asymptotic run time complexity to
be O(n logn) in the worst and O(n+ n logn

p) in the best case,

depending on the distribution of points within the input
point cloud. We implemented the algorithm in C++ and
tested it on the VSC3+-cluster. In our test runs, we ob-
served that DISTRIBUTEDBALLFILTER improves the run-
ning times considerably compared to the original BALL-
FILTER.

6.2 Future Work

While we analysed mainly from an empirical perspective,
DISTRIBUTEDBALLFILTER can be analysed in a more
formal setting. Speedup and scaling properties can be
argued and proven formally in order to evaluate our ap-
proach in a more theoretical sense. Also, the best- and
worst-case asymptotic running time complexities could be
expressed in more concrete ways, as coefficients often-
times do matter in the practical comparison of algorithms.
Formally taking into account the distribution or balance of
the points within the input point cloud may yield further
insights into the properties of DISTRIBUTEDBALLFILTER
algorithm.

References

[1] Nina Amenta, Marshall Bern, and David Eppstein.
The crust and the β -skeleton: Combinatorial curve
reconstruction. Graphical Models and Image Pro-
cessing, 60(2):125–135, 1998.

[2] Nina Amenta, Sunghee Choi, Tamal Dey, and
Naveen Leekha. A simple algorithm for homeo-
morphic surface reconstruction. International Jour-
nal of Computational Geometry & Applications, 12,
September 2000.

[3] Nina Amenta, Sunghee Choi, and Ravi Krishna Kol-
luri. The power crust. In Proceedings of the Sixth
ACM Symposium on Solid Modeling and Applica-
tions, SMA ’01, page 249–266, New York, NY,
USA, 2001. Association for Computing Machinery.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
45

[4] Lukas Brunner. Technical report - work in progress.
TU Wien, 2022.

[5] VSC Vienna Scientific Cluster. Vienna Scienfic
Cluster (VSC) - website. https://vsc.ac.at/
systems/vsc-3/, 2022. [Online; accessed 13-
September-2022].

[6] Philipp Erler, Paul Guerrero, Stefan Ohrhallinger,
Niloy J. Mitra, and Michael Wimmer. Points2Surf:
Learning Implicit Surfaces from Point Clouds. In
Computer Vision – ECCV 2020, pages 108–124.
Springer International Publishing, 2020.

[7] Michael Kazhdan and Hugues Hoppe. Screened
poisson surface reconstruction. ACM Trans. Graph.,
32(3), July 2013.

[8] Jon Kleinberg and Éva Tardos. Algorithm design,
chapter 11.1 Greedy Algorithms and Bounds on the
Optimum: A Load Balancing Problem. Pearson Ad-
dison Wesley, Boston, Mass. [u.a.], internat. ed.. edi-
tion, 2006.

[9] Geoff Leach. Improving worst-case optimal delau-
nay triangulation algorithms. In In 4th Canadian
Conference on Computational Geometry, page 15,
1992.

[10] Message Passing Interface Forum. MPI: A Message-
Passing Interface Standard Version 4.0, June 2021.

[11] NVIDIA Corporation. CUDA Toolkit - project
website. https://developer.nvidia.com/
cuda-toolkit, 2022. [Online; accessed 13-
September-2022].

[12] Stefan Ohrhallinger. Personal communication. TU
Wien, 2022.

[13] Pix4D SA. Pix4D - website. https://www.
pix4d.com/, 2022. [Online; accessed 13-
September-2022].

[14] The Open MPI Project. OpenMPI - project website.
https://www.open-mpi.org/, 2022. [On-
line; accessed 13-September-2022].

[15] T. Rauber and G. Rünger. Parallel Programming:
for Multicore and Cluster Systems, chapter 4.2.1
Speedup and Efficiency. Springer Berlin Heidelberg,
2010.

[16] SchedMD LLC. Slurm Workload Manager -
project website. https://slurm.schedmd.
com/overview.html, 2021. [Online; accessed
13-September-2022].

[17] B. Schmidt, J. Gonzalez-Martinez, C. Hundt, and
M. Schlarb. Parallel Programming: Concepts and
Practice, chapter 9.1 Message Passing Interface. El-
sevier Science, 2017.

[18] The CGAL Project. CGAL - project website.
https://www.cgal.org/, 2022. [Online; ac-
cessed 13-September-2022].

[19] Stadt Wien. Wien Gibt Raum - project web-
site. https://digitales.wien.gv.at/
projekt/wiengibtraum/, 2022. [Online; ac-
cessed 13-September-2022].

[20] Xin Xiao. A direct proof of the 4/3 bound of LPT
scheduling rule. In Proceedings of the 2017 5th Inter-
national Conference on Frontiers of Manufacturing
Science and Measuring Technology (FMSMT 2017),
pages 486–489. Atlantis Press, 2017/04.

[21] Cheng Chun You, Seng Poh Lim, Seng Chee Lim,
Joi San Tan, Chen Kang Lee, and Yen Min Jasmina
Khaw. A survey on surface reconstruction techniques
for structured and unstructured data. In 2020 IEEE
Conference on Open Systems (ICOS), pages 37–42.
IEEE, 2020.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
46

Real-Time Rendering

Real-time Rendering of Atmosphere and Clouds in Vulkan

Matěj Sakmary*

Supervised by: Jaroslav Sloup†

Department of Computer Graphics and Interaction
Czech Technical University in Prague

Prague / Czech Republic

Abstract

This work presents a Vulkan-based implementation ren-
dering volumetric clouds and atmosphere. We combine
previously published solutions to produce a single unified
look. We use Raymarching as the main method to ren-
der both the atmosphere and clouds. Furthermore, we use
multiple precomputed look-up tables (LUTs) proposed by
Hillaire to speed up the rendering of the atmosphere. We
enhance these methods with the option to render volumet-
ric clouds using a precomputed three-dimensional texture
setup storing procedurally generated noise. With our final
solution, we can render images in a high dynamic range.
We apply post-processing effects and use adaptive lumi-
nance to transform the image into a low dynamic range for
presentation.

Keywords: Volumetric clouds, Real-time rendering, At-
mosphere, Vulkan

1 Introduction

Having a realistic and believable atmospheric model when
rendering dynamic environments in interactive applica-
tions is an important part of creating virtual worlds. The
atmosphere and cloud configuration can instantly change
the mood of the scene. This is especially important for ap-
plications that require dynamic time of day and weather.
In addition, these effects are also interconnected and af-
fect each other, making them even harder to simulate. De-
spite the gradual increase of computing power available in
personal computers, simulating complex light interactions
that produce the appearance of sky and clouds along with
the constraint of displaying such effects in real time is still
difficult. To avoid these problems, we are forced to adapt
a number of approximations, gaining a significant reduc-
tion in the problem complexity. The goal of this work is to
provide a complete solution to render dynamic clouds and
the sky in real time. To achieve this, we combine multiple
well-described techniques into a single solution.

In Section 2, we describe various approaches to render-
ing volumetric media along with their strengths and weak-

*sakmamat@fel.cvut.cz
†sloup@fel.cvut.cz

nesses. A short summary of the relevant topics in physics
follows in Section 3. For brevity’s sake we only provide
a short description meant as a reference. More detailed
descriptions, along with explanations, can be found in a
textbook on these topics [11]. Lastly, in Sections 4 and 5
we propose the solution and describe our implementation.
The images rendered by our implementation can be ob-
served in Figures 7 and 8.

2 Related work

As we focus on real-time rendering, we will only describe
methods that are relevant in this context. The most phys-
ically accurate method to render volumetric effects is to
use path tracing [8, 10]. This method sends rays from the
camera and follows them as they bounce when hitting ob-
jects in the scene until they reach a light source. Although
using this method produces the most physically accurate
effects, the computational complexity is very high. This is
caused by the number of rays we need to trace to reduce
the noise in the final image.

Another approach proposed by Hosek or Wilkie [7, 15]
is to use fitted mathematical models. Methods leverag-
ing this principle usually build a set of parameters from
measured data used to evaluate the look of the sky. These
models are very fast; however, due to the dependence on
the data measured in the real world, these methods do not
provide the option to change the parameters of the atmo-
sphere. In addition, when the parameters of the atmo-
sphere are changed, a new model has to be fitted. This
is unsuitable for the goal of this work because we want
our method also to visualize planets different from Earth.

Finally, many methods use raymarching to achieve their
results [2]. Offering a good compromise between physical
accuracy and speed, it is very popular in problems requir-
ing rendering volumetric effects, such as clouds, mist, or
atmospheres. Unlike path-tracing, ray marching does not
spawn additional rays. Instead, multiple steps are taken
along a ray, sampling the medium at each step. These
medium samples are then used to calculate the final look
of the ray-marched medium. Consequently, we chose to
use ray marching in our implementation.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)

2.1 Atmosphere

The first methods for rendering physically based atmo-
spheres evaluated only single scattering by ray march-
ing the atmosphere from viewpoint for each pixel on the
screen [13]. Although omitting multiple scattering has
performance benefits, it does not produce realistic looking
results, especially for more dense atmospheres, which re-
sults in overly dark scenes. Due to this, methods that take
into account multiple scattering were introduced [3, 16].

Such methods usually rely on precomputing parts of
the computation and storing them in 2D, 3D, and 4D ta-
bles called Lookup Tables (LUTs) to speed up the eval-
uation. This significantly improves the rendering time.
Where previously the same evaluation was repeated hun-
dreds of times, now it is only computed once at the begin-
ning. The results are then accessed whenever needed. The
main drawback of these methods is the inability to change
the atmosphere parameters in real time. Whenever the at-
mosphere parameters change, all of the LUTs used have to
be recalculated, which is a very expensive operation. This
results in a long delay before seeing the changes. Another
disadvantage is that, because the results are obtained by
raymarching each pixel, the performance is tied to the res-
olution of the screen.

Hillaire et al. [6] introduced solutions to overcome the
above-mentioned problems. The first proposal was a new
method to evaluate multiple scattering inspired by a dual-
scattering approximation used when simulating multiple
scattering effects in hair. This reduced the time to precom-
pute LUTs greatly, enabling the update of the atmosphere
parameters with almost no delay. The second proposal
was to precompute the final sky-view and the aerial per-
spective into fixed-size latitude/longitude textures, which
are later sampled and upscaled. This effectively decouples
the computation complexity from window resolution and
introduces additional speed improvements. Bruneton [2]
provides a good general summary and comparison of var-
ious sky models described in this section.

2.2 Clouds

We summarize previous approaches to rendering clouds
that are most interesting or relevant to our work. One
possible approach was to represent clouds as volumes of
particles. For example, Yusov [17] presented a particle-
based rendering method. The clouds were modeled using
randomly rotated and scaled copies of a single reference
particle. The complex optical properties of the reference
particle were precomputed, making this process viable for
use in real-time applications.

Another technique was presented by Bouthors et al. [1].
By combining meshes to represent low resolution cloud
boundaries together with procedural volumetric hypertex-
tures, which add the detail under the mesh boundary, an
efficient cloud representation was achievable. When ren-
dering, the cloud surface is covered with circular collec-

tors that are used to evaluate the incoming light. Using
this information along with a set of precomputed transfer
tables, light is integrated. The cloud representation, how-
ever, is not trivial to tweak. This, along with the relatively
high overall complexity of the described method, is why
simpler methods were developed.

The more recent work by Schneider and Vos [12] uses
a fully procedural set of volumetric noise textures to pro-
duce similar results. These noise textures are used to rep-
resent changes in density in a medium caused by clouds.
The clouds are then rendered by ray marching the cloud
volume and sampling the medium. This method allows to
completely change the overall look of the cloud layer by
only tweaking a few parameters while simulating dynamic
lighting conditions caused, for example, by changing the
time of day. Due to the above reasons, we use this method
in our implementation.

3 Physical model

Light transport in participating media is a well-studied
problem in computer graphics, described in detail in many
articles. This section summarizes the fundamentals of
light propagation in the atmosphere relevant to this work
and is strongly motivated by works that previously de-
scribe these topics [5, 6, 11].

When electromagnetic radiation travels through the at-
mosphere, it collides with the molecules that make up the
atmosphere. During this collision, part of the energy car-
ried by the radiation is absorbed, part is reflected (scat-
tered), and part is emitted. The amount of extinct, scat-
tered and absorbed energy is given by the respective ex-
tinction, scattering and absorption coefficients denoted as
βe,βa, and βs. The absorption coefficient is defined as

βa =
4πni

λ
(1)

where λ is the wavelength of radiation in vacuum and ni
is the complex part of the index of refraction. Thus, this
coefficient denotes the rate of energy attenuation per unit
of distance at a point x. Similarly, we define a scattering
coefficient. The extinction coefficient is then defined by
the sum of the absorption and scattering coefficients

βe = βa +βs. (2)

To correctly compute attenuation over a path where
the extinction coefficient varies, integrating the coefficient
along the entire path of the ray is required. So, the amount
of light that arrives at the point x2 from the point x1 given
the intensity of light at this starting point and extinction
coefficient βe is given by equation 3

L(λ ,x2) = L(λ ,x1)exp
[
−

∫ x2

x1

βe(x)dx
]

(3)

where λ is the wavelength of the radiation considered. The
exponential term is often referred to as transmittance and

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
50

is denoted by T

T (x1,x2) = e−
∫ x2

x1 βe(x)dx. (4)

We also have to consider the scattering effects of the
atmosphere. Unlike absorption effects, when radiation is
scattered away, it is added to the atmosphere at a differ-
ent point. The radiation scattered away is not uniform in
all possible directions. To represent the directional dis-
tribution of the scattered light, we use a scattering phase
function denoted by P(cosθ) where θ is

cosθ =−→ω ′ ·−→ω (5)

with −→ω ′ being the incoming direction of the light and −→ω
being the direction of the ray we consider. We can formu-
late the scattering phase function so that it depends only
on the parameter Θ because the particles in the atmosphere
are spherical or randomly oriented.

Taking this into account, the scattering formula is de-
noted as follows:

dLscat(λ ,x,−→ω) =
∫

4π
βs(y)P(cosΘ)L(λ ,x,−→ω ′)d−→ω ′ ds.

(6)
By combining the two previously described effects (Eq. 3
and Eq. 6), we get the following form:

L(λ ,x,−→ω) = T (x,x0)L(λ ,x0,−−→ω)︸ ︷︷ ︸
direct light f rom the sun

+
∫ x0

x
βs(y)T (x,y)

∫
4π

P(cosΘ)L(λ ,y,−→ω ′)d−→ω ′ dy︸ ︷︷ ︸
in−scattered light along the ray

(7)

where λ is the wavelength of the radiation considered, x
is the origin of the ray, and −→ω is the direction of the ray.
The second term (i.e. direct light from the sun) almost di-
rectly corresponds to Equation 3. We rewrote the second
part, corresponding to the in-scattered light, as follows.
We can take the coefficient βs from the inner integral, as it
remains constant in the integrated area. Since we consider
in-scattered light along a ray, as opposed to Equation 6
where we consider in-scattered light at a single point, we
integrate over the entire ray and weigh the results by trans-
mittance.

Next, we will describe two models used to substitute the
real scattering phase function P(cosΘ). First, for particles
that are much smaller than the wavelength of incident ra-
diation, such as clear air molecules or ozone, the Rayleigh
scattering phase function is used. We use the model pro-
posed by Costa et al. [5]

PR(θ) = 0.7629(1+0.932 · cos2(θ)) · 1
4π

(8)

Second, for particles comparable to or larger than
the wavelength of the incident radiation, dust or water
droplets, for example, Mie’s theory was used. Larger par-
ticles, such as aerosols, tend to scatter light strongly for-
ward. We use the double Henyey-Greenstein phase func-
tion approximation proposed again by Costa et al. [5]

Figure 1: The order in which individual Sky LUTs are
drawn. Please note that the color values of LUTs have
been scaled in order to be properly visible.

PM(θ ,g1(λ),g2(λ),α(λ)) =
α ∗Pf b(...)+(1−α)∗Pf b(...)

(9)

Pf b(θ) =
(1+g2

1(λ))

(1+g2
1(λ)−2g1(λ)cos(θ))

3
2
. (10)

For more details on scattering or extinction coefficients,
see [5].

4 Proposed solution

As mentioned above, to speed up the time taken to render
the atmosphere, it is beneficial to precompute certain parts
of the rendering equation and store them in multidimen-
sional tables. We use the LUT setup proposed by [6], four
LUTs storing precomputed parts of Equation 7. Individual
LUTs and their dependencies can be seen in Figure 1.

4.1 Atmosphere precomputations

Transmittance LUT introduced by Bruneton et al. [3] is
used to store the transmittance T described by Equation 4.
When the atmosphere is ray-marched, the value of T is
used frequently to model the atmosphere light attenuation.
To compute this value, a second ray must be traced towards
the light source. Given the overall smooth distribution of
the atmospheric transmittance, we precompute the trans-
mittance value for the entire atmosphere.

For Multiscattering LUT a new approach proposed by
Hillaire [6] was used. We precompute the scattering con-
tribution denoted by Equation 6 at several discrete points
in the atmosphere. The incoming radiance from the Sun
(L(λ ,x,−→ω ‘) in Equation 6) should be weighed by the

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
51

Figure 2: From left to right separate RGBA channels stor-
ing Worley noise and all of the channels combined to-
gether in the rightmost image.

transmittance. Here, we use the Transmittance LUT to re-
trieve the values instead of computing them directly.

Sky-View LUT represents the far sky mapped into a
latitude/longitude texture that is much lower in resolu-
tion than the final image. This LUT stores the values of
Equation 7. Similarly to the above, we use the Transmit-
tance LUT to retrieve transmittance values. Additionally,
we also interpolate values stored in Multiscattering LUT
when marching each ray instead of computing in-scattered
light along the ray (Equation 7). The highest visual fre-
quency is introduced by the Sun. Thus, we orient the Sky-
View LUT so that the sun is always present at the same
position in the texture. We map the values non-linearly, by
adding more samples near the horizon.

Lastly, we use Aerial (AE) perspective LUT. The
Aerial perspective refers to how we see objects as they re-
cede into the distance from the viewpoint. A 3D lookup
table is precomputed. To parameterize along the z-axis,
we use the distance from the viewing position. At each
depth level, a 2D LUT is fitted to the camera view frustum.
Each layer of the Aerial Perspective LUT contains the
luminance of the atmosphere (Equation 7) and the aver-
age transmittance at the corresponding depth (Equation 4).
Similarly to Sky-View LUT at each depth level we use the
results stored in Transmittance and Multiscattering LUTs
to speed up the computation.

4.2 Rendering process

The process of rendering a single frame is divided into four
parts. The first part computes the four LUTs used to render
the atmosphere. The second part draws all of the scene
objects and terrain. Along with this, the atmosphere, its
effects, and clouds are also rendered. The next step is to
map the values from the HDR range into LDR that is used
by the image presented to the screen. The final step renders
the user interface that controls various parameters of the
atmosphere and clouds. Moreover, our rendering process
includes a fifth standalone part, which is to compute the
Worley noise texture later used to draw the clouds. We
reuse this texture instead of recomputing it each frame.

We based our work on a popular approach to cloud ren-
dering, first introduced by Schneider and Vos [12], which
relies on the use of inverted Worley noise. The compu-
tation of non-inverted Worley noise can be split into two
parts. First, a number of points are randomly distributed
in a desired volume for 3D texture. After this, for each

Look up table Resolution size
Transmittance LUT 256 × 64 128 KiB
Multiscattering LUT 32 × 32 8 KiB

Sky-View LUT 192 × 128 198 KiB
Aerial Perspective LUT 32 × 32 × 32 256 KiB

Total 590 KiB

Table 1: Parameterization and LUT sizes used to render
the atmosphere.

voxel in the desired area, the distance to the nearest point
was calculated and stored. Inverting Worley noise simply
consists of storing dmax − d, where dmax is the maximum
possible distance between a point and a voxel and d is the
distance from the currently processed voxel towards the
nearest point. We precompute multiple 3D textures that
contain Worley noise with various frequencies. These tex-
tures are then sampled by raymarching the cloud.

We follow the method proposed by Lague [9]. It uses
two 4-channel 16-bit float textures. Both textures store
separate Worley noises with increasing frequencies in each
of the RGBA channels. The red channel then stores Wor-
ley noise with the lowest frequency, and the alpha channel
stores noise with the highest frequency. These textures can
be seen in Figure 2.

The texture will have to be tiled multiple times to cover
the entire skydome. This gives another requirement for
the texture to be tileable (seamless) along all three dimen-
sions.

5 Implementation

As in most performance-dependent applications, this work
was implemented using C++. The Vulkan API was used
as an interface to the GPU.

5.1 Application resources

In this section, we describe all the application resources
and their format. We will mostly omit small uniform and
storage buffers used only for parameterization, as they are
multiple orders smaller than the LUT textures and have no
real effect on the memory requirements of the application.

When rendering the atmosphere, four previously de-
scribed LUTs have to be computed. We use a 16-bit
RGBA texture for each LUT. The parameterization that
we decided to use can be seen in Table 1.

In addition to the above, we use two volumetric tex-
tures, Base Noise LUT and Detail Noise LUT, which
store Worley noise. Similarly to LUTs used to render the
atmosphere, these textures store 16-bit floating point val-
ues in each of the channels. The parameterization, along
with the size, can be seen in Table 2.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
52

Look up table Resolution Size
Base Noise LUT 256 × 256 × 256 128 MiB

Detail Noise LUT 128 × 128 × 128 16 MiB
Total 144 MiB

Table 2: Parameterization and LUT sizes used to store
Worley noise.

5.2 Main draw loop

Because most of the command buffers in our implementa-
tion are prerecorded and do not need to be reconstructed,
the main purpose of the draw loop is to keep the GPU fed
with as much work as possible. In order to do this, we
have multiple frames in flight. By default, in our imple-
mentation, two frames are in flight at the same time.

At the start of our loop, we check if we do not already
have more images in flight than we want. For this purpose,
we create a fence for each frame in flight that we want to
have. When we are sure that the number of frames in flight
is less than the maximum specified values, we continue by
acquiring the next image index from the swap chain. This
prevents the above-mentioned issue of slowly overflowing
our command queues.

Figure 3: Flow diagram of the draw loop execution order.
CPU parts as well as CPU-GPU synchronization points are
colored blue. Similarly, GPU parts and GPU-GPU syn-
chronization are colored red.

Because swapchain images might be returned out of or-
der, we have an array of structures containing all of the
data that change during the process of rendering one frame
and a fence specifying whether the data are currently be-
ing used by some in flight frame. Whenever a new image
is acquired from the swapchain, we check the correspond-
ing frame data structure fence. Only after the fence has
been signaled is an appropriate command buffer submit-
ted to GPU. Whenever we finish rendering any frame, a
structure fence is signaled, allowing another frame to be
submitted. Figure 3 shows a flow diagram visualizing the
entire draw loop.

For each frame, four command buffers are submitted
to the GPU. The first pair of command buffers can start
executing immediately. Since the second pair of command
buffers writes directly into a swap chain image, we need

Figure 4: Flow diagram showing dependencies between
individual operations in LUTs command buffer. All parts
are either executed on GPU or are GPU-GPU synchroniza-
tion, so they are all marked red.

to make sure that the corresponding image is available for
us to write. We use an additional array of semaphores.
Each semaphore is signaled when the presentation engine
is finished using the corresponding image.

5.3 Command buffer descriptions

The four parts of the proposed solution described in the
previous section are directly linked to four command
buffers that are submitted to the GPU for each frame. In
this section, we provide a fairly detailed description of
the commands that are submitted in each command buffer.
We will also describe the GPU-GPU synchronization that
takes place inside each of the command buffers. Think of
this section as a description of Vulkan-specific parts in our
implementation. This, of course, is not everything that is
Vulkan-specific in our application; however, as we did not
believe those other parts unique to our implementation, we
decided to omit them.

In our implementation, we use compute shaders to fill
out all LUTs. Each LUT is computed by one shader in one
dispatch. The compute dispatch commands are recorded
in the order shown in Figure 1 in the command buffer.
Because there are data dependencies between individual
LUTs, we need to introduce synchronization between the
individual dispatch commands. We use pipeline barriers
after each dispatch, waiting after each drawcall. This is
to ensure that all of the compute work previously submit-
ted has been finished before issuing another dispatch. Fig-
ure 4 shows the visualization of the execution order in this
command buffer, as well as the synchronization performed
between executions.

5.3.1 Worley noise command buffer

As mentioned above, sometimes an additional LUT com-
mand buffer may be submitted that computes the 3D Wor-
ley noise textures. We again opt for compute shaders when
generating this texture.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
53

Figure 5: Flow diagram showing dependencies between
and execution order of Worley noise command buffer.

Following the approach used by [9] in the first pass, we
render Worley noise, followed by the second pass, which
normalizes the values in the range between 0 and 1. We
used a separate one-channel texture for each of the final
four textures in the first pass. These four textures are com-
bined into a single 4-channel texture in the second pass.

The only synchronization that we have is between the
first and second passes. In our case, a single pipeline bar-
rier is inserted. This makes sure that all writes and reads in
the compute shader stage by previously called dispatches
have finished before we normalize and combine all chan-
nels together. The entire execution process can be seen in
Figure 5.

5.3.2 Sky command buffer

Next we render all objects in our scene and draw the sky
with clouds. The ordering here is important; we first ren-
der all objects before drawing the sky and clouds. This is
because drawing the sky, clouds, and atmosphere requires
depth information about the rest of the scene. After all
scene objects were rendered far sky is drawn where no
object was drawn in the previous pass. Then, the clouds
are rendered. Lastly, the aerial perspective is applied. We
used the depth when raymarching the clouds as well as the
index into the aerial perspective LUT.

In order for aerial perspective to correctly apply on
clouds, we also need information about how far the clouds
are from the viewing point stored in the depth texture. Be-
cause Vulkan does not allow a read and write the same
texture from the same shader, we introduce a second depth
texture. When rendering clouds, we use the first depth
texture as an input and combine it with the depth of the
rendered clouds. We write this result into the second out-
put texture. Figure 6 shows how every pass reads or writes
resources from the framebuffer.

We divide this command buffer into multiple subpasses
and use subpass dependencies for image transitions as well
as synchronization. Each subpass is responsible for one of
the phases described above. After each subpass finishes, a
set of barriers corresponding to Figure 6 is executed.

Figure 6: Visualization of writes and reads performed by
each pass. We also show when transitions from output at-
tachment into input attachment inside a framebuffer occur.

5.3.3 Post process and GUI command buffers

At the end of each frame, the post-processing of the fi-
nal image and the drawing of the UI follow. To draw the
UI, we use the ImGUI library [4]. The UI gives the user
control over the parameters used while rendering the sky.
Position of the Sun in the sky, scattering and absorption
coefficients, atmosphere height, and falloff of Rayleigh
and Mie particle density. As for the clouds, the height
where the could layer starts, the thickness of the cloud
layer, phase function parameters, and weights and scales
of the noise textures used. It is also possible to control the
relevant tonemapping parameters.

For the purposes of tonemapping, we first need to cal-
culate the average luminance of the current image. We use
a two-pass compute approach described by [14]. In the
first pass, a histogram of the luminance values in the im-
age is constructed. The second pass reads this histogram
and calculates the weighted sum. This sum is then used
to calculate the adaptive average luminance of the scene.
Our post-process fragment shader then reads this average
value and uses it for tonemapping. A pipeline barrier is
inserted between the construction of the histogram and the
calculation of the average luminance. A second pipeline
barrier is inserted before tonemapping to ensure that the
previous average luminance was written. The last com-
mand buffer draws the UI on the screen. We do not need
any synchronization, everything is handled internally by
the ImGUI implementation.

6 Results

In this chapter, we present the results obtained by using
our implementation. We also provide the performance for
Earth-like setup. The scene was tested on two comput-
ers - PC1 with AMD RYZEN 7 1700 & NVIDIA GTX
1080 and PC2 with Intel Core i7 7700HQ & NVIDIA
GTX 1050 (mobile). Most of our frame budget was spent
on raymarching clouds (see Table 3). Performance is

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
54

(a) Sparse cloud cover with the sun nearing sunset. Aerial per-
spective. Effects are clearly visible on the terrain towards the
sun.

(b) Clouds during sunset. The clouds become much darker as not
much sunlight reaches them through the atmosphere.

Figure 7: Images of clouds and atmosphere obtained by
using Earth-like conditions.

highly dependent on the resulting cloud quality we want
to achieve. In all of our benchmarks, we only had a single
frame in flight. This slightly reduces the stability of the
frame rate, but in return gives more consistent measure-
ments.

6.1 Earth with medium cloud cover

Our first testing scene was an Earth-like atmosphere setup.
We can see that we are only barely hitting 60 frames-per-
second on PC1. The execution times of individual shaders
can be seen in Table 3. The main bottleneck is the cloud
rendering, which is expected as we raymarch each pixel.
The resulting images can be seen in Figure 7.

6.2 Fictional planet

The second scene uses cloud and atmosphere parameters
that are not based on reality. These settings are used to
demonstrate the flexibility of our implementation. Given
the procedural nature of our clouds combined with the
parameterizable atmosphere, we are able to completely
change the overall look and mood of the entire scene by
tweaking a few values. Additionally, these fictional set-
tings demonstrate the interconnected effects of both atmo-
sphere and clouds, producing consistent results even when
we change the values outside of the ranges we are able
to observe in the real world. The rendered images of the
fictional setup can be seen in Figure 8.

PC1 PC2
Shader 1080p 720p 1080p

Transmittance LUT 63.9 µs 63.9 µs 233.7 µs
Multiscattering LUT 51.0 µs 51.1 µs 208.4 µs

Sky-View LUT 33.3 µs 32.4 µs 129.7 µs
AE Perspective LUT 56.2 µs 56.4 µs 184.9 µs

Draw Terrain 2.9 ms 2.9 ms 10.86 ms
Draw Far Sky 216.7 µs 104.7 µs 979.9 µs
Draw Clouds 11.6 ms 7.15 ms 43.7 ms

Draw AE Perspective 278.3 µs 125.9 µs 1.26 ms
Construct Histogram 228.1 µs 103.6 µs 415.3 µs

Sum Histogram 3.3 µs 3.3 µs 3.9 µs
Tonemapping 341.0 µs 147.3 µs 1.12 ms

Total 15.79 ms 10.73 ms 59.1 ms

Table 3: Average execution times of each shader for the
Earth-like planet with clouds.

We have raised the Mie scattering and extinction coef-
ficients, as well as the Rayleigh scattering coefficient, by
almost two orders. Together with the increase in the dis-
tribution of particles throughout the medium, we are able
to simulate a very dense atmosphere. We achieved the
purplish-blue look of the atmosphere by leaving the blue-
wavelength component of the Rayleigh scattering coeffi-
cient lower. As a result, most of the light in the red-green
wavelength gets scattered away by the atmosphere before
reaching the eye of the observer. To match the aerial per-
spective effects with the sky look, we also lowered the
blue-wavelength component of the Mie absorption coef-
ficient, allowing more blue light to penetrate the atmo-
sphere.

7 Conclusion and future work

We have described the implementation of an intercon-
nected system to render atmospheric effects. We leveraged
the GPU for most of our computations, and thus reached
real-time frame rates. The model described previously by
Hillaire [6] was used to render the sky. In addition to this,
a technique presented by Schneider and Vos [12] was im-
plemented, which allows us to combine the atmosphere
model with procedurally generated clouds.

The implemented solution allows visualization of mis-
cellaneous settings ranging from ones based on reality to
entirely fictional. Although our implementation relies on
using multiple LUTs, it is still possible to change all the
parameters during the application’s run-time.

The most pressing issue of the implementation pre-
sented is the performance of rendering clouds. The cur-
rent cloud raymarching implementation is naive. We do
not take into account the distribution of the media to al-
ter the step size or change the sample distribution. Fur-
thermore, we do not temporally accumulate the raymarch

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
55

(a) Dense cloud cover with a thick cloud layer. The atmosphere
is denser and the scattering and absorption coefficients of the par-
ticles were altered.

(b) Sun is near the horizon, and the atmosphere absorbs most of
the light before it reaches the cloud layer.

Figure 8: Images of clouds and atmosphere obtained by
using fictional conditions.

results across multiple frames, which would also bring a
performance improvement, as the number of steps needed
during the raymarch could be significantly reduced. Thus,
we believe that optimizing cloud raymarching is a promis-
ing direction. Alternatively, we expect that adding hard
and soft volumetric shadows along with godrays could im-
prove the appearance and realism of the resulting images.

References

[1] Antoine Bouthors, Fabrice Neyret, Nelson Max, Eric
Bruneton, and Cyril Crassin. Interactive multiple
anisotropic scattering in clouds. In Proceedings of
the 2008 symposium on Interactive 3D graphics and
games, pages 173–182, 2008.

[2] Eric Bruneton. A qualitative and quantitative eval-
uation of 8 clear sky models. IEEE transactions on
visualization and computer graphics, 23(12):2641–
2655, 2016.

[3] Eric Bruneton and Fabrice Neyret. Precomputed at-
mospheric scattering. Computer Graphics Forum,
27(4):1079–1086, 2008.

[4] Omar Cornut. Dear imgui graphical user interface
library. https://github.com/ocornut/imgui, 2023.

[5] Jonathas Costa, Alexander Bock, Carter Emmart,
Charles Hansen, Anders Ynnerman, and Claudio

Silva. Interactive visualization of atmospheric ef-
fects for celestial bodies. IEEE Transactions on Visu-
alization and Computer Graphics, 27(2):785—-795,
2021.

[6] Sébastien Hillaire. A scalable and production ready
sky and atmosphere rendering technique. Computer
Graphics Forum, 39(4):13––22, 2020.

[7] Lukas Hosek and Alexander Wilkie. An analytic
model for full spectral sky-dome radiance. ACM
Transactions on Graphics (TOG), 31(4):1–9, 2012.

[8] Eric P Lafortune and Yves D Willems. Rendering
participating media with bidirectional path tracing.
In Rendering Techniques’ 96: Proceedings of the Eu-
rographics Workshop in Porto, Portugal, June 17–19,
1996 7, pages 91–100. Springer, 1996.

[9] Sebastian Lague. Coding adventure: Clouds.
https://www.youtube.com/watch?v=4QOcCGI6xOU,
2019.

[10] Jan Novák, Andrew Selle, and Wojciech Jarosz.
Residual ratio tracking for estimating attenuation in
participating media. ACM Transactions on Graphics
(Proceedings of SIGGRAPH Asia), 33(6), November
2014.

[11] Grant W. Petty. A first course in atmospheric radia-
tion. Sundog Pub., 2006.

[12] Andrew Schneider and Nathan Vos. The real-time
volumetric cloudscapes of horizon: Zero dawn. SIG-
GRAPH Course note in Advance in Real-Time Ren-
dering in Games, 2015.

[13] Jaroslav Sloup. A survey of the modelling and ren-
dering of the earth’s atmosphere. In Proceedings of
the 18th spring conference on Computer graphics,
pages 141–150, 2002.

[14] Alex Tardif. Adaptive exposure from luminance his-
tograms. https://www.alextardif.com, 2019.

[15] Alexander Wilkie, Petr Vevoda, Thomas Bashford-
Rogers, Lukáš Hošek, Tomáš Iser, Monika Kolářová,
Tobias Rittig, and Jaroslav Křivánek. A fitted radi-
ance and attenuation model for realistic atmospheres.
ACM Transactions on Graphics (TOG), 40(4):1–14,
2021.

[16] Egor Yusov. High performance outdoor light scatter-
ing using epipolar sampling. GPU Pro, 5:101–126,
2014.

[17] Egor Yusov. High-performance rendering of realis-
tic cumulus clouds using pre-computed lighting. In
High Performance Graphics, pages 127–136, 2014.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
56

Foveated RTX Ray Tracing in Virtual Reality

Uroš Šmajdek*

Supervised by: Ciril Bohak†

Faculty of Computer and Information Science
University of Ljubljana

Ljubljana / Slovenia

Abstract

In this paper, we present a foveated ray tracing method for
enhancing the viewing experience of virtual reality envi-
ronments featuring dense molecular structures. Achieving
immersion in virtual reality requires both high-resolution
and high frame-rate rendering combined with the abil-
ity to generate realistic images. Our approach combines
the power of the Nvidia RTX framework with a dynamic
rendering rate that is based on the direction of the user’s
gaze. Foveated rendering is applied in the ray-generation
stage of the ray-tracing pipeline, in order to reduce the
ray-tracing rate depending on the distance from the cen-
ter of the user’s gaze on the image. This takes ad-
vantage of the way the human eye perceives visual de-
tail, allowing us to spare processing power on areas that
are largely imperceptible. The nature of the ray-tracing
pipeline also allows us to easily apply any post-processing
effects, such as screen-space ambient occlusion and tem-
poral anti-aliasing, in a matter similar to the standard de-
ferred rendering pipeline. We demonstrate our technique
by rendering a model of SARS-CoV-2 on Meta Quest Pro
in 3776× 3904× 2 stereo resolution, where we observed
a higher performance in comparison to the non-foveated
counterpart of our method.

Keywords: Dense environments, ray tracing, foveated
rendering, virtual reality

1 Introduction

Virtual reality (VR) is one of the key factors driving in-
novation in modern computer graphics. Development of
immersive VR technologies has begun to encompass vari-
ous fields from medicine [5, 10] to entertainment [30] and
education [29], and as such, there is an increasing need for
interactivity and real-time rendering. Additionally, over
the last two decades, the pixel densities of high-quality
head-mounted displays, also known as VR headsets, have
dramatically increased from 263×480×2 in 1997 (Forte
VFX 3D) to 2448× 2448× 2 in 2021 (HTC Vive Pro 2).
To achieve the visual quality of a human eye, however, a

*umajdek@gmail.com
†ciril.bohak@kaust.edu.sa

display would require a resolution of about 32k×24k [12],
making such achievement far beyond the reach of the cur-
rent hardware and software, but nonetheless ensuring it
will continue for decades to come. Not only that but to
achieve immersion and limit the potential motion sickness,
such rendering would have to exceed 60 updates per sec-
ond.

One of the recent applications for such rendering is vir-
tual visualization of the molecular structures of biological
specimens [21, 1], which aims to immerse the user in the
molecular environment, using highly detailed scenes cou-
pled with interactivity. Such software can then be used for
science dissemination to the broader public, an increas-
ingly relevant topic since the Coronavirus pandemic. It can
also aid in scientific presentations, or be used as a tool to
gather additional information from such structures. On the
other hand, dense molecular environments provide addi-
tional challenges, as scenes contain hundreds of thousands
and up to billions of objects, that form closely packed
structures, representing proteins, RNA, membranes, etc.

Foveated rendering presents one of the approaches to
solving this problem. It describes the dynamic adaptation
of rendering based on the user’s gaze, specifically by lim-
iting the details of the scene in the peripheral visual area
that are largely imperceptible. The concept of foveated
displays is not new, and gaze-reactive displays were al-
ready used in building flight simulators back in 2001 [25].
Until the recent generation of VR headsets, real-time eye
tracking, which is required for its interactive use, was not
commercially available, thus the approach was of lesser
interest to a wider computer graphics community.

Hardware-accelerated RTX Ray Tracing is a recent
breakthrough that promises to revolutionize the rendering
scene, traditionally dominated by rasterization techniques.
With the help of other Nvidia technologies, such as DLSS,
it enables higher visual fidelity without compromising per-
formance. Past research also indicates that the computa-
tional complexity of interactive ray tracing increases loga-
rithmically with scene complexity [33], making it a com-
pelling choice for addressing the above-mentioned inter-
active molecular visualization.

The main contributions of our work are:
• combining hardware-accelerate RTX Ray Tracing

with Multi-spatial resolution-based foveated render-

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)

root

Plasma

Plasma
structuresSARS-COV-2

Spike Protein Membrane
Protein Lipid Bilayer

Outer
Membrane G-Structures RNAInner

Membrane

Figure 1: A visualization of dense molecular environment depicting SARS-COV-2 using our rendering technique (left),
with individual structure labels and hierarchy (right).

ing,
• developing a pipeline that uses the technique for real-

time visualization of dense molecular environments
in virtual reality, and

• comparison and evaluation with the non-foveated ray
tracing.

In section 2, we present the previous work on molecu-
lar visualization and resolution-based foveated ray tracing
and differentiate our contributions from it. In section 3,
we give a brief overview of the molecular environment we
use as a basis. In section 4, we present our approach. The
results and evaluation of our method are presented in sec-
tions 5 and 6. In section 7, we present the conclusions and
give possible extensions as part of further work.

2 Related Work

Molecular Visualization: There are various tools for
smaller-scale molecular visualization, such as VMD [11],
Mol* [32], or PyMOL [31] which are unsuited for larger
data sizes exceeding tens of millions of individual atoms.
Over the years, numerous solutions to interactive molecu-
lar visualization have been proposed; glyph-based render-
ing [9], mapping structures onto a mesh geometry [36], us-
ing meshlets with probabilistic occlusion culling [13], in-
stancing to repeat the recurring proteins in the scene [22,
6]. In 2015 Le Muzic et al. introduced cellVIEW [26],
which depends on the LoD scheme and dynamic sphere
primitives injection into primitives to be able to render
250 copies of the HIV virus model in blood plasma (16
billion atoms) at 60 FPS on NVIDIA GTX Titan. All of
the above-mentioned techniques use procedural impostors
to simplify the geometry and accelerate the rendering. Re-
cently Alharbi et. al. [2] devised a solution that relies on
hardware ray tracing instead and is able to render trillions
of atoms using on-the-fly data construction and parallel

rendering. In this paper, we expand on this paradigm but
move the focus from scalability to higher performance,
suitable for interactive VR visualization, which requires
stereo rendering with a high and steady framerate. To this
end, we supplement the hardware ray tracing with DLSS-
enhanced foveated rendering but limit ourselves to data
scales that directly fit into the GPU memory. To the best of
our knowledge, there are no alternative foveated rendering
techniques of dense molecular environments.
Multi-spatial resolution-based foveated ray tracing:
Koskela et al. [20] proposed a theoretical estimate in 2016
that by integrating foveated rendering with ray tracing,
94% of the rays could potentially be omitted. This is
based on the fact that ray tracing inherently supports spa-
tial multi-resolution rendering, as it has the capacity to ef-
fortlessly adjust the number of rays emitted from a sin-
gle pixel. Fujita and Harada [8] first implemented the
foveated rendering system based on ray tracing, which re-
lied on sparse sampling and kNN for image reconstruction.
The system did not consider the eye sensitivity to contrast
and lacked pertinent input from relevant user studies. To
address these challenges, Weier et al. [38] combined ray
tracing-based foveated rendering with reprojection render-
ing, using information from the previous frame to reduce
the sampling rays for new frames. From there on out,
different sampling models were proposed; Molenaar [24]
traced rays based on the visual acuity fall-off model, Kim
et al. [17] proposed a perceptually efficient pixel sampling
method suitable for HMD ray tracing, which combined the
Jin et al. [16] selective oversampling technique with the
foveated rendering scheme and Koskela et al. [19] traced
rays and denoised in Visual-Polar space and subsequently
mapped the results to the screen space. Hybrid approaches
also emerged with Blackmon et al. [4] using ray tracing
to render the foveal region and rasterization to render the
peripheral region. To address the lack of consideration for
the displayed content, as opposed to the eccentricity, when

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
58

 Ray Tracing

Multi-resolution
output

Ray GenerationScene Model

Visual Acuity
Test

Intersection

Ambient
Occlusion

Post-Processor Final Image

Shading

Eye
Tracking

Composition

Figure 2: An overview of our technique for the foveated rendering of dense molecular environments in VR.

determining the number of rays emitted, Tursun et al. [35]
proposed a new luminance-contrast-aware foveated ray
tracing technique. The technique significantly reduced the
number of traced rays but required a low-quality image
to be generated for each frame, indicating areas with dif-
ferent luminances. Similarly, Yang et al. [39] introduced
a trio of simple policies to achieve a variable ray tracing
rate. The method integrates the foveate perspective, ma-
terial, and depth information in order to dynamically re-
duce the number of tracing rays in certain steps in the ray
tracing pipeline. Recently Wang et al. [37] compiled an
in-depth overview of state-of-the-art foveated methods for
rasterization, ray tracing, and volumetric rendering tech-
niques. In our approach, we implement a low-overhead
spatial policy to determine the local number of rays, sim-
ilar to the one introduced in [39], but we further supple-
ment it using a hardware-accelerated Nvidia Ray Tracing
framework [18]. Additionally, we use traditional spatial
and temporal anti-aliasing techniques in favor of Nvidia
DLSS [23]. While there is no substantial contribution from
individual methods, their combination, however, is a nov-
elty. Moreover, some components of the pipeline utilize
methods that we were unable to find elsewhere, including
a single multi-resolution ray tracing pass and blending be-
tween foveal regions.

3 Molecular Environment

As input, we used the atom-based hierarchical 3D models
of biological mesoscale organisms, such as viruses. The
model may consist of an arbitrary number of instances,
each composed of densely packed atoms, with the rest
of the space implicitly filled with water molecules. We
choose not to render those molecules as they are of less
interest to the viewer and would render the scene com-
pletely packed. Those spaces are instead treated as empty,
allowing the user to focus and travel between important
structures found inside a virus. An example of a model’s
hierarchy can be seen in Figure 1. Additionally, employ-
ing such a hierarchical structure allows us to dynamically
highlight different levels of structures based on distance
and type, further enhancing the user experience.

Figure 3: Schematic depiction of foveal/peripheral vision
eccentric angles and regions by Ivanvcic et al. [14].

4 Foveated Ray Tracing

In this section, we describe our proposed foveated render-
ing system. An overview of the rendering pipeline can be
seen in Figure 2, and we describe the individual stages
in the following subsections. The pipeline is modular,
the only static part being the visual acuity test and the
hardware-accelerated ray tracing. Other parts can be eas-
ily swapped out or new ones added, which is made even
easier by its strong resemblance to a classic deferred ren-
dering pipeline.

4.1 Visual Acuity Test and Ray Generation

Visual acuity generally refers to our ability to distinguish
the shapes and details of the object we are observing. One
of its key properties is the foveal/peripheral vision, which
recognizes that human visual acuity is not uniform over
the entire visual field. Objects in the periphery are signif-
icantly harder to recognize than those in the center of the
fovea [34], as illustrated in Figure 3.

We use this foveal/peripheral property of the visual acu-
ity to determine the resolution at which we render different
parts of the final image. To achieve this, we perform a vi-

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
59

Figure 4: Visual representation of the multi-resolution ren-
dering based on the eccentric angle from the user’s gaze.
The red squares in the center each cover one pixel, and
larger squares denote rendering in lower resolution.

sual acuity test before the ray generation step, where we
compare the eccentric angle of the final pixel relative to
the center of the user’s eye gaze. If we label the rendering
resolution at pixel x as Rx, we can parameterize the visual
acuity test as:

Rx =

1 : dx ≤ P1

1/4 : P1 < dx ≤ P2

1/16 : dx > P2

where dx denotes the eccentric angle at pixel x, P1 is set be-
tween foveal and parafoveal eccentric angle (2-10◦), and
P2 is set between parafoveal and near peripheral eccen-
tric angle (10-60◦). The chosen resolutions conform to
the standard mipmap sizes, normally used for texture ren-
dering, which allows us to store and access the data more
efficiently. A visual representation of the final image com-
position from different resolutions can be seen in Figure 4.
Rendering resolution directly determines the number of
rays generated in the ray-generation step of the ray-tracing
pipeline.

4.2 Ray Tracing Pipeline

Our ray tracing pipeline heavily relies upon the Nvidia
RTX ray tracing extension for Vulkan [18], which is
the continuation of Nvidia OptiX [28], a general-purpose
SDK for accelerating ray casting applications. Using the
framework, we pack the atoms that build our model into
Accelerated Structures, a specialized high-performance
spatial structure built for ray tracing. The framework then
takes care of optimizing the ray collision detection using
bounding volume hierarchy traversal while we still retain
full control of the ray generation and after-collision events.
To be able to use deferred rendering techniques later, we

store not only the colors of hit objects but also the hit lo-
cation, the normal of the hit surface, and the hit object’s
numerical identifier.

To further reduce the overhead in the rendering pipeline,
we only perform the ray tracing procedure once instead of
separately for each resolution we render. We achieve this
by inherently rendering at full resolution and then discard-
ing the unneeded rays in the periphery.

4.3 Composition

During composition, we combine the 2D multi-resolution
output of the ray tracing procedure. Since rendering at
different resolutions results in spatial discontinuities be-
tween the rendering regions, we blend different resolutions
at their border, as opposed to simply taking the highest res-
olution present at that location, which results in smoother
transitions. To that end, we employ an alpha-blending
technique to reduce the computational overhead of the pro-
cedure.

4.4 Shading

As our model does not depict an environment in which
realistic lighting plays a role, we can simplify the illu-
mination in ray tracing algorithm to focus solely on lo-
cal illumination with Phong shading. This optimization
not only improves performance by reducing the number of
traced rays but also eliminates the probabilistic computa-
tions typically found in ray tracing algorithms, resulting in
immediate convergence of the final result.

Another challenge that the molecular environment
presents is the discrepancy between the macro-level and
micro-level perspectives. At the macro level, we are in-
terested in the various structures that make up our model,
such as membranes or RNA, while at the micro level, we
focus on individual atoms that comprise those structures.
To seamlessly bridge these two levels, we modulate the
color of each atom by interpolating between its inherent
color, ca, and the color of its corresponding structure, cs,
based on the atom’s distance from the camera, d:

c =
{

(1− d
Dmax

) · ca +
d

Dmax
· cs : d < Dmax

cs : d ≥ Dmax
.

Any atom located beyond a pre-determined distance,
Dmax, is assigned the color of its structure, making it eas-
ier to differentiate between the structures from a distance.
The colors are user-defined.

4.5 Screen-Space Ambient Occlusion

As we are dealing with primarily mono-colored, locally
illuminated base shapes of the same size, an ambient oc-
clusion technique is needed to help the user distinguish
between them and also improve depth perception. Screen
Space Ambient Occlusion (SSAO) is well suited for this

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
60

task, as its complexity does not scale with the number of
objects in the scene and is generally better in dense en-
vironments due to the improved locality of GPU memory
accesses. Since our model only contains spheres, we use
the hemisphere sampling variant of the technique, first de-
scribed by Fillion and McNaughton [7].

4.6 Post processing

In the post-processing stage, we draw atom contours in
order to ease the distinction between neighboring objects.
This is especially important when working in dense molec-
ular environments, as the high number of small objects is
inherently difficult to distinguish. To determine whether
to draw a contour at a pixel or not, we use previously com-
puted object identifiers to check if all neighboring pixels
belong to the same object. If they do not we draw a semi-
transparent contour and blend it with the pixel’s color.

5 Results

We evaluated the proposed technique on the SARS-CoV-
2 model [27], which consists of 74,724,996 atoms. Ex-
periments were rendered to a Desktop application window
with a rendering resolution of 3840× 2160, and the Ocu-
lus Pro VR headset with a stereo rendering resolution of
3776× 3904× 2. All rendering was done using a Nvidia
GeForce RTX 4090 graphics card with 24 GB of VRAM,
an AMD Ryzen Threadripper PRO 3995WX 64-core pro-
cessor, and 256 GB of RAM.

To discern the impact of the inclusion of foveated ren-
dering, we measured the number of rendered frames per
second (FPS). We performed 4 different tests for differ-
ent combinations of the inclusion of foveated rendering
and SSAO. During each experiment, we measured the av-
erage framerate over a duration of 30 seconds. To better
represent a realistic usage scenario we slowly moved the
camera around for the entire duration. As the framerate
is restricted to 72 FPS on Meta Quest Pro, we chose the
scene that closely matches this framerate to minimize the
impact on final results. The results can be seen in Table 1.
The addition of foveated rendering almost doubled the per-
formance both on Desktop and in VR as long as SSAO is
not used. Enabling the SSAO resulted in a massive perfor-
mance drop, especially when foveated rendering was also
enabled. For qualitative evaluation, we present renderings
of all four states in Figure 5. The two left segments show
the rendering without foveation and the two right segments
with foveation. The top two segments show the result with
SSAO disabled, and the bottom two segments show the
result with SSAO enabled.

Display SSAO Foveated FPS rFPS

Desktop
No No 288.3 -

Yes 553.0 92%

Yes No 126.6 -
Yes 159.0 26%

Oculus Pro
No No 39.9 -

Yes 71.8 80%

Yes No 24.6 -
Yes 36.1 47%

Table 1: Performance evaluation of the proposed foveated
rendering pipeline for dense molecular data. For reference,
we rendered the same model without foveated rendering
and also repeated both experiments without the inclusion
of SSAO. The maximum refresh rate on Oculus Pro is 72
Hz, which represents the maximum measured framerate
on the system. rFPS is defined as relative improvement
using foveation on the specific display and SSAO setting.

6 Discussion

Our tests have revealed that foveated rendering by itself
massively improves the performance (see Table 1). The
results are less significant when the technique is used si-
multaneously with SSAO. We believe this is due to the
lower resolution producing higher spatial discontinuities
between neighboring pixels in low-resolution regions, re-
sulting in a higher number of GPU cache misses. By itself,
SSAO also massively reduces performance, as observed
by the 38%-56% framerate drop when applied without
foveation. This likely signifies that SSAO is not a suit-
able candidate for rendering dense molecular data in high
resolutions.

From Figure 5, we conclude that the visual differences
between the foveated and non-foveated results are rather
minimal, especially close to the gaze direction. Internal
user testing has shown that during movement, the alias-
ing in the distant object in the peripheral regions can be
distracting. To address this issue, a performance-friendly
solution would be to apply a blur filter to both peripheral
regions in the post-processing stage. On the other hand,
the figure also showcases the importance of ambient oc-
clusion, without which it becomes difficult to distinguish
between the objects, but we do not believe it justifies the
performance loss in terms of user experience.

7 Conclusions

In this paper, we present a multi-spatial resolution-based
foveated ray tracing method for the visualization of dense
molecular environments in virtual reality. We evaluate the
technique, both with and without the addition of ambient
occlusion, showing a moderate to large increase in perfor-
mance, depending on whether SSAO was used or not. We

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
61

Figure 5: Individual image groups show a comparison between the non-foveated (left) and foveated (right) rendering and
between no-SSAO (top) and with SSAO (bottom). The gaze direction is marked with a red dot. The right image group
shows the magnification of the left one, denoted by the red square.

also showcase the need for ambient occlusion in terms of
being able to tell the objects apart in a dense molecular
environment.

As a future extension of this work more performant am-
bient occlusion techniques could be employed [3, 15], as
the usage of SSAO resulted in a massive performance loss.
Additionally, the method could be expanded by also con-
sidering the context of the scene during the visual acuity
test, and thus being able to modulate the rendering reso-
lution of different structures depending on other criteria,
such as their depth and importance to the user.

References

[1] Ruwayda Alharbi, Ondrej Strnad, Laura Luidolt,
Manuela Waldner, Ciril Bohak, David Kouril, Tobias
Klein, Eduard Gröller, and Ivan Viola. Nanotilus:
Generator of immersive guided-tours in crowded 3d
environments. IEEE Transactions on Visualization
and Computer Graphics, PP, 12 2021.

[2] Ruwayda Alharbi, Ondřej Strnad, Tobias Klein, and
Ivan Viola. Nanomatrix: Scalable construction of
crowded biological environments, 2022.

[3] Louis Bavoil. Deinterleaved Texturing for Cache-
Efficient Interleaved Sampling. Technical report,
NVIDIA Corporation, 2010.

[4] Steven Blackmon, Luke T. Peterson, Cuneyt Ozdas,
and Steven J. Clohset. Foveated rendering, US Patent
App. 15/372,589, 2017.

[5] Cléber Gimenez Corrêa, Fátima L. S. Nunes, Adri-
ano Bezerra, and Paulo M. Carvalho. Evaluation of
vr medical training applications under the focus of
professionals of the health area. In Proceedings of
the 2009 ACM Symposium on Applied Computing,
SAC ’09, page 821–825, New York, NY, USA, 2009.
Association for Computing Machinery.

[6] Martin Falk, Michael Krone, and Thomas Ertl.
Atomistic Visualization of Mesoscopic Whole-Cell
Simulations Using Ray-Casted Instancing. Com-
puter Graphics Forum, 32, 2013.

[7] Dominic Filion and Rob McNaughton. Effects &
techniques. In ACM SIGGRAPH 2008 Games, SIG-
GRAPH ’08, page 133–164. Association for Com-
puting Machinery, New York, NY, USA, 2008.

[8] Masahiro Fujita and Takahiro Harada. Foveated real-
time ray tracing for virtual reality headset. Light
Transport Entertainment Research, 2014.

[9] Sebastian Grottel, Michael Krone, Christoph Müller,
Guido Reina, and Thomas Ertl. MegaMol—A Proto-
typing Framework for Particle-Based Visualization.
IEEE Transactions on Visualization and Computer
Graphics, 21(2):201–214, 2015.

[10] Min-Chai Hsieh and Jia-Jin Lee. Preliminary study
of vr and ar applications in medical and healthcare
education. Journal of Nursing and Health, 3, 2018.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
62

[11] William Humphrey, Andrew Dalke, and Klaus
Schulten. VMD: Visual molecular dynamics. Jour-
nal of Molecular Graphics, 14(1):33–38, 1996.

[12] Warren Hunt. Virtual reality: The next great graphics
revolution. Keynote Talk HPG, pages 1–2, 2015.

[13] Mohamed Ibrahim, Peter Rautek, Guido Reina,
Marco Agus, and Markus Hadwiger. Probabilistic
Occlusion Culling using Confidence Maps for High-
Quality Rendering of Large Particle Data. IEEE
Transactions on Visualization and Computer Graph-
ics (Proceedings IEEE VIS 2021), 28(1):573–582,
2022.

[14] Snježana Ivančić Valenko, Vladimir Cviljušac, Sanja
Zlatić, and Damir Modrić. The impact of physical
parameters on the perception of the moving elements
in peripheral part of the screen. Tehnički vjesnik,
26(5):1444–1450, 2019.

[15] Jorge Jiménez, Xianchun Wu, Angelo Pesce, and
Adrian Jarabo. Practical real-time strategies for ac-
curate indirect occlusion. SIGGRAPH 2016 Courses:
Physically Based Shading in Theory and Practice,
2016.

[16] Bongjun Jin, Insung Ihm, Byungjoon Chang, Chan-
min Park, Wonjong Lee, and Seokyoon Jung. Se-
lective and adaptive supersampling for real-time
ray tracing. In Proceedings of the Conference on
High Performance Graphics 2009, HPG ’09, page
117–125, New York, NY, USA, 2009. Association
for Computing Machinery.

[17] Youngwook Kim, Yunmin Ko, and Insung Ihm. Se-
lective foveated ray tracing for head-mounted dis-
plays. In 2021 IEEE International Symposium on
Mixed and Augmented Reality (ISMAR), pages 413–
421, 2021.

[18] Daniel Koch. Vulkan ray tracing final specifica-
tion release. https://www.khronos.org/blog/vulkan-
ray-tracing-final-specification-release, 11 2020. Ac-
cessed: 2023-02-11.

[19] Matias Koskela, Atro Lotvonen, Markku Mäkitalo,
Petrus Kivi, Timo Viitanen, and Pekka Jääskeläinen.
Foveated Real-Time Path Tracing in Visual-Polar
Space. In Tamy Boubekeur and Pradeep Sen, edi-
tors, Eurographics Symposium on Rendering - DL-
only and Industry Track. The Eurographics Associa-
tion, 2019.

[20] Matias Koskela, Timo Viitanen, Pekka Jääskeläinen,
and Jarmo Takala. Foveated path tracing. In George
Bebis, Richard Boyle, Bahram Parvin, Darko Ko-
racin, Fatih Porikli, Sandra Skaff, Alireza Entezari,
Jianyuan Min, Daisuke Iwai, Amela Sadagic, Carlos
Scheidegger, and Tobias Isenberg, editors, Advances

in Visual Computing, pages 723–732, Cham, 2016.
Springer International Publishing.

[21] David Kouril, Ondrej Strnad, Peter Mindek, Sarkis
Halladjian, Tobias Isenberg, Eduard Gröller, and
Ivan Viola. Molecumentary: Adaptable narrated
documentaries using molecular visualization. IEEE
Transactions on Visualization and Computer Graph-
ics, PP:1–1, 11 2021.

[22] N. Lindow, D. Baum, and H.-C. Hege. Interactive
Rendering of Materials and Biological Structures on
Atomic and Nanoscopic Scale. Comput. Graph. Fo-
rum, 31(3pt4):1325–1334, 06 2012.

[23] Edward Liu. Dlss 2.0 - image reconstruc-
tion for real-time rendering with deep learning.
https://developer.nvidia.com/gtc/2020/video/s22698-
vid, 2020. Accessed: 2023-02-11.

[24] Erik N Molenaar. Towards real-time ray tracing
through foveated rendering. Master’s thesis, Univer-
sity of Utrecht, 2018.

[25] Hunter A. Murphy and Andrew T. Duchowski. Gaze-
contingent level of detail rendering. In Eurographics,
2001.

[26] Mathieu Le Muzic, Ludovic Autin, Július Parulek,
and Ivan Viola. cellVIEW: a Tool for Illustrative
and Multi-Scale Rendering of Large Biomolecular
Datasets. Eurographics Workshop on Visual Com-
puting for Biomedicine, 2015:61–70, 2015.

[27] Ngan Nguyen, Ondřej Strnad, Tobias Klein, Deng
Luo, Ruwayda Alharbi, Peter Wonka, Martina Mar-
itan, Peter Mindek, Ludovic Autin, David S. Good-
sell, and Ivan Viola. Modeling in the time of covid-
19: Statistical and rule-based mesoscale models.
IEEE Transactions on Visualization and Computer
Graphics, 27(2):722–732, 2021.

[28] Steven G. Parker, James Bigler, Andreas Dietrich,
Heiko Friedrich, Jared Hoberock, David Luebke,
David McAllister, Morgan McGuire, Keith Morley,
Austin Robison, and Martin Stich. Optix: A gen-
eral purpose ray tracing engine. ACM Trans. Graph.,
29(4), 06 2010.

[29] Maria Paola Puggioni, Emanuele Frontoni, Marina
Paolanti, Roberto Pierdicca, Eva Savina Malinverni,
and Michele Sasso. A content creation tool for ar/vr
applications in education: The scoolar framework.
In Augmented Reality, Virtual Reality, and Computer
Graphics: 7th International Conference, AVR 2020,
Lecce, Italy, September 7–10, 2020, Proceedings,
Part II, page 205–219, Berlin, Heidelberg, 2020.
Springer-Verlag.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
63

[30] Cedriss Saint-Louis and Abdelwahab Hamam. Sur-
vey of haptic technology and entertainment applica-
tions. In SoutheastCon 2021, pages 01–07. IEEE, 03
2021.

[31] Schrödinger, LLC. The PyMOL Molecular Graphics
System, Version 1.8. unpublished, 11 2015.

[32] David Sehnal, Sebastian Bittrich, Mandar Desh-
pande, Radka Svobodová, Karel Berka, Václav
Bazgier, Sameer Velankar, Stephen K Burley,
Jaroslav Koča, and Alexander S Rose. Mol* Viewer:
modern web app for 3D visualization and analysis
of large biomolecular structures. Nucleic Acids Re-
search, 49(W1):W431–W437, 05 2021.

[33] Philipp Slusallek and I Wald. State of the art in in-
teractive ray tracing. STAR, EUROGRAPHICS 2001,
pages 21–42, 2001.

[34] Hans Strasburger, Ingo Rentschler, and Martin
Jüttner. Peripheral vision and pattern recognition: A
review. Journal of vision, 11:13, 05 2011.

[35] Okan Tarhan Tursun, Elena Arabadzhiyska-Koleva,
Marek Wernikowski, Radosław Mantiuk, Hans-
Peter Seidel, Karol Myszkowski, and Piotr Didyk.
Luminance-contrast-aware foveated rendering. ACM
Transactions on Graphics (TOG), 38(4):1–14, 2019.

[36] Thomas Waltemate, Björn Sommer, and Mario
Botsch. Membrane Mapping: Combining Meso-
scopic and Molecular Cell Visualization. In Euro-
graphics Workshop on Visual Computing for Biology
and Medicine, 2014.

[37] Lili Wang, Xuehuai Shi, and Yi Liu. Foveated ren-
dering: A state-of-the-art survey. Computational Vi-
sual Media, 9(2):195–228, 2023.

[38] Martin Weier, Thorsten Roth, Ernst Kruijff, André
Hinkenjann, Arsène Pérard-Gayot, Philipp Slusallek,
and Yongmin Li. Foveated real-time ray tracing for
head-mounted displays. Computer Graphics Forum,
35:289–298, 10 2016.

[39] Jinyuan Yang, Xiaoli Li, and Abraham G. Campbell.
Variable rate ray tracing for virtual reality. In SIG-
GRAPH Asia 2020 Posters, SA ’20, New York, NY,
USA, 2020. Association for Computing Machinery.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
64

Optimization

Controlling 2D Laplacian Eigenfluids

Barnabás Börcsök*

Supervised by: László Szécsi †

Department of Control Engineering and Information Technology
Budapest University of Technology and Economics

Műegyetem rkp. 3., H-1111 Budapest, Hungary

Abstract

Understanding and modeling our environment is
a great and important challenge, spanning many
disciplines from weather and climate forecast
through vehicle design to computer graphics.
Physical systems are usually described by Par-
tial Differential Equations (PDEs), which we can
approximate using established numerical tech-
niques. Next to predicting outcomes, planning
interactions to control physical systems is also a
long-standing problem.

In our work, we investigate the use of Laplacian
eigenfunctions to model and control fluid flow.
We make use of an explicit description of our sim-
ulation domain to derive gradients of the physi-
cal simulation, enabling neural network agents to
learn to control the physical process to achieve de-
sired outcomes.

Keywords: Computer Graphics, Modeling and
Simulation, Fluid Simulation, Neural Networks

1 Introduction

Data helps us model and understand our world
more truthfully. Enabling the processing of the
ever-increasing volume of data, and running more
precise simulations necessitate continuous engi-
neering efforts.

Positioned at the crossroads of physical simula-
tion and deep learning techniques, our work is in-

*bborcsok@iit.bme.hu
†szecsi@iit.bme.hu
This work was supported by OTKA K-124124, and the

European Union project RRF-2.3.1-21-2022-00004 within the
framework of the Artificial Intelligence National Laboratory.

spired by current advances in physics-based deep
learning. We investigate the general problem of
controlling simulation parameters to achieve tar-
get outcomes. More concretely, many real-world
applications require us to optimize for some pa-
rameters of a physics-based problem. Although
such inverse problems have been around for quite
some time in engineering applications, recent
work showed remarkable results utilizing physi-
cal gradients to solve such problems. Examples
include finding the best shape to minimize airfoil
drag [2] and finding cloth simulation parameters
for yielding desired simulation outcomes [9].

We present a novel method for controlling fluid
simulations. We show that implementing a differ-
entiable reduced-order physics simulation yields
gradients that allow us to achieve speed-ups in
the optimization process characteristic of reduced-
order models, resulting in fast convergence times.
We investigate different possibilities for control.
After directly optimizing for parameters already
present in the simulation technique (such as ini-
tial velocity and external force), we build up to
adding a neural network (NN) for predicting con-
trol forces, and optimizing for its internal param-
eters. When optimizing for advection dynam-
ics, we achieve significant speed-ups by utilizing
point-wise samples: we keep the advection dy-
namics in the reduced-dimensional space, instead
of reconstructing the velocity field on an N ×N
grid in each time step. Thus, we essentially de-
couple the optimization from the grid resolution,
which can be reconstructed in any desired resolu-
tion without increasing the complexity of the op-
timization.

The source code of this project is available

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)

at https://github.com/bobarna/
controlling-2d-laplacian-
eigenfluids.

2 Previous Work

2.1 Fluid Simulation

Most simulation methods are based on either an
Eulerian (i.e. grid-based), or Lagrangian (i.e.
particle-based) representation of the fluid. For ad-
vecting marker density in our fluid, as well as a
comparative “baseline” simulation, we use Eule-
rian simulation techniques, mostly as described by
Stam [13]. For an overview of fluid simulation
techniques in computer graphics, see Bridson [1].

Reduced Order Modeling of Fluids. Dimen-
sion reduction-based techniques have been ap-
plied to fluid simulation in multiple previous
works. Wiewel et al. [17] demonstrated that func-
tions of an evolving physics system can be pre-
dicted within the latent space of neural networks
(NNs). Their efficient encoder-decoder architec-
ture predicted pressure fields, yielding two orders
of magnitudes faster simulation times than a tradi-
tional pressure solver. Recently, Wiewel et al. [16]
predicted the evolution of fluid flow via training
a convolutional neural network (CNN) for spatial
compression, with another network predicting the
temporal evolution in this compressed subspace.
The main novelty of Wiewel et al. [16] was the
subdivision of the learned latent space, allowing
interpretability, as well as external control over
quantities such as velocity and density.

Eigenfluids. Instead of learning a reduced-order
representation, another option is to analytically
derive the dimension reduction and its time evo-
lution. De Witt et al. [4] introduced a computa-
tionally efficient fluid simulation technique to the
computer graphics community. Rather than using
an Eulerian grid or Lagrangian particles, they rep-
resent fluid fields using a basis of global functions
defined over the entire simulation domain. The
fluid velocity is reconstructed as a linear combi-
nation of these bases.

They propose the use of Laplacian eigenfunc-
tions as these global functions. Following their
method, the fluid simulation becomes a matter of

evolving basis coefficients in the space spanned by
these eigenfunctions, resulting in a speed-up char-
acteristic of reduced-order methods.

Following up on the work of De Witt et al.
[4], multiple papers proposed improvements to the
use of Laplacian eigenfunctions for the simulation
of incompressible fluid flow. Liu et al. [10] ex-
tended the technique to handle arbitrarily-shaped
domains. Jones et al. [7] used Discrete Cosine
Transform (DCT) on the eigenfunctions for com-
pression. Cui et al. [3] improved scalability of the
technique, and modified the method to handle dif-
ferent types of boundary conditions. Cui et al.
[3] refer to the simulation technique as eigenflu-
ids, which we also adhere to in the following.

2.2 Differentiable Solvers

Differentiable solvers have shown tremendous
success lately for optimization problems, includ-
ing training neural network models [5, 6, 11].
Holl et al. [5] address grid-based solvers. They
put forth ΦFlow, an open-source simulation toolkit
built for optimization and machine learning appli-
cations, written mostly in Python. After trying
out multiple recent frameworks aimed at differen-
tiable simulations [11, 6], we implement all of our
experiments using ΦFlow [5].

Physics-based Deep Learning. Despite being a
topic of research for a long time [12], the inter-
est in neural network algorithms is a relatively
new phenomenon. This is especially true for the
use of learning-based methods in physical and nu-
merical simulations, which is a rapidly developing
area of current research [2, 9]. Integrating physi-
cal solvers in such methods have been shown to
outperform previously used learning approaches
[15]. Drawing on a wide breadth of current re-
search, Thuerey et al. [14] give an overview of
deep learning methods in the context of physical
simulations.

3 Background

In this section, we introduce the techniques, the-
ory and notation underlying our methods for con-
trolling eigenfluids in Section 4.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)

68

3.1 Fluid Simulation

The dynamics of fluids are governed by the
Navier-Stokes Equations:

∂u
∂ t

+(u ·∇)u =− 1
ρ

∇p+ν∇2u+ f, (1)

where u is the velocity of the fluid, ρ is the den-
sity, p is the scalar pressure field, ν is the viscos-
ity constant and f denotes external forces. For in-
compressible fluids, the divergence-freeness also
has to hold, i.e. ∇ · u = 0. There are multi-
ple established ways to simulate fluids, the most
widespread being Eulerian (i.e. grid-based) and
Lagrangian (i.e. particle-based) methods. We
use established Eulerian methods [1] for advect-
ing and comparison purposes.

The Laplacian Eigenfunction Method. A veloc-
ity field u(x) can be expressed via the linear com-
bination of N global functions:

u(x) =
N

∑
k=0

wkΦk(x), (2)

where the elements of w = [w0, . . . ,wN] are called
basis coefficients and Φk are basis functions. In
the following, we use u = Rw to notate a veloc-
ity field u reconstructed from w. De Witt et al.
[4] propose the use of eigenfunctions of the vec-
tor Laplacian operator ∆ = ∇2. If we further re-
quire our basis fields Φk to be divergence-free and
to satisfy a free-slip boundary condition, then our
basis functions are fully characterized by

∇2Φk = λkΦk (3)
∇ ·Φk = 0 (4)
Φk ·n = 0 at ∂D, (5)

where n is the normal vector at the boundary ∂D
of our domain D. On some domains, closed-form
expressions exist. Denoting the two scalar compo-
nents in the x and y directions Φk = (Φk,x,Φk,y),
on the two dimensional D ∈ [0,π]× [0,π] square
domain, Φk can be written as

Φk,x(x,y) = ηk
(
k2 sin(k1x)cos(k2y)

)
(6)

Φk,y(x,y) =−ηk
(
− k1 cos(k1x)sin(k2y)

)
,

(a) Velocity field Φ(4,3). (b) Curl field ∇×Φ(4,3) =
φ(4,3).

Figure 1: Visualizing Φ(4,3) sampled on a 20×20
grid in our simulation domain D = [0,π]× [0,π].

where k = (k1,k2) ∈ Z2 is the vector wave num-
ber, λk = −(k2

1 + k2
2) is the eigenvalue, and ηk =

(−λk)
−1 is a normalization parameter. As an ex-

ample, Φ(4,3)(x,y) is visualized in Figure 1.
Higher wave lengths corresponding to smaller

scales of vorticity has a very literal meaning in our
simulation. As we choose to truncate the spectrum
of Φk at some number N, the error we incur is well
defined: we lose the ability to simulate vortices
smaller than a given scale. Also, as we will see
later on, this correspondence to spatial scales of
vorticity lets us control the viscosity (i.e. energy
decay) in relation to the scales of vortices by mod-
ifying the base coefficients. By setting the magni-
tude of each basis coefficient to decay with a time
constant equal to the eigenvalue, we get the physi-
cally correct behavior that small vortices dissipate
faster than large vortices.

For the simulation technique, we further require
the vorticity field ω = ∇×u and a set of vorticity
basis functions φ = ∇×Φ. Taking the curl gives
us the vorticity basis fields:

φk = ∇×Φk =

 0
0

sin(k1x)sin(k2y)

. (7)

As the velocity field u and vorticity field ω are
orthogonal, the vorticity basis functions φk have

Note: We use the wave length vector k = (k1,k2), as well
as a single (non-vector) k for indexing over all of the basis
fields – a slight, but very useful abuse of notation. This stems
from the fact that a suitable mapping from vector wave length
(k1,k2) to positive integers is necessary in an implementation.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)

69

only a normal component at the boundary and sat-
isfy

∇2φk = λkφk (8)
φk×n = 0 at ∂D. (9)

From these properties, De Witt et al. [4] show a
velocity-vorticity duality, letting us use the same
w vector to reconstruct u and ω from Φk and φk,
respectively. Furthermore, as both Φk and φk are
divergence-free by construction (i.e. ∇ · φk = 0),
there is no need for a pressure projection in each
time step, otherwise often present in fluid simula-
tion techniques.

They also show that on Laplacian eigenfunc-
tions, the inverse operator curl−1 takes the sim-
ple form Φk =−λ−1

k ·curl(φk), making the recon-
struction of u from ω efficient.

Dynamics. The vorticity formulation of the
Navier-Stokes Equations (Equation 1) is

ω̇ = Adv(u,ω)+ν∇2ω +∇× f, (10)

where ω = ∇× u and f denotes external forces.
Adv(u,ω) represents the advection term, defined
as Adv(u,ω) := curl(ω×u).

De Witt et al. [4] perform projection to a Lapla-
cian eigenfunction basis by substituting the expan-
sions ω = ∑i wiφi, u = ∑ j w jΦ j and ω̇ = ∑k ẇkφk
into Equation 10. With rearranging the terms
through linearity of operators, they get

N

∑
k

ẇφk =
N

∑
i

N

∑
j

wiw jAdv(Φi,φ j) (11)

+ν
N

∑
i

∇2wiφi +∇× f.

As the Adv(Φi,φ j) terms are constant, we pre-
compute them, and the results are stored in the φk
basis, making up the elements of the Ck matrices
for each basis field, each with N×N values:

Ck[h, i] =
(
∇× (φh×Φi)

)
·φk. (12)

Thus, the evolution of a fluid’s velocity as the
time derivative of the kth element of the coeffi-
cient vector dw

/
dt = ẇ can be written as

ẇk = wT Ckw+νλkwk + fwk , (13)

where the advection term νλkwk is a point-wise
exponential decay (derived via Equation 8) and
fwk represents the external force f projected to the
given basis. Any standard numerical technique
can be used to integrate Equation 13 forward in
time. However, De Witt et al. [4] describe a pre-
ferred technique that, in order to preserve kinetic
energy, renormalizes the energy of the fluid simu-
lation after each integration step. They show that
due to the orthogonality of the basis functions, the
total kinetic energy can be calculated as a sum of
squared coefficients.

Algorithm 1 Eigenfluids: stepping w by ∆t

e1 = ∑N
i w[i]2 ▷ store kinetic energy

for k = 1 . . .N do
ẇ[k] = wT Ckw ▷ calculating advection

end for
w += ẇ∆t ▷ explicit Euler integration step
e2 = ∑N

i w[i]2 ▷ energy after time step
w ∗=

√
e1/e2 ▷ renormalize energy

for k = 1 . . .N do
w[k] ∗= eλk∆t ▷ dissipate energy (viscosity)
w[k] += f[k] ▷ add external forces

end for.

3.2 Neural Networks

The goal of neural networks (NNs) is to approxi-
mate an unknown function

f∗(x) = y∗,

where y∗ denotes ground truth solutions. f∗(x) is
approximated by a neural network (NN) represen-
tation

f(x,θ) = y,

where θ is a vector of weights, influencing the out-
put of the NN. In the case of a fully-connected
NN, we can write its ith layer as

oi = σ
(
Wioi−1 +bi

)
, (14)

where oi is the output of the ith layer, and σ is a
non-linear activation function, such as the rectified

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)

70

linear unit (ReLU) function, and Wi and bi are the
weight matrix and the bias of layer i, respectively.
We call Wi and bi the parameters of the NN, and
collect their values from all layers in θ .

Deep learning (DL) is about stacking multiple
layers after each other, and finding θ parameters
such that the outputs y of the NN match the y∗
outputs of the original function f∗ as closely as
possible, as measured by some scalar-valued loss
function L

(
f(x,θ),y∗

)
. Using a mean square error

for our loss function, we can write the optimiza-
tion problem as:

argmin
θ
∥f(x,θ)−y∗∥2

2. (15)

The chain rule gives us the derivates of compos-
ite functions, letting us calculate the gradients of
the loss function L with respect to the weights θ
(i.e. ∂L

/
∂θ). In Section 4.2.4, we optimize, i.e.

train our NNs with Adam [8], a stochastic gradi-
ent descent (SGD) optimizer.

For the purposes of Section 4, before introduc-
ing NNs into the optimization loop, it is helpful
to think of the derivative as function sensitivity,
denoting how a small change in an input variable
changes the output of the function. As introduced
in Equation 15, for finding the optimal θ param-
eters of a NN, this is exactly what we need: how
to tweak θ to reduce the output of a loss function.
More generally, we can optimize w.r.t. any param-
eter of a function in the same manner, such as the
initial velocity field of a fluid simulation. In Sec-
tion 4, we will do exactly this.

4 Controlling Eigenfluids

In the following, we showcase different optimiza-
tion scenarios of increasing complexity, investi-
gating different aspects of controlling eigenfluids
via differentiable physics (DP) gradients. Mak-
ing use of the explicit closed-form description of
a velocity field (Equation 6) to derive gradients
used for optimization, we achieve a speed increase
characteristic of reduced-order techniques.

4.1 Matching Velocities

To verify the feasibility of our technique before
moving on to more involved setups, our most
straightforward optimization scenario is finding
an initial basis coefficient vector w0 ∈ RN for an
eigenfluid simulation using N = 16 basis fields,
such that when simulated for t time steps, the re-
constructed Rwt = ut velocity field will match
some precalculated u∗ : [0,π]× [0,π]→ R2 target
velocity field:

L(w) =
∥∥RPt(w)−u∗

∥∥2
2, (16)

where Pt(w) = P ◦P · · · ◦P(w) is a compos-
ite function: the physical simulation of base coef-
ficients w, t times.

For the optimization, we initialize a winit ∈ RN

vector with random numbers (from a normal dis-
tribution), and run the eigenfluid simulation for t
time steps, after which we measure the error as
given by loss function 16. Relying on backpropa-
gation 1 to derive the necessary gradients, we use
the gradient descent (GD) optimization method
to iteratively find a vector woptim, yielding a low
scalar loss:

w← w−λ∇LT (w). (17)

To be able to make some further evaluation of
the end results possible, we step an eigenfluid
solver for time t to precalculate the target u∗ ve-
locity field, sampled on a 32×32 grid. We denote
the initial base coefficient vector of this reference
simulation w∗, but keep in mind that the optimiza-
tion has absolutely zero knowledge of this value,
as it sees only the 32× 32× 2 velocity values of
u∗ = Rw∗ at time t. Also, these values could
have been precalculated from any other kind of
fluid simulation as well, or even just initialized
randomly. Deriving u∗ as the result of an eigen-
fluid simulation has the added benefit of exposing
to us a solution w∗ that we can use to compare
with the solution of the optimizer.

Results. We test this setup on two scenarios, with
differing the number of time steps t simulated:
first with t = 16, and then with t = 100.

1By backpropagation, we refer to the reverse mode auto-
matic differentiation technique of deriving the gradients w.r.t.
any given parameter(s) of a composite function by applying
the chain rule.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)

71

For t = 16 simulation steps, starting from a loss
of around 400, the first 100 GD optimization steps
with λ = 10−3 reduced the loss to under 1.0, while
200 steps further decreased it to under 4 ·10−4.

Naturally, this very basic method has its limits.
Optimizing for initial coefficients for a target ve-
locity field after 100 steps proved to be a substan-
tially harder problem, as even a relatively small
error can accumulate into major deviations over
these longer time steps, resulting in much less sta-
ble gradients. With using the same learning rate,
the optimization diverged almost instantly. With
some tuning of the learning rate λ in the range of
[10−4,10−8], we were able to get the loss below
0.14. (Starting from an initial loss of 320 from the
random initialization.)

We visualize the results of these two scenarios
in Figure 2. It is interesting to observe that even
though the optimization had absolutely no knowl-
edge of w∗, only a comparison with a precom-
puted u∗ velocity field at the target time step, the
optimized woptim vector already starts to look sim-
ilar to w∗. Keep in mind that this is not guaranteed
at all. In some other cases of running this opti-
mization setup, we also observed woptims that are
completely different from w∗. Due to the physical
constraints of the eigenfluids simulation, in these
cases the optimization could not change any of the
16 values of woptim locally in a way that would
further reduce the loss below some small number,
and was stuck in a local minimum of the parame-
ter space.

Although there are a number of ways to tweak
this setup, we can already verify from these results
that the flow of the gradients is working, and is
ready to be tested in more advanced scenarios.

4.2 Controlling Shape Transitions

Advection of some scalar quantity in a fluid is an
abstract problem that describes many real-world
phenomena, like ink in water or smoke in the air.
We define a density function ψ(x) over a simu-
lation domain D. In a fluid with velocity u, and
∇ ·u = 0 holding (i.e. the fluid is incompressible),
the advection is governed by the equation

∂ψ
∂ t

+u ·∇ψ = 0. (18)

(a) winit , woptim, and w∗, optimizing for velocity field
after 16 time steps

(b) Target u∗, and u16, reconstructed from P16(woptim)

(c) Initial basis coefficients winit , woptim, and w∗, opti-
mizing for velocity field after 100 time steps

(d) Target u∗, and u100, reconstructed from
P100(woptim)

Figure 2: Results of optimizing for an initial w0
basis coefficient vector that matches a target ve-
locity field u∗ when reconstructed after simulating
for t time steps.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)

72

We define each shape with

ψ(x) =

{
1, inside the shape
0, outside the shape.

(19)

In Eulerian fluid simulation methods [1], both
u and ψ are sampled on grids, numerically ap-
proximating the evolution of the field quantities.
The work of Holl et al. [5] formulated the shape
transition problem in an Eulerian representation,
with explicitly simulating the shapes as scalar
marker densities being advected by the velocity
field of the simulated fluid. Instead, playing to the
strengths of an eigenfluids simulation, our method
proposes sampling the density function at discrete
particle positions, thus rephrasing the process in
a Lagrangian way. In the context of Laplacian
eigenfluids, a Lagrangian viewpoint is especially
inviting, as the explicit description of the fluid ve-
locity u (Equations 2 and 6) allows us to recon-
struct u only partially, while keeping the simu-
lation of the fluid dynamics in a reduced dimen-
sional space. In a forward physics simulation, this
can already lead to substantial speed-ups, but this
formulation seems especially promising when the
backpropagation of variables is desired, such as
the optimization scenarios introduced herein.

We formulate three different control problems,
each with a different mean to exert control over
the fluid simulation.

• In Section 4.2.2, similarly to the problem
statement in Section 4.1, we are looking for
an initial coefficient vector w0, such that
when simulated for t time steps, the re-
constructed velocity field Rwt = ut advects
some initial shape into some target shape.

• In Section 4.2.3, we optimize for some force
vector f ∈ Rt×N , such that ft ∈ RN applied as
external force to each time step of an eigen-
fluid simulation, it yields the desired out-
come.

• Finally, in Section 4.2.4, we generalize the
problem to looking for a function that ex-
erts the necessary control force at time t,
such that particles currently at positions pt
end up at target positions pt+1 at the next
time step. We formulate this third task as

a neural network (NN) model in the form
f(pt ,pt+1,wt ,θ), also passing in the current
basis coefficient vector wt , and optimizing
for its parameters θ to yield the desired out-
come (as introduced in Section 3.2).

In each of these tasks, a velocity field u = Rw
advects a set of initial points p0 =

[
p0

0, . . . ,p
i
0
]

to
line up with target positions pt =

[
p0

t , . . . ,pi
t
]

after
time t. Using a mean-square error, our loss func-
tion becomes

L(w,p0,pt) =
∥∥Pt(p0,w)−pt

∥∥2
2. (20)

4.2.1 Sampling

As we neither want to lose too much informa-
tion about our original function nor do we want to
keep track of an unnecessary number of points, the
feasibility of our method necessitates an efficient
sampling of ψ(x). We use a simple rejection-
based sampling technique. We generate random
points psample ∈ [0,1]× [0,1], rejecting them if
they lie outside the shape.

As we consider shape transitions given start and
target shapes S0 and St, it is important to take
into consideration the connection between these
shapes. To balance finding spatial correspon-
dences between the shapes, while still approxi-
mating their unique shapes, we sample O overlap-
ping, and U unique points. For the overlapping
points, we accept only psample ∈ S0∪St, i.e. we re-
ject points that are not inside both shapes. For the
unique points, we sample a different set of points
for each shape. To generate low-discrepancy,
quasi-random 2D coordinates, we use Halton se-
quences.We further generate T = 5 trivial points
that are hand-picked to best resemble the given
shape, as well as line up between different shapes.
We choose these to be the center, upper right, up-
per left, lower left, and lower right corners of the
shapes.

In conclusion, our final set of p0 initial, and
pt target sample positions are given by concate-
nating the O overlapping, U unique, and T trivial
points for each shape, resulting in two sets of sam-
ple points p0,pt ∈R2(O+U+T). Figure 3 shows the
result of our sampling strategy for a triangle and a
circle shape.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)

73

(a) O = 30 (blue), U =
30 (green), and T = 5
(red) points.

(b) Sample points over
ψtriangle +ψcircle.

Figure 3: Sampling strategy for transitioning from
a triangle to a circle. Halton series with base (2,7)
and (3,11) were used to generate the overlapping
and unique positions, respectively.

4.2.2 Optimizing for Initial Velocity

As Equation 20 introduced the problem, our goal
is to find an initial velocity field Rw = u that ad-
vects points p0 to line up with target positions pt
after t steps. We can write optimizing for base co-
efficients w as:

argmin
w

∥∥Pt(p0,w)−pt
∥∥2

2. (21)

Making use of the differentiability of our phys-
ical simulator P , and the multivariable chain rule
for deriving the gradient of the above Pt func-
tion composition, we can derive its gradient with
respect to the initial coefficients:

∂Pt(w,p)
∂w

.

Finally, we simply iterate a GD optimizer to
find a (good enough) solution for the minimiza-
tion problem of Equation 21:

wbetter = w−λ
∂L(w,p0,pt)

∂w
,

where L is the same as in Equation 20:

L(w,p0,pt) =
∥∥Pt(p0,w)−pt

∥∥2
2.

The main difficulty of this non-linear optimiza-
tion problem lies in that we have no control over
the natural flow of the fluid besides supplying an
initial w0 vector. We showcase two different se-
tups in Figure 4, with the details of both experi-
ments described in Table 1.

Table 1: Details of the two optimization scenarios
shown in Figure 4.

Figure 4a Figure 4b
N 16 36

Sampling size for smoke simulation 32 32
Eigenfluid initialization time 6.19 sec 68.47 sec

Time for 51 optimization steps 108.05 sec 230.48 sec
Initial loss 2.3 2.19
Final loss 0.08 0.09

Number of overlapping points O 0 30
Number of unique points U 0 30
Number of trivial points T 5 0

4.2.3 Control Force Estimation

In this scenario, we optimize for a force vector
f ∈ Rt×N , such that ft ∈ RN applied as external
force at each time step t of an eigenfluid simula-
tion, initial positions p0 will be advected to target
positions pt after t time steps:

argmin
f

∥∥Pt(p0,w, f)−pt
∥∥2

2,

where Pt(p0,w, f) = P ◦ · · · ◦P(p0,w, f) de-
notes simulating the physical system for t time
steps, applying ft force at each time step. Results
of the optimization are shown in Figure 5.

4.2.4 Neural Network Training

We generalize the control force estimation (CFE)
problem by defining a function f(pt ,pt+1,wt) :
R2·2(O+U+T)+N → RN , that given particles at po-
sitions pt and velocity field wt at time t, gives a
force that advects the particles to positions pt+1 in
the next time step. Its inputs are the (x,y) coor-
dinates of the points, and the N basis coefficients,
giving 2 · 2(O+U +T)+N values, where O, U ,
and T denote the number of overlapping, unique,
and trivial sample points, respectively, as intro-
duced in Section 4.2.1.

We approximate function f with a CFE NN
f(pt ,pt+1,wt ,θ). Each layer is constructed as de-
scribed in Equation 14 with ReLU non-linearities
in-between. Figure 6 gives an overview of our NN
architecture. As the input size of the NN is depen-
dent on the specific problem, the number of train-
able parameters also varies, and a new NN has to
be trained when using a different number of basis
fields, or different number of total sample points.
As an example, for N = 16 basis fields, and 75

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)

74

(a) Using O = 0, U = 0, T = 5 sampling points and N = 16 basis fields.

(b) Using O = 30, U = 30, T = 0 sampling points and N = 36 basis fields.

Figure 4: In the least complex scenario, we solve the shape transition problem by optimizing for an initial
coefficient vector w without any further control over the simulation. Time evolution over 16 time steps of
two different simulation set-ups are shown, with different number of sample points and basis fields used.
Initial (blue) and target (red) sample points are shown.

sample points, the NN has 337 392 trainable pa-
rameters. Testing the setup, we overfit the NN to
a single training sample. Plotting the results of
the time evolution in Figure 7, we observe that a
reduced degrees of freedom can yield compara-
ble, or even better results with the same setup, and
training time. Using an Adam optimizer [8] with
learning rate 10−3, the results shown in Figure 7
were achieved in 260 epochs. The training took
53.94 seconds.

Training. We generate 2000 samples, using 1800
for training, and 200 for validation. Using N = 16
basis fields, we train the NN for the CFE prob-
lem detailed above. At the end of the training, we
generate further data the NN has not seen during
training to further test generalization. Using an
Adam [8] optimizer with learning rate 10−3, the
results shown in Figure 8 were achieved in 260
epochs. The training took 1201.74 seconds (20
minutes). As we did not experience any overfit-
ting issues during training, no additional regular-
ization schemes were applied.

5 Results & Discussion

After introducing gradient-based optimization in
the context of eigenfluids (Section 4.1), we pro-
posed a novel approach to control shape tran-

sitions (Section 4.2) in the reduced-dimensional
fluid simulation. Starting with individual opti-
mization problems (Figures 4 and 5), we showed
that NNs can not only give comparable results to
a set of problems, but they also generalize beyond
the examples seen during training (see Figure 8).

Owing to the reduced-order nature of the ap-
proach, we achieved speed-ups that usually result
in convergence times of minutes even in the case
of more advanced setups (and sub-minute, or sec-
onds in the more straight-forward ones).

Although not a silver bullet, we believe that
this approach complements and connects existing
techniques in a new and exciting way, offering a
fresh perspective on thinking about NNs as uni-
versal function approximators.

Generalizing to 3D. All of the introduced meth-
ods generalize to 3D in a straightforward way. As
shown by Cui et al. [3], the Laplacian eigenfluids
technique is a viable option for simulating three-
dimensional incompressible fluid flow.

Target Trajectory. We estimate the trajectory as
a linear interpolation between start and end posi-
tions. Recalculating the trajectory based on the
actual path taken after applying the control forces
at each time step might lead to more natural transi-
tion paths. Alternatively, the effects of implement-
ing a predictor-corrector scheme as introduced by
Holl et al. [5] could be investigated.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)

75

(a) Sample points. (b) Optimized trajectory of the sample points underlying the optimization (top). Smoke ad-
vection is shown for qualitative comparison, reconstructed on a 100×100 grid (bottom).

Figure 5: Direct force optimization results with 16 time steps, and using N = 16 basis fields. We observe
that although the sample points (blue) were advected close to their target positions (red), using only 5
sample points was not enough to approximate the underlying higher dimensional advection dynamics.

[p0,pt ,w] f
512 256 128 64 32 16

Figure 6: The CFE NN transforms the input vector of size 2 ·2(O+U +T)+N into a force vector f that
can be added to the w coefficients as external force. (The architecture for N = 16 fields is shown.) Each
layer is linear, with outuput sizes matching each following input size. A ReLU non-linearity is applied
after each layer.

References

[1] R. Bridson. Fluid simulation for com-
puter graphics, Second Edition. K Pe-
ters/CRC Press, 2015. doi: 10.1201/
9781315266008. URL https://doi.
org/10.1201/9781315266008.

[2] Li-Wei Chen, Berkay A. Cakal, Xiangyu
Hu, and Nils Thuerey. Numerical investi-
gation of minimum drag profiles in laminar
flow using deep learning surrogates. Jour-
nal of Fluid Mechanics, 919:A34, 2021. doi:
10.1017/jfm.2021.398.

[3] Qiaodong Cui, Pradeep Sen, and Theodore
Kim. Scalable Laplacian Eigenfluids.
ACM Trans. Graph., 37(4), jul 2018.
ISSN 0730-0301. doi: 10.1145/3197517.
3201352. URL https://doi.org/10.
1145/3197517.3201352.

[4] Tyler De Witt, Christian Lessig, and Eugene
Fiume. Fluid Simulation Using Laplacian
Eigenfunctions. ACM Trans. Graph., 31(1),

feb 2012. ISSN 0730-0301. doi: 10.1145/
2077341.2077351. URL https://doi.
org/10.1145/2077341.2077351.

[5] Philipp Holl, Vladlen Koltun, and Nils
Thuerey. Learning to Control PDEs
with Differentiable Physics. In ICLR,
2019. URL https://ge.in.tum.de/
publications/2020-iclr-holl/.

[6] Yuanming Hu, Luke Anderson, Tzu-Mao
Li, Qi Sun, Nathan Carr, Jonathan Ragan-
Kelley, and Frédo Durand. DiffTaichi: Dif-
ferentiable Programming for Physical Simu-
lation. ICLR, 2020.

[7] Aaron Demby Jones, Pradeep Sen, and
Theodore Kim. Compressing Fluid Sub-
spaces. In Ladislav Kavan and Chris
Wojtan, editors, Eurographics/ ACM SIG-
GRAPH Symposium on Computer Anima-
tion. The Eurographics Association, 2016.
ISBN 978-3-03868-009-3. doi: 10.2312/sca.
20161225.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)

76

Figure 7: Time evolution of simulating two overfitted CFE NNs to a single shape transition for 16 time
steps, using the same 75 sample points, but different number of basis fields (top: N = 16, bottom: N = 36).

[8] Diederik Kingma and Jimmy Ba. Adam: A
Method for Stochastic Optimization. ICLR,
12 2014.

[9] Yifei Li, Tao Du, Kui Wu, Jie Xu, and
Wojciech Matusik. DiffCloth: Differen-
tiable Cloth Simulation with Dry Frictional
Contact. ACM Trans. Graph., 42(1), oct
2022. ISSN 0730-0301. doi: 10.1145/
3527660. URL https://doi.org/10.
1145/3527660.

[10] Beibei Liu, Gemma Mason, Julian Hodg-
son, Yiying Tong, and Mathieu Desbrun.
Model-Reduced Variational Fluid Simula-
tion. ACM Trans. Graph., 34(6), nov 2015.
ISSN 0730-0301. doi: 10.1145/2816795.
2818130. URL https://doi.org/10.
1145/2816795.2818130.

[11] Miles Macklin. Warp: A High-performance
Python Framework for GPU Simulation
and Graphics. https://github.com/
nvidia/warp, March 2022. NVIDIA
GPU Technology Conference (GTC).

[12] David E. Rumelhart, Geoffrey E. Hinton,
and Ronald J. Williams. Learning represen-
tations by back-propagating errors. Nature,
323(6088):533–536, 1986. doi: 10.1038/
323533a0. URL https://doi.org/
10.1038/323533a0.

[13] Jos Stam. Stable Fluids. In Proceedings
of the 26th Annual Conference on Computer

Graphics and Interactive Techniques, SIG-
GRAPH ’99, page 121–128, USA, 1999.
ACM Press/Addison-Wesley Publishing Co.
ISBN 0201485605. doi: 10.1145/311535.
311548. URL https://doi.org/10.
1145/311535.311548.

[14] Nils Thuerey, Philipp Holl, Maximilian
Mueller, Patrick Schnell, Felix Trost, and
Kiwon Um. Physics-based Deep Learn-
ing. WWW, 2021. URL https://
physicsbaseddeeplearning.org.

[15] Kiwon Um, Robert Brand, Yun (Raymond)
Fei, Philipp Holl, and Nils Thuerey. Solver-
in-the-Loop: Learning from Differentiable
Physics to Interact with Iterative PDE-
Solvers. In Advances in Neural Information
Processing Systems, 2020.

[16] S. Wiewel, B. Kim, V. C. Azevedo, B. So-
lenthaler, and N. Thuerey. Latent Space
Subdivision: Stable and Controllable Time
Predictions for Fluid Flow. In Proceedings
of the ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation, SCA ’20,
Goslar, DEU, 2020. Eurographics Associa-
tion. doi: 10.1111/cgf.14097. URL https:
//doi.org/10.1111/cgf.14097.

[17] Steffen Wiewel, Moritz Becher, and Nils
Thürey. Latent Space Physics: Towards
Learning the Temporal Evolution of Fluid
Flow. Computer Graphics Forum, 38, 2019.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)

77

(a) Performance on training data. (Randomly sampled.)

(b) Testing on previously unseen test data. (Randomly sampled.)

Figure 8: Randomly sampled time evolution of controlled shape transition tasks. Using N = 16 basis
fields, sampling the smokes on a 32× 32 grid, approximating them with O = 30 overlapping, U = 40
unique and T = 5 trivial sample points, through 16 time steps t = [0 . . .15].

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)

78

Translucent Material Parameter Estimation

Saip-Can Hasbay(1)

Supervised by: David Hahn(2)

(1) University of Vienna, (2) TU Wien

Abstract

In this paper, we present a workflow for optical material
parameter estimation based on real-world images, numeri-
cal optimization, and differentiable rendering (using Mit-
suba 3). We primarily focus on translucent materials and
demonstrate our approach both for synthetic and real-world
data. Specifically, we estimate parameters for two well-
known material models: either a Principled BSDF (a sur-
face model based on Burley’s Disney BSDF), or a Rough
dielectric BSDF, describing volumetric homogeneous par-
ticipating media.

In order to solve the inverse rendering problem of ac-
quiring suitable material properties from a (set of) given
reference image(s), we present a software tool that handles
the entire material reconstruction workflow. Furthermore,
we also propose an experimental workflow to acquire the
necessary reference images and potentially the 3D scene
geometry. Our results show that our approach works on
well-known materials such as acrylic glass, as well as newly
designed materials, such as alginate, from experimental ma-
terials research.

Keywords: Numerical Optimization, Material Parameter
Estimation, Differentiable Rendering, Appearance Mod-
elling

1 Introduction

Early work in computer graphics relied on phenomeno-
logical, often physically implausible, shading models and
focused primarily on rendering images under direct, or
purely diffuse illumination [26, 2, 27]. The driving force
behind many rendering methods was artistic expression
rather than physical accuracy. However, with more pow-
erful hardware supporting modern ray tracing algorithms
[23, 14], photo-realistic and physics-based rendering has
become not only feasible but de-facto standard in many
fields, both within and outside of computer graphics.

Given a virtual scene description, the main goal of
physics-based rendering is to create images matching the
way our eyes perceive the world. The ability to create im-
ages that are hard to separate from reality, however, hinges
on accurate knowledge of the optical material parameters
of objects in the scene.

Scattering occurring at the surface of objects is mod-

Figure 1: Reconstruction results for a surface BSDF model
from synthetic data (left) and real-world alginate material
(right). Dragon model by Delatronic [6], License: CC-BY.

elled by the bidirectional scattering distribution function
(BSDF). Statistical micro-surface models provide physics-
based, parametric BSDF formulations that describe the
material properties of an object in the scene. For translu-
cent materials, ray tracing methods, as well as material
descriptions, have been extended to cover volumetric scat-
tering in addition to surface effects. While both surface and
volumetric BSDF parameters can be obtained from careful
measurements of real-world materials, or instead formu-
lated in a data-driven (rather than a parametric) framework,
these approaches heavily rely on specialized laboratory
equipment. However, this precise approach might not al-
ways be feasible or cost effective. For example, research in
materials engineering might produce new compounds for
specific applications, whereas aging and weathering effects
might alter a material’s appearance over time.

Recent work on differentiable and inverse rendering, on
the other hand, has enabled the identification of optical
material parameters by applying (gradient-based) optimiza-
tion methods in order to match the rendered result to an
object’s real-world appearance. This optimization approach
is particularly suited to estimating parameters from only
a few reference images. In this work, we rely on the Mit-
suba 3 renderer [11], a publicly available, state-of-the-art
differentiable rendering system, to solve material parame-
ter estimation problems. However, as a research-oriented
system, Mitsuba 3 requires a lot of domain-specific knowl-
edge to operate. To facilitate the parameter estimation
workflow, we implement a software tool that combines a
gradient-based optimization algorithm with the necessary
data management and rendering interface.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)

In the remainder of this paper, we first provide an
overview of previous work on physics-based (inverse) ren-
dering and accumulate relevant background information.
The subsequent sections then detail the experimental and
computational aspects of our proposed approach. Lastly,
we present and analyze our results from both synthetic and
real-world data. In summary, our contributions are:

• A software tool1 that incorporates the full power of the
Mitsuba 3 renderer and various features to accomplish
the task of inverse rendering.

• A gradient-based optimization procedure to acquire
material properties from an image, including a careful
evaluation of how optimization hyper-parameters and
rendering quality affect the results.

• A workflow to increase the reproducibility of our re-
sults, encompassing both synthetic as well as real-
world examples.

2 Related Work

Physics-based rendering has its origins in the seminal paper
by Kajiya [12], formulating the now well-known render-
ing equation. Veach [32] introduced the path-integral form,
which provides the theoretical foundation of modern Monte
Carlo (MC) ray tracing methods [25]. In order to arrive at
a photorealistic rendering, an accurate description of how
various materials interact with light must be formulated.
Different analytical material models have been introduced
to account for the light-scattering effects from surfaces
[34, 9, 11]. Similarly, models for participating media de-
scribe volumetric scattering effects as light passes through
the material [25, 11]. Physics-based rendering itself (which
we also refer to as forward rendering in this context) is con-
cerned with computing accurate images using the rendering
equation, given a scene description, including all materials.

Conversely, the question for inverse rendering is how to
find an appropriate scene description in order to obtain a
desired result. In particular, finding the parameters of a
scattering model corresponding to a real-world material,
has been a long-standing research problem. While some
previous work has addressed this problem in a data-driven
way [19, 15, 28], inverse rendering methods in contrast,
seek to determine the parameters of established material
models, resulting in a more constrained search space that
ensures the use of physics-based models. Early work on in-
verse rendering for material parameter estimation [8] used
material dictionaries, aiming to approximate the appear-
ance of real-world materials as a combination of dictionary
entries. More recently, advances in differentiable rendering
[22, 33, 21, 16, 37] have enabled inverse rendering applica-
tions by applying gradient-based optimization directly on
the material parameters.

Initially, differentiable renderers have applied code-level
automatic differentiation to find gradients of either the ren-
dered image, or an objective function defined on that image,

1Access at https://github.com/sapo17/BachelorThesis.

with respect to input parameters. In order to reduce the
computational cost and memory footprint of automatic dif-
ferentiation, analytic back-propagation formulations have
been developed [22, 33]. One issue that has received a lot
of attention in recent research, is that derivatives of pixel
values (which are integrated according to the rendering
equation) can contain discontinuous integrands if a silhou-
ette edge moves across the pixel due to a change of scene
parameters [16, 36, 17, 38].

Modern ray tracing renderers use importance sampling to
reduce noise due to MC sampling, based on either the mate-
rial’s scattering behaviour, the light sources, or combining
both through multi-importance sampling. Consequently,
similar sampling strategies have also been investigated for
differentiable ray tracing. Zeltner et al. [36] analyzed nu-
merous potential approaches and mathematically classified
various estimators for differential light transport. Prior to
the work by Vicini et al. [33], many techniques used sta-
tistically biased gradient estimation methods. Their work
proposed a new back-propagation algorithm that runs in
constant memory and linear computation time. Addition-
ally, this method provides a way to handle highly specular
materials such as smooth dielectrics and conductors. Our
work builds upon their method, which is implemented in
Mitsuba 3 [11].

Inverse Rendering for translucent material reconstruc-
tion. The work by Gkioulekas et al. [8] is one of the initial
inverse rendering research regarding translucent material
reconstruction. They introduced an optimization frame-
work to measure the bulk scattering properties of homo-
geneous materials. Their primary focus was describing
homogeneous materials by two scalar values and one angu-
lar function: scattering coefficient, absorption coefficient
and phase function. Similar to our project, Gkioulekas et
al. [8] also incorporated gradient-based optimization with
MC rendering. However, they specifically used stochastic
gradient descent for the optimization. Moreover, in their
optimization procedure, they used a material dictionary to
invert the radiative transfer equation. The material dictio-
nary contained a variety of common materials, including
liquid, solid, and publicly-available collections of tabulated
phase functions.

Yang et al. [35] proposed another inverse rendering ap-
proach for heterogeneous translucent materials from a sin-
gle input photograph. Their method can obtain the material
distribution and estimate material parameters from the pro-
vided reference image. Yang et al. introduced an iteration
process for optimizing the scattering and absorption co-
efficient. Deng et al. [7] introduced another approach to
reconstruct translucent objects using differentiable render-
ing. They extended previous methods using a bidirectional
scattering-surface reflectance distribution function (BSS-
RDF). To handle the noise introduced by the BSSRDF inte-
gral, they proposed a dual-buffer method for evaluating the
loss during optimization. In this work, we make use of the
dual-buffer method and observe improved optimization con-
vergence over standard error metrics (see our results in §5).

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
80

3 Parameter estimation

In this section, we briefly recap the underlying theory of the
rendering process and the core principle of differentiable
ray tracing. Next, we present the material parameters of
interest, and finally state the problem we address.

3.1 Background and theory

Let us start with the well-known rendering equation as
formulated by Kajiya [12], also referred to as the light
transport equation (LTE). As we are primarily interested in
translucent materials, we consider the angular form of the
LTE, see also [25, 12]:

L(p,ωo) = Le(p,ωo)︸ ︷︷ ︸
Emission

+
∫

S2
Li(p,ωi) f (p,ωi,ωo)dωi︸ ︷︷ ︸

Scattering

. (1)

Here L(p,ωo) describes the radiance (power per area, solid
angle, and color channel) leaving a point p in direction ωo
due to light emitted at or scattered through p. The incident
radiance results from recursively applying the LTE such
that Li(p,ωi) = L(p′,−ωi), where p′ is a point directly
visible from p in direction ωi. Monte Carlo (MC) ray
tracing approximates this recursive integral as a sum of
randomly sampled scattering rays. The same concept has
been extended to volumetric rendering, including scattering
and attenuation in participating media [25].

Most importantly for us, the function f (p,ωi,ωo) en-
codes the material’s optical properties, and is commonly
referred to as the bidirectional scattering distribution func-
tion (BSDF). For convenience of notation, we assume the
cosine term accounting for the projected solid angle is
included in the BSDF. The BSDF is composed of a reflec-
tive part, the bidirectional reflectance distribution function
(BRDF) and a transmissive part, the bidirectional transmit-
tance distribution function (BTDF).

Inverse and differentiable Rendering. So far we have
summarized how a virtual scene, including material de-
scriptions, can be rendered via ray tracing. We now move
on to the problem of inverse rendering, where we aim to
find scene parameters, such that the resulting image fulfills
certain requirements. In particular, our problem is finding
the parameters of the material models, such as to match
given reference images. Inverse rendering is commonly
defined as an optimization problem of the form

ming(y(x)), subject to h(x)≤ 0, (2)

where g defines the optimization objective (or loss) function
on the rendered image y given scene parameters x, and
h defines additional constraints (e.g., min/max parameter
values).

In order to solve this optimization problem more ef-
ficiently, differentiable rendering provides derivatives
(δy/δx), which allows gradient-based optimization tech-
niques to successively improve the parameters with respect

to the specified objective [38]. In the simplest form, the
objective takes the L2 norm of the difference between the
rendered and the reference image, thus g(y) = ||y− yre f ||2.
The dual buffer method by Deng et al. [7] proposes an alter-
native objective function that is better suited to handle the
noise introduced by the MC rendering. Rather than taking
one differentiable rendering step, the dual buffer method
takes two independent rendering steps y1, y2, per iteration.
Instead of the standard L2 loss, we now compute the loss
in each iteration as g(y1,y2) = (y1 − yre f) · (y2 − yre f).

Finally, in order to acquire the gradients required for
optimization, Mitsuba 3 implements a path-replay back-
propagation method [22, 33]. Formally, we take the deriva-
tive of Eq. (1) with respect to the scene parameters x:

δxL(p,ωo) = δxLe(p,ωo)︸ ︷︷ ︸
Emission

+
∫

S2
[δxLi(p,ωi) f (p,ωo,ωi)︸ ︷︷ ︸

Transport

+Li(p,ωi)δx fx(p,ωo,ωi)︸ ︷︷ ︸
Material

]dωi.

(3)

This equation describes the scattering of derivatives analo-
gous to the LTE. The individual terms are:

• Emission: differential radiance is emitted when the
emitted radiance Le depends on x.

• Transport: differential radiance scatters in the same
way as normal radiance, according to the BSDF f .

• Material: surfaces with a parameter-dependent BSDF
emit differential radiance proportional to incident ra-
diance.

Note that along each ray, we find δLi(p,ωi) = δL(p′,−ωi),
analogous to the forward rendering. While in an abstract
sense, the gradient of the objective function could be com-
puted as δg/δx = (δg/δy)(δy/δx), doing so would be
computationally expensive due to the large size of δy/δx
(which can be thought of as a matrix of derivatives for each
image pixel with respect to each scene parameter). Instead,
the back-propagation method uses the (partial) derivative
of the objective function δg/δy as a source of “adjoint
radiance” which is then traced from the virtual camera into
the scene, scattered according to Eq. (3) and “collected” at
the scene parameters.

In this work, we rely on the ADAM optimizer [13] to
solve the parameter estimation problem. This method is
a general-purpose method that applies gradient descent
with momentum and an adaptive strategy to estimate the
learning rate per parameter. As such it is well suited to non-
linear optimization problems that may contain spurious
local minima. Using a momentum strategy can prevent
getting stuck in these local minima and increase the chances
of finding a good solution.

3.2 Microfacet models and Disney BSDF

Modeling surface reflection and transmission often origi-
nates from the idea that rough surfaces can be represented

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
81

as a collection of small microfacets. The scattering of
light from a group of microfacets is statistically modelled
by microfacet-based BRDFs [25]. Walter et al. [34] in-
troduced a microfacet distribution function, called GGX,
which has been shown to be equivalent to the microfacet
distribution introduced by Trowbridge and Reitz [30]; see
also [24]. Microfacet models not only require the distri-
bution of facets, but also need to account for some facets
being obscured by others (also known as masking) and
some will be shadowed. Smith’s masking-shadowing func-
tion [25] addresses these effects. More recently, Walter
et al. [34] reviewed microfacet theory and extended it to
simulate transmission through rough surfaces. Mitsuba 3
[10] implements this variant in its Rough-dielectric BSDF
model, which we make use of in this project. Further-
more, Mitsuba 3 allows two types of participating media
in the scene: homogeneous and heterogeneous, which can
be used to simulate translucent materials such as milk or
skin, but also clouds and fog [10]. Therefore we com-
bine a Rough-dielectric BSDF and a homogeneous interior
medium to simulate and optimize volumetric scattering
effects in translucent materials.

Burley et al. [3] proposed a general-purpose BRDF (also
known as Disney Principled BRDF). They compared their
new model with measured materials in terms of the mi-
crofacet models [29, 5, 34]. Their BRDF blends metallic
and dielectric BRDF models and includes a microfacet
reflection with anisotropic roughness and an optional sec-
ondary clearcoat reflection. The Disney BSDF [9] extends
the dielectric BRDF with integrated subsurface scattering
and blends in a specular BSDF based on a new specular
transmission parameter, arriving at a unified BSDF model
including refraction and subsurface scattering effects. For
the specular BSDF, they follow the GGX model and ex-
tend the microfacet reflection to refraction. Mitsuba 3 [10]
implements the model proposed by Burley et al. [9] in
its Principled BSDF material, which we also use in this
project.

3.3 Material parameters

Following the summary of material models, we now briefly
list the parameters of these models we use in our optimiza-
tion pipeline. For surface-only materials, i.e. the Disney
Principled BSDF, we have:

• base colour (albedo) c (can be textured),
• surface roughness α ,
• specular transmission σs (blending between the BRDF

and BTDF lobes), and the
• index of refraction η .

Note that we do not use secondary reflection effects such
as clear-coat materials, or metallic reflections here. For
volumetric rendering, i.e. Rough Dielectric BSDF with
homogenous medium [34, 11], we additionally consider

• a volumetric albedo colour (texture) and
• an extinction coefficient σt describing the absorption

as light traverses the material.

3.4 Problem statement

In summary, our goal is to estimate optical material param-
eters x = {c,α,σs,η ,σt} in a given 3D scene, such that the
rendered result best approximates one (or more) reference
image(s). Therefore, we require

• a (set of) reference image(s) and
• a Mitsuba scene file, including the initial guess for the

material parameters, and virtual cameras correspond-
ing to the reference images as input to our system.

To solve this problem, we combine differentiable render-
ing with a gradient-based optimization procedure. To use
our approach, however, we first need to meet the above-
mentioned requirements, which we discuss in the first part
of the next section.

4 Method

In this section, we first introduce the experimental and then
the computational part of our approach.

4.1 Scene and image acquisition

Here, we focus on 3D scene construction and reference
image acquisition. For validation tests where the Bunny
[31] model is in use, we utilized the readily available Mit-
suba scene from their documentation [11] and modified the
parameters we introduced in §3.1. However, for synthetic
data, users may also construct a scene in a 3D modelling
tool such as Blender [4]. For example, for the Dragon [6]
model test case in §5.1, we constructed a scene in Blender
and exported it using Mitsuba’s Blender Add-on [20]. For
validation tests, we then rendered (using Mitsuba) the ac-
quired scenes to get the reference images.

The real-world case is more complicated. During imag-
ing, a controlled environment is crucial to accurately de-
termine all scene parameters that could affect the resulting
image, particularly scene geometry and light position(s).

We propose multiple approaches, first, users may recon-
struct the imaged environment manually. This task can
get seriously complicated and requires relatively adequate
skills in modelling. For the alginate [18] material test cases,
we only partially had this difficulty. We were provided with
a “material scanner”—a small light-proof container with
fixtures for camera and light placement—where we pho-
tographed the alginate samples. Fortunately, we were also
provided with the corresponding 3D model that we used in
Blender. However, we still had to approximate the model
of the sample alginate materials, camera positions, and the
radiance values of the lights. Please note that we processed
images from the real-world to remove the background.

Our second approach utilizes a photogrammetry tool
Metashape [1]. Using Metashape, we not only acquired
the geometry of the imaged bird statue (third row in Fig. 5)
but also the camera positions from photographs. Using
Metashape, (1) we first loaded images and used the Align

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
82

Images functionality, (2) then used the Build Mesh function-
ality, (3) next, exported mesh and camera locations with
the X3D format, (4) and lastly, imported the X3D file into
Blender. Once we had a scene in Blender, we utilized the
Mitsuba Blender Add-on [20] to export and use it in our
tool. We found our second approach useful specifically for
opaque materials.

Another technique we employed involved naive vertex
position optimization that is supported by Mitsuba 3 and
our tool. As shown in the fourth row of Fig. 5, from a
scaled-sphere object the optimization recovers a rough bird
statue. Geometry reconstruction on its own is a fascinating
and challenging research topic, and we will omit the details
in this work.

4.2 Optimization

We are now ready to introduce the computational part of
our approach, combining the differentiable renderer Mit-
suba 3 with an ADAM optimizer to estimate the material
parameters.

Using our software tool, we first load a virtual 3D scene
file, which includes the initial material parameters x0. We
also load the (set of) reference image(s), yre f , which will be
used in the objective function (selecting either the L2 norm
or the dual buffer method as introduced earlier). Next, we
select the material parameters of interest (x0), which get
assigned to a newly initialized ADAM optimizer by our
tool. Optionally, we also select the following optimization
hyper-parameters (default values in braces). The maximal
number of iterations for the optimization (100); the number
of samples per pixel (spp = 4) for each rendered image;
the loss tolerance ε , where optimization stops if the loss
g < ε (0.001); the learning rate, which adjusts the step
size at each iteration (0.03); and minimum and/or maximum
clamp values, which define box constraints for specific pa-
rameters. For example, an RGB color value must be in the
interval [0,1] per channel; by default, most parameters2 are
constrained to [0,1]. Note that virtual camera and refer-
ence image resolutions are overridden by our tool accord-
ing to the aspect ratio of the loaded image and restricted
to (256 × AspectRatio,256). This restriction originates
mainly from memory limitations.

Initializing xi = x0, we then run the following optimiza-
tion loop for each camera pose (i.e. reference image): (1)
Perform a differentiable rendering step with respect to xi
resulting in an image yi. (2) Evaluate the objective func-
tion g(yi). (3) Back-propagate δg/δy using Mitsuba 3, to
obtain δg/δxi. (4) Take an ADAM optimization step to
find updated parameters x̃i+1. (5) Ensure legal values for
xi+1 by clamping x̃i+1 using box constraints. (6) Update
the scene with xi+1. Repeat until either the loss tolerance,
or the maximal iterations are reached.

Additionally, our software tool also provides conve-
nience functions. To streamline the above-mentioned pro-

2The interested reader may find the default values in the constants.py
file of our repository.

cess, we propose a mini-tool with a GUI 3. To execute the
optimization, users can simply load a Mitsuba 3 scene and
a (set of) reference image(s), and select the appropriate
material parameters. Our tool automatically selects integra-
tors and scene resolution, sets default hyperparameters, and
presents differentiable scene parameters for optimization
upon scene loading. At the end of the optimization, our tool
provides the necessary visualizations and ability to export
the obtained results.

5 Results

In this section, we examine results produced using our
software tool and optimization approach. In the first part,
we evaluate results from synthetic data, where ground-truth
solutions are available for comparison. In the second part,
we show results for real-world data. Our tool uses the
NVIDIA CUDA variant of Mitsuba v3.2.1, and all timings
reported in the following have been measured on NVIDIA
GeForce RTX 2060 graphics card.

5.1 Validation tests

In this section, we examine material reconstruction from
synthetic data. These tests start from a virtual scene, with
given ground-truth parameters. The optimization must then
recover the correct material parameters from a dark and
opaque initial guess. First, in Figs. 2, 3, we show successful
results using the method described in §4.2. Table 1 also
shows the corresponding initial and optimized parameter
values and optimization hyperparameters. Please note that
we use a single reference image for the Bunny and four
images for the Dragon test cases.

In all cases, we observe that the dual buffer method [7]
is extremely useful in reconstructing the object’s material
properties, allowing for less restrictive constraints.

Furthermore, we observe that noise inherent to MC sam-
pling affects the optimization procedure, and a sufficient
number of samples per pixel (spp) is required to obtain
good convergence. We also use box constraints on certain
parameters, i.e. clamping to minimum or maximum val-
ues to prevent some parameters from moving to physically
implausible values. Especially the index of refraction (η)
often suffers from these issues. We believe this is due to
total internal reflection introducing discontinuous jumps in
light propagation paths. Another useful strategy to resolve
these issues is to split the optimization process into two
parts: first we optimize a group of parameters that work
well together (for instance excluding η). We then continue
from the optimized values from the first part and include
all parameters. Result using this procedure is shown in the
last row of Fig. 2.

Having established that our method is capable of re-
covering ground-truth material parameters, we now show

3We expect the use of this tool for academic purposes. The design and
HCI related topics are beyond the scope of this paper.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
83

Case Params. Init. Opt. (succ.) Ref. Opt. (unsuc.) Hyper. (succ.) Hyper. (unsuc.) Loss / Comp. time (succ.) Loss / Comp. time (unsuc.)

Bunny (P)

c 0.01, 0.01, 0.01 0.415, 0.853, 0.999 0.412, 0.824, 0.999 0.397, 0.833, 0.999 spp=8,
DBM,
ε=0.0001

spp=16,
MSE 0.0002 / 48.9s 0.0098 / 35.6sα 0.5 0.001 0.01 0.001

σs 0.02 0.904 0.9 0.912
η 1.54 1.495 1.49 1.747

Dragon (P)

c bitmap bitmap bitmap bitmap spp=16,
DBM,

h(σs)min=0.11

spp=8,
DBM 0.0015 / 231.3s 0.0528 / 180.9sα 0.7 0.001 0.001 0.135

σs 0.1 0.973 1 0.001
η 1.64 1.507 1.49 1.815

Bunny (R)

c 0.01, 0.01, 0.01 0.469, 0.844, 0.999 0.412, 0.824, 0.999 0.599, 0.924, 0.999 spp=16,
ε=0.0001,

DBM,
h(η)max=1.55

spp=8,
DBM 0.0005 / 237.3s 0.0025 / 154.6sα 0.5 0.014 0.01 0.001

σt 0.98 0.502 0.4 0.585
η 1.544 1.503 1.49 1.919

Dragon (R)

c volume volume volume volume spp=4,
DBM,
2-stage

spp=16,
DBM 0.0016 / 241.2s 0.0456 / 498.3α 0.7 0.011 0.01 0.307

σt 0.98 0.357 0.4 0.26
η 1.544 1.484 1.49 1.549

Table 1: Results from Figs. 2, 4; DBM=Dual Buffer Method, MSE=Mean Squared Err., P=Principled BSDF, R=Rough
dielectric BSDF, succ.=successful, unsuc.=unsuccessful.

Figure 2: Our successful attempts for the Principled (first
and second rows) and Rough dielectric (third and fourth
rows) BSDF. For corresponding parameter values please
refer to Table 1.

additional comparisons and discuss potential pitfalls during
translucent material reconstruction in a short ablation study,
Figs. 4, 3 and Table 1. We compare the dual buffer method
(2×8 spp) to the single-image L2 error metric (1×16 spp)
on the Stanford bunny using the Principled BSDF (first row

0 25 50 75 100
Successful

0.00

0.03

0.06

0.09

0 25 50 75 100
Unsuccessful

Iteration

Lo
ss

Principled BSDF
Rough dielectric BSDF
Bunny
Dragon

Figure 3: Convergence plots (synthetic-data) from
(un)successful attempts. See also Figs. 2, 4.

Figure 4: Our unsuccessful attempts for the Principled (first
and second rows) and Rough dielectric (third and fourth
rows) BSDF. For corresponding parameter values please
refer to Table 1.

in Fig. 2 and 4 respectively). Although the visual result
might look acceptable, the numerical results (Table 1)—
specifically for the η parameter—are not satisfactory. Note
also the instability of the convergence compared to our
successful attempt (Fig. 3).

On our second test case, the Dragon using a surface
BSDF, we compare the optimization behaviour for differ-
ent samples per pixel (16 vs. 8) value, and relaxing the
minimum clamp value for the specular transmission (σs)
parameter. As shown in Fig. 4 (second row), the lower
sample count results in a visually worse appearance. As
shown in Table 1 (second row), the numerical results are
also not satisfactory.

Using the volumetric material model, we again test the
influence of noise on the optimization procedure. In the

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
84

Case Params. Init. Opt. Hyper. Loss / Comp. time

Alginate (G)

c 0.1 0.1 0.1 bitmap spp=8,
DBM, 2-stage
h(α)max=0.7,
h(σs)min=0.4

0.0135/ 52.7sα 0.7 0.699
σs 0.1 0.429
η 1.54 1.156

Alginate (B)

c 0.1 0.1 0.1 bitmap spp=8,
DBM, 2-stage
h(α)max=0.6,
h(σs)min=0.5

0.0033/ 51.1sα 0.7 0.501
σs 0.1 0.573
η 1.54 1.397

Birdy (R)
c bitmap bitmap

spp=4,
MSE 0.2711/ 347.8sα 0.5 0.246

η 1.5 1.435

Birdy (SS)

c bitmap bitmap
spp=4,
MSE,

lr:p=0.0003
0.1511/ 516.6sα 0.5 0.813

η 1.5 1.172
p ss shape

Table 2: Results for real-world data. G=Green, B=Blue,
R=Reconstructed (using Metashape), SS=Scaled Sphere,
lr=learning rate.

third row of Fig. 4, we observe visually acceptable results,
whereas numerical results degrade when reducing the sam-
ples from 16 spp to 8. In this experiment, the η parameter
initially increases (moving away from the expected refer-
ence value), and subsequently, the extinction coefficient
(σt) remains not recovered accurately. Also note, although
the resulting convergence plot and image (Figs. 3, 4) indi-
cate a successful attempt, the numerical results, specifically
the η parameter is far from the reference value (third row in
Table 1). Consequently, one should note that—specifically
in the case of real-world data, where the target value is
unknown—one cannot fully rely on the resulting visual rep-
resentations. Therefore for accurate results, one must also
consider the plausibility of the resulting numerical values.

Finally, applying the volumetric material to the more
complex Dragon scene in the fourth row of Fig. 4, we at-
tempt to optimize all parameters of interest simultaneously
(as opposed to the successful case presented earlier, where
we optimize in two stages). Interestingly the material’s
roughness (α) fails to reduce sufficiently from an initially
high value (fourth row in Table 1), resulting in a visually no-
ticeable mismatch between the optimization result and the
reference. Consequently, in some cases, we suggest sepa-
rating the optimization procedure into two parts, to acquire
acceptable results, as shown in the last row of Fig. 2.

5.2 Real-World applications

In this section, we perform material reconstruction from
real-world data. In particular, we aim to acquire optical
material properties for two novel alginate specimens [18].
As these alginate specimens are relatively thin, we use
the Principled BSDF [3, 9], which has proved easier to
optimize in the test cases discussed previously.

Please note that we use a single for the alginate and
multiple reference image(s) for the bird statue test cases.
Furthermore, note that interreflections play a role in the
alginate test cases, albeit we kindly remind that they were
photographed in the material scanner without the influence
of external objects or light sources. On the other hand, inter-

Figure 5: Results from alginate [18] materials (1. and 2.
row) and a bird statue (3. and 4. row). For corresponding
parameter values please refer to Table 2.

reflections do not play a role in the bird statue experiments.
Note also in the bird statue experiments we specifically use
Mitsuba’s constant emitter as the primary light source.

Figures 5, 6 shows results for both (green and blue)
translucent alginate specimens. We again employ the strat-
egy to split the optimization into two parts for both results.

We first only allow one constant RGB colour, and in the
second stage extend the optimization to a bitmap texture
image. We obtain visually acceptable results, even though
the virtual geometry is not perfectly matched to the real-
world images, resulting in errors along the outer edge of
the specimens, seen in the absolute error images in Fig. 5.
Table 2 summarizes the numerical results corresponding to
Fig. 5.

For both cases, we apply specific minimum and maxi-
mum clamp values for the α and σs parameters. Without
these additional constraints, we obtained visually identical
results, albeit with physically unreasonable parameter val-
ues. Note also how the two-stage strategy is noticeable in
the convergence plots (Fig. 6). For both alginate materials,
we initialize an RGB texture with the previously optimized
base color (c) at the start of the second stage (iteration 50).
In the second stage of the optimization, we also observe a

0 25 50 75 100

0.015

0.030

0.045

0 25 50 75 100

0.2

0.4

0.6

Iteration

Lo
ss

Alginate (Green)
Alginate (Blue)

Birdy (Reconstructed)
Birdy (Scaled Sphere)

Figure 6: Convergence plots from real-world data.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
85

noticeable decrease in loss. Consequently, the texture plays
a significant role in representing the object as it contains a
substantial amount of information.

Finally, in Fig. 5 and Table 2, we also show the results
of a more complex opaque object. In Fig. 5, the third row
showcases results utilizing the geometry obtained through
Metashape [1], where only the c, η , and α parameters of
the object were optimized. The fourth row features results
using a (scaled) sphere object, with optimization of c, α ,
η , and vertex positions (p) parameters. Note that while we
optimize the p parameter of the scaled sphere object, we
use a box constraint, namely the bounding box value of the
reconstructed object (third row in Fig. 5).

In conclusion, we acknowledge the complexity of real-
world material and geometry reconstruction and emphasize
the importance of a comprehensive data acquisition pro-
cess that accounts for various factors, including lighting,
image acquisition, object and light positions, and geometry
reconstruction. However, as shown in Fig. 1, with accurate
measurements, and thorough experimentation, material and
geometry reconstruction can be successfully achieved.

6 Conclusion

In this paper, we describe a material reconstruction pipeline
using the Mitsuba 3 differentiable renderer. Our software
tool is capable of reconstructing material properties from
a scene description file and multiple images. We focused
on translucent material reconstruction, which we validated
using synthetic data and demonstrated on real-world speci-
mens. We tested our approach on both surface-only Princi-
pled BSDF, as well as a volumetric Rough dielectric BSDF
with homogeneous participating media.

A difficulty we noted was the scene and image acqui-
sition complexity. Regarding translucent materials, we
observed that the noise introduced by MC sampling af-
fected the parameter estimation procedure. Employing the
dual buffer method noticeably improved our results. Our
analysis showed that certain parameters, like the index of
refraction, created discontinuities in scattering behaviour
and made it difficult to achieve accurate convergence. In
some cases, we found that two-stage optimization was nec-
essary. When optimizing a texture for a material’s albedo,
highly localized parameters can have a stronger impact
than global material parameters, which can lead to inaccu-
rate reconstruction. Our findings showed that additional
constraints, such as imposing a max. clamp value on some
parameters, were necessary for certain scenarios.

In the future, we aim to improve our geometric mod-
elling and image acquisition procedures, which will allow
for a more accurate representation of physics-based real-
ity. Based on the evidence obtained from our results, we
conclude that our approach will be beneficial for different
translucent material reconstruction tasks in various applica-
tions.

Acknowledgements

We thank Prof. Peter Ferschin (TU Wien) and his former
master’s student Cheng Shi for providing the material scan-
ner. We thank Prof. Stavric and colleagues at TU Graz for
the alginate samples. We also thank Prof. Torsten Möller
(University of Vienna), for his help during the topic dis-
covery phase. Lastly, thanks to the Mitsuba team at EPFL
in Switzerland, which provided an incredible tool for this
author and the whole computer graphics community.

References

[1] AgiSoft. Metashape, 2022. https://www.
agisoft.com/.

[2] James F. Blinn. Models of light reflection for com-
puter synthesized pictures. SIGGRAPH Comput.
Graph., 11(2):192–198, jul 1977.

[3] Brent Burley. Physically-based shading at disney.
ACM Trans. Graph. (SIGGRAPH), 2012.

[4] Blender Online Community. Blender - a 3D mod-
elling and rendering package. Blender Foundation.

[5] Robert L. Cook and Kenneth E. Torrance. A re-
flectance model for computer graphics. In Proceed-
ings of the 8th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH
’81, page 307–316, New York, NY, USA, 1981. Asso-
ciation for Computing Machinery.

[6] Delatronic. Dragon. https://blendswap.
com/blend/15891, 21.08.2015.

[7] Xi Deng, Fujun Luan, Bruce Walter, Kavita Bala, and
Steve Marschner. Reconstructing translucent objects
using differentiable rendering. In ACM SIGGRAPH
2022 Conference Proc.

[8] Ioannis Gkioulekas, Shuang Zhao, Kavita Bala, Todd
Zickler, and Anat Levin. Inverse volume rendering
with material dictionaries. ACM Trans. Graph., 32(6),
nov 2013.

[9] Stephen Hill, Stephen McAuley, Brent Burley, Danny
Chan, Luca Fascione, Michał Iwanicki, Naty Hoff-
man, Wenzel Jakob, David Neubelt, Angelo Pesce,
and Matt Pettineo. Physically based shading in theory
and practice. In ACM SIGGRAPH 2015 Courses.

[10] Wenzel Jakob. Mitsuba renderer, 2010.
http://www.mitsuba-renderer.org.

[11] Wenzel Jakob, Sébastien Speierer, Nicolas Roussel,
Merlin Nimier-David, Delio Vicini, Tizian Zeltner,
Baptiste Nicolet, Miguel Crespo, Vincent Leroy, and
Ziyi Zhang. Mitsuba 3 Renderer, 2022. https:
//mitsuba-renderer.org.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
86

[12] James T. Kajiya. The rendering equation. SIGGRAPH
Comput. Graph., 20(4):143–150, aug 1986.

[13] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization, 2014.

[14] Chris Lattner and Vikram Adve. LLVM: A compi-
lation framework for lifelong program analysis and
transformation. pages 75–88, Mar 2004.

[15] Jason Lawrence, Aner Ben-Artzi, Christopher
DeCoro, Wojciech Matusik, Hanspeter Pfister, Ravi
Ramamoorthi, and Szymon Rusinkiewicz. Inverse
shade trees for non-parametric material representa-
tion and editing. ACM Trans. Graph., 25(3):735–745,
jul 2006.

[16] Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko
Lehtinen. Differentiable monte carlo ray tracing
through edge sampling. ACM Trans. Graph., 37(6),
dec 2018.

[17] Guillaume Loubet, Nicolas Holzschuch, and Wenzel
Jakob. Reparameterizing discontinuous integrands for
differentiable rendering. ACM Trans. Graph., 38(6),
2019.

[18] Ivan Marjanovic, Elizabeta Samec, Hana Vasatko,
and Milena Stavric. Alginate in architecture: An
experimental approach to the new sustainable building
material. In Art and Science Applied: Experience and
Vision, volume 2 of SmartArt, chapter 21, pages 394–
406. 2022.

[19] Wojciech Matusik, Hanspeter Pfister, Matt Brand, and
Leonard McMillan. A data-driven reflectance model.
ACM Trans. Graph., 22(3):759–769, jul 2003.

[20] Baptiste Nicolet. Mitsuba blender add-on. https:
//github.com/mitsuba-renderer/
mitsuba-blender, 2022.

[21] Merlin Nimier-David, Thomas Müller, Alexander
Keller, and Wenzel Jakob. Unbiased inverse vol-
ume rendering with differential trackers. ACM Trans.
Graph., 41(4), jul 2022.

[22] Merlin Nimier-David, Sébastien Speierer, Benoı̂t
Ruiz, and Wenzel Jakob. Radiative backpropagation:
An adjoint method for lightning-fast differentiable
rendering. ACM Trans. Graph., 39(4), 2020.

[23] NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek.
Cuda, release: 10.2.89, 2020.

[24] Matt Phar. Let’s stop calling it ggx.
https://pharr.org/matt/blog/2022/
05/06/trowbridge-reitz, 2023. [Online;
accessed 22-February-2023].

[25] Matt Pharr, Wenzel Jakob, and Greg Humphreys.
Physically Based Rendering: From Theory to Imple-
mentation (3rd ed.). 3rd edition, oct 2016.

[26] Bui Tuong Phong. Illumination for computer gener-
ated pictures. Commun. ACM, 18(6):311–317, 1975.

[27] Peter Shirley and Steve Marschner. Fundamentals of
Computer Graphics. 3rd edition, 2009.

[28] Tanaboon Tongbuasirilai, Jonas Unger, Joel Kro-
nander, and Murat Kurt. Compact and intuitive
data-driven brdf models. The Visual Computer,
36(4):855–872, 2019.

[29] K. E. Torrance and E. M. Sparrow. Theory for off-
specular reflection from roughened surfaces∗. J. Opt.
Soc. Am., 57(9):1105–1114, Sep 1967.

[30] T. S. Trowbridge and K. P. Reitz. Average irregularity
representation of a rough surface for ray reflection. J.
Opt. Soc. Am., 65(5):531–536, May 1975.

[31] Greg Turk and Marc Levoy. Zippered polygon meshes
from range images. In Proc. SIGGRAPH ’94, page
311–318. ACM, 1994.

[32] Eric Veach. Robust Monte Carlo Methods for Light
Transport Simulation. PhD thesis, Stanford, CA, USA,
1998. AAI9837162.

[33] Delio Vicini, Sébastien Speierer, and Wenzel Jakob.
Path replay backpropagation: Differentiating light
paths using constant memory and linear time. ACM
Trans. Graph., 40(4):108:1–108:14, 2021.

[34] Bruce Walter, Stephen R. Marschner, Hongsong Li,
and Kenneth E. Torrance. Microfacet models for
refraction through rough surfaces. In Proc. of the
18th EGSR’07, page 195–206.

[35] Jingjie Yang and Shuangjiu Xiao. An inverse render-
ing approach for heterogeneous translucent materials.
In Proc. of the 15th ACM SIGGRAPH, page 79–88.

[36] Tizian Zeltner, Sébastien Speierer, Iliyan Georgiev,
and Wenzel Jakob. Monte carlo estimators for dif-
ferential light transport. ACM Trans. Graph., 40(4),
2021.

[37] Cheng Zhang, Bailey Miller, Kai Yan, Ioannis
Gkioulekas, and Shuang Zhao. Path-space differ-
entiable rendering. ACM Trans. Graph., 39(4):143:1–
143:19, 2020.

[38] Shuang Zhao, Wenzel Jakob, and Tzu-Mao Li.
Physics-based differentiable rendering: From the-
ory to implementation. In ACM SIGGRAPH 2020
Courses.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
87

88

Visualization

Scatterplot Visualization of Hierarchically Clustered Data Points

Daniel Gruncl*

Supervised by: Ing. Ladislav Čmolı́k, Ph.D.†

Faculty of Electrical Engineering
Czech Technical University in Prague

Abstract

The focus of this paper is real-time visualization of and in-
teraction with scatterplots with hundreds of thousands of
data points, where the points are organized into a hierar-
chy of clusters. We present a technique that automatically
selects a color palette for the clusters of the selected level.
The level of the cluster hierarchy and the color palette are
dynamically adjusted by zooming the scatterplot. Further-
more, the technique improves visibility of the displayed
clusters by reducing occlusion of the overlapping clusters.
We demonstrate the visualization technique using two real
medical datasets containing 2D coordinates of hundreds of
thousands points.

Keywords: hierarchical data, cluster visualization, scat-
terplot, dynamic color palette

1 Introduction

Applications of different clustering algorithms in
biomedicine play a key role in advancement of data
analysis. Namely, protein-protein interactions (PPI)[9]
and protein expression, genomic sequence analysis, MRI
image analysis etc., require different cluster analysis and
assumptions. Hierarchical clustering as a method of clus-
ter analysis aims to build a hierarchy of similar clusters to
identify informative natural clusters of observations, adds
additional complexity to this problem. The visualization
aims to present the properties of such datasets, that is the
hierarchical structure, the density of the clusters and their
mutual overlaps as well. This is important for physicians
to distinguish substantial overlap in diseases spectrum [1].

The clustering algorithms can be divided into hierarchi-
cal and partitioning. Hierarchical clustering algorithms
can be subdivided into agglomerative (bottom-up clus-
tering) and divisive (top-down), which perform recursive
partitioning. Since the boundaries of the clusters cannot
be objectively defined, hundreds of clustering algorithms
have been proposed, each with different priorities. Thus, it
cannot be said which algorithms are better or worse, as the
algorithm’s performance is often dependent on the char-
acteristics of the information demanded as well as on the

*gruncdan@fel.cvut.cz
†cmolikl@fel.cvut.cz

dataset itself.
To present the data, reduction from n-dimensional to 2D

or 3D space is needed. Based on the deformation of space
caused by the dimension reduction, the dimension reduc-
tion algorithms can be divided into linear, nonlinear, and
those that have been implemented in both linear and non-
linear variants. PCA is a commonly used linear method
that flattens the data along axes of minimal variance. t-
SNE, a nonlinear method, aims to separate clusters in the
data and avoid overlap of clusters of different categories,
which may distort the data as the clusters might have over-
lapped in the original data. MDS has been implemented
both as linear and nonlinear. This method reduces dimen-
sion while minimizing distortion of mutual distances be-
tween data points. An overview of the clustering and di-
mension reduction algorithms is provided by Wenskovitch
et al. [10].

In this paper, we present our progress on the scatterplot
visualization of large datasets of medical observations rep-
resented as n-dimensional data points organized into a hi-
erarchy of clusters. Hierarchy is given as a tree, whose
leaves contain points in 2D space. The hierarchy subdi-
vides data points into clusters based on their mutual prox-
imity. At the same time, some of the nodes in the hierarchy
maintain the assignment of all their child nodes to a cer-
tain population. These nodes are disjunctive and provide
complete coverage, meaning that every point in the data
set is associated with exactly one population. Therefore,
while the nodes of the hierarchy signify spatial proximity
and clustering in the data points, some of the nodes also
categorize the clusters into populations. Overlaps of clus-
ters of different populations signify interactions between
the populations.

The challenges of visualizing such observations are the
scale of the data, namely the high count of points, causing
heavy overdraw, and the high number of categories, which
is only amplified by the hierarchical structure of clusters.
The next challenge is the overlap of points of different
categories, which makes the separation of points difficult.
The characteristics of the data also rule out the utilization
of position as a visual channel, as the data are represented
as a set of hundreds of thousands points, whose original
n-dimensional position is projected into 2D using dimen-
sion reduction techniques (e.g., PCA, NMF, t-SNE). This
leaves us to separate clusters only by color since high point

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)

count limits utilization of visual channels such as size and
shape of points as well. We propose a visualization tech-
nique that allows for the analysis of such data. The pro-
posed approach has three main contributions:

1. Real-time visualization rendering, allowing interac-
tive close-up examination of visualized data.

2. Color separability of clusters and their identification
in the hierarchy.

3. Identification of cluster density and their overlaps.

2 State-of-the-art

The overdrawing issue can be reduced by data abstraction
techniques, such as binning, contouring the density func-
tion (that is, converting dense parts of the clusters into ar-
eas while outliers are displayed as points), or subsampling
of the data.

Heimerl et al. [5] designed a technique of binning data
points into a honeycomb grid, with each cell containing a
bar graph or pie chart representing the distribution of in-
dividual categories in the cells. The background of the
cell can also be saturated to communicate the density of
the data points. However, the often complex structure of
clusters in our data and rapid changes in cluster density,
would require a high number of cells to keep the visual-
ization representative. Breaking continuous areas of sin-
gle color into a number of small icons, coupled with the
much higher number of categories than Heimerl et al. [5]
planned for, would lead to visual clutter and decrease the
discernability of categories significantly.

Chen et al. [4] in their article demonstrate subsam-
pling by sampling a density function, reducing overdraw-
ing while preserving density information and relative rep-
resentation of data categories compared to original data.
Visualization by contouring the density is also provided,
but overlapping colored areas causes color mixing, thereby
significantly reducing the discernability of colors while
losing density information of as well. However, sampling
a density function seems feasible and may be employed in
further developments of our work.

The color separability of many categories can be im-
proved by using a dynamic color palette, which takes ad-
vantage of situations where only some categories have sig-
nificant representation on the screen. Such a technique was
developed by Waldin et al. [8]. The technique, named
Chameleon, also provides hierarchical subdivision of the
color space, which too is desired for our purposes.

Chameleon is designed for coloring the internal struc-
tures of viruses and cells. Here, at the highest level of
the hierarchy are the structures of the virus, such as the
lipid envelope and the capsid, in which the individual pro-
teins can be distinguished after zooming in, as well as the
domains and the atomic structure of the proteins. When
gradually zooming in, only one or a few structures from

a) b) c)

Figure 1: Hierarchical subdivision of color when zooming
in on certain cluster. a) Color wedges are allocated only
for the top level of hierarchy. b), c) With increased zoom,
lower levels of hierarchy are visualized with distinct col-
ors. The size of the color wedges corresponds to the hy-
pothetical relative representation of individual clusters and
subclusters on the screen.

higher levels of the hierarchy can fit on the screen, so there
is no need to divide the color space among all of them but
only among the visible ones. Thus, for each structure on
a higher level, a larger part of the color space can be allo-
cated, which can be further divided to be allocated to lower
structures, as can be seen in Figure 1.

3 Our Approach

We have decided to visualize the data as-is, without ab-
straction or resampling. A dynamic color palette with hi-
erarchical coloring is employed to improve cluster discern-
abilty, while rendering points with transparency will allow
for visualization of density and overlaps of the clusters.
The visualization is GPU accelerated to achieve interac-
tive real-time rendering.

3.1 Dynamic color palette

The method of coloring data points is based on the dy-
namic color palette developed by Waldin et al. [8], but with
regards to the different characteristics of the data, several
modifications have been made. The first modification is
given by the fact that the data are individual points, not
forming distinguishable continuous objects such as pro-
teins. Therefore, it is impossible for the color spaces of in-
dividual hierarchy nodes to overlap, thereby reducing the
space available to nodes at lower levels of the hierarchy.
Furthermore, the number of hierarchy levels can be greater
than it is in the case of visualizing a virus or cells. There-
fore, the dynamic palette method [8] is applied at all levels
of the hierarchy, except for the last one, where we do not
have to consider the needs of any subclusters, and thus.
maintaining color discrenibility remains the only priority.
The color space is thus – in correspondence to the hierar-
chy – recursively divided into smaller and smaller sections
(Figure 1).

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
92

a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a) b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)

Figure 2: a) HCL implementation by Zeileis et al. [11].
b) HCL implementation from Catalano framework [3] sat-
isfies the property of isoluminance better, notably in the
dark green part of the spectra.

To prevent one dominant cluster from taking up all the
color space, Waldin et al. [8] have imposed limit on the
maximal size of the color wedge allocated to a single clus-
ter. This way, the maximal size of one single color wedge
at the k-th level of the hierarchy is ak, where a, ranging
from 0 to 1, is the size limit. To maintain the distinguisha-
bility of colors at lower levels of the hierarchy, the size
limit a was set to a value higher than recommended by
Waldin et al., namely 0.75 instead of 0.5. Also, because
the number of subclusters may vary significantly across
clusters, the size limit may be too high for some clusters
with only a few subclusters. Thus, we have imposed an
additional size limit at the top level of the hierarchy. The
limit is the number of descendants ni of a i-th cluster at the
top level of the hierarchy multiplied by an appropriately
chosen constant 0.08. In conclusion, the maximal size for
cluster at k-th level of the hierarchy being descendant of
i-th top-level cluster is

min(0.08ni,0.75) ·0.75k−1. (1)

The original method sets size of color wedge allocated
to individual clusters proportionally to the number of sub-
clusters visible on the screen. In our case, even at a high
level of zoom, most subclusters are present on the screen
due to the wide scattering of the clusters. This results in al-
most no color space being released when zooming. There-
fore, we have decided to size the color wedge proportion-
ally to the number of points in the given cluster located
on the screen. Allocating by the number of points is very
aggressive, which achieves a good distinction of points ac-
cording to their belonging in the hierarchy. On the other
hand, in certain situations, the assigned colors may change
significantly when the view changes, possibly confusing
the user. The limits imposed on the maximal size of color
wedges reduced this artifact. Other applicable methods
are normalizing the number of points in individual clus-
ters, weighting by the square root of the number of plotted
points, or blending uniform and weighted color allocation.

3.2 Color model

HCL is a family of color models having channels hue,
chroma and luminance. HCL models are isoluminant and
perceptually uniform and thus often used in computer vi-
sualizations [8][4][7]. We have used the implementation
of the HCL color model developed by Zeilies et al. [11],

Figure 3: Top line: coloring using hue only. Bottom line:
coloring using hue and brightness.

which contains HCL-to-RGB conversion chain. Part of the
chain is XYZ-to-RGB conversion, where we have used
Catalano’s implementation [3] instead, since in our ex-
perience it better satisfies the property of isoluminance
(see Figure 2). The HCL color model is implemented as
CIELAB with axes A∗ and B∗ transformed to polar coordi-
nates. The hue channel is used to differentiate the clusters,
as it is the only one that does not visually imply sorting.

But, since the first level of hierarchy of visualized
data contains over twenty nodes, comparing to the
data, for which the dynamic color palette developed by
Waldin et al. [8] was designed, where first level of hierar-
chy only contains up to ten nodes, the hue channel alone
proved to be insufficient to reliably distinguish clusters of
data points (see Figure 3). This is also due the used model
CIELAB not being perfectly hue uniform [6] and in the
area of the blue hues, distance between distinguishable
hues is greater than it is for the other color hues.

Therefore, two channels, hue and luminance, are used
in coloring the first level of the hierarchy. The chroma
channel is not utilized because it interferes with the hue.
Hue is used as the primary channel, where each group uses
a different hue. Luminance is used as a complementary
channel to avoid blending in with the background. Be-
cause the technique of color optimization used by Waldin
et al. is only designed for optimizing color palette in one
dimension, a low number (five) of fixed brightness levels is
used, which are assigned to successive nodes in the clus-
ter hierarchy. The order of the used luminance levels is
permuted so that adjacent sections in the hue channel are
not assigned adjacent luminance levels, thereby increas-
ing the tonal distance of the colors assigned to successive
clusters. All nodes in the hierarchy are colored using the
same luminance level as their parent. The use of two chan-
nels improved the separability of clusters, as can be seen
in Figure 3.

3.3 Data density

Visual encoding using the luminance channel excludes
the rendering of points using transparency, because in the
case of a white1 (achromatic in general) background, lu-
minance interferes with transparency, that is, the differ-
ence in the brightness of the colors of individual clusters
is not discernible; darker clusters only look sparser. Also,
when transparency is used, colors will be mixed, which
will worsen the distinguishability of individual clusters,
and new colors may even appear. Therefore, in order to

1Visualization uses black background by default, as it makes clusters
stand out better, white background mode was added for print.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
93

preserve the distinctness of the individual clusters, the ren-
dering is performed without transparency.

However, this introduces two new problems: the depen-
dence of the visualization results on the rendering order
(Figure 4a, b), which distorts the information about clus-
ters overlap and loss of the data density information.

The rendering order issue was resolved by performing
a depth test and assigning a random depth to each point.
This way, the overlap of the groups depends on their den-
sity; a denser group has a statistically greater chance that
out of the number of points falling within one pixel on
the screen, its point will have the smallest depth of all and
thus will be displayed over the others. This technique also
achieves proper visualization of cluster overlaps without
mixing colors. Figure 4 compares the differences on two
overlapping clusters, blue one linearly falling off in down
direction and brown one linearly falling off in left direc-
tion.

We will now demonstrate that the probability of a clus-
ter being on top in a given pixel corresponds to its relative
representation at the pixel. The depth of cluster X at pixel
p contributing to the pixel with l samples is the minimum
of l samples of uniform random variable with range 0 to
1. The probability of one such sample being lower than
x ∈ ⟨0;1⟩ is x. Therefore, probability of l samples being
lower than x is xl , which is the CDF function of cluster
depth at the pixel. Thus, when cluster X is contributing to
a pixel with l samples, and all other clusters (Y) combined
contribute with k samples, probability of X being on the
top is calculated as difference between two random vari-
ables with CDF functions

FX (x) = xl , (2)

FY (y) = yk. (3)

The sum of two random variable is calculated as a con-
volution. The formula for sum can be modified to differ-
ence as such:

P(X +Y ≤ z) =
∫ ∞

−∞
fX (x)FY (z− x)dx, (4)

P(X −Y ≤ z) =
∫ ∞

−∞
F ′

X (x)FY (z+ x)dx, (5)

although in case of difference, the formula is not commu-
tative anymore. The formula can be further modified to

P(X ≤ Y) =
∫ 1

0
lxl−1xkdx. (6)

The result of the integral is

P(X ≤ Y) =
l

l + k
. (7)

As we can see now, when k+ l is normalized to 100, the
probability of X being on the top is l%.

As for visualizing the data density, the transparency set-
tings of the plotted points have been made available to the

a) b) c) d)

Figure 4: a), c) Blue over brown. b), d) Brown over blue.
a), b) No depth test. c), d) Depth test with randomized
point depth.

a) b) c)

Figure 5: a) Single-pass rendering. b) Two-pass render-
ing. c) Single-pass with lower transparency causes order-
dependent result. Unlike in Figure 4, an exponential falloff
is used here.

user so that s/he can view the density if necessary, even
though this distorts the information about the points be-
longing to groups. In this mode, it is necessary to disable
the depth test so that no points are neglected and to disable
the use of the luminance channel, as it would distort the
perceptual transparency.

When visualizing data density using transparency, we
find that for high transparency settings, very sparse areas
where there are only a few points, surrounded by a black
background, are hard to see, and at low transparency set-
tings, the difference in density between the rims and the
centers of the clusters cannot be discerned. We cannot
increase transparency, as due to alpha blending, clusters
drawn last would cover earlier drawn clusters, as can be
seen in Figure 5c, top right, where the blue cluster incor-
rectly covers the brown cluster. Therefore, a non-linear
dependence between transparency and density is needed.
We implemented this as rendering with transparency in
two passes (comparison in supplementary video 2) .2 At
first, all points are rendered with a transparency lower than
the user set, and on each screen pixel, only the first point
that fell into the pixel is rendered. Then all the data is re-
rendered over the previously drawn data using the trans-
parency level set by the user. In both passes, the points
are drawn in the same order so that the distortion given by
color mixing is the same in both passes.

3.4 Color assignment order

Looking at Figure 6, we notice that some very close or
overlapping clusters of points are colored in similar col-
ors, thus merging and creating the impression of a single

2https://drive.google.com/drive/folders/
1yLt3SFyOHZMTO00O3J20oP4wAha0KPrk?usp=sharing

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
94

a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a) b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)

c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)

c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)

d)d)d)d)d)d)d)d)d)d)d)d)d)d)d)d)d)

Figure 6: a),b) Co-located groups colored with a similar
shade. c) Disjointed cluster. c) and d) might create im-
pression of one disjointed cluster.

group. For example, the two clusters, a) and b), are colored
in a similar shade of green. An easy distinction between
those two clusters could be achieved by permuting the or-
der of colors so that the co-located clusters are colored by
colors distant in the color space, as proposed by Lu et al.
[7]. But this may create the problem of two distant clus-
ters dyed with a similar color creating the impression of
one disjointed cluster, as shown in Figure 6 by clusters c)
and d). Similar shades of color are easier to recognize if
placed close to each other. Thus, we decided not to per-
mute the color spaces.

3.5 Context selection

Waldin et al. [8] mention improving the discernability of
user-selected area of interest by desaturation of the sur-
roundings. In our case, the context selection aims to give
a full overview of clusters of the hierarchy (see supple-
mentary video 2, time 0:04) . However, since the mere
desaturation of the surroundings turned out to be an in-
sufficiently discriminating channel (see Figure 7b), the
luminance channel was additionally used to brighten of
the surroundings. Desaturation needs to be used together
with brightening, as brightening alone makes colors ap-
pear more saturated. Saturated background is undesirable,
as it draws users’ attention away from the selected con-
text. Desaturation and brightening are already sufficiently
distinctive, but there remains the problem of covering the
highlighted cluster with a denser cluster (7c), which can
be solved by moving the highlighted cluster to the fore-
ground, but this results in the suppression of the con-
text, and we lose information about the background of the

a) b)

c) d)

Figure 7: A comparison of context highlighting methods:
a) No context highlighting. b) Highlighting with chroma.
c),d) Highlighting with chroma and luminance. d) High-
lighting cluster is brought to front, thus not overlapped by
any cluster.

marked cluster (7d). The user is given the option to switch
between these two methods since it cannot be conclusively
said which one is better. Comparing to 7a, we can now see
that the context selection gives us an overview of the clus-
ter, which would otherwise remain unknown.

4 Results

An application visualizing clusters of real measured hier-
archically grouped data in real-time was created. Run-
ning on AMD Ryzen™ 5 3500U APU with integrated
Radeon™ Vega 8 GPU, we have measured 30 FPS on a
dataset with 250,000 points and 68 leaf nodes in the hier-
archy and 45 to 60 FPS on a dataset with 800,000 points
and 50 leaf nodes, which shows that the number of cate-
gories has a higher performance impact than the number
of points. This is due to synchronization between CPU
and GPU, caused by querying the number of drawn points
after each node drawn. Therefore, smooth running of the
visualization on low-end hardware might require rework-
ing the querying to be made for all nodes at once and thus
making only one query per frame.

Due to the unavailability of hierarchy data, cluster
data were additionally divided into subclusters using the
Kmeans++ method [2], resulting in three levels of hierar-
chy. The application is written in the Java language and
utilizes GPU accelerated rendering trough the JOGL li-
brary, which is a Java binding for OpenGL.

The visualization allows to distinguish individual clus-

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
95

Figure 8: Hierarchical coloring.

ters in a multilevel hierarchy, as shown in Figure 8, where
zoom at three consecutive levels is depicted. Individual
clusters at any level of the hierarchy can be highlighted
(Figures 9, 7) by double-clicking on the cluster of interest.
To make selection easier and to allow the selection of an
entire subtree or of a cluster overlapped by other clusters,
a visualization of the hierarchy as a tree was added to the
visualization (Figure 9). The selection is done by double-
clicking on a node in the tree.

Figures 10b and 11b demonstrate improvements
achieved by two-channel coloring and nonlinear trans-
parency. A comparison of these two figures also shows dif-
ferences between discernability-based visualization (Fig-
ure 10) and density-based visualization (Figure 11). The
density based visualization allows for precise perception
of the shapes of the two large blue clusters at the top left
of the visualizations, but at a cost of lower discernability
of the clusters’ category.

4.1 Limitations

An unsolved issue is the color inconsistency of the dy-
namic color palette at high zoom. In most cases, the color
difference between adjacent subclusters is satisfying, but
typically in very scattered clusters, there are cases where
the color shades of the subclusters are very far from each
other, and significant color changes occur when the view
is moved or zoomed in or out (supplementary video 1) . In
a related issue, color differences between clusters having a
relatively low number of points are small, making distin-
guishing them difficult, as can be seen in Figure 6, clusters
c) and d). However, context highlighting can be used to
resolve this issue.

Since only the division of groups at the population level

of the hierarchy was available at the time of design, it was
necessary to extend the hierarchy artificially for testing
purposes. To subdivide the available data into a multi-level
hierarchy, the K-means++ [2] method was used, which is a
heuristic hierarchical clustering method often used in sta-
tistical data analysis.

5 Conclusion

A visualisation of hierarchically clustered multi-
categorical data of medical measurements was created.
Such a visualisation is important for medical diagnoses
and development. The visualised properties are the
density of the clusters, their mutual overlaps and the
hierarchical structure.

The nodes of the hierarchy are separated by color with
color resolution of twenty-six clusters. Due to the large
number of categories, it was necessary to use two color
channels, hue and brightness, to achieve resolution. Af-
ter zooming in, up to seventy clusters can be distinguished
with the use of the dynamic color palette. It takes advan-
tage of the fact that the vast majority of these seventy clus-
ters are not visible on the screen when zoomed in. When
zooming in, it was necessary to increase the size of the ren-
dered points, which is proportional to the degree of zoom,
in order to maintain color resolution. In the application, it
is possible to specify at which zoom levels coloring with
different colors should be activated at individual depths of
the hierarchy.

Due to the mutual exclusion of cluster discriminabil-
ity and density visualization, two visualization modes
were created. Density-focused mode renders points with
transparency, while discriminability-focused mode ren-
ders fully opaque points. Both modes respect the mu-

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
96

Figure 9: Context selection and hierarchy visualization.
The selected hierarchy can also be seen it the tree.

tual overlap of the clusters, i.e., that where several clusters
overlap, the color distribution corresponds to the density
of the individual clusters. In the case of opaque rendering
of points, the overlap visualization was achieved by acti-
vating the depth test and randomizing of the point depth.

5.1 Further developments

Visualisation of the hierarchy can be augmented to dis-
play the relative frequency of points in individual clusters
by scaling individual nodes in the hierarchy visualisation
proportionately.

The dynamic color palette can be extended to two di-
mensions, that is both hue and luminance being assigned
dynamically based on the situation. This would improve
the utilization of the available color space and the discern-
ability of the clusters as well.

A mentioned but unexplored method is to place labels
in the visualization, which would make it easier to dis-
tinguish and identify individual clusters. The labeling of
the clusters needs to consider the density and overlapping
of the clusters, as naive label placement would produce
ambiguous or confusing labeling. Čmolı́k and Bittner
[12] propose a method that evaluates places of possible
label anchoring based on local opacity salience, overlap
salience, and the distance from the edge of the labeled ob-
ject.

The technique of subsampling the data might also be
helpful in achieving the visualization of the density of
clusters while maintaining the distinctness of the clusters.
A suitable subsampling technique is described by Chen et
al. [4], aiming specifically at improving the visualization
of overlapping clusters in a multi-class scatterplot.

References

[1] Hany Alashwal, Mohamed El Halaby, Jacob J
Crouse, Areeg Abdalla, and Ahmed A Moustafa.
The application of unsupervised clustering methods

a) b)

Figure 10: a) Coloring using hue only. b) Coloring using
hue and brightness.

a) b)

Figure 11: a) Single-pass rendering. b) Two-pass render-
ing.

to alzheimer’s disease. Frontiers in Computational
Neuroscience, 13:31, 2019.

[2] Jason Altschuler. Github - jasonaltschuler: Im-
provements on classical kmeans clustering, 2013.
https://github.com/JasonAltschuler/KMeansPlusPlus
[online; accessed 2023-01-05].

[3] Diego Catalano, Robert Theis, and Yuri Pourre.
Github - diego catalano/catalano-framework: Frame-
work, 2013. https://github.com/DiegoCatalano [on-
line; accessed 2023-01-05].

[4] Haidong Chen, Wei Chen, Honghui Mei, Zhiqi Liu,
Kun Zhou, Weifeng Chen, Wentao Gu, and Kwan-
Liu Ma. Visual abstraction and exploration of multi-
class scatterplots. IEEE Transactions on Visual-
ization and Computer Graphics, 20(12):1683–1692,
2014.

[5] Florian Heimerl, Chih-Ching Chang, Alper Sarikaya,
and Michael Gleicher. Visual designs for binned ag-
gregation of multi-class scatterplots, 2018.

[6] Rolf G. Kuehni. Hue uniformity and the cielab space
and color difference formula. Color Research & Ap-
plication, 23(5):314–322, 1998.

[7] Kecheng Lu, Mi Feng, Xin Chen, Michael Sedlmair,
Oliver Deussen, Dani Lischinski, Zhanglin Cheng,

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
97

and Yunhai Wang. Palettailor: Discriminable col-
orization for categorical data. IEEE Transactions on
Visualization and Computer Graphics, 27(2):475–
484, 2021.

[8] Nicholas Waldin, Mathieu Muzic, Manuela Waldner,
Eduard Gröller, David Goodsell, Autin Ludovic, and
Ivan Viola. Chameleon. Eurographics Workshop on
Visual Computing for Biomedicine, 2016, 09 2016.

[9] Jianxin Wang, Jun Ren, Min Li, and Fang-Xiang Wu.
Identification of hierarchical and overlapping func-
tional modules in ppi networks. IEEE Transactions
on NanoBioscience, 11(4):386–393, 2012.

[10] John Wenskovitch, Ian Crandell, Naren Ramakr-
ishnan, Leanna House, Scotland Leman, and Chris
North. Towards a systematic combination of di-
mension reduction and clustering in visual analytics.
IEEE Transactions on Visualization and Computer
Graphics, 24(1):131–141, 2018.

[11] Achim Zeileis, Jason C. Fisher, Kurt Hornik, Ross
Ihaka, Claire D. McWhite, Paul Murrell, Reto Stauf-
fer, and Claus O. Wilke. colorspace: A toolbox for
manipulating and assessing colors and palettes. Jour-
nal of Statistical Software, 96(1):1–49, 2020.

[12] Ladislav Čmolı́k and Jiřı́ Bittner. Real-time exter-
nal labeling of ghosted views. IEEE Transactions on
Visualization and Computer Graphics, 25(7):2458–
2470, 2019.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
98

Interactive Visual Analysis of
Anomalies in Simulations of Energy Flow

Fabrizia Bando-Bechtold*

Kresimir Matkovic (supervisor)†

VRVis Research Center, Vienna, Austria

Abstract

At a time when the demand for alternatives to gas and oil
is steadily increasing, the automotive industry faces the
challenge of designing vehicle systems, which are as ef-
ficient as possible. Vehicle system simulation is used for
concept analysis, subsystem design, and virtual compo-
nent integration. The high-level simulation model accu-
rately depicts the energy flow between different vehicle
parts over an extended period of time. The the result-
ing data is presented as a time-dependent edge-weighted
graph. The analysis and exploration of such data is a te-
dious task.

We propose a novel approach for exploring and analyz-
ing energy flow data at different levels of detail to assist
engineers and guide them to the events of interest. We
employ automatic anomaly detection techniques and pro-
pose intuitive navigation to time steps of interest. We
also propose expandable cards or labels that depict current
and overall data. Users can interactively and dynamically
choose how much information is displayed on the labels
by changing their level of detail. We provide four levels
of detail, each giving more information than the previous
level. The first level depicts the current amount of energy;
the second level shows sparklines for the energy flow over
the entire time interval; the third level shows a timeline
of anomaly occurrences; level four shows the sparkline
zoomed around the current time frame; finally, level five
depicts expands the label to a large display of the previ-
ous four levels of detail of the flow data for the selected
element.

The new approach is implemented as an interactive web
application. We are currently evaluating it with domain
experts. Since the initial feedback is very positive, we ex-
pect rapid adoption of the newly proposed approach by
automotive industry professionals.

Keywords: Visual Analytics, Anomaly Detection, Flow
Graph Visualization

*bechtold@vrvis.at
†matkovic@vrvis.at

1 Introduction

Creating and designing a vehicle is a difficult task in and of
itself. Consumer concerns about the environment and the
high operating costs of traditional fuel-powered vehicles
exacerbate the problem even further. Engineers working
in the automotive industry must therefore design systems
for cars that are both cost-effective and environmentally
responsible.

Once a system design is finished and before an actual
vehicle is built, engineers want to know how the poten-
tial system performs during a drive. They want to collect
and analyse data extracted from drives which are longer or
shorter and mimic different geographic and environmental
conditions. Driving on a hilly road or through snow, for
instance, is different from driving on a highway in good
weather. The car behaves differently in a traffic jam than
it does on a smooth ride. The energy flowing between the
system’s components is calculated over time for each of
these various settings. The analysis problem for hybrid
cars becomes even more difficult, because some system
components, like the battery, can be both sources and sinks
of energy flow during a single driving simulation. The po-
tentially large cardinality of the set of parameters alone
makes the analysis task intimidating. Engineers want to
collect this data for various driving cycles, which is not
feasible to do from real life test drives. Therefore, in the
design phase of a vehicle, when engineers carefully exam-
ine potential system component layouts, simulation plays
a significant role.

A simulation is a technique that mimics a real-world
system or process and tracks its evolution [2][17]. It is
typically run on a computer and is based on a model - of-
ten mathematical - displaying key characteristics of a pro-
cess. Simulations are frequently used when a real-world
process, such as monitoring car system components during
a test drive, is too complex and expensive to build or pro-
vide analytical solutions for. Computer simulation is also
used in vehicle engineering to improve the aerodynamic
properties of a component [12], the turbulent combustion
system [20], the influence of tail structure on the rear field
[13].

While simulations are frequently used in research and
design, analyzing such data can be time-consuming and
challenging, particularly when dealing with multivari-

Proceedings of CESCG 2022: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)

ate time-dependent data. As a result, linear analysis
of such time-dependent data takes a long time and is
labor-intensive.

We propose an analysis system, that can reduce the en-
gineers workload by conducting automatic anomaly detec-
tion on the data and visually guiding them to incidents,
which require more thorough investigation. The goal of
anomaly detection is to identify events that differ from the
norm [15][16]. Anomaly detection is often accomplished
by employing AI and training a model on a particular test
data set. Our approach employs anomaly detection tech-
niques, which are only dependent on the input data. This
has the advantage of being applicable to any given time-
series without the need for humans to identify anomalous
occurrences beforehand. We use anomaly detection to di-
rect the engineers’ attention to specific spots in the sim-
ulated test drive. The engineer might focus on the time
frame around the occurrence to assess whether or not the
system is behaving strangely.

Research on the effectiveness of visualizations shows,
that visualizations exploit a humans’ cognitive capabili-
ties and therefore increase the users performance for spot-
ting anomalous behavior [14]. Visual Analytics, especially
when guided, [6][18] supports humans in identifying pat-
terns and points of interest, discover previously unknown
connections, gaining fresh insight and making data-driven
decisions. Interactivity can further enhance the users per-
formance.

Interactive visualization has become a well-established
tool to support engineers in the exploration and analysis
of complex data. We, therefore, propose an interactive
visualization approach to further support engineers in the
analysis of energy flow data. In a collaboration with do-
main experts, we designed a novel visual analysis system
to support engineers in their work flow. The new approach
unifies automatic anomaly detection and interactive visu-
alization to guide engineers to events of interest.

Our proposed system can be generalized as a flow
graph. It consists of nodes, which represent the various
car’s components, and edges, which represent the energy
flowing between the components. In order to cope with
the complexity of the data, we abstract and give an
overview of the data in carefully designed visualization
elements. Additionally we provide the user with the
option to increase the displayed information, by preparing
various visualizations showing different details and only
displaying them on demand. The detected anomalies
are displayed in a timeline, giving a summary of the
anomalies.

The summarized main contributions of this paper are:

1. interactive visualization approach for the analysis of
energy flow data,

2. augmented and extended flow graph visualization

3. anomaly detection to guide users to incidents of in-
terest.

2 Related Work

Our proposed application is closely related to the existing
software AVL CRUISE™ M1[7] developed by AVL List
GmbH (“AVL”). The software is used to design a car’s
system and then simualte diverse test runs. After the sim-
ulation, engineers can analyse the behaviour of the system
by watching a replay, which shows a simple graph consist-
ing of all the car’s components as nodes and the flow of
energy between them as edges. The current energy value
of a component is showcased as two scalar values next to
the component as incoming flow and outgoing flow, which
is also visually encoded by the thickness of the edge. The
dynamic flow is further depicted by huge arrows moving
along the edge, with the arrow head facing the direction
of the flow, which can change during the drive. Due to
the redundant information incoming and outgoing labels,
the screen gets easily cluttered. We plan to solve this by
encoding all information in one label and decreasing the
size and quantity of the arrows. The visualization itself is
static and the user is unable to query further information.
We plan to implement diverse interactions such as vari-
ous playback modes, and interaction with and selection
of the components. The biggest limitation of the original
software, though, is the linear playback mode without any
indication of where and when during the simulation inci-
dents of interest happened. For this we plan extend the
visualization with automatic anomaly detection and dis-
playing them on a time line. This allows the user to only
watch the important parts of the visualization.

Matković et al. [11] introduce diverse visualization
techniques to process monitoring, namely history encod-
ing, multi-instruments and level of detail. Additionally
to displaying the current value, the authors encode val-
ues of the near past into their visualization (history en-
coding) by adapting a bar chart. Instead of encoding the
current value as a bar, which takes up a whole column
or row, they encode the value as a heavily saturated line.
Like this, they can add more data points by adding lines
and gradually decreasing the saturation for points further
in the past. This feature could be useful for our applica-
tion to show the recent change in energy flow to give the
user an idea of how the values changed, especially around
an anomaly. Matković et al. display several data values
within one virtual instrument, to easily compare related
values and quickly spot divergences (multi-instruments).
Another advantage of this approach is that it saves screen
space, allowing for showcasing a lot of information in a
condensed and easy to grasp manner. We make use of
this feature in our anomaly timeline (see Section 5) by
displaying different types of anomalies as a stacked one-
dimensional scatter chart. Focus and context approaches

1https://www.avl.com/cruise-m

Proceedings of CESCG 2022: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
100

coarsely represent the entire information in the available
screen space and give different levels of detail for differ-
ent degrees of interest. Users can see information with the
highest degree of interest in the highest level of detail, and
areas of low interest can be depicted as only a scalar value.
We employ this focus and context approach for displaying
condensed information of the flow of energy for each com-
ponent. Users can manually set the level of detail for each
component and see different visualizations, depending on
the selected level.

Cambridge Intelligence developed a JavaScript-
based toolkit for scalable timeline visualizations that re-
veal patterns in time data, mostly aimed at cyber security
and fraud detection analysis. The main feature is a scal-
able timeline, which highlights events occurring between
two entities. Its goal is to guide analysts in detecting pat-
terns and abnormal behaviour in events. The graph con-
sists of rows, each row dedicated to an entity. An event is
encoded as a (directed) line between the two rows of the
respective entities on a low zoom level and an aggreated
heat map on a higher. The software can be extended to
show a graph or network of the underlying data. Since the
view of the graph and the timeline are linked, users can
easily query subsets of the data. While the graph visual-
ization seems powerful enough, it does not allow dynamic
playback, or encoding aggregated information or statistics
into the graph itself. The timeline is a powerful tool to in-
vestigate events, but it uses a lot of screen space. As our
main focus is on the visualization of the graph, and only
enhancing it with a timeline, this does not seem feasible.
Though the aggregated timeline could be useful for future
extensions of the Energy Flow Explorer. [5]

3 Energy Flow Data and Analysis
Requirements

During a drive, a car is subjected to many different external
influences. Temperature, weather, traffic and such affect
the performance of the car’s components and the whole
system’s behaviour. Testing and analysing the behaviour
in the real world is not desirable due to unpredictable
weather and difficult reproducibility. Furthermore, for the
automotive industry simulations are vital to save costs and
reduce time to market their products.

A driving simulation imitates the drive with a hybrid
car from point A to point B under specific environmen-
tal circumstances, or with a given set of system param-
eters. For the simulation of our test data the software
AVL CRUISE™ M2[7] developed by AVL List GmbH
(“AVL”)3 was used. It is a ”multi-disciplinary vehicle sys-
tem simulation tool”, which allows for ”Powertrain Con-
cept Analysis”,”Control Function Development and Cal-
ibration”, ”Vehicle Simulation on Testbeds” as well as

2https://www.avl.com/cruise-m
3www.avl.com

”Sub-system Analysis” [9]. The latter can be used to per-
form detailed design layouts and optimizations of sub-
systems. It serves as the basis for our proposed analysis
tool, the Energy Flow Explorer.

The AVL CRUISE™ M software allows to simulate
the flow of energy between the components of the hybrid
car and is able to replay and show the amount of flow be-
tween components. Figure 1 depicts the simulation player
of the software, where the ”Mass flow [kg/s]” is distributed
within a small test-set containing eight components: an en-
ergy source (Boundary 1) and a target (Boundary 2). The
figure shows the direction and the amount of flow entering
and leaving a component on a small label attached to each
component. The view only allows for linear playback of
the simulation and analysing the simulation at a specific
point in time. The user has to watch the whole animation
to analyse the simulation and is provided with only very
limited information; no data aggregation or statistics are
performed. The visualization also gives no indication of
abnormal behaviour or the change of energy flow through-
out the whole simulation.

Figure 1: A frame captured from the replay of a small sim-
ulation using the software AVL CRUISE™ M. It shows
the direction and amount of the energy flowing between
components at the time of the capture.

The Energy Flow Explorer is an application with the
goal to solve the previously stated limitations and provide
better support for engineers from the automotive industry
in their analysis work.

Before designing the architecture of the system, we
thoroughly examined the analysis process together with
domain experts and abstracted the following requirements:

• R1 - Automatic Data Processing: load multiple sim-
ulation results from different sources

• R2 - Data Aggregation: support different types of
anomaly detection and data aggregation

• R3 - Model Structure: store system information in
simple and easy to query format

• R4 - Simulation Player: show energy flow between
components throughout simulation

• R5 - Improved ”Data-Ink Ratio” [18]: improve
data density and encoding in the visualization

Proceedings of CESCG 2022: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
101

• R6 - Anomaly Visualization: show anomalous be-
haviour in multiple levels of detail

• R7 - Multi-Resolution Data Graphs [18]: show dif-
ferent levels of detail on the data with overview first
and more detail on demand

To conform to these tasks, the designed system has to
fulfill the following criteria: read input data of different
formats; have the possibility to perform data analysis tech-
niques and data aggregation; perform queries on the data
and the model itself; display various non-standard visu-
alizations and provide user interaction. Since the system
should support powerful data analysis as well as user in-
teraction, a client-server architecture following the
request-response model is employed:

1. Data Handling & Analysis: a python server is respon-
sible for reading the source data, generating an easy-
to-query model data structure, carrying out data anal-
ysis and responding to user queries (Requirements
T1-T3).

2. Data Visualization & User Interaction: a JavaScript-
based web-application displays the processed data in
an interactive dashboard, where the user is able to
freely manipulate and explore the data (Requirements
T4-T7).

Section 4 describes the first part of the system Data
Handling & Analysis, whereas the second part - Data Vi-
sualization - is described in section 5.

4 Data Handling & Analysis

Our application requires several types of input data. First,
a graph model consisting of information about each com-
ponent, such as physical properties, meta data and ports
(connection between two components). Second, the used
parameters for the simulation, which is required for select-
ing subsets in the data when comparing multiple simula-
tions (see Section 6 - Future Work). Third, the actual flow
data for each component for the whole simulation.6 - Fu-
ture Work).)
We chose Python4 due to its flexibility and vast data ma-
nipulation libraries. We employ a Flask5 server as it en-
ables easy creation of websites Data Handling & Analysis:
Once the user selects a simulation case-set, the server is
responsible for parsing the model data and generating the
component-flow model before performing anomaly detec-
tion on each component and sending the processed data to
the user.
Python provides multiple libraries for anomaly detection.
We used PyCaret [1], which provides a flexible and ex-
tensive framework for anomaly detection of time-series.

4www.python.org/
5flask.palletsprojects.com

Here it is possible to choose from a multitude of machine
learning based anomaly detection algorithms. We chose
Isolation Forest or IForest [10], an unsuper-
vised model. Using randomly chosen characteristics, an
Isolation Forest processes randomly sub-sampled data in
a tree structure. As they required more cuttings to sepa-
rate, samples that travel further into the tree are less likely
to include anomalies and samples that end up on shorter
branches tend to be anomalies. The second approach for
anomaly detection is a simple Min-Max Threshold
model, where the user can set a percentile, at which data
points below or above are marked as anomalous. Lastly,
we chose to use the Modified Z Score [8]. A z-score
in statistics indicates how many standard deviations a re-
sult deviates from the mean. However, unusually big or
tiny data values can have an impact on z-scores, so using a
modified z-score is a more reliable method of identifying
outliers, as it is based on the median rather than the mean.

Engineers desire a system where they can analyze mul-
tiple simulation runs for the same component system but
with different parameter settings at the same time and get
a feeling for the special features of the system as well as
its peculiarities and hidden correlations between compo-
nents. These aspects were already considered for the de-
sign of the system architecture, but not yet fully realized
at the publishing date of this paper.

The python server is split into the following components
to perform these tasks:

• DataFileParser:
The results generated by the AVL CRUISE™ M
come in different formats - ranging from .csv and
.xml to their own file format .gid - and vary
greatly in their structure. The DataFileParser pro-
vides all necessary functionality of requirement R1
- Automatic Data Processing to retrieve data from
all provided raw data files. Additionally it provides
methods to persist and load the generated models and
data to skip time-consuming processes such as per-
forming anomaly detection - a resource-heavy task -
in future analysis sessions of the same case-set.

• CaseSetManager:
This manager is responsible for invoking all oper-
ations happening on the server. It functions as an
organiser for the selected case-sets by loading the
model data and passing it to the ComponentManager,
where it is rearranged into a easy-to-query structure.
It then gives the order to aggregate the data with the
selected parameters and finally arranges all relevant
data and information into .json format to send to
the client.

• ComponentManager:
The systems model consists of different units:
Components, Ports, and Connections with
additional information on the flow direction (OUT-
going, IN-coming or NEUTRAL).

Proceedings of CESCG 2022: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
102

The ComponentManger stores all this informa-
tion and provides methods to perform diverse
queries on the components, such as selecting only
Components associated with a specific flow, and
re-structure the query result in different formats
needed by the client and hence fulfilling requirement
R3 - Model Structure (see Section 3 - 3).

• DataAggregation:
To visualize more information than just the simula-
tion results, the data needs to be processed and ag-
gregated. DataAggregation is responsible for read-
ing every component’s data and storing the wrangled
time-series data. It performs the above mentioned
anomaly detection algorithms, which can be extended
to any other outlier detection method. Additionally,
data aggregation methods are available to calculate
parameters such as the minimum, cumulative sum or
integral, though these are mostly used for the explo-
ration of multiple simulation ensembles (see section
6 - Future Work). This part of the system fulfills re-
quirement R2 - Data Aggregation (see Section 3).

Once all the required data has been compiled, the server
sends the data in .JSON format as a response to the client.
The server then waits for requests from the client, and re-
sponds adequately with data updates or setting changes.

5 Data Visualization & User Interac-
tion

The main motivation for our proposed application is to
improve the existing simulation player used by domain
experts to guide them to interesting incidents in the
mimicked drive. Therefore, the minimum criteria for our
visualization is to show the system component layout
with its connections and an animation of the calculated
results displayed with each component (requirement R4 -
Simulation Player of Section 3). The original animation
is linear, where users can change the playback speed. It
also tends to clutter due to redundant information and
spacious visualizations. To ease the analysis process
domain experts desire more succinct information at one
glance (requirement R5 - Improved ”Data-Ink Ratio”
of Section 3) and a visual feedback on where events of
interest occurred during the simulation (requirement R6
- Anomaly Visualization of Section 3). They desire an
overview of the simulation, but at the same time more
detailed information in certain areas (requirement R7 -
Multi-Resolution Data Graphs of Section 3). Lastly, the
new application should be interactive, enabling the user to
focus on specific areas, if desired.

For the client we opted for a web application, as it
has the advantage of not requiring the user to download
any specific software, is platform independent and many

versatile data visualization libraries exist. We used HTML
in combination with vanilla JavaScript and CSS.
Additionally, we use d3.js, ”a JavaScript library for
manipulating documents based on data”, as it is written
in JavaScript and allows web developers ”to bind
arbitrary data to a Document Object Model (DOM), and
then apply data-driven transformations to the document”
[4].

Figure 2: The proposed web application - Energy Flow
Explorer with its four main windows. a) the Simulation
Player shows the system layout, flows and Data Label’s.
b) the Anomaly Timeline depicts detected anomalies of the
simulation. c) Data Labels give detailed information on
demand. d) the Parameter View shows the applied param-
eters for the simulation.

To comply with all requirements we split the appli-
cation into four visualization parts as indicated by the
red rectangles in Figure 2: a) Simulation Player,
b) Anomaly Timeline, c) Data Label and d
Parameter Table .

First, the Simulation Player - the biggest visual-
ization in Figure 2 a - shows the layout of used compo-
nents in the selected simulation. Only the relevant compo-
nents are shown as gray boxes, as not all components may
be affected by the selected energy flow. Figure 2 a, e.g.,
shows the Energy Flow Explorer, where a model with 30
components was loaded but only 20 are visible, as only
those have ’Heat Flow’, the select flow parameter. Users
can display the inactive components on demand. All com-
ponents are connected by orthogonal flow lines, forming
a planar graph drawing. A flow is defined as a connec-
tion between one component with outgoing flow and one
with incoming flow, and displays the data from the out-
going component. The simulation software calculated a
scalar value for each flow at every point in time during the
simulated drive. These scalar values are reflected in the
thickness of the flow lines; the thickness is interpolated be-
tween the minimum and maximum flow thickness, which
can be set by the user. Although thickness is a visual en-
coding with low discernability of small changes ([3][19]),
we use it here to give a visual feedback on the current en-

Proceedings of CESCG 2022: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
103

ergy distribution throughout the system, as size in general
is a good visualizer for the quantitative data. In Figure 2
a, it is immediately visible, that there is a lot of energy
flowing between two components in the upper left part,
while only low amount of energy flows between the rest
of the components. Here it is less important how big the
change is between two frames, than how big the current
value is. Additionally, the color of the flow is gray, if the
current value is zero and navy blue otherwise. As the di-
rection of the flow can change during the simulation, the
current flow direction is indicated through animated half-
transparent arrows along the flow line. These features re-
alize requirement R5 - Improved ”Data-Ink Ratio” (see
Section 3).

The user can choose to animate the simulation, which
complies with requirement R4 - Simulation Player
(see Section 3). This updates the current flow value
and consequently the size, color, and arrow position and
direction

The Anomaly Timeline in Figure 2 b is dedicated
to showing the points of interest, or anomalies, and is
called Anomaly Timeline. As the name indicates, it
shows at which point in time an anomaly occurred. The
Anomaly Timeline has three rows, as we performed
three different anomaly detection techniques (IForest
anomaly detection, Min-Max Threshold, Modified Z
Score), each dedicated to one technique. An anomalous
point is indicated by a line and positioned relative to the
point in time when it occurred in the simulation, with the
left-most point translating to the start and the right-most
to the end of the simulation. The Anomaly Timeline
gives an overview of the anomalies of all components,
as can be seen in Figure 6. If the user wants to see the
anomalies of a specific component, they can add the
component to the timeline. The associated anomalies
will then appear on top of the summary timeline. In
Figure 2 b three components have been added. This
component-based timeline shows not every anomaly of a
component, but only those within a specified time frame,
i.e. x frames before and after the current time stamp,
creating a zoomed anomaly timeline. A zoom-window
linked to the time frame appears on the summary timeline
as soon as one component has been added to the zoomed
timeline (see Figure 3). The Anomaly Timeline
complies to requirements R6 - Anomaly Visualization
and R7 - Multi-Resolution Data Graphs (see Section 3)
by showing more details of anomalies when requested.
The user can move the zoom-window along the timeline,
as well as change the size. A mouse-over effect reveals the
anomaly type, component and time-stamp of an anomaly.
The mouse-over visually links the referenced component
by highlighting the corresponding Data Label in red
for a short time.

A Data Label is an interactive and responsive visu-
alization inherent to the Energy Flow Explorer. Each

flow has a Data Label, which is an expandable graph,
showing diverse information of the flow at multiple lev-
els of detail (LOD) (see in Figure 2 c). The label al-
ways shows the scalar value associated with the current
time stamp (see the first Data Label in Figure 4). The
scalar value is either green or red, depending on if the
difference in change since the last time stamp was posi-
tive or negative. The user can change the level of detail
of the Data Label by clicking on the [+] button or [-
] button on the right side. Showing the scalar value is
level of detail one (LOD 1). LOD 2 shows a Sparkline
of the whole simulation results for the associated com-
ponent. This gives the user an overview of the compo-
nents behaviour. Increasing the level of detail to 3 reveals
an Anomaly Timeline, showing the anomalies exhib-
ited by the component. A final increase in LOD shows a
zoomed sparkline, centered around the current time stamp,
with the same time frame as the zoomed timeline in visu-
alization b - Anomaly Timeline. When playing the
simulation, this time frame synchronizes with the zoom
window and therefore stays always up-to-date. The right-
most graph in Figure 4 depicts a Data Label at LOD 4,
showing the scalar value, the zoomed sparkline, overview
sparkline and anomalies. To not clutter the whole visu-
alization, these Data Labels are kept small to give an
overview, which can impede the analysis. To counter that,
the user can enlarge a Data Label so that it gives more
room and details to the graphs. Figure 5 shows the en-
larged view of component ’Map Based Engine’. In the
future we plan to provide a pin feature, where the user can
select maxed Data Labels and pin a smaller version of
them to the side of the explorer, similar to ”sticky notes”.
Future work might also include an extension of displayed
information, such as multiple spark lines, which show ad-
ditional statistical features e.g. the first derivative.

The user can choose to change the LOD for selected
components, or globally set the LOD in the settings menu.
In Figure 6 the global LOD level has been set to 4, the
maximum. This change in level of detail complies with
requirements R5, R6 and R7 (see Section 3).

The last part of the web application, the
Parameter Table (see Figure 2 d), is dedicated
to the parameters used in the simulation, as domain
experts want to examine the same model with differ-
ent parameters set. It shows the used parameters and
corresponding values. When analysing ensembles of
simulations the user will be able to see a summary here,
as well as have the ability to brush the data here, i.e. select
subsets of the simulations.

The user is able to animate the changes of values
throughout the simulation in a linear manner with vari-
able playback speed and pause whenever an anomaly is
hit. Still, watching the whole simulation, even at increased
speed, can take a long time, depending on the length of
the simulated drive. To avoid this, we provide a play-

Proceedings of CESCG 2022: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
104

Figure 3: The Anomaly Timeline displays the anomalies, subdivided by anomaly type; one row each. A line indicates
the occurrence of an anomaly somewhere in the system at the given point in time. The top figure shows the summarized
Anomaly Timeline showing all anomalies of the system, subdivided by anomaly types Iforest Anomaly, MinMax Threshold
and Modified Z Score. The second figure shows on the bottom the summarized timeline, and on top the timeline of a
specific, user selected, component. Here the timeline is zoomed according to the zoom window (indicated by the orange
rectangle in the summarized timeline) and shows all three anomaly types that arose in this component.

Figure 4: A Data Label showing its four levels of de-
tail (LOD). First, on the left, only the current energy flow
value is shown (LOD 1). Next to it, the label is extended
to LOD 2, showing the whole, unzoomed sparkline. For
LOD 3, the third Data Label, the anomaly timeline corre-
sponding to this component is added. The right-most Data
Label is extended by a zoomed version of the sparkline,
centered around the current time stamp (LOD 4).

back option to accelerate the animation until the current
time frame is near an anomaly. Before hitting the anoma-
lous point, the animation slows down, so that the user can
carefully watch the following time frames and examine
the changes. The user can choose that, when hitting an
anomaly, the Data Label associated with the compo-
nent where the anomaly arose automatically expands, cre-
ating a visual link to the anomaly occurrence in the system.

6 Conclusions & Future Work

A vehicle undergoes many cycles of evaluation and adap-
tation before it can be cleared for production. The eval-
uation process is based on several simulations of a drive
through various terrains and under divers conditions. The
analysis process is a tedious task and current systems leave
engineers wanting. We propose an interactive web appli-
cation, which alleviates this task by aggregating the sim-
ulation results as well as performing anomaly detection
techniques on it in a python-based server. The processed
data is displayed in an interactive web visualization with
four main views: the Simulation Player showing the sys-
tem layout, giving playback control and encoding addi-
tional information in the flows (lines connecting two sys-
tem components). The Anomaly Timeline turns the users

Figure 5: The Energy Flow Explorer with a selected Data
Label enlarged, giving more room and revealing more de-
tails of how the component was affected throughout the
simulation.

attention to points of interest in the simulation. The Data
Labels give the user additional information on a flow and
component at multiple levels of detail, if desired. The pa-
rameters used for the simulation are depicted in the Param-
eter View. The whole application is highly interactive and
gives the user an overview as well as detailed information
on demand and non-linear animation of the simulation.

The system is currently being extended to cater to the
analysis of multiple simulations concurrently, where the
user will also be able to further investigate subsets of se-
lected simulations brushing and linking. We also plan
to include a visualization showing the balance of energy
flowing into a component versus leaving it, revealing loss
or gain in energy. We plan on doing a thorough evaluation
together with domain experts, but first feedback has been
very positive.

7 Acknowledgements

VRVis is funded by BMK, BMDW, Styria, SFG, Tyrol
and Vienna Business Agency in the scope of COMET -

Proceedings of CESCG 2022: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
105

Figure 6: The Energy Flow Explorer showing the sys-
tem components and associated Data Labels at the highest
level of detail. Below the Parameter View and summarized
Anomaly Timeline

Competence Centers for Excellent Technologies (879730)
which is managed by FFG.

References

[1] Moez Ali. PyCaret: An open source, low-code ma-
chine learning library in Python, April 2020. Py-
Caret version 1.0.0.

[2] Jerry Banks, John Carson, Barry L. Nelson, and
David Nicol. Discrete-Event System Simulation (4th
Edition). Prentice Hall, 4 edition, December 2004.

[3] J. Bertin and W. Berg. Semiology of Graphics. Uni-
versity of Wisconsin Press, 1983.

[4] Mike Bostock. Data-driven documents.
https://web.archive.org/web/
20201031193629/https://d3js.org/.
[Online; accessed 14.02.2023].

[5] Cambridge Intelligence. KronoGraph.

[6] Brian Fisher. Illuminating the Path: An R&D Agenda
for Visual Analytics, pages 69–104. National Visual-
ization and Analytics Ctr (January 1, 2005), 01 2005.

[7] Wolfram Hasewend. AVL CRUISE. ATZ Automobil-
tech. Z., 103(5):382–392, May 2001.

[8] B. Iglewicz and D.C. Hoaglin. How to Detect and
Handle Outliers. ASQC basic references in quality
control. ASQC Quality Press, 1993.

[9] Ingo Lütkebohle. AVL CRUISE™ M. https:
//www.avl.com/cruise-m, 2009. [Online; ac-
cessed 27.01.2023].

[10] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou.
Isolation forest. In 2008 Eighth IEEE International
Conference on Data Mining, pages 413–422, 2008.

[11] Krešimir Matković, Helwig Hauser, Reinhard
Sainitzer, and Eduard Gröller. Process visualization
with levels of detail. In IEEE Symposium on Infor-
mation Visualization, 2002. INFOVIS 2002., pages
67–70, 01 2002.

[12] Gabriel Moldovan, Alessandro Mariotti, Laurent
Cordier, Guillaume Lehnasch, M. Salvetti, and Mar-
cello Meldi. Multigrid sequential data assimilation
for the large-eddy simulation of a massively sepa-
rated bluff-body flow. pre-print, 12 2022.

[13] Xian Qu and Jun Xie. Simulation analysis for effect
of rear structure of hatchback car on rear field char-
acteristics. Journal of Physics: Conference Series,
1815(1):012001, feb 2021.

[14] Maria Riveiro. Evaluation of normal model visu-
alization for anomaly detection in maritime traffic.
ACM Transactions on Interactive Intelligent Systems
(TiiS), 4, 04 2014.

[15] Lukas Ruff, Jacob Kauffmann, Robert Vander-
meulen, Gregoire Montavon, Wojciech Samek, Mar-
ius Kloft, Thomas Dietterich, and Klaus-Robert
Müller. A unifying review of deep and shallow
anomaly detection. Proceedings of the IEEE, PP:1–
40, 02 2021.

[16] K. Santhosh, Debi Dogra, and P. Roy. Anomaly de-
tection in road traffic using visual surveillance: A
survey. ACM Computing Surveys, 53:1–26, 12 2020.

[17] Young-Kyoon Suh and Lee Kiyong. A survey of
simulation provenance systems: modeling, captur-
ing, querying, visualization, and advanced utiliza-
tion. Human-centric Computing and Information
Sciences, 8, 12 2018.

[18] Edward R. Tufte. The Visual Display of Quantitative
Information. Graphics Press, Cheshire, CT, 2 edition,
2001.

[19] Johan Wagemans, Jacob Feldman, Sergei Gepshtein,
Ruth Kimchi, James R. Pomerantz, Peter A van der
Helm, and Cees van Leeuwen. A century of gestalt
psychology in visual perception: Ii. conceptual and
theoretical foundations. Psychological bulletin, 138
6:1218–52, 2012.

[20] Kamila Zdybał, Giuseppe D’Alessio, Gianmarco
Aversano, Rafi Malik, Axel Coussement, James
Sutherland, and Alessandro Parente. Advancing Re-
acting Flow Simulations with Data-Driven Models,
pages 304–329. Cambridge University Press, 01
2023.

Proceedings of CESCG 2022: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)
106

Partners of CESCG 2023

BE PART OF THE DEVELOPMENT
OF THE WORLD’S BEST 3D PRINTERS!

PRUSA3D.COM

Working with us is a truly remarkable adventure. We develop, invent,
and test… We have no limits on what is possible and what is not. We have
only one particular goal: to make the best 3D printers in the world!
That’s why we’re looking for skilled software and hardware developers
to join our development department. Interested?
Take a look at our development teams that could use a hand:

VISIT OUR WEBSITE FOR
CURRENT OPEN JOB

OPPORTUNITIES
WWW.PRUSA3D.COM

We use GitHub for software development
and internal projects, JIRA for progress

tracking, and Confl uence for documenting
work. We don’t send dozens of emails

to each other, we communicate through
Slack. Our company also o� ers a

well-equipped lab and workshop with
a large variety of tools: oscilloscopes,
spectrometers, lasers, CNC, etc. You

can also use revolutionary and exciting
technologies such as robotic arms or a
cybernetic dog from Boston Dynamics.

It’s up to you what you can do with them.

WHAT TOOLS DO WE USE?

FIRMWARE

C++ AND PYTHON

WE HAVE SEVERAL DEDICATED TEAMS. THESE
TEAMS DEVELOP SPECIALIZED FIRMWARE FOR

OUR FDM AND SLA PRINTERS.

PRUSA CONNECT

C++ AND PYTHON

WE ARE DEVELOPING A TOOL TO CONTROL
THE ENTIRE 3D PRINTING ECOSYSTEM

REMOTELY.

PRUSASLICER

C++

WE DEVELOP OUR OWN SLICING SOFTWARE FOR
PRINTING DATA PREPARATION AND WORKING

WITH 3D OBJECTS.

WEB DEVELOPMENT

PHP, PYTHON, DEVOPS (K8S),
JAVASCRIPT (REACT, ANGULAR)

WE HAVE SEVERAL WEBSITES,
ALL DEVELOPED IN-HOUSE.

VRVis Zentrum für Virtual Reality und Visualisierung Forschungs-GmbH, Donau-City-Strasse 11, 1220 Wien, Austria

VRVis Zentrum für Virtual Reality und

Visualisierung Forschungs-GmbH

The VRVis Research Center is a joint venture in
research and development for virtual reality and
visualization. VRVis was founded in 2000 as part of
the Austrian Kplus program to bridge the gap
between academic research and commercial
development as well as to supply the necessary
transfer of knowledge between the academic
community and industry. The competence center
VRVis is funded by BMVIT, BMDW, the Vienna
Business Agency, Styria and the Styrian Business
Promotion Agency (SFG) within the scope of COMET
– Competence Centers for Excellent Technologies.
The program COMET is managed by FFG.
The company is located in Vienna, Austria. Today,
around 70 researchers together with about 20
students do high-level applied and basic research in
four different areas.

The Team

VRVis consists of internationally experienced
researchers in the areas Visual Analytics, Complex
Systems, Smart Worlds and Multiple Senses. Their
outstanding experience and knowledge in these
topics qualify them for the innovative research they
are performing. The research areas are headed by
key researchers who manage these areas, define
goals and projects for this area, as well as conduct
the defined research together with their staff. Most
members of the research teams are young
researchers, whose creativity and ingenuity is the
key to the success. Beyond that VRVis has a friendly
and inclusive company culture, which translates
into great teamwork and –spirit, also outside of the
office (e.g. our running teams).

Research Program

The scientific research program consists of the
previously mentioned research areas in which
thematically matching projects are conducted. Each
research area realizes application projects on the

one hand and basic research for these application
projects on the other hand.

Working at VRVis

VRVis is always looking for students, junior and
senior researchers who want to join the team. VRVis
is offering regular positions as well as internships,
diploma and PhD theses in cooperation with
universities. For more detailed information or
currently open positions visit our website at
www.vrvis.at.

Selection of Partners

Scientific Partners:
• Vienna University of Technology
• Graz University of Technology
• University of Vienna

Industrial Partners:
• AVL List GmbH
• AGFA Healthcare GesmbH
• Austria Power Grid AG
• Geodata Ziviltechniker GmbH
• HILTI Corporation
• ÖBB-Infrastruktur AG
• RHI Feuerfest GmbH
• Zumtobel Lighting GmbH
• and many more

Currently, VRVis is again extending its industrial
base with new partners from several new fields.

Additional Information and Contact

Please visit our website for detailed information
about the research program or current projects at
www.vrvis.at or contact us at office@vrvis.at or via
phone +43 (1) 908 98 92.

	Extended Reality
	AR Postcards as a Learning Tool in Computer Graphics
	Improving the VR Experience in a Densely Populated Molecular Environment

	Computer Vision in Medicine
	GrowCut under StudierFenster
	Weakly Supervised Semantic Cell Segmentation Using Knowledge Distillation

	Computer Vision and 3D Reconstruction
	Distributed Surface Reconstruction

	Real-Time Rendering
	Real-time Rendering of Atmosphere and Clouds in Vulkan
	Foveated RTX Ray Tracing in Virtual Reality

	Optimization
	Controlling 2D Laplacian Eigenfluids
	Translucent Material Parameter Estimation

	Visualization
	Scatterplot Visualization of Hierarchically Clustered Data Points
	Interactive Visual Analysis of Anomalies in Simulations of Energy Flow

	Partners of CESCG 2023

