
Temporal Anti-Aliasing

Alexander Cech (08900070)

1 Overview

In this student project most of the temporal anti-aliasing (TAA) techniques described in the TAA
STAR report by Yang et al. [4] were implemented. The main goal was to write a testing application
that allows to experiment with different methods and parameters in varying scenes. The different
methods broadly fall into two categories: Acquisition of the temporal samples, and validation and
rectification of history data. The topic of temporal upsampling was also briefly experimented with,
but not followed up in depth. Additionally, TAA with adaptive ray tracing, as proposed by Marrs
et al. [3], was implemented.

2 Application Settings

As most of the command line or GUI parameters are self-explanatory or described via hints in the
application itself, only the settings that require further explanation are detailed in this report. A
complete summary of all parameters is given in appendices A and B.

Figure 1: Screen layout

2.1 Command Line Parameters

The application supports a number of command line parameters (see appendix A); execute taa -h

to get a description printed on the console. The window size or full-screen-mode can be controlled
with the -w, -h and -fullscreen parameters. A path to the scene to be shown can be passed as
final command line parameter; if omitted, the Sponza scene is used.

When experimenting with Temporal Upsampling, the parameter -upsample <factor> must
be used, so that rendering is performed at a lower resolution than the displayed window.

2.2 General Settings

• In the main settings window Info & Settings the light sources, rendering settings (mainly for
ray tracing LODs) and shadows can be parameterized in the corresponding sections.

• The section Camera allows to define automatic camera movement, like rotation, bobbing and
strafing. Additionally a fly-through path can be edited and executed from there.

1



• In Moving object an additional (optionally animated) object that moves relative to the scene
can be selected and its movement parameters defined.

• Section Debug holds settings for experimenting with temporally upsampling static images.
• The setting Cap framerate in the Rendering section (similar to the -vsync command line
parameter 1) is important for reproducibility on different computers: TAA, as implemented,
is not frame-rate-independent2. A number of artifacts that are visible on lower-end machines
are barely noticeable with more performant GPUs. By capping the frame rate maximum to
a value both machines can handle, consistent results can be achieved.

• Automatic camera movement is quite useful to analyse motion-induced anti-aliasing artifacts
and is typically used regularly when experimenting with parameters. To facilitate this, the
camera bobbing behavior can be toggled with the keyboard key B.

2.3 Anti-Aliasing Settings

All parameters affecting the core TAA techniques described by Yang et al. [4] can be controlled
in the Anti-Aliasing Settings window.

Sample acquisition

• The type and sequence length of the jittering pattern, which defines the sub-pixel-shift of
the rendering projection matrix, can be set in section Jittering.3

• The alpha parameter (in Params) defines the blending factor4 between the accumulated
history buffer and samples from the current frame.

• Luminance-adaptive tone mapping, as discussed in [4, Section 3.3.1], is activated with the
checkbox tonemap luma w. (Karis).

History validation and rectification

• Color clamping or clipping, as well as variance clipping is available for color based rectifica-
tion. Optionally these methods can be performed in the YCoCg color-space instead of RGB.
Typically clamping or clipping uses the minimum and maximum color in a 3x3 pixel neighbor-
hood. This can lead to box-like artifacts that look like low-resolution pixels when extreme
local minima/maxima are present. Both variance clipping as well as shaped neighborhood
can alleviate this problem. The difference is subtle: variance clipping works by using the
mean and standard deviation of the neighborhood pixels to restrict the clipping box, whereas
shaped neighborhood averages the extremes of a 3x3 and a 5-tap (cross-shaped) neighbor-
hood instead. Additional details about this topic are laid out by Karis [2]. In practice both
methods achieve similar results.

• Depth culling rejects history samples if their depth values differ too much from the expected
value (which is obtained either by reprojection or velocity-vectors).

• Reject out-of-screen rejects samples whose history-coordinates fall outside the screen (e.g.,
due to lateral or rotational camera movement).

• Use velocity and Vel.sampling determine whether (and how exactly) to use screen-space
velocity-vectors instead of reprojection: Using velocity can be turned off completely, acti-
vated for animated objects only, or used for all geometry. The sampling methods differ by
either taking pixel-wise velocities directly, or by smoothing the vectors by examining the
3x3 neighborhood and taking either the longest or the depth-wise closest velocity vector. In
practice no significant difference was observed between the sampling variants.

Dynamic alpha

• Luma weighting (Lottes) automatically chooses a pixel-specific alpha value for history blend-
ing (ignoring the alpha setting) based on the luminance difference between current sample
and history. Related settings are a min and a max, which define the possible range for the
calculated alpha.

1 The -vsync parameter lets the graphics driver fix the framerate to the monitor refresh rate, whereas the Cap
framerate setting allows to enter an arbitrary cap, controlled by the application itself.

2 A frame-rate-independent implementation makes little sense, since it would abandon additional quality that
can be achieved by more performant machines.

3 The additional settings in the Jittering section are mainly used for debugging.
4 Actually alpha is the inverse blending factor, i.e., the higher alpha the less blending.

2



• Vel-alpha influence uses the “pixel-speed”, i.e. the difference of the calculated 2D history-
UV coordinates and the current sample UVs, to determine a pixel-specific alpha. The idea
behind this is that areas with fast movement need to weigh current frame samples stronger,
while more quiet areas can better rely on the accumulated history.

• Rejection alpha defines the alpha value to use when history is rejected. (The default value
of 1.0 means: use the current sample.)

Other parameters

• Unjitter neightbourhood along with unjitter current sample and unjitter factor are experi-
mental settings used during development. Not useful in general.

• Interpol dictates the texture interpolation mode when accessing history samples. Possible
values are bilinear, bicubic B-spline and bicubic Catmull-Rom interpolation. Shader-wise,
bilinear is a simple texture lookup. The bicubic methods require multiple lookups (4 taps
for B-spline, 9 for Catmull-Rom), but lead to much crispier results, especially when motion
is involved (see Figures 2 and 9).

Figure 2: History sampling interpolation: Bilinear (left), Catmull-Rom (right). The camera was
constantly moving left/right. Higher-order interpolations result in sharper anti-aliased images,
especially when motion is involved.

• Sharpening applies a sharpening post-processing step. This can help to alleviate the subtle
blurriness resulting from TAA in some areas. Two implementations are available: a simple,
5-tap gradient-based sharpener, and FidelityFX Contrast Adaptive Sharpening (CAS).

• Dynamic antighosting is an experimental setting to help with ghosting artifacts, inspired
by Unreal Engine 4. The idea is to reject the history if there is no movement in a 5-tap
neighborhood currently, but there was movement at the current pixel in the previous frame.
This works reasonably well for locally restricted movers, but not for overall movement (i.e.,
camera motion), therefore the implementation is restricted to act on dynamic objects only.

• Reduce blend is an anti-flickering strategy, described by Karis [2]. It takes place after color
clipping/clamping has occurred and considers the (luminance) distance of the current pixel
to the clamping box. The blending factor is reduced (i.e., alpha is increased) the closer the
pixel is to being clamped.

• Noise is a purely experimental setting, which adds noise to the output image. Not useful in
general.

3



3 Adaptive Ray Tracing

In addition to techniques described by Yang et al. [4], adaptive ray tracing [3] was implemented,
which identifies potentially problematic areas (see Figure 3 for an example) during the TAA shader
pass: the screen-space derivatives of surface normals, depth values, material identifiers and lumi-
nance are calculated and added up to a weighted sum. Additionally, the pixels “ray tracing history
information” is taken into account, i.e., whether it was marked for ray tracing in the previous
frame(s). Pixels where this sum exceeds a user-settable threshold are marked for ray tracing.
Finally out-of-history areas (like new areas at screen borders, when the camera is rotating) are
identified and marked for anti-aliasing via FXAA. In Anti-Aliasing Settings/Ray trace augment
the weights for the different derivatives as well as the overall threshold can be changed.

Using these values, a segmentation mask image, as shown in Figure 4, is generated. After
the TAA pass has finished, the mask image is used to generate the missing data through ray
tracing, only for those pixels which have been marked. Pixels marked as out-of-history are instead
anti-aliased using FXAA. Additional details about this technique are given in [3].

One problem with ray tracing—when compared to the rasterizer—is that there is no automatic
mip level selection for sampling textures. If ray tracing would always sample textures at the lowest
mip level5, this would lead to visible breaks between ray traced and rasterized parts of the image.
One possibility to work around this is to always use the lowest mip level during rasterization too.
This works, but effectively disables mipmapping, which leads to new problems like texture-aliasing
(to experiment with this mode, disable RT approximate LOD and enable always use lod 0 in Info
& Settings/Rendering).

As a workaround, the application tries to calculate an appropriate mip level when ray tracing.
When a ray-triangle intersection is processed, two addition (hypothetical) intersection points with
the same triangle are calculated6: one with a ray that passes through the screen plane exactly the
size of one pixel to the right of the original ray, and one that passes exactly the size of one pixel
above. From the texture coordinates of these additional points their screen-space derivative can be
obtained, and thus the correct mip level can be calculated. Note that while this mip calculation is
exact for direct ray hits, it would not hold for secondary rays (reflections). This is not a problem
in this application, since ray traced reflections are not used here, but if this is required, a more
sophisticated scheme has to be used. Additional information about this topic is described by
Akenine-Möller et al. [1].

The current implementation uses ray tracing pipelines, i.e., separate ray-generation-, hit- and
miss-shaders. This design decision follows the approach described in [3], where ray tracing happens
as a separate step after rendering and TAA. However, it would also be conceivable to integrate ray
tracing directly into the TAA shader using ray queries.

Figure 3: Very fine (sub-pixel) structures, like these wires, tend to vanish with TAA, especially
when the camera is moving. Adaptive ray tracing can detect and fix such situations. Left: without,
right: with adaptive ray tracing.

5 Lowest mip level means sampling from the highest texture resolution.
6 It is not required for the hypothetical intersection points to actually fall inside the area of the triangle - only

the plane it spawns matters.

4



Figure 4: A mask image identifying problematic areas (yellow lines in above image) is generated
during the TAA pass. For each of those problematic pixels, a certain number of additional samples
(configurable via Ray trace augment/RT samples) are generated in a subsequent ray tracing pass.
Out-of-history areas (not shown here) are antialiased using FXAA.

4 Temporal Upsampling

Basic support for temporal upsampling has been included in the project. It needs to be explicitly
enabled via the command line parameter -upsample <factor>. This causes the rendering to be
performed on a smaller buffer, so that the both the width and height of the output image are
<factor> times larger than the rendered image. Experiments showed that the TAA parameters
need to be tuned quite differently compared to using “plain TAA”; e.g., color clamping or clipping
can be detrimental to the upsampled image quality and/or lead to flickering. It was also found
that a larger alpha value (e.g., 0.2–0.3) and a more extensive jittering pattern, like Halton x16,
helps. An example is shown in Figure 5. There is also an option to experiment with upsampling
still images instead of a rendered 3D scene, which can be enabled in the main settings window
(Debug/image).

Figure 5: Temporal upsampling. The scene is rendered with only half the display resolution (top
row) and then upsampled (bottom row).

5



5 Split-Screen and Magnification

To compare different TAA settings side-by-side, a split screen display can be enabled in Anti-Alias-
ing Settings/Split screen. When active, a second parameter window labeled Anti-Aliasing Settings
#2 for controlling the parameters on the right side of the splitter is shown. Parameters can be
copied from the left to the right side or vice versa with the 1→2 and 1←2 buttons, or flipped with
the flip button. The splitter can be dragged with the mouse.

To zoom in on areas of interest, a magnification box is available via Anti-Aliasing Settings/Post-
processing/zoom. Both the source area and its magnified content can be freely dragged and resized
on the screen; when the Shift key is held down while resizing, a square layout is enforced.

6 Saving and Loading

When experimenting on a specific area of interest, or a certain combination of parameters, it can
be very tedious to re-enter all values when the application is started anew. Therefore the current
settings, along with the camera position, can be saved to (and loaded from) a file—also useful for
transferring settings to a different PC. In addition, some descriptive text can be saved along with
the settings. The functionality is accessed with the buttons Load, Save and Notepad at the bottom
of the main settings window.

Note: Besides camera orientation, the saved file includes all interactive parameters. But it does
not include the command line parameters; the 3D scene choice itself is not saved.

7 Path Editor

To experiment with automatic camera movement other than simple repeating motion (like strafing,
bobbing, rotation, which can be set in Info & Settings/Camera) an interactive path editor is
included in the application, as shown in Figure 6. This allows to define an interpolated curve which
the camera can follow. The editor is accessed via the edit button in Info & Settings/Camera.

The type of interpolation curve (Bezier, quadratic B-spline, cubic B-spline or Catmull-Rom)
and global parameters like fly-through duration, constant speed, look-along vs. free look can
be selected. Path control points can be entered manually or manipulated directly on-screen by
dragging them with the mouse. When dragging, movement is restricted to the horizontal plane; to
change the vertical position of a control point the Shift key can be held down while dragging.

Figure 6: The interactive path editor can be used to design camera fly-through paths.

6



8 Discussion

Trying to find a one-fits-all parameter set that is suitable for every scene is a seemingly impossible
task. Most of the techniques address very specific problems, and in general they work quite well
where those are present. However, chances are that a technique or setting that fixes such a certain
very specific problem impairs different areas of the same scene which are not affected by that
certain problem.

Some of the scene characteristics that hugely affect technique/parameter choice are:
• Are surfaces very rough with a lot of apparent color-change when viewed close up, or is the
geometry rather mostly smooth?

• Is there a lot of color variety due to strong specular reflections?
• Do very fine-grained structures (like fences, thin wires) exist in the scene?
• Does the scene use many small irregular shapes in a close area (like leaves of a tree, or grass
blades)?

• Is there a lot of moving geometry?
In general one can not answer such questions unambiguously for the whole scene, so it is often

necessary to compromise, i.e., choose techniques and parameters that work well for most parts of
the scene without compromising other parts too much. This is, unfortunately, mostly a trial-and-
error process.

If it is possible to logically split the scene into areas requiring different TAA settings, this should
be exploited: For instance, one could switch to a different parameter-set when the camera moves
from outside scenery to the inside of a building. This is quite easy to implement when there is a
hard scene-switch. But even if the scene is widely open it might prove useful to define different
settings for a couple of areas.

Recommended Settings

Settings that were found to work well for different scenarios are:

Wide open areas:
• Clamping or clipping are essential. Far away geometry will move a large screen-space distance
when rotating the camera and thus is prone to motion blur. Fine-tune the clamping/clipping
parameters.

• Depth culling seems work well here and reduces blurring a bit (whereas in other scenarios
depth culling often leads to flickering).

• Sharpening helps to improve contrast.

Very fine structures:
• Clamping or clipping can be problematic and may have to be turned off completely.
• Adaptive Ray Tracing is recommended to preserve details.

Rough areas with lot of color change:
• Variance clipping in YCoCg space seems to work better than clamping.
• Adaptive ray tracing can improve the visual result. However, it may be costly, because large
areas will be affected due to the high color variance.

• Sharpening should rather be avoided, because it can lead to slightly blurred patches when
moving the camera.

Foliage, grass blades, fine transparent geometry:
• The main problem in this scenario is motion blur. Clamping/clipping is essential. Shaped
neighborhood clipping seems to work better than variance clipping for these structures.

• Adaptive Ray Tracing helps a lot. But again, it may be costly performance-wise.
• Sharpening is recommended. Without it, foliage tends to look bland.

Example: City-Like Scene

A city-like scene could contain park areas with lots of trees, grass and bushes, as well as straight
street canyons. In that case one could either switch parameters when moving across pre-defined
border-locations, or depending upon which scene-areas take up most of the screen-space. Ideally
one would smoothly blend parameters when switching sets, so there is no discernible break in
perception.

7



Example: Fine Structures

There will likely still remain some pathological areas in most scenes that are very difficult to
address, such as the perspective foreshortening of the fence as shown in Figure 7. The fine fence
structure leads to very different images when the projection matrix is jittered. When either color
clipping or clamping is active, the result is an annoying flickering in that area. In that case no
combination of techniques could be found to counter that problem, except to disable all color- or
luminance-based history correction.

Figure 7: The slight shifting of the projection matrix due to TAA jittering can lead to problematic
areas with massive color-changes. When using either color clipping or clamping this results in
disturbing flickering. The bottom row shows the raw images generated for subsequent jittering
steps.

Example: Animated Model on Rough Terrain

Contrary to the above, Figure 8 shows a situation where clipping is badly needed. This example
also demonstrates how settings that usually work quite well, like color clipping in RGB space, can
dramatically fail under certain circumstances. Here, the street roughness was intentionally exag-
gerated to simulate uneven terrain. This introduces a high variability of colors in the background
of the animated object, which is detrimental to clipping and results in heavy ghosting. Performing
the clipping in the YCoCg color space instead of RGB improves the situation noticeably, but a
satisfactory ghosting suppression could only be achieved by using variance clipping in addition.

Figure 8: Due to the high background frequencies (exaggeratedly rough floor), more sophisticated
clipping methods are necessary to avoid ghosting. From left to right: clipping in RGB space,
clipping in YCoCg space, variance clipping in YCoCg space.

8



Higher-Order Interpolation Scheme

TAA tends to add a slight blurriness to the resulting image whenever camera movement is involved.
One method that proved very useful in general is to use a higher-order interpolation scheme when
sampling from the TAA history buffer, as demonstrated in Figures 2 and 9. This alleviates the
washed-out look perceivably. Alternatively (or also in addition) a sharpening post-processing
pass can be used. In comparison, sharpening turned out to be less effective at counteracting the
smoothing-problem though.

Figure 9: Using Catmull-Rom interpolation (bottom) instead of bilinear texture lookups (top)
when sampling from the history buffer results in sharper images during camera movement. In the
shown image this is most noticeable at the blossoms of the rose bushes, the details of the park
bench and the leaves of the tree.

References

[1] Tomas Akenine-Möller, Jim K. Nilsson, Magnus Andersson, Colin Barré-Brisebois, Robert M.
Toth, and Tero Karras. Texture level of detail strategies for real-time ray tracing. Ray Tracing
Gems: High-Quality and Real-Time Rendering with DXR and Other APIs, pages 321–345, Jan
2019.

[2] Brian Karis. High Quality Temporal Supersampling. ACM SIGGRAPH Courses: Advances in
Real-Time Rendering in Games, 2014.

[3] Adam Marrs, Josef Spjut, Holger Gruen, Rahul Sathe, and Morgan McGuire. Improving
Temporal Antialiasing with Adaptive Ray Tracing. Apress, Berkeley, CA, USA, 2019.

[4] Lei Yang, Shiqiu Liu, and Marco Salvi. A Survey of Temporal Antialiasing Techniques. Com-
puter Graphics Forum, 2020.

9



A Appendix: Command Line Parameter Summary

Usage: taa.exe [optional parameters] [orca scene file path]

Parameters:

-w 〈width〉 set window width
-h 〈height〉 set window height
-small use smaller default window size (1280x720) instead of (1920x1080)
-fullscreen enable fullscreen mode
-upsample 〈factor〉 upsampling factor (render framebuffer is 〈factor〉 times smaller than

the window)
-sponza ignore scene file path and load Sponza scene
-test ignore scene file path and load Test scene
-device 〈hint〉 device hint for GPU selection (e.g., -device INTEL or -device RTX)
-novalidation disable validation layers (in debug builds)
-validation enable validation layers (in release builds)
-gpuassisted enable GPU-Assisted validation extension
-bestpractices enable best practices validation extension
-blend use alpha blending for transparent parts
-noblend use alpha testing for transparent parts
-nomip disable mip-map generation for loaded textures
-vsync enable vsync (cap frames/sec to monitor refresh rate)
-hidewindow hide render window while scene loading is in progress
-capture 〈numFrames〉 capture the first 〈numFrames〉 with RenderDoc (only when started

FROM RenderDoc)
– terminate argument list, everything after is considered the scene path

B Appendix: User Interface Summary

Window Info & Settings

Lights

max point lights Maximum number of point lights to render
max spot lights Maximum number of spot lights to render
dir light Color and direction vector of the directional light
dir boost Amplification factor for directional light
amb boost Color and amplification factor for ambient light
Lighting Switch between Blinn-Phong lighting or several debug modes

Rendering

Cap framerate Cap the frame rate to a specific number of FPS
Ray trace whole scene Use ray tracing for the whole scene
RT samples Number of samples per pixel when ray tracing
RT debug sparse tracing Show areas to be sparsely traced instead of actually ray tracing them
RT approximate Lod Use texture LOD approximation when ray tracing
aniso Anisotropy factor when using texture LOD approximation
alpha thresh. Consider anything with less alpha completely invisible (even if alpha

blending is enabled)
alpha blending Use alpha-blending instead of alpha-testing for transparent textures
lod bias Manual LOD bias for texture sampling
taa only Use the LOD bias only when TAA is enabled
always use lod 0 Always sample textures with LOD level 0 (to match ray tracing with-

out LOD approximation)
use lod 0 for alpha test Use LOD level 0 for alpha testing
normal mapping Controls the amount of normal mapping
Re-record commands For debugging only

10



Camera

move Toggle all automatic camera movement, set movement units
set&cap Enable all automatic camera movement and take a capture in Ren-

derDoc
rotation Toggle camera rotation, set rate for vertical/horizontal axis
bobbing Toggle camera bobbing
strafing Toggle strafing, set strafing speed and distance
save cam Remember current camera position and rotation
restore cam Restore previously stored camera position and rotation
print cam Print camera information to console
preset Pick one of the predefined presets for camera position/rotation
follow path Enable camera path traversal
reset Restart camera path traversal
edit Open the camera path editor
cycle Toggle cyclic movement along the camera path
look along Toggle free look/look along path when following camera path
detach For debugging only
set to cam For debugging only

Moving object

enable Enable rendering of the moving object
type Select type of moving object
start Define start position
end Define end position
rot ax/spd Define rotation axis and rotation speed
speed Define movement speed
conv Convert speed settings between per-frame and per-second
repeat Select cyclic or ping-pong movement between start and end position
cont rot Toggle continuous (independent of position) rotation
reset Reset movement
anim Select animation frame (animated objects only)
auto Toggle automatic animation (animated objects only)
speed Set animation speed (animated objects only)

Debug

image Show a 2D image instead of the 3D scene (for temporal upsampling)
bilinear sampling Toggle between bilinear/nearest neighbor sampling for the 2D image
Regen.scene buffers For debugging only
Cull view frustum Toggle view frustum culling
capture Take a capture with RenderDoc
frames Number of frames to capture with the capture button
Show ImGui demo window Show the ImGui demo window (for development use only)

Shadows

enable Enable shadows
transp. Toggle shadows of transparent objects
show shadowmap For debugging only
show frustum For debugging only
restrict to scene For debugging only
num cascades Set number of cascades for cascaded shadow mapping
Casc Define cascade distances manually or automatically
manual bias Set a manual bias term for shadow mapping
Depth bias Define depth bias (constant, slope, clamp) parameters for each

shadow cascade

11



Other

Settings: Load/Save Load or save the current settings to/from a file
Notepad Open the notepad window to add remarks (text is saved along with

settings)

Window Anti-Aliasing Settings

enabled Masterswitch to enable/disable TAA
En&cap Enable TAA and immediately take a capture with RenderDoc
reset history Reset the TAA history buffer

Params

pass through For debugging: just output the rendered scene unchanged
color clamp/clip Enable color clamping or color clipping
shaped neighborhood Toggle shaped neighborhood clipping: averages the min/max of 3x3

and 5-tap clipboxes
variance clipping Toggle variance clipping and set its gamma-parameter
use YCoCg Use the YCoCg color space for all calculations instead of RGB
shrink chroma Reduces the chroma influence on the color clip box (only when using

YCoCg)
luma weight (Lottes) Dynamic luma weighting: adjusts alpha depending on the luma dif-

ference between history and current image; see also a min and a max
depth culling Toggle depth culling, i.e. history rejection due to depth differences
reject out-of-screen Reject samples that fall outside the dimensions of the history buffer
unjitter neighborhood For debugging only
unjitter current sample For debugging only
unjitter factor For debugging only
alpha Define the alpha parameter for TAA, i.e., the blend factor defining

how fast previous history is faded out
a min Minimum alpha value for luma weight (Lottes)
a max Maximum alpha value for luma weight (Lottes)
rejection alpha Alpha value to use for rejected samples (typically 1, i.e., use the

current image value)
use velocity Select when to use velocity vectors (not at all, for moving objects or

for everything)
vel.sampling Sampling strategy for velocity vectors: simple just samples velocity

at the current fragment; 3x3 longest takes the longest velocity vector
in a 3x3 neighborhood; 3x3 closest takes the velocity from the (depth-
wise) closest fragment in a 3x3 neighborhood”

interpol Select between bilinear, bicubic b-Spline or bicubic Catmull-Rom in-
terpolation for history sampling

tonemap luma w. (Karis) Toggle tone mapping approximation via luma
noise Experimental; add random noise to the output image
reduce blend near clamp Helps to reduce flicker: Reduce the blend factor when the history is

close to being clamped
dynamic anti-ghosting Reject history if there is a no movement in a 5-tap neighborhood

and there was movement at the current pixel in the previous frame
(inspired by Unreal Engine)

vel→alpha influence Let the velocity vectors influence the alpha parameter (higher alpha
for fast moving pixels); helps against ghosting

(Sharpener) Choose between no sharpening, a simple, 5-tap gradient-based sharp-
ener, and FidelityFX Contrast Adaptive Sharpening (CAS)

12



Ray trace augment

enable Enable ray tracing augmentation
debug Show areas to be sparsely traced instead of actually ray tracing them

(same setting as in main window)
RT samples Number of samples per pixel when ray tracing (same setting as in

main window)
offscreen Put offscreen pixels in the segmentation mask (for FXAA)
disoccl. Put disocclusioned pixels in the segmentation mask (for ray tracing)
normals Segmentation weight for the normal vector derivative
depth Segmentation weight for the depth derivative
material Segmentation weight for material differences
luminance Segmentation weight for the luminance derivative
use count Use a history counter: Pixels that are not marked for ray tracing in

the current frame, but were marked in the previous n frames will be
ray traced

RT ALL Debug setting - mark all pixels for ray tracing
Fxaa dbg. Debug setting - a fixed sized border of the image is always marked

for FXAA
Use Fxaa Enable using FXAA for offscreen pixels
Threshold If the weighted sum of the segmentation parameters exceeds this

threshold, pixels are marked for ray tracing

Debug

debug Enable (and choose type of) debug output
scale Scale debug values before displaying them as RGB
center Center debug values (multiply by 0.5 then add 0.5); applied after

scaling
R,G,B,A Toggle specific color channels for debug values

Split screen

split Enable split screen display (and manually set the splitter position)
1→2 Copy parameter set 1 (left side) to 2 (right side)
1←2 Copy parameter set 2 (right side) to 1 (left side)
flip Flip the two parameter sets

Jitter

sample pattern Choose one of the predefined TAA jitter patterns
lock For debugging: display a specific step of the jitter pattern
scale For debugging: scale jitter offsets by the entered value
slowdown Slower jittering; e.g., 3 means only advance the jitter step every third

frame
rotate Rotate the jitter pattern by the specified amount (in degrees)
Debug pattern Allows to define a manual jitter pattern (active when pattern debug

is chosen in sample pattern)

Postprocess

enable Enable post processing (necessary for split screen or zooming)
zoom Enable zooming
show box Draw a red box around the zoom source area
rst Reset zoom to default values
src Manually enter position and size of the zoom source area
dst Manually enter position and size of the zoom target area

13



Other

Reset history at any change When enabled, the history is automatically reset when any parameter
is changed

Window Camera path

Clear Clear the path
Load/Save Load or save the path to/from a file
duration Set the traversal duration in seconds
const. speed Maintain constant speed during path traversal
look along Look along the path when traversing
type Type of the path interpolation: Bezier, quadratic B-spline, cubic B-

spline or Catmull-Rom
(Control points) Position of the control points can be edited here
set Uses the current camera position for the control point
- and + Removes the control point or inserts a new control point
ˆ and v Moves the current control point up or down in the list
interactive editor Enables the interactive editor (shows path and allows to drag control

points in the scene)
points Number of points used for rendering the path

14


	Overview
	Application Settings
	Command Line Parameters
	General Settings
	Anti-Aliasing Settings

	Adaptive Ray Tracing
	Temporal Upsampling
	Split-Screen and Magnification
	Saving and Loading
	Path Editor
	Discussion
	Appendix: Command Line Parameter Summary
	Appendix: User Interface Summary

