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Kurzfassung

Ziel dieser Arbeit ist es, die Eignung von radiomischen Merkmalen von Patienten mit
hepatozellulärem Karzinom (HCC) Patienten für die Stratifizierung und Visualisierung
der Leber und des Tumors. Nachdem wir die Merkmale berechnet haben, skalieren wir
diese in einem gemeinsamen Bereich von 0 bis 1000. Wir führen ein Clustering der Leber-
und Tumormerkmale durch, nachdem sie mit verschiedenen verschiedene Techniken zur
Dimensionalitätsreduktion. Wir diskutieren und vergleichen die untersuchten Methoden
zur Dimensionalitätsreduktion, um eine sinnvolle Stratifizierung der Patienten basie-
rend auf ihren leber- und tumorspezifischen Daten. Schließlich kombinieren wir diese
Cluster-Deskriptoren mit dem entsprechenden klinischen Datensatz der verschiedene
gesundheitliche und demografische Merkmale enthält, die die Eigenschaften der Patienten
beschreiben. Mit Hilfe von Visualisierungen untersuchen wir mögliche Zusammenhänge
zwischen den Merkmalen und unterstützen die Ableitung von Erkenntnissen über die
zugrunde liegenden Datenmuster zu unterstützen. Diese abgeleiteten Erkenntnisse sollen
Ärzten und Klinikern in Zukunft bei der Schätzung der bei der Abschätzung der Ge-
samtüberlebensrate für neue Patienten. Zu den erwähnten Erkenntnissen gehört, dass
dass die Altersgruppe eines Patienten seine Gesamtüberlebensrate drastisch beeinflussen
kann. Unter Zusammenfassend lässt sich sagen, dass wir eine Möglichkeit für Ärzte und
Kliniker geschaffen haben, ihre Patienten anhand von Merkmalen aus den volumetrischen
Daten und den klinischen Daten zu stratifizieren und weitere Erkenntnisse zu gewinnen,
die für die Schätzung des Gesamtüberlebens dieser Patienten hilfreich sind.
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Abstract

This thesis aims to investigate the suitability of radiomics features of Hepatocellular
Carcinoma (HCC) patients for the stratification and visualization of the liver and the
tumour. After we compute the features, we scale these into a common range of 0 to
1000. We perform clustering on the liver and tumour features after they are reduced via
different dimensionality reduction techniques. We discuss and compare the investigated
dimensionality reduction methods used to derive a meaningful stratification of the patients
based on their liver and tumour-specific data.

Finally, we combine these cluster descriptors with the corresponding clinical dataset
containing diverse health and demographic features describing the patient’s characteristics.
We employ visualizations to investigate possible connections between features to support
the derivation of insights with regard to the underlying data patterns. These derived
insights are anticipated to help doctors and clinicians in the future when estimating
the overall survival metric for new patients. Among the mentioned insights, we found
that the age group of a patient can drastically influence their overall survival metric. In
conclusion, we created a way for doctors and clinicians to stratify their patients based on
features extracted from theirvolumetric data and their clinical data, and derive further
insights helpful for estimating the overall survival of these patients.
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CHAPTER 1
Introduction

Interpretable visualizations and communication of insights derived from them are the
key components of a high-quality diagnosis. As such, understanding data also plays
a key role in the first place. In this thesis, we present the steps of gaining knowledge
into the stratification of Hepatocellular Carcinoma patients employing features derived
from Computed Tomography (CT) scans. We use these to cluster patients, combining
new variables derived from the field of radiomics with existing clinical data. Lastly,
we summarize the available data via plots, thus gaining new insights. We anticipate
that the resulting visuals will help clinicians, data scientists, and potentially laypeople
to understand the data. By having these interpretable visuals, we could improve the
diagnosis process and support better predictions about the patients.

The first step towards a diagnosis is data collection. In this case, a clinician may
consider electronic health records (EHRs) as data sources. The Cancer Imaging Archive
(TCIA) [CVS+13] provides us with the clinical data of the patients from the original
study of Morshid et al. [MEK+19]. We use the dataset of Mowad et al. [MFM+21]. The
dataset contains lots of discrete variables that describe the patient’s health history and
demographics. For new patients, certain features may not be readily available because
the data has not been entered correctly or has not been measured via other diagnostics
up to that point. As such, because of missing data, we can not perform a comprehensive
diagnosis for those new patients. The dataset also has Computed Tomography (CT)
scans together with the segmentations of the liver, vessels and tumour. Researchers can
use these volumes as a basis for extracting new variables or features through the use of
radiomics, as Lambin et al. [LRVL+12] described. The research question of this thesis
is: How can visualization support the derivation of insights when stratifying a cohort of
HCC patients?

In this thesis, we aim to investigate the suitability of radiomics features of Hepatocel-
lular Carcinoma (HCC) patients for their stratification. We consider the result of this
stratification, i.e., the patient clusters, as derived features that we combine with the
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1. Introduction

corresponding clinical data and later visualize to provide new insights about the diagnosis
and prognosis of the patients. By doing so, we make insights visible, and these insights
have the potential to help doctors make better decisions in treatment planning and
estimating overall survival.

We present notebooks [Git], which represent the implementation of the aforementioned
methodology, as a proof of concept towards an exploratory analysis of radiomics data and
other features extracted from medical records. We intended the notebooks to be used in
analysing HHC patients, however, other researchers can apply the same approaches to
other afflictions and illnesses; therefore offering a starting point for visual investigation
of other patient cohorts.
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CHAPTER 2
Related Work

Many researchers have investigated the usage of radiomics for extracting features over the
years and have obtained promising results. Lambin et al. [LRVL+12] initiated the overall
journey of radiomics in 2012. They noted the ways medical imaging had progressed up
until that point as advancements in imaging hardware and agents, standardised protocol
procedures, and advancements in imaging analysis through the use of computer-assisted
detection (CAD) systems. They describe the overall workflow and lay the groundwork
for quantitative analysis. The fundamental hypothesis of radiomics is to find prognostic
markers using features available in imaging data. They also suggest linking radiomics to
radio-genomics, as genomic features may be expressed and linked to captured images.
In 2012 Kumar et al. [KGB+12] also investigated the use and challenges of radiomics
based on CT scans of non-small-cell lung cancer patients, and found that these "can be
used to build descriptive and predictive models relating image features to phenotypes or
gene–protein signatures" [KGB+12]. They also divided radiomics into multiple processes,
such as:

• acquisition and reconstruction of images

• segmentation and rendering of images

• feature extraction and feature qualification

• databases and data sharing of data

• ad hoc informatics analyses

Each of the processes faces challenges of its own. For example, image acquisition and
reconstruction face the challenge of varying image resolution between different hardware
producers, which are then used to acquire medical images. They noted that such issues

3



2. Related Work

can lead to difficulties when comparing results across multiple institutions, which use
different scanners. Segmentation challenges include the high interreader variability
when done manually. Even in the case of semiautomatic procedures like region-growing-
based algorithms [AB94], these are dependent on an operator to specify a seed point
in the volume of interest, thus introducing once again interobserver variability into the
segmentations.

Various papers have investigated features that may be useful for the purposes of classifying
tumours. One example would be the recent work of Lysdahlgaard [Lys22], who conducted
a comparison of radiomics features extracted from CT images of healthy liver tissue
and tumour tissue. From here, we may find features relating to the tumour shape,
intensity values, and texture. Specifically, they follow the categories of semantic features
like size, shape, and location. Agnostic features can be split into two subcategories:
morphological of the first order (e.g., volume, size, lesion diameter) or higher order
(e.g., Minkowski functionals, fractal dimensions), and the statistical ones. Under the
subcategory of statistical features, there exist first-order ones like mean, median, standard
deviation, kurtosis, skewness; second-order textures like the gray-level co-occurrence
matrix (GLCM), gray-level neighborhood difference matrix (GLNDM), gray-level run
length matrix (GLRLM), gray-level size zone (GLSZM); and lastly higher-order like the
Wavelet and Laplacian of Gaussian transformations. The taxonomy for the statistical
features can be found in Figure 2.1.

Figure 2.1: Taxonomy of statistical radiomics features.
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Moreover, Yeung et al. [YCW+20] extracted the gross tumour volume with the help of
co-registration with diagnostic tri-phasic contrast CT, which is the mask applied to the
CT volumes for further feature extraction. In the same year, Rela et al. [RSR20]authored
a review of liver tumour segmentations and their classification, and also looked into the
feature extraction step. Here they also make use of texture, shape, and size features as
seen in previous work. The gray-level co-occurrence matrix is also mentioned alongside
other statistical features like mean, standard deviation and kurtosis. conducting a state-
of-the-art report regarding radiomics, Wei et al. [WJG+20] have shown the developments
of radiomics and future opportunities. Finally, Fu et al. [FWZ+19] used "peel-off"
features under the hypothesis that tumours grow in size from the inside to the outside.
These features operate on layers of the tumour, and according to Fu et al., the entropy
measured based on this approach demonstrated relevance for predicting outcomes without
further tumour development after resection.

When diagnosing a patient and choosing the correct treatment, one must also consider
tumour metastases as a key factor. In this sense, Fiz et al. [FVG+20] made a systematic
review of 32 papers regarding the radiomics of liver metastases. From the investigated
papers, CT was used the most (n=19), followed by magnetic resonance imaging (MRI)
(n=8), positron emission tomography (PET) (n=3) and lastly, multiple imaging modalities
such as CT combined with MRI and MRI combined with PET respectively (n=2).
They found that these radiomics features provide accurate predictions of chemotherapy
treatments and the patient’s survival. All of the features found are also available in the
Pyradiomics [VGFP+17] library, which is publicly available.

Echegaray et al. [EGS+15] have investigated the robustness of certain features with
respect to the delivered segmentation. They conducted this study because they were
also interested in obtaining core samples of tumours by extracting said features from a
maximal circle within the delineations Among the features used were also the Haralick
features based on the gray-level co-occurrence matrix. Building upon this work are
Bakr et al. [BES+17], who investigate microvascular invasions in HCC patients. They
employed delta radiomics, which they obtained as an absolute difference and the ratio
of all radiomics features from all pairs of imaging phases. Going even further with the
idea of higher-order spectra, Acharya et al. [ASR+12] investigate fatty liver disease via
ultrasound imaging. Ultrasound-derived features are out of scope for this thesis and we
do not discuss them further.

Machine learning and artificial intelligence have experienced large developments over the
past years and hardware that can support research has become more accessible than before.
Using them for developing systems that help in diagnosing patients has also become
more accessible. Ahmad et al. [ADQY19] presented the use of deep learning methods,
such as deep Neural Networks [GBC16] and Convolutional Neural Networks [GBC16],
for segmenting the liver volumes.Training such models comes with a high computational
cost and time investment. However, once training is complete, the proposed model can
speed up the diagnostics process and help experts in diagnosing patients and making
decisions. They tested their proposed Convolutional Neural Network model for liver
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2. Related Work

segmentation (CNN-LivSeg) on the MICCAI-SLiver07 dataset [HVGS+09] and achieved
a mean accuracy of 0.9725, specificity of 0.9904, and sensitivity of 0.9652. As our data
already has segmentations of the liver annotated by experts, we will not need such a
model for our purposes. However, it is still worth mentioning that methods exist for
extracting segmentations, which can be used in the feature extraction pipeline as masks
if needed.

Liver classification has also been investigated by Gunasundari et al. [GA12], where Fast
Discrete Curvelet Transform (FDCT), biorthogonal wavelet transform and gray-level
co-occurrence matrix were used to classify volumes based on their texture. Even before
the explosion of computational resources, Chen et al. [CCC+98] made an automatic
system in 1988 that segments the liver and afterwards distinguishes healthy livers from
those having hepatoma or hemageoma.

Mörth et al. [MWLH+20] investigated a visual analytics approach for visualizing radiomics
data, similar to the one of Raidou et al. [RvdHD+15]. A difference however is that
Mörth et al. use a 1D t-distributed Stochastic Neighbor Embedding (t-SNE) [HR02]
on their high-dimensional radiomic tumour features in order to pair this with a clinical
meaningful parameter, building a 2D visualization of the patient cohort. Mörth et al.
have also investigated image-centric cohort visualization approaches of Steenwijk et
al. [SMB+10], where linked views are employed, connecting scatterplots and parallel
coordinate plots to imaging data of each patient. The work of Klemm et al. [KOJL+14]
takes an epidemiological approach using segmentations and hypothesis formulation via
model-based visualizations. Jönnson et al. [JBF+19] use imaging data as well as clinical
data in their interactive visual environment without using radiomic features. Preim et
al. [PL20] conducted a survey, where they provided an overview of the field of visual
analytics for the public health sector. Angelelli et al. [AOH+14] focus on a visual analytics
tool based on heterogeneous cohort data in order to generate and validate hypotheses.
Eckelt et al. [EAZ+19] present TourDino, which aims to help users verify hypotheses and
confirm insights gained from the statistical analysis of tabular data. Bladder Runner is
another visual analytics tool of Raidou et al. [RCMA+18], which enables the investigation
of individual patients as well as the cohort of prostate cancer radiotherapy patients.
Bernard et al. [BSM+15] took a data-centred approach and built a tool for providing
an overview of large patient sets, which also includes guidance and overall reduces the
time needed for the analytical workflow. None of these approaches is suitable or readily
extensible to HCC patient cohorts.
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CHAPTER 3
Methodology

In this section, we discuss the overall procedures applied in the pipeline of this thesis
and the reasoning behind them. We go over the data preprocessing step, where the
organ and tumour volumes are extracted from the dataset shown in the "Clean data
and choose subset" step in Figure 3.1. Afterwards, we discuss the chosen radiomics
features which are extracted from the aforementioned volumes and the clinical features
from the provided clinical dataset as seen in the steps "Radiomics extractor" for the
volumetric data processing and "Choose subset of features" for the clinical data in
Figure 3.1. Possible procedures for scaling (Figure 3.1, step "Normalization") and
dimensionality reduction(Figure 3.1, step "Dimensionality reduction") are also discussed
with regard to their upsides and downsides. These are important to consider for our
application, as the data may be transformed in an unforeseen manner, reducing the
amount of information retained and hindering our capability to find key connections
between features that may have led to new insights. Clustering of the patient cohort
(Figure 3.1, step "Agglomerative Clustering") based on the reduced radiomics features
is done in order to synthesise new descriptors for the liver cluster and tumour cluster
correspondence. It is once again important to understand the clustering process and its
characteristics as these may change the cluster labels assigned to each patient, leading to
different groupings in the later visualization. Last but not least, visualizing the results
(Figure 3.1, step "Visualization") provides new insights and presents our data. In doing
so, the application aids us in seeing possible connections between features and synthesized
cluster labels. Each step of the pipeline is discussed in further detail in its own section.
The overall pipeline is shown in Figure 3.1.
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3. Methodology

Figure 3.1: Pipeline used for data processing and insight derivation. The first branch
handles the volumetric data, which starts with the "Clean data and choose subset" step
and ends with the "Agglomerative clustering" step. The second branch handles the
clinical data, which starts with the "Choose subset of features" step and ends the the
"Check for dirty data" step. The results of both branches are joined based on the patient
IDs and then visualized in the "Visualization" step, resulting into "Insights".
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3.1. Preprocessing

3.1 Preprocessing
We acquired the original data [MFM+21] from The Cancer Imaging Archive [CVS+13],
which corresponds to the original publication by Morshid et al. [MEK+19]. The pre-
processing mainly consisted of extracting the liver and tumour segmentations from the
dataset and their corresponding CT scans. This task was done in a semi-automated way
as the filenames were not always standardised and as such needed inspection for each
patient to ensure correspondence. There are in total 105 patients, from which we selected
the first 20 where the extraction was possible. The approach is, though, not limited to 20
patients and scales well throughout all the steps of the pipeline for more than 20 patients.
Another part of the preprocessing step required finding the corresponding rows of the
patients in the clinical dataset and perform an overall sanity check for missing values.

3.2 Feature Extraction
To begin with, we need to extract features from our CT scans and stratify the cohort of
patients with regard to these extracted features and available clinical information. The
feature extraction process enables a deeper understanding of each patient because after
this process we can identify the volume, surface area, and roundness of the shapes, all of
which may contain valuable information for recognising patterns of patients. This should
facilitate us to derive insights about their evolution and overall survival. The computed
radiomics features can be found on the readily available Pyradomics documentation
[Rad] and are as follows:

• First Order Features [Fir]

• Shape Features (3D) [Shab]

• Gray Level Co-occurrence Matrix (GLCM) Features [Graa]

• Gray Level Size Zone Matrix (GLSZM) Features [Grad]

• Gray Level Run Length Matrix (GLRLM) Features [Grac]

• Neighbouring Gray Tone Difference Matrix (NGTDM) Features [Nei]

• Gray Level Dependence Matrix (GLDM) Features [Grab]

The only features not included are the 2D shape features [Shaa] and the removed features
within pyradiomics [Rem].

In addition to the CT scans and segmentations, a spreadsheet with clinical data regarding
the patients containing demographic (such as age and sex), behavioural (smoking and
drinking habits) and many more scores related to the tumour’s staging have been provided.
Regarding the clinical data, there are a total of 56 feature columns and one TCIA ID
column present. From those 56 features, we chose 14, which had relevant information to
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3. Methodology

us. These were checked for missing values. We grouped these features as shown in the
following List 3.2.

• Overall survival (OS): number of weeks

• Clinical predisposition:

– Hepatitis: none, HCV/HBV, or both

– Family history of cancer (fhx_can) and family history of liver cancer (fhx_livc)

• Demographic

– Age: years

– Sex: 1 = Male 2 = Female

• Behaviour

– Smoking: 0 = does not smoke, 1 = does smoke

– Alcohol: 0 = does not drink, 1 = does drink

• Classfification

– Child Pugh classification score of cirrhosis mortality severity (CPS): A,B,C

– Cancer of the liver italian program score (CLIP_Score)

– Okuda

– Tumour, lymph node and metastasis (TNM) staging

– Barcelona clinic liver cancer staging (BLCL): 0, A, B, C, D

3.3 Scaling and Testing for Normality

After extracting features of both the patient’s liver and tumour, each variable is distributed
in its own value range. It is generally recommended as stated by Singh et al. [SS20] and
Patro et al. [PS15] to normalize all features (variables) into the same value range before
further clustering. Thus there exist two main options:

• Standardization [PS15]

• Min-max normalization [PS15]

Both have their advantages and disadvantages. Standardization (also known as z-score
normalization) assumes that the variables are normally distributed. If that is the case,
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3.4. Dimensionality Reduction

then any sample within the distribution can be transformed according to its mean and
standard deviation with the following formula:

X ′ = X − µ

σ
X ′is the Z-score normalized values

µ = 1
n

n∑
i=1

Xi or mean value

σ =

√∑n
i=1 Xi − µ

n − 1 or standard deviation of X

This all hinges on the assumption that the feature follows a normal distribution. If that
turns out to be wrong then we can go for normalization. Here we define the maximum
and minimum value of the new range to which the variable should be mapped to. The
min-max normalization formula used in our implementation will be the following:

X ′ = X − Xmin

Xmax − Xmin
· (B − A) + A

X ′ is the min-max normalized values
Xmin is the minimum value of X
Xmax is the maximum value of X

A is the minimum value of the new range
B is the maximum value of the new range

Now to test our normality assumption we may use histograms and plots of the probability
density function. There are guides and tutorials for this such as on Towards Data
Science [Koe] and documentation pages of packages like Seaborn [Seab], [Seaa]. Kohersen’s
guide [Koe] was taken as a reference for plotting the kernel density estimation as seen in
Figure 3.2a. From there we followed the documentation of Seaborn and its kde- and
displot, resulting in Figures 3.2b and 3.2c respectively. Each plot shows the kernel
distribution estimation of the extracted first-order energy radiomics feature, which does
not follow a normal distribution but rather a bimodal one and as such we would need
to normalize our data. We also tested normality with the help of the implementation
provided by scipy [Scid], which is based on the works of D’Agostino et al. [DP73] [DIA71]
and Shapiro et al. [SW65]. We tested against the standard p-value of 0.05, as a result, 40
features do not follow a normal distribution.

3.4 Dimensionality Reduction

The next step is to perform dimensionality reduction. As there are 111 features for a
liver and a tumour per patient, it becomes more and more computationally intensive to
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3. Methodology

(a) Seaborn distplot following
Kohersen’s guide.

(b) Seaborn kernel density es-
timation plot. (c) Seaborn displot.

perform clustering on such "wide" datasets. This leads to the curse of dimensionality
found in the data mining context to be precise, as shown by Verleysen et al. [VF05].
Thus, to train a complex model we need a rather high amount of samples to attain a
desirable validity. While one could argue that with today’s technology, it would not
matter that much for real-time execution for a small number of patients, this changes
drastically with an increase in the number of patients and features. Another important
note regarding dimensionality reduction is that high-dimensional data is often difficult to
visually encode and interpret.

3.4.1 PCA: Principal Component Analysis

Principal component analysis (PCA) [WEG87] is a method in which linear combinations
of variables are made such that the variance of data is maximised along the axes of said
linear combinations, also known as principal components. This is done to maximise the
information gained from the raw data. By doing so, we can reduce the dimensionality
with some loss in reconstruction, but gain a more efficient representation of the data.
In that sense, PCA is applied in order to keep the most information from the data to
enable faster computation of organ representation. We used the implementation provided
by the Scikit-learn package [PVG+11]. In Figures 3.3a and 3.3b we see the liver and
tumour data being embedded into the new space of a 3D PCA with the use of the first
three principal components that each result after fitting the models to the data. Three
principal components are chosen at first to better visualize the embeddings, but later
on, we will investigate how many components are needed to retain a certain amount of
variance.
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3.4. Dimensionality Reduction

(a) Embeddings of liver data (b) Embeddings of tumour data

Figure 3.3: Embeddings using the first three principal components of PCA.

3.4.2 t-SNE: t-Distributed Stochastic Neighbor Embedding

Hinton and Roweis [HR02] presented the algorithm for Stochastic Neighbour Embedding
(SNE) as an alternative to PCA. Van der Maaten and Hinton [VdMH08] then improved
over the original SNE, which reduces the tendency to map points at the centre of the
projection. In t-SNE, the first step involves computing the symmetric similarities of
data points from their Euclidean distances. These similarities represent the probabilities
pij that a data point xi would select data point xj as its neighbour, assuming they
were chosen from a Gaussian distribution centred at xi. When i = j, the conditional
probability is set to 0 due to only being interested in pairwise similarities. The same is
done for the low-dimensional counterparts yi and yj resulting in conditional probabilities
qij , however, using a Student-t distribution. The algorithm tries to find abstract mappings
such that the mismatch between pij and qij is minimized. The algorithm minimizes the
cost function, which is the sum of Kullback-Leibler divergences [VdMH08] over all data
points, using a gradient descent procedure:

cost =
∑

i

∑
j

pij log pij

qij

The user-defined perplexity value is used to find the variance σi of each Gaussian
distribution centred around data point xi. The key difference is that t-SNE attempts to
preserve local information about neighbourhoods rather than the global approach PCA
has of finding linear combinations that maximize variance. A drawback to this method is
that we can at most obtain three new axes due to the algorithm limitation. Once again
the implementation from the Scikit-learn package [PVG+11] was used. In Figures 3.4a
and 3.4b we see the liver and tumour embeddings using three of the resulting axes from
t-SNE.
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(a) Embeddings of liver data. (b) Embeddings of tumour data.

Figure 3.4: Embeddings of volumetric data using the first three axes of t-SNE.

3.4.3 UMAP: Uniform Manifold Approximation and Projection

McInnes et al. [MHM18] present the uniform manifold approximation and projection
technique for dimension reduction. The procedure can be seen as a mix between PCA and
t-SNE when speaking about the preservation of linearities. UMAP in its essence is based
upon topological data analysis and simplexes [MHM18], which are used to represent the
data points and capture the fundamental topology of the data set. This can be seen as
building an abstract neighbourhood graph of the data set and projecting it into a lower-
dimensional space. Seen from a high abstraction level, UMAP learns the representation
of a manifold, which approximates the data set by using local fuzzy simplicial set
representations of the data. Following that, UMAP optimizes the manifold representation
such that the cross entropy between the lower and higher dimensional space is minimized.
In this minimization process, we can imagine that there are attractive and repulsive
forces between the points of the edges spanned in the graph [How]. Depending on the
set parameters it can prioritize the preservation of global linearities or local ones. There
are numerous advantages to UMAP such as it being faster than t-SNE [MHM18] [Per],
scaling better with embedding dimension and being able to transform new data [Tra]. In
Figures 3.5a and 3.5b we see the embeddings of the liver and tumour data as projected
in the 3D space using the first three axes.
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(a) Embeddings of liver data. (b) Embeddings of tumour data.

Figure 3.5: Embeddings of volumetric data using the first three axes of UMAP.

3.4.4 Evaluation of Explained Variance

When comparing these three different approaches to dimensionality reduction we need
a metric. PCA offers the variance explained metric for its principal components. Un-
fortunately, this is not universally applicable to t-SNE and UMAP directly from their
respective implementation, as they operate on a different basis and their aim is not to
maximize variance.

The method of visualizing explained variance is called a Scree plot, first introduced by
Cattell [Cat66]. Figure 3.6 displays the following ratio of the eigenvalues λi for each
principal component:

% of explained variance = λi∑N
i=1 λi

· 100

λi = i-th eigenvalue

In Figure 3.6 we see how much variance is explained by a particular principal component
from the PCA application to our data. The first component manages to explain about
38% of the total variance, thus containing the most information of all the principal
components.

We prioritize the preservation of at least 90% of the variance and, as such, we can take
a look at the cumulative explained variance in Figure 3.7. Hereby we are adding up
the individual percentages in descending order because the goal is to also minimize the
amount of principal components used. We decided to use the first 6 components and
thereby go from 111 radiomics features down to only 6 reduced features, while also
preserving at least 90% of the variance. Of course, this would only apply if we were to
use the PCA reduction, but we decided to use UMAP as the final tool for this, as it is the
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(a) Based on liver data. (b) Based on tumour data.

Figure 3.6: Percentage of explained variance by each principal component by data
provided. The green line shows the number of principal components needed for at least
90% variance preservation.

newest of the three methods. Diaz-Papkovic et al. [DPATG21] concluded that UMAP
has shown wide adoption among the scientific community and that it is a viable option
for processes like clustering, giving us another reason to choose UMAP.

(a) Based on liver data. (b) Based on tumour data.

Figure 3.7: Percentage of cumulative explained variance from the PCA approach. The
green line shows the number of principal components needed for at least 90% variance
preservation.
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3.5. Clustering and Merging of Data Sets

3.5 Clustering and Merging of Data Sets
We perform the clustering of patients based on the resulting dimensionality reduction
embedding. Sklearn [PVG+11] once again offers a wide range of options regarding
clustering [Scib] with an overview of each method, including use cases and scalability.
We choose to use agglomerative clustering [Scic], as we are interested in how clusters
may form and which merge together. Agglomerative clustering starts out by placing each
data point in its own cluster and step by step merges the nearest ones together until one
single node remains [Mül11]. When using agglomerative clustering [Scia] we need to set
a couple of parameters:

• n_clusters defines how many clusters need to be found. This has been set to
None.

• metric defines the metric used to compute the linkage distances. ’euclidean’
was used in order to allow for a direct comparison of the linkages, as the ward
linkage only works when paired with the euclidean distance metric.

• linkage defines the linkage criterion used during the merging step of clusters. We
tested with ward and complete linkages to see the difference in cluster formation.

• distance_threshold defines the linkage distance threshold after which clusters
will not be merged and was set to 0 because we want to compute the whole tree.

Klemm et al. [KLR+13] investigated the different linkage methods and concluded that
the ward method was biased towards building clusters, which have a similar size, and
that complete produced compact clusters. Böröndy et al. [BFR22] also looked into how
different setting of the clustering affects cluster formation, and found that there is only a
slight difference in the formed clusters. We therefore can say that the selected settings
need to be investigated on a case-by-case basis with respect to the data set used and a
generalization is not possible. We chose the complete linkage criterion to be used. In
figure 3.8 we can see a comparison between the complete and ward linkage used in
hierarchical clustering on the liver and tumour data resulting from the UMAP reduction.
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(a) Dendrogam of liver data using com-
plete linkage.

(b) Dendrogam of liver data using Ward
linkage.

(c) Dendrogam of tumour data using
complete linkage.

(d) Dendrogam of tumour data using
Ward linkage.

Figure 3.8: Comparison of complete and ward linkages in hierarchical clustering.

In the previous examples, we were able to see the indices of patients displayed on the
x-axis. This works fine when there is a low amount of data, however, when working with
larger datasets it would be recommended to only keep the top few levels as those tend to
be more relevant as seen in Figure 3.9. Afterwards, we merged the data based on the
TCIA patient IDs. We investigated how the clusters would form when the un-reduced
dataset is used. In Figure 3.10 we see the dendrograms for the respective datasets. In
Figures 3.10b and 3.10a we see that the clustering remained the same for the liver data
when looking at the level where only 2 clusters are taken into consideration. Regarding the
liver data in Figures 3.10d and 3.10c some changes in cluster structure are made visible
when looking at the indices and clusters correspondence. For example in Figure 3.10d
the patient with index 17 does not get merged into the same cluster as the one with ID 9
until the very end, as opposed to what is shown in Figure 3.10c.

To summarize, we investigated three dimensionality reduction algorithms, PCA, t-SNE
and UMAP, compared these and decided to employ UMAP as a dimensionality reduction
tool to reduce the size of our data. Afterwards, we investigated agglomerative clustering
and compared the resulting clusters of the patient’s livers and tumours based on the
reduced data from UMAP, using the ward and complete linkage.
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3.5. Clustering and Merging of Data Sets

(a) Dendrogram of liver data showing
the top 3 levels.

(b) Dendrogram of tumour data show-
ing the top 3 levels.

Figure 3.9: Truncated dendrograms where only the top 3 levels are displayed. The
number of patients within an undisplayed subcluster is displayed in the parenthesis.
Numbers without parentheses represent the indices of patients.

(a) Clustering based on reduced liver
data.

(b) Clustering based on un-reduced liver
data.

(c) Clustering based on reduced tumour
data.

(d) Clustering based on un-reduced tu-
mour data.

Figure 3.10: Comparison of clustering results based on the original and reduced features.
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3.6 Visualization
Visualizations not only offer a more comprehensible view of the data to the researchers
but to anyone who has access to them. The goal is to enable users to investigate
the data set and gain insights into the groups forming through cohort stratification.
Parallel coordinate plots allow us to visualize higher dimensional points in a 2D plot,
making relationships between points visible. Heatmaps enable us to investigate potential
correlations between specific features of the data set.We employ Sankey diagrams to
investigate possible sets of patients in the data set and follow their paths. Sunburst
charts and treemaps also help in investigating sets of patients and building hypotheses
about the cohort. These visualizations aim to uncover connections between data points,
the features present in the clinical data set, and the derived liver and tumour descriptors
By including these visualizations, we are getting closer to a visual analytics solution,
which if applied correctly, will help doctors in investigating their patient cohorts. In the
next few subsections, we present different methods of visualizing our data.

3.6.1 Parallel Coordinates Plot

Inselberg et al. [ID90] present parallel coordinates plots as a tool for representing n-
dimensional data on a 2-dimensional plane. According to the authors, these plots can
have superficial similarities to Nomography [Bee24], however, the main difference is that
parallel coordinate plots enable the representation of multidimensional relations. Inselberg
et al. also note that at that time, the fields of robotics, statistics, and computational
geometry, as well as other fields, had an increased interest in this method of visualization.
A possible use case for this plot was found in the domain of air traffic control, where the
detection of conflicts between aircraft was handled. We chose parallel coordinate plots as
the first approach to visualize the stratified patient cohort. As can be seen in Figure 3.11
not much insight is gained due to the overlaps of the lines created by having discrete
features. Due to this overlapping, we can not deduce how many lines pass through each
level on the feature’s axis. At most, we could infer from the colour of the lines which
paths may have higher overall survival duration. Therefore, we looked into other possible
visualizations that can provide us with a sense of how many patients are following a
specific path.
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3.6. Visualization

Figure 3.11: Parallel coordinates plot of selected features.

3.6.2 Sankey Plot

Sankey et al. [San96,KS98] first introduced Sankey diagrams to show the thermal efficiency
of steam engines. Riehmann et al. [RHF05] shows a general example of how Sankey
diagrams can be used. These plots can also be employed in the visualization of material
flow management as shown by Schmidt [Sch08a,Sch08b]. Schmidt [Sch08b] investigates
some of the main use cases of Sankey plots and finds that these can be used for visualizing
flows and paths of resources, like materials and energy, within a system. Thus, Sankey
plots can visualize the paths of patients within a hospital or other healthcare institutions,
as shown by Lamer et al. [LLP+20]. Lamer et al. [LLP+20] also mention that these
diagrams can be employed to "visualize the trajectory of a population that experienced
an event". In our case, the population is our cohort of patients and the corresponding
event is their examination. They also mention that investigating these patient flows may
contribute towards generating hypotheses about patient care. According to their results,
the Sankey diagrams help in detecting atypical patient flows, investigating and validating
hypotheses, and are easy to understand for end-users. We see the results mentioned
above as further motivation to use Sankey diagrams in order to visualize and provide an
overview of patient paths. In Figure 3.12 presents the set of patients along all features.

We must take into consideration visual overlap due to multiple features having rather long
descriptions. The representation within the notebook allows us to drag the paths and
reposition them interactively to resolve clutter, as seen in Figure 3.13. The plot shown
in Figure 3.13 can still be quite hard to navigate and understand. We suggest splitting it

21
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Figure 3.12: Sankey diagram containing all combined features.

Figure 3.13: Sankey diagram where some paths have been dragged such that the descrip-
tions of the boxes are visible.

up into several plots, each containing a part of the original. An example of such a plot
can be seen in Figure 3.14. From the simple visual plot, we are already capable of getting

Figure 3.14: Sankey plot depicting the flow of patients based on the liver cluster, drinking
and smoking behaviour.

some information about the sets of patients and what paths may look like. However,
the Sankey plot offers further information and the concrete number of individuals that
are within one set when hovering over the grey flow path as seen in Figure 3.15. When
hovering over the blue nodes we will get information about the number of incoming paths
and outgoing paths as seen in Figure 3.16. This feature is useful when there are multiple
paths that overlap and thus would lead to false assumptions about the data flow within
the chart.

22



3.6. Visualization

Figure 3.15: Additional information provided by the Sankey chart when hovering over a
flow path. "source" depicts the starting node of the path, whereas "target" the terminal
node. The number "5.00" shows us how many patients (or entities) are within this path.

Figure 3.16: Additional information provided by the Sankey chart when hovering over a
node of the chart. the incoming and outgoing flow counts are also represented, in this
case, both are 2. The number "12.0" describes how many patients are within that node.

3.6.3 Heatmaps

We employ heatmaps in order to check how various variables may correlate to each
other. Heatmaps originate in the information visualization domain from the work of
Toussaint Luoa [Lou73]. Heatmap visualizations, as seen in papers of Wilkinson et
al. [WF09] or Eisen et al. [ESBB98] can be used for showing gene expression across
different conditions. Each function has its advantages and disadvantages. In Figure 3.17a
we see the basic heatmap containing the values of the correlation matrix and the colour
bar. In Figure 3.17b the colour bar is further away and it is not as friendly for printing,
but shows more digits within each cell. By using Plotly we also gain on-hover information
like before as seen in Figure 3.18. Figures 3.19a and 3.19b represent the covariance
heatmaps via the use of the beforementioned packages.
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(a) Seaborn package. (b) Plotly package.

Figure 3.17: Correlation heatmaps of selected features using the Seaborn and Plotly
package.

Figure 3.18: Information provided in the Plotly heatmap when hovering over a cell. x
and y are the coordinates of the matrix, in this case, 0.5833333 is the correlation value
between "Smoking" and "Alcohol".

(a) Covariance heatmap of selected fea-
tures using the Seaborn package.

(b) Covariance heatmap of selected features using
the Plotly package.

3.6.4 Sunburst Chart

Sunburst charts are a method of visualizing hierarchical data in a circular manner. Here,
the plot arranges the different hierarchies radially, beginning at the centre with the root
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and expanding outwards with each ring being another step in the hierarchy. Stasko et
al. [SCGM00] conducts a comparison between the sunburst and treemap chart types,
where the capability of finding files with the help of these charts was evaluated. They
conclude that the sunburst chart provided more help, as finding files was done faster and
more correctly than with the treemap.

In Figure 3.20 we can see the cohort of patients represented in a sunburst chart. Here
the colour of the circle segments represents the overall survival duration measured in
weeks. By clicking on any given segment, the chart will update the view and a zoomed-in

Figure 3.20: Sunburst chart including the liver cluster and tumour cluster descriptors as
well as the smoking and drinking habits of the patients. The colours correspond to the
average overall survival (in weeks) of the groups formed.

version is displayed. For instance, by clicking on tumour cluster 0 in the liver cluster 0
group we obtain the chart seen in Figure 3.21. This way, we can explore our data in more
detail and also see the bigger picture by having the zoomed-out version. It is possible to
go back to any layer by clicking on the inner-most circle.
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Figure 3.21: Sunburst chart including the tumour cluster descriptor as well as the smoking
and drinking habits of the patients in liver cluster 0.

3.6.5 Treemaps

Ben Shneiderman [Shn92] first introduced treemaps as a modality to visualize hierarchical
data similar to the sunburst chart. In Figure 3.22 we see a similar view to the sunburst
chart in Figure 3.20. However, the difference is that the age groups and sex are added
to see how this influences the cohort of patients. Once again it is possible to obtain
zoomed-in versions by clicking on a desired group. As an example when clicking on the
group with the descriptors of liver cluster 0 and tumour cluster 0, we obtain the view
presented in Figure 5.3.

Figure 3.22: Treemap chart including the liver cluster and tumour cluster descriptors as
well as the smoking and drinking habits, age groups and sex of the patients. The colours
correspond to the average overall survival (in weeks) of the groups formed.
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CHAPTER 4
Implementation

We envisioned the implementation to follow our presented methodology and based it on
the research of related work, which makes use of radiomics. We found that most of the
features are already available via the Pyradiomics [VGFP+17] package, and therefore
used it for feature extraction. Pyradiomics, according to its authors, aims to "establish
a reference standard for Radiomic Analysis, and provide a tested and maintained open-
source platform for easy and reproducible Radiomic Feature extraction". Reproducibility
is very important because we do not want feature values to change at random, impacting
any and all processing steps in the following pipeline.

For visualizing the distributions of our data, we have used various plots implemented in
the Seaborn [WBO+17] package. We needed this to determine how the data points were
scattered in space and also get an intuition about their distribution. We also tested the
normality of each feature with the help of the implementation provided by scipy [Scid].
Dimensionality reduction used algorithms implemented in the Scikit-learn [PVG+11]
and UMAP [MHM18] packages. As seen in the chapter for clustering 3.5, we also used
packages like Scipy [VGO+20], and Scikit-learn [PVG+11] for clustering our data and
visualizing those results. We used Plotly [Inc15] and Seaborn [WBO+17] to investigate
the structure of our cohort and draw conclusions regarding groups of patients as seen
in Chapter 3.6. We made the Sankey plots with the help of the Plotly library and
their documentation [San]. For heatmaps, we used the respective functions found in
the Seaborn [Heaa] and Plotly [Heab] packages. We use the Plotly implementation of
the sunburst chart [Sun] as it offers interactions like going deeper into the hierarchy
and making it possible to go down different paths while investigating the cohort. For
Treemaps, we chose to once again use the Plotly version [Tre] as it is quite easy to use
and offers interactive capabilities when viewed directly in the notebook or as an HTML
file. The implementation itself is available on GitHub [Git].
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CHAPTER 5
Results

As seen in Section 3.6 where we have taken a look at different visualization options,
some interesting patterns arise regarding the groupings of patients and how their overall
survival rating changes. For example, when looking at the sunburst plots in Figure 3.21,
we could say that the patients of liver cluster 0 and tumour cluster 0 who drink alcohol
and smoke have higher overall survival than those who do not.

Sankey diagrams, as seen in Figure 3.13, can offer an idea of how the paths of patients
may change with respect to the observed feature. This can help in identifying features
that could contribute to improving the separation of groups (e.g., sex, age group) or
those which do not (e.g., family history of liver cancer fhx_livc).

From sunburst charts, we conclude that the patients that are in liver cluster 0 and tumour
cluster 0 who neither smoke nor drink alcohol have a lower overall survival duration than
those who would smoke and drink but have the same categorisation in regards to their
liver and tumour cluster, which is quite intriguing. In this case, we are interested in what
the concrete average value of the overall survival duration is, then we can hover over the
desired segment and also find the path which leads to it as seen in Figure 5.1 is of about
252.95 weeks for the group who are in the liver cluster 0 and tumour cluster 0. From

Figure 5.1: Additional information provided by the sunburst chart when hovering over a
segment.
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sunburst charts, we conclude that the patients that are in liver cluster 0 and tumour
cluster 0 who neither smoke nor drink alcohol have a lower overall survival duration than
those who would smoke and drink but have the same categorisation in regards to their
liver and tumour cluster, which is quite intriguing. In this case, we are interested in what
the concrete average value of the overall survival duration is, then we can hover over the
desired segment and also find the path which leads to it as seen in Figure 5.1 is of about
252.95 weeks for the group who are in the liver cluster 0 and tumour cluster 0.

Treemaps offer a more rectangular view of the tabular data but offer the same functionality
as the sunburst plots. In Figure 3.22 additional information like the age group and sex
were used to look for other possible variables that may explain the overall survival scores
of the patients. It turns out that the age group has a large contribution when brought into
the mix of displayed variables. For instance, in Figure 5.3, looking only at liver cluster
0 tumour cluster 0 patients, we can notice a difference in the survival score between
male and female patients. This difference is now further expanded when looking at the
male patients and their age groups, where those above the age of 70 have a much higher
survival score than those aged 41-50. The opposite behaviour can be seen for female
patients, those aged 41-50 have higher scores than those above 70 years of age. From this,
we may conclude that the visualizations aided us in discovering unforeseen connections
between variables. Similar to the sunburst chart, the treemap chart also offers on-hover
information seen in Figure 5.2 about the groups the same way as in Figure 5.1. From
the information provided in Figure 5.2 we may say that the overall survival duration of
female patients who are in the liver cluster 0 and tumour cluster 0 is on the average of
204.095 weeks. However, when looking at Figure 5.3, we can see that we also have a
strong split between the 41-50 and the >70 age groups with vastly different values for
overall survival, one having around 200 and the other close to 50 weeks.

Figure 5.2: Additional information provided by the treemap chart when hovering over a
segment.

30



Figure 5.3: Treemap chart where the subgroup of "liver cluster 0" and "tumour cluster 0"
have been selected.
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CHAPTER 6
Conclusions and Future Work

To summarize, this thesis investigated the stratification of Hepatocellular Carcinoma
patients. We described the radiomics feature extraction procedure used to obtain relevant
numerical descriptors of our patients, which were then min-max normalized for the
dimensionality reduction step via UMAP. Clustering was then discussed based on the
reduced features in order to explain the derived liver and tumour cluster descriptors,
which are mapped to the patient’s clinical data. The merged data set was visualized via
multiple different plots and insights were gained regarding the cohort.

Data scientists and clinicians looking to investigate the cohort of patients may find the
graphics and visual plots useful. We can use Plotly Dash [SH19] in order to investigate
other possible visualization methods provided in Dash and potentially offer another way
of interaction besides Jupyter Notebooks. As the interests of patients and clinicians may
not necessarily align, we could also find it interesting to see if there may be a need for a
dedicated version for patients to help them better understand their health circumstances.

Another possibility is to integrate treatment data into the visualizations such that
decisions could be supported by the measured changes in the patient’s anatomy and
metabolism. This would further improve the groupings that result from the visualizations,
as we could see paths towards a more likely recovery or higher survival chances.

In general, one can apply these visualizations regardless of the originating dataset, as
long as the data can be brought in a tabular form of features. This allows for repurposing
the implementation for various data exploration applications like the following:

1. Investigating other medical affiliations via the use of radiomics. Lung deterioration
due to some viral infections, smoking habits, and other pollutants like asbestos.

2. Kindeys may also be investigated to see possible kidney stone formations and how
these may occur. Here, ultrasound as well as CT scans can be of help for acquiring
the volumetric data.
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3. Going outside the medical sector, we may also be interested in the energetic sector
regarding power distribution and usage, where Sankey diagrams are known to be
used. The same idea can be applied to investigating finances and following the
inflow and outflow of capital. In this case, the features can be the power source
(i.e., hydroelectric, solar, wind, nuclear power), the consumer type (i.e., metallurgic
industry, residential buildings, education facilities etc.), or even the nodes within
the distribution chain (i.e, power transformers, high-voltage power lines).
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