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We consider the problem of untangling a given (non-planar) straight-line circular drawing 
δG of an outerplanar graph G = (V , E) into a planar straight-line circular drawing of G by 
shifting a minimum number of vertices to a new position on the circle. For an outerplanar 
graph G , it is obvious that such a crossing-free circular drawing always exists and we define 
the circular shifting number shift◦(δG ) as the minimum number of vertices that are required 
to be shifted in order to resolve all crossings of δG . We show that the problem Circular 
Untangling, asking whether shift◦(δG ) ≤ K for a given integer K , is NP-complete. For n-
vertex outerplanar graphs, we obtain a tight upper bound of shift◦(δG ) ≤ n − �√n − 2� − 2. 
Moreover, we study the Circular Untangling for almost-planar circular drawings, in which 
a single edge is involved in all of the crossings. For this problem, we provide a tight upper 
bound shift◦(δG ) ≤ � n

2 � − 1 and present an O (n2)-time algorithm to compute the circular 
shifting number of almost-planar drawings.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The family of outerplanar graphs, i.e., the graphs that admit a planar drawing where all vertices are incident to the 
outer face, is an important subclass of planar graphs and exhibits interesting properties in algorithm design, e.g., they have 
treewidth at most 2. Being defined by the existence of a certain type of drawing, the study of outerplanar graphs is a fun-
damental topic in the field of graph drawing and information visualization; they are relevant to circular graph drawing [28]
and book embedding [3,5]. Several aspects of outerplanar graphs have been studied over the years, e.g., characterization 
[8,13,29], recognition [1,31], and drawing [14,21,27]. Moreover, outerplanar graphs and their drawings have been applied to 
various scientific fields, e.g., network routing [15], VLSI design [9], and biological data modeling and visualization [20,32].

In this paper, we study the untangling problem for non-planar circular drawings of outerplanar graphs, i.e., we look for 
the minimum number of vertices needed to shift in order to turn the given non-planar circular straight-line drawing into 
a planar one. Similar untangling ideas have been used previously to eliminate edge crossings in non-planar drawings of 
planar graphs [17]. More precisely, let G = (V , E) be an n-vertex outerplanar graph and let δG be an outerplanar drawing of 
G , which can be described combinatorially as the (cyclic) order σ = (v1, v2, . . . , vn) of V when traversing vertices on the 
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Fig. 1. Morphing an outerplanar drawing (a) into a circular drawing (b).

boundary of the outer face counterclockwise. This order σ corresponds to a planar circular drawing by mapping each vertex 
vi ∈ V to the point pi on the unit circle O with the polar coordinate pi = (1, i

n · 2π) and drawing each edge (vi, v j) ∈ E as 
the straight-line segment between its endpoints pi and p j ; see Fig. 1.

We note that it is sufficient to consider circular drawings since any outerplanar drawing can be transformed into an 
equivalent circular drawing by morphing the boundary of the outer face to O and then redrawing the edges as straight 
segments [28]. Assume the target drawing is known and the corresponding vertices are labeled. The transformation of the 
current circular vertex ordering to the target circular vertex ordering with minimal vertex moves, is identical to finding the 
longest common subsequence between two cyclic permutations [24].

Our untangling problem is further motivated by the problem of maintaining an outerplanar drawing of a dynamic out-
erplanar graph, which is subject to edge or vertex insertions and deletions, while maximizing the visual stability of the 
drawing [22,23], i.e., the number of vertices that can remain in their current position. Such problems of maintaining 
drawings with specific properties for dynamic graphs have been studied before [2,4,11,12], but not for the outerplanarity 
property.

Related work. The notion of untangling is often used in the literature for a crossing elimination procedure that makes a 
non-planar drawing of a planar graph crossing-free; see [10,18,25,26]. Given a straight-line drawing δG of a planar graph G , 
the problem to decide whether it is possible to untangle δG by moving at most K vertices, is known to be NP-hard [17,30]. 
Lower bounds on the number of vertices that can remain fixed in an untangling process have also been studied [6,7,17]. 
On the one hand, Bose et al. [6] proved that �(n1/4) vertices can remain fixed when untangling a drawing. On the other 
hand, Cano et al. [7] gave a family of drawings, where at most O (n0.4948) vertices can remain fixed during an untangling 
process. Goaoc et al. [17] proposed an algorithm, which allows at least 

√
(log n − 1)/ log log n vertices to remain fixed when 

untangling a drawing. Given an arbitrary drawing of an n-vertex outerplanar graph, all edge crossings can be eliminated 
while keeping at least 

√
n/2 vertices fixed [17,26], whereas there exists a drawing δG of an n-vertex outerplanar graph G

such that at most 
√

n − 1 + 1 vertices can stay fixed when untangling δG [17]. Kraaijer et al. [19] proposed several variants 
on untangling moves such as swapping the locations of two adjacent vertices or rotating an edge over 90 degrees. They 
showed that it is NP-complete to decide if a drawing can be untangled by swapping. They also proved that to minimize the 
number of swaps needed to untangle an embedded tree is NP-hard.

Note that the untangled drawings in these previous works are planar but not necessary outerplanar. In this paper, we 
study untanglings transforming non-outerplanar circular drawings into outerplanar circular drawings.

Preliminaries and problem definition. Given a graph G = (V , E), a 2-connected component of G is a maximal subgraph 
of G such that after removing any single vertex of G , the subgraph remains connected. Two subsets A, B ⊆ V are adjacent
if there is an edge ab ∈ E with a ∈ A and b ∈ B . A bridge (resp. cut-vertex) of G is an edge (resp. vertex) whose deletion 
increases the number of connected components of G .

A drawing of a graph is planar if it has no crossings, it is almost-planar if there is a single edge that is involved in all 
crossings, and it is outerplanar if it is planar and all vertices are incident to the outer face. A graph G = (V , E) is outerplanar
if it admits an outerplanar drawing and it is known that such a drawing exists if and only if G has neither K4 nor K2,3 as 
a minor. A drawing where the vertices lie on a circle and the edges are drawn as straight-line segments is called a circular 
drawing. Every outerplanar graph G admits a planar circular drawing, as one can start with an arbitrary outerplanar drawing 
δG of G and transform the boundary of the outer face of δG to a circle [28]. In this paper, we exclusively work with circular 
drawings of outerplanar graphs; we thus refer to them as drawings. Let e = uv be an edge of a graph G and let δG be a 
circular drawing of G . For simplicity, we refer to the line segment uv in the drawing δG as the edge e of δG .

Given a non-planar circular drawing δG of an n-vertex outerplanar graph G where the vertices lie on the unit circle O, 
we can transform the drawing δG to a planar circular drawing by moving the vertices on the circle O. Formally, given a 
circular drawing δG , a vertex move operation (or shift) changes the position of one vertex in δG to another position on the 
2
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circle O [17]. We call a sequence of moving operations that results in a planar circular drawing an untangling of δG . We 
say an untangling is minimum if the number of vertex moves of this untangling is the minimum over all untanglings of δG . 
We define the circular shifting number shift◦(δG) of a circular drawing δG as the number of vertex moves in a minimum 
untangling of δG . Now we can formulate the relevant problems.

Problem 1.1 (Circular Untangling (CU)). Given a circular drawing δG of an outerplanar graph G and an integer K , decide if 
shift◦(δG) ≤ K .

Problem 1.2 (Minimum Circular Untangling (MinCU)). Given a circular drawing δG of an outerplanar graph G , find an un-
tangling of δG with shift◦(δG) vertex moves.

Contributions. We show that Circular Untangling is NP-complete in Section 2. Then, in Section 3, we provide a tight 
upper bound of the circular shifting number. Next, we consider almost-planar drawings. In this case, we provide a tight 
upper bound on the circular shifting number in Section 4 and design a quadratic-time algorithm to compute a minimum 
untangling in Section 5.

2. Complexity of Circular Untangling

In this section, we prove the following theorem.

Theorem 2.1. Circular Untangling is NP-complete.

The NP-hardness follows by a reduction from the well-known NP-complete problem 3-Partition [16]. However, we do 
not give a direct reduction but rather work via an intermediate problem, called Distinct Increasing Chunk Ordering with 
Reversals that concerns increasing subsequences. A chunk C is a sequence C = (ci)

n
i=1 of positive integers. For a chunk C , 

we define C1 = C , and we denote its reversal by C−1. We introduce the following problem.

Problem 2.2 (Increasing Chunk Ordering with Reversals (ICOR)). Given a multiset C = {C1, . . . , C�} of � chunks and a posi-
tive integer M , determine whether a permutation π of {1, . . . , �} and a function ε : {1, . . . , �} → {−1, 1} exist such that the 
concatenation Cε(1)

π(1)Cε(2)
π(2), . . . , C

ε(n)
π(�) contains a strictly increasing subsequence of length M .

This problem also comes in a distinct variant, denoted Dist-ICOR, where all integers in all input chunks are required to 
be distinct. We first show that Dist-ICOR is NP-complete and then reduce it to Circular Untangling. Since we feel that
Dist-ICOR may serve as a useful starting point for future reductions, we explicitly state our intermediate result.

Theorem 2.3. Dist-ICOR is NP-complete.

2.1. Proof of Theorem 2.3

Observe that Dist-ICOR lies in NP, since we can non-deterministically guess an ordering of chunks and whether each of 
them is reversed or not. We can further guess an increasing subsequence of the concatenation and check its length. The 
remainder of this section is devoted to showing NP-hardness by giving a reduction from 3-Partition.

The input to the 3-Partition problem consists of a multiset A = {a1, . . . , a3m} of 3m positive integers and a positive 
integer K such that K

4 < ai < K
2 for i = 1, . . . , 3m. The question is whether A can be partitioned into m disjoint triplets 

T1, . . . , Tm such that
∑

a∈T j
a = K for all j = 1, . . . , m. It is well-known that 3-Partition is strongly NP-complete, i.e., the 

problem is NP-complete even if the integers in A and K are polynomially bounded in m [16].
Let I = (A, K ) with A = {a1, . . . , a3m} be an instance of 3-Partition. We assume that each number in A is a multiple of 

3m, otherwise, we can multiply each element in A and K by 3m. We now construct an instance I ′ = (C, M) of Dist-ICOR in 
polynomial time.

Construction. We create for each element ai ∈ A a corresponding chunk Ci as follows. For two integers a, l, we denote 
the consecutive integer sequence (a, a + 1, . . . , a + l − 1) as the incremental sequence of length l starting at a. We say that a 
sequence of integers crosses an integer c if it contains both a number that is at most c and a number that is at least c + 1. 
Let X = 3mK . We take all incremental sequences of length ai + X starting at α · (K +3X) +β · X +γ for α ∈ {0, · · ·m −1}, β ∈
{0, 1, 2} and γ ∈ {1, 2, · · · , K − ai}. Note that there are at most X such sequences and no such sequence crosses a multiple 
of K + 3X . To construct the chunk Ci , we first build a chunk C ′

i with possibly repeating numbers as follows. The chunk C ′
i is 

formed by concatenating all these incremental sequences of length ai + X in decreasing order of their starting number; see 
Fig. 2. Observe that, in the figure, a strictly increasing subsequence corresponds to a path of segments with positive slopes, 
whereas a non-increasing subsequence corresponds to a path with non-positive slopes.
3
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Fig. 2. Construction of chunk Ci as a concatenation of incremental sequences of length ai + X in the decreasing order of their first number. Each blue solid 
path corresponds to an incremental sequence. The red dashed path, which connects the first numbers of the incremental sequences, slopes downward. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

To make the elements distinct, we introduce pairs of numbers, which we order lexicographically. We take the concatena-
tion C of chunks C ′

1, C
′
2, · · · , C ′

3m , then replace the number a at the i-th position by the pair (a, |C | − i) for each position i, 
where |C | is the length of the sequence C . The chunks C1, . . . , C3m of number pairs are obtained by cutting this modified 
sequence C of number pairs in such a way that |Ci | = |C ′

i | for i = 1, . . . , 3m. To get an instance with chunks of numbers 
again, at the end of the construction, each number pair is replaced by its rank in a lexicographically increasing ordering 
of all pairs that occur in the instance. For simplicity, we use the construction with pairs in the following. We obtain an 
instance I ′ = (C, M) of Increasing Chunk Ordering with Reversals by setting C = {C1, . . . , C3m} and M := m(K + 3X).

For a sequence of pairs with two entries, we call the sequence obtained by keeping only the first entry of each pair, its 
projection. Note that the projection of Ci is C ′

i .

Lemma 2.4. For each i ∈ {1, . . . , 3m}, the chunk Ci has the following properties:

(i) For every strictly increasing subsequence of Ci , its projection is a strictly increasing sequence with respect to the lexicographic 
ordering of pairs.

(ii) No projection of a strictly increasing subsequence of Ci crosses a multiple of K + 3X.
(iii) For each α ∈ {0, · · · , m − 1}, β ∈ {0, 1, 2} and γ ∈ {1, 2, · · · , K − ai}, there exists a subsequence of Ci whose projection is the 

incremental sequence of length ai + X starting at α · (K + 3X) + β · X + γ .
(iv) Every strictly increasing subsequence of Ci has length at most ai + X.
(v) Every strictly increasing subsequence of C−1

i has length at most X.

Proof. Since the sequence obtained by keeping the second entry of each pair of Ci is strictly decreasing, we get Property (i). 
Property (ii) and Property (iii) follow directly from the construction of C ′

i .
To show Property (iv), suppose for a contradiction that there exists a strictly increasing subsequence s of Ci such that 

the length of s is bigger than ai + X . By Property (i), the projection s′ of s is a strictly increasing sequence of Ci . Since C ′
i is 

a concatenation of incremental sequences of length ai + X (in the decreasing order of their starting number), there exists an 
index j ∈ {1, ..., ai + X} such that s′ contains the j-th elements of two incremental subsequences of C ′

i . By the construction 
of C ′

i , these elements are in the decreasing order in C ′
i , a contradiction.

For Property (v), consider a strictly increasing subsequence of C−1
i . It corresponds to a strictly decreasing subsequence 

s of Ci , and its projection s′ is a non-increasing subsequence of C ′
i . Note that s′ contains at most one element of each 

incremental sequence of C ′
i , and C ′

i is the concatenation of at most X incremental sequences. Therefore, the length of s′ is 
at most X . �

In order to finish the proof of Theorem 2.3 it remains to show the following.

Lemma 2.5. I ′ is a yes-instance of Dist-ICOR if and only if I is a yes-instance of 3-Partition.

Proof. Assume there is a partition of the elements of A into m triplets, each of which sums to K . We arbitrarily order 
these triples, and within each triplet, we order the elements according to their index. This defines a total ordering on 
the elements, and therefore on the chunks. Let Ti = {ax, ay, az} with x < y < z be the ith triplet and let Cx, C y, Cz be the 
corresponding chunks. By Property (iii), Cx , C y , and Cz contain, respectively, three subsequences whose projections are the 
incremental sequences of length ax + X , ay + X , and az + X starting at (i − 1)(K + 3X) + 1, (i − 1)(K + 3X) + X + ax +
1, and (i − 1)(K + 3X) + 2X + ax + ay + 1. Concatenating these subsequences for all chunks hence gives an increasing 
subsequence whose projection is the sequence 1, · · · , m(K + 3X).
4
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Fig. 3. The reduction from Dist-ICOR to Circular Untangling.

Conversely, assume that there is a chunk ordering that contains a strictly increasing subsequence S of length m(K + 3X). 
By Property (iv) and Property (v), each chunk Ci or its reversal can contribute a subsequence of at most ai + X elements, 
therefore each chunk Ci or its reversal must contribute an increasing subsequence of length ai + X . Moreover, reversing 
Ci only provides a shorter increasing subsequence than ai + X , thus no Ci is reversed. We cut the sequence S into m
consecutive sequences S1, S2 . . . Sm , called partition cells of S , such that the projection of Si consists of numbers in {(i −
1)(K + 3X) + 1, · · · , i(K + 3X)}. By Property (ii), the projection of every strictly increasing subsequence inside a chunk does 
not cross a multiple of K + 3X , thus each chunk contributes to exactly one partition cell. We claim the following:

Claim 1. Each partition cell has length K + 3X .

We first show how the proof of the lemma can be derived from the claim. Since the length of each cell is K + 3X , 
exactly three chunks contribute to each cell. Each such triplet of chunks then corresponds to a triplet of A whose sum is K . 
Together, these triplets provide a solution of the instance I of 3-Partition.

It remains to prove the claim. Consider a partition cell Si consisting of numbers from n chunks. Then Si is the concate-
nation of subsequences Si,1, Si,2, . . . , Si,n , n ≤ 3m, each of which is contributed by a different chunk. Since the projection 
of Si is a non-decreasing sequence consisting of numbers in {(i − 1)(K + 3X) + 1, · · · , i(K + 3X)} and by Property (i), the 
projection of each Si, j is a strictly increasing sequence, it follows that non-strict increases of Si can only occur when moving 
from Si, j to Si, j+1 for some j. Thus, |Si | < K + 3X + n ≤ K + 3X + 3m.

Note that X, K and |Si | are all multiples of 3m. For X , this is by definition, for K , it follows from the fact that each 
element of A is a multiple of 3m, and for |Si | recall that each chunk C j that contributes a nonempty subsequence of Si
contributes a sequence of length X +a j . Therefore |Si | < K +3X +3m implies |Si| ≤ K +3X . Suppose there exists a partition 
cell S j with |S j| < K +3X , then |S| < m(K +3X), which contradicts our assumption of |S| = m(K +3X). Hence |Si| = K +3X
as claimed. �
2.2. Proof of Theorem 2.1

It is readily seen that Circular Untangling lies in NP. So it remains to describe the reduction from Dist-ICOR. Let I =
(C, M) be an instance of Dist-ICOR with chunks C1, . . . , C� . By replacing each number with its rank among all occurring 
numbers, we may assume without loss of generality, that the numbers in the sequence are 1, . . . , 

∑�
i=1 |Ci | =: L.

We construct an instance I ′ = (δG , K ) of Circular Untangling as follows; see Fig. 3a. We create vertices v1, . . . , v L and 
an additional vertex v0. For each chunk Ci , we create a cycle Ki that starts at v0, visits the vertices that correspond to 
the elements of Ci in the given order, and then returns to v0. That is, G consists of � cycles that are joined by the cut-
vertex v0. The drawing δG is obtained by placing the vertices in the clockwise order σG = v0, v1, v2, . . . , v L on the unit 
circle O. Finally, we set K := L − M . Clearly, I ′ can be constructed from I in polynomial time. It remains to prove the 
following.

Lemma 2.6. I is a yes-instance of Dist-ICOR if and only if I ′ is a yes-instance of Circular Untangling.

Proof. Observe that, since in δG the vertices are ordered clockwise according to their numbering, the problem of untangling 
with at most L − M vertex moves is equivalent to finding a planar circular drawing of G whose clockwise ordering contains 
an increasing subsequence of at least M vertices, which can then be kept fixed; see Fig. 3b.
5
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Fig. 4. An almost-planar drawing δG with shift◦(δG ) = n
2 − 1.

Since all of the cycles of G are joined at the vertex v0, the vertices of each cycle Ki are consecutive in every planar 
circular drawing of G , and the order of its vertices is the order along Ki , i.e., it is fixed up to a reversal. Hence the choice of 
a circular drawing whose clockwise ordering contains an increasing subsequence of at least M vertices directly corresponds 
to a permutation and reversals of the chunks Ci . �
3. A tight upper bound of the circular shifting number

In this section, we investigate an upper bound of the circular shifting number and prove the following theorem.

Theorem 3.1. For every drawing δG of an n-vertex outerplanar graph G (n ≥ 3), we have shift◦(δG) ≤ n − �√n − 2� − 2, and this 
bound is tight.

Proof. To prove the tightness of the upper bound, we present an untangling that fixes at least �√n − 2� + 2 vertices in 
the following. Let G = (V , E) be an n-vertex outerplanar graph with a circular drawing δG of G . Let δU

G be a planar circular 
drawing of G . We number the vertices of G as v1, . . . , vn in clockwise order according to their occurrence in δU

G . Now we 
untangle δG by moving vertices such that the vertices are ordered as v1, . . . , vn clockwise or counterclockwise. To do this 
with a minimum number of vertex moves is equivalent to finding a longest increasing or decreasing subsequence of the 
ordering of the vertices in δG , which can be fixed during the transformation. The claimed bound follows from the following 
Erdős-Szekeres Theorem for cyclic permutations.

Theorem 3.2 ([33]). For any two positive integers s, r, any cyclic sequence of n ≥ sr + 2 distinct real numbers has an increasing cyclic 
subsequence of s + 2 terms or a decreasing cyclic subsequence of r + 2 terms, and this bound is tight.

Moreover, observe that for cycles, the circular order of the vertices of a planar drawing is unique up to reversal, and 
therefore untangling a drawing of a cycle with a minimum number of moves is equivalent to determining a longest increas-
ing or decreasing subsequence in the fixed cyclic ordering determined by the cycle. Hence, a tight example can be obtained 
from a tight example for the above theorem. �
4. A tight upper bound for almost-planar drawings

In this section, we discuss the upper bound of untangling an almost-planar circular drawing. We show that only almost 
half of the vertices required to be moved to untangle an almost-planar drawing. Let G = (V , E) be an outerplanar graph and 
let δG be an almost-planar circular drawing of G . In this section, we present an untangling for such almost-planar circular 
drawings that provides a tight upper bound of � n

2 � − 1 on shift◦(δG).

Theorem 4.1. For every almost-planar drawing δG of an n-vertex outerplanar graph G (n ≥ 4), we have shift◦(δG) ≤ � n
2 � − 1, and 

this bound is tight.

To see that the bound is tight, let n ≥ 4 and let G be the cycle on vertices v1, . . . , vn, v1 (in this order). We first con-
sider the case that n is an even number. Let δG be a drawing inducing the clockwise ordering v2, . . . , v2i . . . , vn, vn−1, . . . ,
v2i+1, . . . , v1; see Fig. 4. We claim that shift◦(δG) ≥ n

2 − 1. Clearly, the clockwise circular ordering induced on the vertices of 
G in a crossing-free circular drawing is either v1, v2, . . . , vn or its reverse. Assume that it is v1, v2, . . . , vn; the other case is 
symmetric. In δG , the n

2 odd-index vertices v1, . . . , v2i+1 . . . , vn−1 and vn are ordered counterclockwise. Hence, to obtain a 
clockwise ordering, we need to move all but two of these vertices. Thus, at least n −1 vertices in total are required to move. 
2
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Fig. 5. Moving a left component, keeping/reversing the clockwise ordering of its vertices.

In the case that n is an odd number, the � n
2 � + 1 odd-index vertices v1, . . . , v2i+1 . . . , vn are ordered counterclockwise and 

thus all but two of them are required to move.
The remainder of this section is devoted to proving the upper bound. Let e = uv be the edge of δG that contains all of 

the crossings, and let Go = G − e and δGo be the planar circular drawing of Go by removing the edge e from δG . The edge 
uv partitions the vertices in V \ {u, v} into the sets L and R that lie on the left and right side of the edge uv (directed from 
u to v).

Theorem 4.2. Let δG be an almost-planar drawing of an outerplanar graph G. A planar circular drawing of G can be obtained from δG

by moving only vertices of L or only vertices of R to the other side of e in δG and fixing all remaining vertices. The untangling moves 
only min{|L|, |R|} vertices and can be computed in linear time.

This immediately implies the upper bound from Theorem 4.1, since |L ∪ R| = n − 2, and therefore min{|L|, |R|} ≤ � n
2 � − 1. 

To prove Theorem 4.2, we distinguish different cases based on the connectivity of u and v in Go .

Case 1: u, v are not connected in Go . Consider a connected component C of Go that contains vertices from L and from R .

Proposition 4.3. Suppose u, v are not connected in Go. Let C be a connected component of Go that contains vertices from L and from 
R. It is possible to obtain a new almost-planar drawing δ′

G of G from δG by moving only the vertices of C ∩ L (resp. C ∩ R) such that C
lies entirely on the right (resp. left) of uv in δ′

G .

Proof. In the following, we present how to move vertices of C ∩ L to the right side; the other case moving C ∩ R to the left 
side is symmetric. Since u, v are not connected in Go , C contains at most one of u, v . Without loss of generality, we assume 
that v /∈ C ; see Fig. 5a. Let v ′ be the first clockwise vertex after v that lies in C . Let δ′

G be the drawing obtained from 
δG by moving the vertices of C ∩ L clockwise just before v ′ without changing their clockwise ordering. Observe that this 
movement removes all crossings of e with C . The choice of v ′ ensures that there exists no edge of C such that its endpoints 
alternate with endpoints of any edge in V \ C . Finally, the vertices of C maintain their clockwise order. This shows that no 
new crossings are introduced, and the crossings between e and C are removed. �

By applying Proposition 4.3 to each connected component of Go that contains vertices from L and from R , we obtain a 
planar circular drawing of G .

Case 2: u, v are connected in Go . Let C be the connected component of Go that contains both vertices u and v . Note that if 
C ′ is another connected component of Go , then it must lie entirely to the left or entirely to the right of the edge e. Here, 
we ignore such components as they never need to be moved. We may hence assume that Go is connected.

Case 2.1: u, v are 2-connected in Go . We claim that in this case δG is already planar.

Proposition 4.4. If u and v are 2-connected in Go, then δG is planar.

Proof. If vertices u, v ∈ V are 2-connected in Go , then Go contains a cycle C that includes both u and v . In δGo , this cycle is 
drawn as a closed curve. Any edge of δGo that intersects the interior region of this closed curve therefore has both endpoints 
in C . If there exists an edge e′ = xy of Go that intersects e = uv , then contracting the four subpaths of C connecting each 
of {x, y} to each of {u, v} yields a K4-minor in G , which contradicts the outerplanarity of G . �
7
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Fig. 6. The K2,3-minors we use in the proof of Lemma 4.7.

Case 2.2: u, v are connected but not 2-connected in Go . In this case Go contains at least one cut-vertex that separates u and 
v . Notice that each path from u to v visits all such cut-vertices between u and v in the same order. Let f and l be the first 
and the last cut-vertex on any uv-path. Additionally, add u to the set of L, R that contains f and likewise add v to the set 
of L, R that contains l. Let X denote the set of edges of Go that have one endpoint in L and the other in R . Each connected 
component of Go − X is either a subset of L or a subset of R , which are called left and right components, respectively. We 
call a component of Go − X connecting if it contains either u or v , or removing it from Go disconnects u and v . For a left 
component CL and a right component C R , we denote by E(CL, C R) the set of the edges of Go that connect a vertex from CL

to a vertex in C R . We get the following observations.

Observation 4.5. For any edge that connects a left and a right component, at least one of the components must be connect-
ing.

Observation 4.6. If P is a path in a left (right) component C connecting two vertices x and y, then it contains all vertices 
of C that are adjacent to a vertex of a right (left) component and lie between x and y on the left (right) side of uv .

Lemma 4.7. Every non-connecting component C of Go − X is adjacent in Go to exactly one component C ′ of Go − X. Moreover, C ′ is 
connecting, there are at most two vertices in C ′ that are incident to edges in E(C, C ′), and if there are two such vertices w, x ∈ C ′ , then 
they are adjacent in Go and removing the edge wx disconnects C ′ .

Proof. Without loss of generality, we assume that C is a left component. Since C is non-connecting, any component adjacent 
to it must be connecting. Moreover, if there are two distinct such components, they lie on the right side of the edge uv . 
Then either there is a path on the right side that connects them (but then they are not distinct), or removing C disconnects 
these components, and therefore u and v , contradicting the assumption that C is a non-connecting component. Therefore C
is adjacent to exactly one other component C ′ , which must be a right connecting component.

Let w and x be the first and the last vertex in C ′ that are adjacent to vertices in C when sweeping the vertices of G
clockwise in δG starting at v; see Fig. 6. The lemma holds trivially if w = x. Suppose w �= x. Next we show that the two 
vertices w and x are adjacent in Go and that the edge wx is a bridge of C ′ . Let P be an arbitrary path from w to x in C ′ . If 
P contains an internal vertex y, then the path P together with a path from w to x whose internal vertices lie in C forms a 
cycle, where x and w are not consecutive. Note that at least one of u, v , say u, is not identical to w, x, otherwise, u, v are 
2-connected. This cycle, together with disjoint paths from w to v and x to u and the edge uv yields a K2,3-minor in G; see 
Fig. 6. Such paths exist, by the outerplanarity of δGo and the fact that C ′ is connecting, but C is not. Since G is outerplanar, 
and therefore cannot contain a K2,3-minor, this immediately implies that P consists of the single edge wx, which must be 
a bridge of C ′ as otherwise there would be a wx-path with an internal vertex. Observation 4.6 implies that w and x are the 
only vertices of C ′ that are adjacent to vertices of C . �
Proposition 4.8. Let C be a left (right) non-connecting component of Go − X. It is always possible to obtain a new almost-planar 
drawing δ′

G of G from δG by moving only the vertices of C \ {u, v} to the right (left) side.

Proof. Without loss of generality, we assume that C is a left component. Since C is non-connecting, then by Lemma 4.7, it 
is adjacent to at most two vertices on the right side. If there are two such vertices, denote them by w and x such that w
occurs before x on a clockwise traversal from v to u. Note that wx is a bridge of a right component C ′ by Lemma 4.7; see 
Fig. 5b. Let y be the last vertex that lies in the same component of C ′ \ {w, x} as w when traversing vertices clockwise from 
w to x. If C is adjacent to only one vertex on the right side, then we denote this vertex by y. In both cases, if y �= u then 
let y′ be the vertex of R that immediately succeeds y in the clockwise direction and if y = u then let y′ be the vertex that 
immediately precedes y in the clockwise direction.
8
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Fig. 7. The K2,3-minor we use in the proof of Lemma 4.9.

We obtain δ′
G by moving all vertices of C \ {u, v} between y and y′ , reversing their clockwise ordering. Observe that the 

choice of y and y′ guarantees that δ′
G is almost-planar and all crossings lie on uv . �

It remains to deal with the connecting components.

Lemma 4.9. The connecting component of Go − X containing u or v is adjacent to at most one connecting component. Every other con-
necting component is adjacent to exactly two connecting components. Moreover, if C and C ′ are two adjacent connecting components, 
then there is a vertex w ∈ C ∪ C ′ that is incident to all edges in E(C, C ′).

Proof. The claims concerning the adjacencies of the connecting components follow from the fact that every uv-path visits 
all connecting components in the same order. It remains to prove that all edges between two connecting components share 
a single vertex. If u and v are in one component, then this component is the only connecting component and there is 
nothing to show.

Now let C and C ′ be adjacent connecting components. We assume without loss of generality, that C is a left and C ′
is a right component. For the sake of contradiction, assume there exist two edges e1, e2 ∈ E(C, C ′) that do not share an 
endpoint. Let e1 = ab and e2 = cd where a, c ∈ C and b, d ∈ C ′ such that their clockwise order is a, b, d, c; see Fig. 7. Note 
that one of u, v is not in the set {a, b, c, d}. Otherwise, u and v are 2-connected, which contradicts our case assumption. 
In the following, we assume without loss of generality that a, b, c, d, v are five distinct vertices in Go . Let Puv be a path 
from u to v in Go . Since C and C ′ are both connecting, Puv contains vertices from both components. When traversing Puv

from u to v , let f and l denote the first and the last vertex of C ∪ C ′ that is encountered, respectively. Here, we assume 
without loss of generality that f ∈ C and l ∈ C ′ . Let P L be a path in C that connects f to a and let P R be a path in C ′ that 
connects d to l. By Observation 4.6, P L contains c and P R contains b. For a path P and two vertices x and y of P , let P [x, y]
denote the subpath of P from x to y. We then obtain a K2,3-minor of G by contracting each of the paths P L[c, a], P R [d, b], 
vu Puv [u, f ]P L[ f , c], and P R [b, l]Puv [l, v] into a single edge. �

By Lemma 4.7 and Lemma 4.9, all vertices of a connecting component of Go − X can be moved to the other side, thus 
we get Proposition 4.10, similarly as Proposition 4.8 for non-connecting components.

Proposition 4.10. Let C be a left (right) connecting component of Go − X. It is possible to obtain a new almost-planar drawing δ′
G of 

G from δG by moving only the vertices of C \ {u, v} to the right (left) side of uv.

Proof. We assume without loss of generality that C is a left connecting component. Now, we determine two vertices w and 
w ′ of G such that a right component is a non-connecting component adjacent to C iff it lies between w and w ′ entirely. 
If u, v are not in C , by Lemma 4.9, C is adjacent to exactly two right connecting components C ′ , C ′′ (see Fig. 8a). In the 
following, we assume that v, C ′, C ′′, u are in clockwise order. Let w be the last vertex in C ′ and w ′ be the first vertex 
in C ′′ when traversing the vertices in δG clockwise from v . If C contains both u and v , let w be v and w ′ be u. If C
contains either u or v , by Lemma 4.9, C is adjacent to exactly one right connecting components C ′ . Assume without loss of 
generality that v ∈ C . Let w be the last vertex in C ′ when traversing the vertices in δG clockwise and w ′ be u. Observe that, 
due to the connectivity of Go and the outerplanarity of δGo , each right component that entirely lies between w and w ′ is a 
non-connecting component adjacent to C . Again, we want to only move the component C to the right side between w and 
w ′ without introducing any crossings.

For simplicity, we describe the procedure in two phases. In the first phase, we move all of the right non-connecting 
components connected to C to the left side “temporarily” by the procedure described in the proof of Proposition 4.8 such 
that the components are merged into C on the left; see Fig. 8b. In the second phase, we move the set C \ {u, v} (alongside 
the vertices that are moved in the first phase) to the right side between w and w ′ , reversing their clockwise ordering; 
see Fig. 8c. For each right component C� that is adjacent to C , by Lemma 4.9, there is exactly one vertex shared by edges 
E(C, C�). Thus, there is no crossing on the right side of uv after the second phase. Furthermore, the vertices moved to the 
9
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Fig. 8. Case 2.2 (connecting-component).

left at the first phase are in the same order as in δG after two reversals and they still lie between w and w ′ . Therefore, we 
can reach the same order after this two-phase procedure by only moving the vertices in C to the right side accordingly. �

Proposition 4.8 and Proposition 4.10 together imply Theorem 4.2.
In the last part of this section, we consider optimal untangling under the restriction that the positions of u and v are 

fixed. We denote such untangling as edge-fixed untangling.

Theorem 4.11. Given an almost-planar drawing δG of an outerplanar graph G, an edge-fixed untangling of δG with the minimum 
number of vertex moves can be computed in linear time.

Proof. Let e = uv be the crossed edge of δG , let C be a connected component of Go = G − e, and let LC = L ∩ C and 
RC = R ∩ C . Note that every edge-fixed untangling must either move LC entirely to the right or RC entirely to the left of 
edge e. Thus, any edge-fixed untangling must move min{|LC |, |RC |} vertices in each component C .

It remains to prove that we can compute such a move sequence with the minimum number of required vertex moves 
for each component C . If u, v are not connected in Go , the claim is exactly the same as Proposition 4.3. We now consider 
the case that u, v are connected in Go . Let C be the connected component of Go that contains both u and v . We can always 
move either LC or RC by Proposition 4.8 and Proposition 4.10. Note that any other connected component C ′ of Go must lie 
entirely to the left or entirely to the right of edge e since δGo is planar and u, v are connected in Go . �
5. Untangling almost-planar drawings

Finally, we consider how to untangle an almost-planar circular drawing δG of an n-vertex outerplanar graph G = (V , E)

with the minimum number of vertex moves. The main result of this section is the following theorem, which we prove by 
combining the claims of two propositions.

Theorem 5.1. We can compute a minimum untangling for an almost-planar circular drawing δG of an n-vertex outerplanar graph 
G = (V , E) in O (n2) time.

Let e = uv be the edge of δG that contains all of the crossings, and let Go = G − e and δGo be the straight-line circular 
drawing of Go by removing the edge e from δG . The edge uv partitions the vertices in V \ {u, v} into the sets L and R that 
lie on the left and right side of the edge uv (directed from u to v). Let Cu and Cv be the connected components of Go that 
contain u and v , respectively. Note that Cu = Cv if u, v are in the same connected component of Go .

Proposition 5.2. It is always possible to untangle δG by moving only the vertices of Cu or only the vertices of Cv .

Proof. If Cu = Cv the claim is trivially true. So let us consider the case that u and v are not connected in Go . We describe 
the untangling by moving Cu entirely as follows; with the same idea, we can untangle δG by moving Cv . Let σu be the 
clockwise order of Cu in δGo , starting with u. We insert the vertices of Cu in the order σu clockwise right after v to obtain a 
new drawing δ′

Go
of Go . Since Cu was crossing-free before and is placed consecutively on the circle, it remains crossing-free. 

No other edges have been moved. Furthermore, u and v are now neighbors on the circle, so we can insert the edge uv
without crossings and have untangled δG . �

It is clear from Proposition 5.2 that we can untangle δG by moving all vertices of the smaller of the two connected 
components Cu and Cv , so we obtain shift◦(δG) ≤ min{|Cu |, |Cv |}. Assuming that the untangling from Proposition 5.2 is not 
10
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Fig. 9. A 2-connected component B (in blue) and its attachments (gray boxes) in a planar circular drawing.

minimal, we need to find a minimum untangling with shift◦(δG) < min{|Cu |, |Cv |} vertex moves. Thus it remains to consider 
the case, where some vertices of Cu and some vertices of C v are not moved; we call such unmoved vertices fixed vertices 
and an untangling with fixed vertices in both components Cu and Cv a component-fixed untangling. Then Theorem 5.1 is 
obtained by choosing the untangling with fewer vertex moves from the ones provided by Propositions 5.2 and 5.3.

Proposition 5.3. A component-fixed untangling U with the minimum number of vertex moves can be found in O (n2) time.

The remainder of this section is devoted to prove Proposition 5.3. We distinguish between two cases based on whether 
u, v are connected in Go or not. In each case, we present an untangling that runs in O (n2) time and reports an optimal 
component-fixed untangling.

We introduce some notions and provide basic observations. Let G be a connected outerplanar graph. Let B be a 2-
connected component of G and E(B) the set of edges in B . Since G is connected and B is 2-connected, each connected 
component of G − E(B) contains exactly one vertex in B . Given a vertex b in B , let Cb be the connected component of 
G − E(B) that contains b. We denote Cb as the attachment of the 2-connected component B at the vertex b. Note that Cb
can consist of the single vertex b.

Recall that every 2-connected outerplanar graph has a unique Hamiltonian cycle [29]. Let H(B) be the cyclic vertex 
ordering of B in the order of its Hamiltonian cycle. We get Observation 5.4; see Fig. 9.

Observation 5.4. Let δG be a planar circular drawing of a 2-connected outerplanar graph G and B be a 2-connected com-
ponent of G . Then, the clockwise cyclic vertex ordering of B in δG is either H(B) or its reverse. Furthermore, for each 
attachment of B , its vertices appear consecutively on the circle in δG .

Given a connected outerplanar graph G , a 2-connected component B of G , and a circular drawing δG of G , we say 
a sequence S of vertex moves of G is canonical, with respect to B , if in the drawing obtained by applying S to δG , the 
clockwise cyclic vertex ordering of each attachment of B remains unchanged. Now we are ready to show that an optimal 
component-fixed untangling with the restriction that fixed vertices exist in both of Cu and Cv can be found in O (n2) time; 
see Proposition 5.3.

Case 1: u and v are connected in Go . Let C be a connected component of Go that does not contain u, v . We claim now that 
C must lie entirely on one side of uv in δG . Otherwise, let P be a path of δGo that connects u and v . Then there would 
exist crossings between edges of P and edges of C in δGo which contradicts the fact that δGo has no crossings. Thus, we can 
ignore such components as they do not need to be involved in an untangling. Hence, we may assume Go is a connected 
graph. If u and v are 2-connected in Go , then δG is already outerplanar; see Proposition 4.4. Now we consider the case 
that u and v are connected, but not 2-connected in Go . Note that u, v are 2-connected in G . Let B be the 2-connected 
component of G that contains u, v . We prove that each component-fixed untangling U can be transformed into a canonical 
untangling with smaller or the same number of vertex moves; see Lemma 5.5. Thus, we restrict our attention to canonical 
untanglings. Let H(B) = b1, . . .bk be the cyclic vertex ordering of the Hamiltonian cycle of B . Let Ai be the attachment of 
B at the vertex bi and let σ(Ai) be the clockwise vertex ordering of Ai in δG for i ∈ {1, . . . , k}. We consider an optimal 
canonical component-fixed untangling U o which orders B clockwise as H(B). Let δ′′

G be the outerplanar drawing obtained 
by applying U o to δG . Then the clockwise vertex ordering of δ′′

G is exactly the concatenation of σ(A1), σ(A2), . . . , σ(Ak). 
Given δ′′

G , an optimal untangling transforming δG to δ′′
G can be computed in O (n2) time; see [24]. Analogously, we obtain an 

optimal component-fixed untangling U r which orders B counterclockwise as H(B). From the two untanglings U o and U r , 
we report the one which moves less vertices as the optimal component-fixed untangling.

Lemma 5.5. Let B be the 2-connected component of G that contains u, v. Every component-fixed untangling U of δG can be trans-
formed into a canonical vertex move sequence U c (with respect to B) that untangles δG . Furthermore, the number of vertex moves in 
U c is not greater than the number of vertex moves in U .

Proof. Given a component-fixed untangling U of δG , let δU
G be the drawing obtained after applying U on δG . In δU

G , the 
cyclic vertex ordering of B (clockwise or counterclockwise) must correspond to its Hamiltonian cycle ordering H(B). Fur-
thermore, the vertices of each attachment of B appear consecutively in δU

G , including one vertex of B; see Observation 5.4. 
Let A1, . . . , Ak be the attachments of B in G (indexed in clockwise order as in δU

G ) and let σ(Ai) be the clockwise vertex 
ordering of Ai in δG for i ∈ {1 . . .k}. Now consider the vertex ordering σ ′

G =(σ(A1), · · · , σ(Ak)) and let δ′
G be an arbitrary 

circular drawing of G where the vertices are ordered as σ ′ . Note that the vertex ordering of each attachment is σ(Ai) in 
G

11
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Fig. 10. An example illustration for the proof of Lemma 5.7.

δ′
G as in the almost-planar drawing δG , thus each attachment in δ′

G is crossing-free. Moreover, in δ′
G the vertices of B are 

ordered as in the planar drawing δU
G , thus there is no crossing inside B . Overall, δ′

G is a planar circular drawing. Let U c

be the untangling of δG with minimum number of vertex moves such that the clockwise vertex ordering of the resulting 
drawing is σ ′

G .
To see that U c does not move more vertices than U , let σG and σ U

G be the clockwise vertex orderings of δG and δU
G , 

respectively. Let LC S(A, B) be the longest common sequence between two cyclic ordering A and B . We can observe that 
|LC S(σG , σ U

G )| ≤ |LC S(σG , σ ′
G)|, since any common subsequence of σG and σ U

G is a subsequence of σ ′
G . �

Case 2: u and v are not connected in Go . Note that a connected component of Go that lies entirely on one side of uv in 
δG can be ignored, since there is no need to move any vertices in such components. We can assume that each connected 
component C of Go either contains vertices from L and also vertices from R or C contains either u or v .

Observation 5.6. We can assume that vertices of Cu (resp. Cv ) lie consecutively on the cycle in δGo .

The first step of our untangling U deals with the connected components of Go that neither contain u nor v . Let U fix be 
an arbitrary component-fixed untangling of δG , and let δfix

G be the outerplanar drawing of G obtained from δG by applying 
U fix.

Lemma 5.7. Let C be a connected component of Go that contains neither u nor v. Let fu, f v be two vertices in Cu and Cv , respectively, 
which are fixed in δfix

G . Then, C must lie entirely on one side of fu f v in δfix
G .

Proof. In the graph G , due to the definition of fu and f v , there exists a path P1 in Cu connecting fu to u, and a path P2 in 
Cv connecting v to f v ; see Fig. 10. Then, the path P = P1uv P2 in G connects fu to f v . In δfix

G , suppose that the connected 
component C is not entirely on one side of fu f v , it implies that at least one edge xy in C has endpoints x, y alternate 
with fu, f v in the clockwise ordering of δfix

G and then has crossings with P . It contradicts the outerplanarity of the drawing 
δfix

G . �
Now let C (marked as green in Fig. 10) be a connected component of G that contains neither u nor v . Let fu, f v be 

two vertices in Cu and Cv , respectively, which are fixed in δfix
G . The vertices fu and f v partition the vertices of C in the 

drawing δG into two sets LC and RC that are encountered clockwise and counter-clockwise from fu to f v in δG , respectively. 
Observe that, LC = L ∩ C and RC = R ∩ C ; see Observation 5.6. Let m(C) = min{|L ∩ C |, |R ∩ C |}. By Lemma 5.7, m(C) is a 
lower bound of the moved vertices in C in a component-fixed untangling. On the other hand, by Proposition 4.3, we can 
move m(C) vertices of C such that C lies entirely on one side of uv . In the first step of our untangling U , we repeat this 
step for each component not containing u or v . After that, an almost-planar drawing of G remains that has already each 
component except Cu and Cv placed entirely on one side of uv . We can ignore such components from now on since they 
never need to be moved again.

Now we assume that Go has exactly two connected components, namely Cu and Cv . Consider an arbitrary outerplanar 
drawing δ′

G of G . Let σ be the circular ordering of vertices in δ′
G encountered clockwise. Observe that, in σ , the vertices 

of Cu (resp. Cv ) are in a consecutive subsequence σ(Cu) (resp. σ(Cv)). Otherwise, alternating vertices of two connected 
components would introduce crossings (see Fig. 11).

Given an edge e′ in Cv , we say e′ covers v if the endpoints of e alternate with u and v in δGo . Note that there is no 
edge covering v in σ(Cv ). Otherwise, such an edge would cross with the edge uv . Therefore, in a valid untangling of δG , it 
is necessary to move vertices of C v in δG such that no crossing is introduced in C v and v is not covered by any edges in 
Cv . Similarly, the same claim holds also for Cu . We call such vertex moves vertex unwrapping. In the following, we consider 
how to find a valid unwrapping of v with the minimum number of vertex moves. The same operation will be also applied 
12
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Fig. 11. In any planar circular drawing of G , the vertices of Cu (resp. C v ) appear consecutively. Let Bi be any 2-connected component of Go containing the 
vertex i, where i ∈ {u, v}. Then the vertex i must be an extreme vertex in Bi .

to Cu . Observe that, once u, v are both unwrapped, adding the edge e into the drawing does not introduce any crossings. 
The combination of these two unwrappings makes an optimal untangling.

Observation 5.8. There exists a 2-connected component B of C v such that B contains v and no edge in the attachment of 
v (with respect to B) covers v in δGo .

Observation 5.8 holds because either no 2-connected component B containing v contains an edge covering v in δG , in 
which case v is already unwrapped and the statement is true for any such B . Or some 2-connected component B does 
contain an edge covering v in δG , but then the attachment of v in B cannot cover v due to planarity of δGo .

Here, we also consider canonical sequences of vertex moves and get the following Lemma 5.9. Its proof is quite similar 
to the proof of Lemma 5.5, which concerns canonical untanglings.

Lemma 5.9. Let B be a 2-connected component of C v that contains v such that the attachment of v (with respect to B) contains 
no edge covering v. Each unwrapping W of v can be transformed into a canonical sequence of vertex moves W c, which unwraps v. 
Furthermore, the number of vertex moves in W c is not greater than the number of vertex moves in the original unwrapping W .

Proof. Given an unwrapping W of v , let δW
G be the drawing obtained after applying W on δG . In δW

G , the cyclic vertex 
ordering of B (clockwise or counterclockwise) must correspond to its Hamiltonian cycle ordering H(B). Furthermore, the 
vertices of each attachment of B appear consecutively in δW

G , including one vertex of B; see Observation 5.4. Let A1, ...Ak

be the attachments of B in C v (in this clockwise order in δW
G ), let σ(Ai) be the clockwise vertex ordering of Ai in δG for 

i ∈ {1 . . .k}. Consider the clockwise vertex ordering σ ′
G where the vertices of B ∪ Cu are ordered as in δW

G . Furthermore, for 
each attachment Ai the vertices of Ai appear consecutively in the clockwise ordering σ(Ai). Let δ′

G be an arbitrary circular 
drawing of G where the vertices are ordered as σ ′

G . Note that the vertex ordering of each attachment of B is σ(Ai) in δ′
G as 

in the almost-planar drawing δG , thus each attachment in δ′
G is crossing-free. Moreover, in δ′

G the vertices of B are ordered 
as in the planar drawing δW

G , thus there is no crossing inside B . Overall, the vertex v is unwrapped in δ′
G . It remains to 

prove that the canonical unwrapping W c , which transforms δG to δ′
G , moves less than or equally many vertices of C v as W . 

This follows from the construction of δ′
G , because each common subsequence of δG and δW

G is also a subsequence of δ′
G . �

By Lemma 5.9, we restrict our attention to canonical unwrappings. We first find a 2-connected component B v of Cv

containing v such that no edge in the attachment (with respect to B v ) of v covers v in δG . To find such a component B v

we can go through all 2-connected components containing v , which correspond to cycles or edges containing v in δGo . It 
takes linear time. We then consider the two possible canonical unwrappings of v , which respectively order vertices of B
clockwise along H(B) or its reversal, and compute the corresponding resulting clockwise vertex ordering σv and σ rev

v of Cv . 
With the same idea, we get the clockwise vertex orderings σu and σ rev

u of Cu by the canonical unwrappings of u. We then 
get the four optimal unwrappings, each of them transforming δG to one of the vertex orderings (σvσu), (σ rev

v σu), (σvσ
rev
u )

and (σ rev
v σ rev

u ). Such optimal unwrappings can be computed in O (n2) time; see [24]. We report the one that moves the 
minimum number of vertices as an optimal component-fixed untangling.

6. Conclusion and outlook

We introduced and investigated the problem of untangling non-planar circular drawings. First from the computational 
side, we demonstrated the NP-hardness of the problem Circular Untangling. Second, we studied the almost-planar cir-
cular drawings, where all crossings involve a single edge. We gave a tight upper bound of � n

2 � − 1 on the shift number 
and an O (n2)-time algorithm to compute it. Open problems for future work include: (i) The parameterized complexity of 
computing the circular shifting, e.g., with respect to the number of crossings or the number of connected components, (ii) 
Generalization of our results for almost-planar drawings, and (iii) Investigation of minimum untangling by other elementary 
moves such as swapping vertex pairs or moving larger chunks of vertices.
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