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Kurzfassung

In dieser Bachelorarbeit stellen wir eine neue Anwendung des inversen Renderings
vor, bei der Lichtquellen aus einer gespeicherten Beleuchtungsinformation berechnet
werden. Als Eingabe verwenden wir eine Szenendatei, welche die Geometrie und die
Beleuchtungsinformationen einer Szene enthélt. Die extrahierten Szeneninformationen
werden dann verwendet, um ein Beleuchtungssetup zu schétzen, welches eine Beleuchtung
der Szene erzeugt, die moglichst nah an der gespeicherten Beleuchtungsinformation ist.

Aufgrund von Hardwarebeschréankungen haben Echtzeit-Rendering-Anwendungen wie
Videospiele in der Vergangenheit nur eine begrenzte Realitdtsndhe in Bezug auf die
Beleuchtung geboten. Gespeicherte Beleuchtung war eine gingige Methode, um die Szene
unter Echtzeitbedingungen zu illuminieren. Heutzutage ermoglicht hardwareunterstiitztes
Raytracing dynamische Beleuchtung und globale Beleuchtung in Echtzeit. Unsere Me-
thode zielt darauf ab, ein physikalisch basiertes Beleuchtungssetup zu erstellen, das den
gespeicherten Lightmaps so nahe wie moglich kommt. Dieses rekonstruierte Beleuchtungs-
setup ermoglicht die erneute Beleuchtung der Szene durch erweiterte Rendering-Effekte
wie etwa indirekte Beleuchtung, Reflexionen, Lichtbrechungen und weiche Schatten. Dies
konnte den Prozess der Anpassung klassischer Spiele an moderne Standards erleichtern —
insbesondere, wenn die Originaldaten nicht verfiigbar oder verloren sind.

Dieses Projekt stiitzt sich auf ein differenzierbares Rendering-Framework, das in der
Rendering and Modeling Group (Prof. Wimmer, TU Wien) entwickelt wird. Das Ziel
dieser Bachelorarbeit ist es, die Fahigkeiten einer auf diesem System aufbauenden inversen
Rendering-Methode zu evaluieren und zu demonstrieren. Konkret geht es um die Schét-
zung von Lichtquellen aus bestehenden, vorberechneten Lightmaps, die im Spiel Quake
IIT Arena verwendet werden. Daher besteht unser erster Schritt darin, die Geometrie und
Lichtkarten aus einer Szenendatei zu extrahieren, die Daten in das Rendering-Framework
zu importieren und dann ein geeignetes Optimierungsschema zu implementieren, um
neue Lichtquellen zu konstruieren. Mit diesen neuen Lichtquellen kénnen wir die Szenen
mit Raytracing und globaler Beleuchtung rendern, um realistische Beleuchtungseftfekte
zu erzielen — einschliefflich indirekter Beleuchtung, genauer Reflexionen und weicher
Schatten.
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Abstract

In this thesis, we present a novel application of inverse rendering through the use case of
estimating light source parameters from baked lighting information bundled with a 3D
scene. As input, we use a scene file that contains the geometry and the baked lighting
information of a scene. The extracted scene information is then used to estimate a lighting
configuration. With the resulting lighting configuration, it is possible to reproduce a
closely matched shading of the scene.

Because of hardware limitations, real-time rendering applications such as video games
have historically provided limited realism in terms of lighting. Baked lighting was a
common method used to illuminate the scene under real-time constraints. Nowadays,
hardware-supported ray tracing enables dynamic lighting and global illumination in real
time. Our method aims to build a physically based lighting setup that comes as close to
the baked lightmaps as possible. This reconstructed lighting setup allows the relighting of
the scene through advanced rendering effects such as dynamic lighting, indirect lighting,
reflections, refractions, and soft shadows. This could facilitate the process of bringing
classic games up to modern standards, especially when the original data is unavailable or
lost.

This project relies on a differentiable rendering framework under development in the
Rendering and Modeling Group (Prof. Wimmer, TU Wien). The goal of this bachelor’s
thesis is to evaluate and demonstrate the capabilities of an inverse rendering method built
on this system. Specifically, we aim to estimate light sources from existing precalculated
lightmaps used in the game Quake III Arena. For this purpose, our first step is to
extract the geometry and lightmaps from a scene file, import the data into the rendering
framework, and then implement a suitable optimization scheme to construct new light
sources. With these new light sources, we can render the scenes using ray tracing and
global illumination to achieve realistic lighting effects, including indirect lighting, accurate
reflections, and soft shadows.
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CHAPTER

Introduction

Real-time rendering with realistic lighting — including effects such as dynamic lighting,
global illumination, indirect lighting, reflections, and refractions — is a highly demanded
topic in video games and virtual reality (VR) applications. Because of hardware limita-
tions, real-time rendering applications remain challenging. There is always a trade-off
between quality and rendering time. Recent advances in hardware, particularly the
introduction of hardware-assisted ray tracing, have made it possible to use ray-based
rendering techniques within the constraints of real-time rendering. As a result, the quality
of real-time rendered scenes has improved significantly, allowing effects such as dynamic
lighting and global illumination to be applied in real time.

In the past, a common approach to meeting real-time constraints was to precompute the
lighting and store and distribute it with the game. This precomputed lighting information
is often referred to as baked lighting. To improve rendering speed and quality while
staying within memory constraints, the baked lighting information is highly optimized in
terms of access speed and memory usage and stored as lightmaps to fit the rendering
process ideally. These lightmaps may be created using physically based lighting models,
simplified inaccurate lighting models, or even hand drawing by artists. However, modern
ray-based techniques, such as photon mapping [Jen96, PDC*05], have emerged, allowing
for advanced effects in real time [SA19]. Ray-based methods, such as ray tracing or path
tracing, estimate the scattering of light in a scene by tracing the path of light backwards
to estimate the color of each pixel. By extending these techniques to include photon
mapping, even more realistic results can be achieved, including the capture of caustic
effects. Unlike baked lighting, ray-based methods allow advanced effects such as global
illumination with dynamic lighting and dynamic geometry because they can respond to
changes in lighting and geometry. For our goal of recomputing a physically based lighting
setup that closely matches the precalculated lighting environment, photon mapping is
the best choice.
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The goal of our method is to construct a physically based lighting setup that produces
lighting as close to the baked lightmaps as possible, based on the geometry and the
baked lighting information. This reconstructed lighting setup allows the scene to be re-lit
using advanced rendering effects such as indirect lighting, reflections, refractions, and
soft shadows. This could facilitate the process of bringing classic games up to modern
standards, especially when the original data is unavailable or lost.

Our project builds upon a differentiable rendering framework being developed in the
Rendering and Modeling Group led by Prof. Wimmer at the TU Wien and the inverse
rendering method [Pri23] built on top of it. The inverse rendering method uses a radiance
target that represents the desired light distribution and is defined directly in the geometry
of the scene. Each light source is characterized by parameters such as position, color, and
intensity, which are then optimized to achieve a light distribution that closely matches
the radiance target. The radiance target itself is defined using the lighting information
stored in the lightmaps. To this end, the radiance target is used to optimize a physically
based lighting setup, resulting in rendered outputs that resemble the target lighting.

We use Quake III Arena — a game developed by id Software in the late nineties — to
demonstrate our method. Specifically, we aim to estimate light sources from precomputed
lightmaps stored together with the geometry in highly optimized binary scene files. To
achieve this, we first extract the geometry and lightmaps from the highly optimized binary
scene file and import the data into the rendering framework. Next, we construct the
radiance target and implement an appropriate optimization scheme to create a lighting
configuration that matches the baked lighting information. The applied optimization
scheme aims to minimize the difference between the target and the rendered result. With
this new lighting configuration, we can then render the scenes using modern rendering
techniques such as ray tracing and global illumination to achieve realistic lighting effects,
including indirect lighting, accurate reflections, and soft shadows.

Our contribution includes the following points:

e Description of the used method: The method used in this thesis to reconstruct
a physically based lighting setup from baked lighting information is introduced.
Furthermore, we explain the decisions and changes we make in order to adapt the
underlying approach to our specific problem. Chapter 3.

o FExtraction of the scene data: We extract the geometry and lightmaps stored in the
binary scene file. Furthermore, the albedo textures associated with the models are
loaded. Chapter 4.

e Preparation of the data: Before the data can be used within our differentiable
renderer, it must be converted into a suitable format. To this end, a scene graph is
constructed, and all the needed assets — such as albedo textures and lightmaps —
are associated with the appropriate node. Chapter 4.

e Preparation of the radiance target: The main contribution is to transfer the
lightmaps and the albedo texture to the radiance target, which is then used
by the inverse rendering method. Chapter 4.



e Implementation of optimization schemes: We implement different optimization
schemes to construct light configurations that produce illumination as close as
possible to the reference illumination stored in the scene file. The optimization
schemes vary in the initial light setup as well as in the optimization algorithm and
its configuration. Chapter 5.

e FEuvaluation of the estimated light configuration against the baked lighting: In the
last step, we evaluate the estimated light sources against the baked lighting stored
in the scene files. Then we demonstrate the benefit of this generated lighting setup
by relighting the scene with ray tracing. Chapter 5.

In Chapter 2, we describe the basics of photorealistic rendering, the limitations of real-time
rendering, and some approaches to overcome them as well as provide a short introduction
to inverse rendering. The description of the method used in this thesis is provided in
Chapter 3. We also explain the changes and choices we make to adapt the underlying
approach to our specific needs. Chapter 4 is dedicated to the implementation. Specifically,
we describe some of the key aspects of the file format used in Quake IIT Arena, how we
extract the necessary data, and how we transform the data into a usable format. In
Chapter 5, we evaluate the inverse rendering method by comparing different optimization
approaches. We demonstrate the effect of the initial configuration and the optimization
parameters on the final result. In addition, we demonstrate the resulting scenes. In
Chapter 6, we highlight the main findings of our thesis and propose an optimization
scheme. Furthermore, we mention some possible future work.






CHAPTER

Background

In the field of computer graphics, photorealistic rendering and real-time rendering have
been areas of intense research for years. However, the core concept of rendering and
generating images based on a scene description has not changed. Although hardware
developments have made it possible to apply more advanced rendering algorithms and
reproduce real-world effects with increasing detail, one of the key aspects of photorealistic
rendering is the scattering of light in a scene. As a result, many rendering algorithms
attempt to model the distribution of light in a scene as realistically as possible. Another
popular topic in computer graphics in recent years has been inverse rendering. The goal
of inverse rendering is to extract scene information from images, i.e., the inverse of the
rendering process.

2.1 Photorealistic Rendering

Regarding photorealistic rendering, lighting has a major impact on the overall quality
of a rendered scene. In the real world, light emitted from a light source is scattered
throughout the scene — first illuminating those surfaces that are directly visible from the
light source. These directly illuminated surfaces then reflect a fraction of the incoming
light and scatter the reflected light further into the scene. In other words, light bounces
off surfaces and illuminates areas that are not directly lit. Therefore, illumination can be
categorized as direct or indirect illumination as illustrated in the following figures. Figure
2.1 illustrates the effects of direct and indirect illumination. Figure 2.1a shows only direct
illumination, i.e., zero indirect bounces; Figure 2.1b shows one indirect bounce; and
Figure 2.1c shows five indirect bounces. The effect of indirect lighting is large — especially
the effect of the first bounce — and must be considered for an appropriate lighting model.
Global illumination techniques aim to produce realistic lighting by approximating a
global lighting environment that considers not only direct illumination but also indirect

5
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(a) 0 bounces (¢) 5 bounces

Figure 2.1: Comparison of direct light only (a) and with additional indirect bounces.
Direct light only (a), 1 indirect bounce (b), 5 indirect bounces (c). The first row shows
a modified version of the Cornell box originally introduced by Goral et al. [GTGB84];
the second row shows a version of Sponza by Frank Meinl. Both scenes were rendered
using the rendering framework developed by the Rendering and Modeling Group (Prof.
Wimmer, TU Wien).

illumination. Our goal is to reconstruct a lighting configuration so that the resulting
global illumination matches the original baked lighting.

The rendering equation [Kaj86] describes the physical scattering of light in a scene,
and many global illumination techniques aim to approximate solutions of the rendering
equation. It was proposed as a generalization of many rendering algorithms and was
based on phenomena in the field of radiative heat transfer [Kaj86]. The rendering
equation describes the total amount of light passing from a point toward a certain angle.
Specifically, it describes the radiance passing toward an outgoing direction w, for a given
point x on the surface of the scene.

Ly (z,wo) = Le (2, w,) + /Q L (x,w;) fr (x,wi,wo) (wi - n)dw; (2.1)

o L,(z,w,): The total radiance passing from point x toward direction w,.
o L. (z,w,): The emitted radiance from point x itself toward direction wy.
e : The unit hemisphere at point x.

o L;(z,w;): The incoming radiance at point = from direction w;.
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o fr(x,wi,w,): The bidirectional reflectance distribution function (BRDF'), which
describes the amount of reflected light at point  from direction w; toward direction
Wo-

e (w; - n): The geometric term where n is the normal at point z. Describes the effect
of incident light on a given point depending on the angle of incidence.

The integral is the sum of the radiance reflected from all directions w; in the unit
hemisphere 2. The amount of radiance arriving at point z from a single direction w;
is described by the radiance passing from the point y visible in that direction. This
radiance passing from point y to point x can also be described by the rendering equation.
Therefore, the rendering equation has a recursive structure, and L;(z,w;) = Lo(y, —w;).

Many photorealistic rendering methods used in the industry rely on ray-based rendering
techniques to physically simulate or approximate the lighting in a scene [KFFT15]. Pixar’s
RenderMan renderer uses path tracing to render photorealistic images and visual effects
for movies [CFS*18]. Disney’s Hyperion renderer also uses path tracing to render movies
[BACT18]. Essentially, these ray-based techniques approximate the recursive integral in
the rendering equation through Monte Carlo integration. Path tracing and ray tracing
approximate the distribution of light by tracing the light backward and passing rays
through each pixel to determine its color. Another approach is to trace the light forward
from the light source into the scene. This is what photon mapping [Jen96] does. Photons
are scattered through light sources into the scene to physically approximate the light
distribution.

2.2 Real-Time Rendering

Depending on the complexity of the scene, rendering a single frame in a photorealistic
scene, such as a movie, can take anywhere from a few seconds to several days. Real-time
rendering applications, such as video games, must render at least more than 60 frames
per second (fps) to look smooth. To accomplish this, some compromises and limitations
must be made to achieve the minimum 60 fps. Light calculation is an expensive operation,
so many of the real-time global illumination techniques take advantage of radiance caches
to move the costly light calculation from the runtime computation to a precomputation
step. This precomputed lighting information is often referred to as baked lighting. The
shift from runtime to precomputed lighting can improve the quality and performance
of real-time rendered scenes, but it reduces the ability to respond to light changes at
runtime.

2.2.1 Light Mapping

One simple approach to approximate the rendering equation is to calculate the lighting
information in a preprocessing step and store it in a texture. These textures are called
lightmaps. To evaluate the lighting information for a single point on the surface of a
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scene at runtime, it must be looked up in the precomputed lightmap — this is what
light mapping essentially does: it precomputes the lighting information and stores it
in a lightmap. Furthermore, because of the nature of indirect lighting, it often does
not change much between neighboring points on a surface. Most of the neighboring
points have similar lighting. Compared to albedo textures, lightmaps allow storage of
indirect lighting information at a low resolution, which saves space without losing much
information.

One disadvantage of using precomputed lighting information stored in simple lightmaps
is that the radiance is computed for the base surface normal of the mesh and stores
a single value for each channel (RGB). Therefore, lightmaps can only store diffuse
illumination and do not allow normal mapping. Normal mapping, which increases
the visual appearance of surfaces by adding more details by changing the base surface
normal, is not possible in combination with lightmaps [Pet16]. The lighting information is
restricted to a single value for each color channel, and there is no information stored about
the incoming direction. More precisely, the directional light distribution is not stored.
Spherical harmonics [SKS02] and spherical Gaussians [CDAS20] store the directional
light distribution by projecting the incoming light onto basis functions [Gre03, Pet16],
which can then be evaluated for any direction.

2.2.2 Spherical Harmonics

To approximate the rendering equation with spherical harmonics (SH), SH probes
containing information about the directional light distribution are placed within the
scene. To compute the SH, the directional light distribution at each probe location is
computed in a preprocessing step, e.g., with Monte Carlo integration techniques. The
resulting light distribution is then projected onto basis functions, which are represented
by a set of coefficients. A more precise approximation with more basis functions needs
more coefficients to be stored. To get the approximated light distribution, the base
functions are scaled by the coefficients and then summed [Gre03]. This approach with
SH allows evaluation of the lighting information for any direction on the probe location
instead of having a single lighting value for a point. For instance, this allows the use of
normal mapping in combination with precomputed lighting information.

2.3 Inverse Rendering

In contrast to the rendering algorithms mentioned above, inverse rendering, as the name
suggests, is the inverse process of rendering. Rendering can be seen as a function that
takes a 3D scene description (geometry, materials, lights, camera) and produces a 2D
image of that scene. Inverse rendering is the inverse process, starting from a reference
image and then producing the scene description. The reference image can be a real-world
photograph, an artist’s work, or even a rendered image. The goal of inverse rendering
[LHJ19, NDVZJ19, ZWZ*19, Rob21] is to find parameters, i.e., a scene description that
produces a result similar to the target when rendered.
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Inverse rendering can be treated as an optimization problem where the scene parameters
that produce the best-matching result compared to the reference target must be found.
In other words, we want to find the scene parameters that minimize the error between the
target and the rendered result. This error between the current result and the reference is
described by an objective function, which gets optimized.

Differentiable rendering allows estimation of the derivatives (i.e., gradient of the opti-
mization objective) with respect to scene parameters [Rob21, SZ21]. These estimated
derivatives can be interpreted as the effect of a particular scene parameter on the final
image. Differentiable rendering describes a direct connection between a scene parameter
and the objective function. With that differentiable rendering function, gradient-based
optimization methods, such as gradient descent, can be applied to effectively solve the
inverse rendering problem.

The introduction of the first differentiable path tracer in 2018 by Li et al. [LADLIS]
enabled the handling of secondary effects such as global illumination and shadows with
respect to arbitrary scene parameters. Previous work in differentiable rendering, based
on differentiable rasterizers, was unable to handle these kinds of effects with respect
to arbitrary scene parameters [LADL18]. The differentiable renderer proposed by the
Rendering and Modeling Group of TU Wien [Pri23] and demonstrated in this paper
relies on a ray-based approach.

Specifically, the application demonstrated in this thesis uses a novel method for view-
independent differentiable rendering and considers secondary effects such as global
illumination. To this end, a reference target that stores the desired radiance is directly
specified in the scene geometry. In a forward light-tracing pass, the current scene
configuration is evaluated, and the objective function is applied to the entire radiance
data. The application takes advantage of hardware-supported ray tracing and allows the

optimization of all lighting parameters with interactive rates, even for complex scenes
[Pri23].

2.3.1 Optimization Algorithms

As mentioned above, differentiable rendering allows to obtain the gradients of the objective
function. These gradients can be used to effectively solve the inverse rendering problem
by applying gradient based optimization algorithms. In particular, we use the L-BFGS
optimization algorithm [Noc80] and the Adam optimization algorithm [KB14]. The
L-BFGS optimization algorithm was developed in 1980 by Jorge Nocedal and is an
approximation of the BFGS optimization algorithm with limited memory consumption
[Noc80]. It belongs to the family of quasi-Newton methods. The Adam optimization
algorithm [KB14] was introduced in 2014 by Diederik P. Kingma and Jimmy Lei Ba. It
is an extended version of stochastic gradient descent.
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(a) Albedo Texture (b) Lightmap (c) Albedo x Lightmap

Figure 2.2: Quake III Arena scene with albedo texture only (a), lightmap only (b), and
albedo texture with lightmap (c).

2.4 Quake III Arena

Quake IIT Arena was developed by id Software and released on December 2, 1999. Id
Software released the source code [iS99] for Quake IIT Arena under the GNU General
Public License, which allows many developers to experiment with the game and develop
modifications. Many of those projects are built on Quake III Arena and aim to improve
the visual quality of the game or even implement real-time ray tracing [Lip20].

The game takes advantage of precomputed lighting information stored in lightmaps. This
precomputed lighting is then sampled at run-time to meet the run-time requirements
[San12]. The geometry is stored in a data structure called the binary space partitioning
(BSP) tree, which recursively subdivides the scene into two parts. Together with the
lightmaps, the BSP tree is encoded in a binary scene file [San12]. Such highly optimized
scene files store precalculated information such as lightmaps or visibility information to
reduce the number of calculations needed at run-time. These precalculations allow an
increase in the visual quality of rendered scenes while still meeting real-time constraints.

Figure 2.2 shows the extracted scene information from a Quake III Arena scene file.
Figure 2.2a illustrates the geometry together with the albedo texture, and Figure 2.2b
illustrates the geometry with the lightmap. Figure 2.2c shows the geometry with the
albedo texture and lightmap blended together.



CHAPTER

Method

This chapter introduces the method used in this thesis to reconstruct a physically based
lighting setup from baked lighting information. Our approach adapts the novel view-
independent differentiable global illumination method [Pri23] currently developed in the
Rendering and Modeling Group at TU Wien. We explain the decisions and changes we
make in order to adapt the underlying approach to our specific problem.

Our method can be separated into the following four parts:

e Loading the scene
o Building the target

e Defining an initial lighting configuration

Optimization process

The information about the scene is stored in a binary scene file. Therefore, it is necessary
to extract geometry and lighting information by parsing the scene file. Subsequently, the
extracted information is used to build a target lighting distribution as a reference for the
optimization process. Next, it is necessary to establish an initial lighting configuration.
This configuration is defined by a set of light sources. Finally, the optimization is applied
to update the light source parameters. Figure 3.1 illustrates the optimization pipeline.

3.1 Optimization Process

First, we want to give a brief overview of the novel inverse rendering approach [Pri23]
we use as our foundation. The proposed method [Pri23] aims to support lighting
design problems through differentiable rendering and optimization of a given lighting

11
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Figure 3.1: Illustration of the optimization pipeline. L and L* represent the current
resulting radiance and the desired target radiance. O represents the objective function
that describes the error between two given radiance distributions. Image taken from
[Pri23] and modified.

configuration. The goal of the optimization process is to minimize the error between the
actual resulting illumination and the target illumination. Before the actual optimization
takes place, it is necessary to define a starting light configuration and a target radiance
distribution. In our case, we try different initial configurations and use the lighting
information baked into the Quake III Arena scene files to construct the target radiance.
The actual optimization process remains the same as in the proposed method [Pri23].
First, a forward light tracing pass is performed. Starting from the light sources, a radiance
field is generated and stored directly on the scene geometry. Specular highlights are
represented by hemispherical harmonics. Second, an objective function is evaluated on
the entire radiance data and derivatives are propagated back to the lighting parameters.

The underlying approach [Pri23] uses adjoint light tracing to obtain the gradient informa-
tion which can be used to apply gradient-based optimization algorithms. In particular,
the Adam and L-BFGS optimization algorithms described in section 2.3.1 are used to
reconstruct the desired lighting configuration. We aim to find an optimization scheme
to reconstruct the baked lighting of a scene. An optimization scheme is defined by an
initial lighting configuration and one or more optimization phases. Each phase consists
of an optimization algorithm and its parameters. In Chapter 5 we describe and evaluate
different optimization schemes.

3.2 Radiance Target

The radiance target stores the desired lighting distribution within the scene and is
used during the optimization process to measure the quality of the current lighting
configuration. To accomplish this, all radiance information in the scene is stored directly
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Figure 3.2: Illustration of the vertex area formed by neighboring triangles as well as the
uniform sampling of a single triangle.

at the vertices. For our purpose — the reconstruction of a baked lighting distribution —
we use the lighting information stored and shipped with the Quake IIT Arena game files
as a radiance target. Specifically, Quake IIT Arena uses scene files to store the lighting
information of scenes. The lighting information is stored in lightmaps and, to this end,
needs to be transformed to the vertices of the scene. We propose a sampling strategy —
Chapter 3.2.1 — to project the lighting and color information onto the vertices of the scene.
The basic idea is to sample the entire neighborhood of each vertex in a preprocessing
step, weight the samples, and store them at each vertex. Figure 3.2a illustrates the vertex
area of a single point in the scene and Figure 3.2b illustrates the sampling of a single
triangle of that vertex area. We provide a precise description of the sampling strategy
in the following Chapter 3.2.1. In Chapter 4, we describe the implementation of the
sampling algorithm as well as the entire data transformation process in detail.

3.2.1 Sampling Strategy

To build the radiance target, we want to project all the lighting and texture information
onto the vertices of the scene. To do this, we compute the area-weighted average of the
lightmap and texture for each vertex in the scene.

Our sampling strategy is based on concepts presented by Mats G. Larson and Fredrik
Bengzon in their book The Finite Element Method [LB13]. In particular, we take
advantage of the linear shape function [LB13, Chapter 8.1.2], the La-projection [LB13,
Chapter 1.3] and the mass lumping [LB13, Chapter 5.5.1].

First, we define a linear shape function ¢;(x) associated with the i-th vertex of the scene.
Within a triangle, each point can be described by a linear combination of the vertices of
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that triangle. We define a linear shape function that describes the weight of a vertex for
a given point on the surface of the scene. More precisely, for each point x on the surface
of the scene, the linear shape function p;(x) describes the weight that the i-th vertex
has at point x. That leads to partition of unity:

Spix) =1, (3.1)

where n is the total number of vertices in the scene and x any point on the surface of
the scene.

Second, we define the radiance target r(x) for each point x on the surface of the scene.
The radiance target r(x) at a point x is defined by the lightmap color multiplied by the
texture color at point x.

The goal is to find the radiance target r; that approximates the given lightmap and
texture for the i-th vertex of the scene. The approximation r; should include not only the
radiance r(v;) at vertex v;, but also the entire neighborhood of the i-th vertex. We define
the neighborhood of a vertex v; as the affected area of that vertex, or mathematically,
all x on the surface of the scene where @;(x) > 0.

Subsequently, we can take advantage of the linear shape function and interpolate the
per-vertex radiance r; to receive the approximate target 7(x) for any point x on the
surface of the scene. The approximate target #(x) can be described by the sum of all
per-vertex radiances r; multiplied by the corresponding shape function ¢; as defined
below:

Fx) = Yom (%) (32)
J

We are now going to determine r; via mass-lumped Lo-projection. The standard
L9 projection, minimizing the approximation error 0.5 [|7 — 7’”%2(9), is given by

/Q (7(x) = 1(x)) pi(x) dx = 0, (3.3)

where () refers to the entire mesh.

Expanding the approximate target function and rearranging the terms yields the following
equation:

S, [ i) i) dx = [ r(x) i) dx. (3.4)

Instead of solving this system directly, we apply mass-lumping, which means we replace
rj by r; on the left-hand side, and simplify the summation due to partition of unity,

resulting in
ry = Jor(x) pi(x) dx ’ (3.5)
Ja pi(x) dx
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where the integral is now independent of r; and moved to the right-hand side. Note that
this denominator is the vertex-associated area, and we can therefore write

1 1
r; = E /;2 r(x) pi(x) dx, A; = /Q%‘(X) dx = 3 ZkeN(vi) Ay, (3.6)

where N(x;) denotes the set of triangles adjacent to vertex v;. Integrating the shape
function yields the 1/3 term of the vertex-associated area definition in Equation 3.6.
Finally, we approximate the remaining integral by a basic uniform quadrature, sum-
ming over n samples x; per triangle k& with constant weight Aj/n each, such that

fAk f(x) dx ~ AR X7y f(xi)/n.

Consequently, we find the radiance target:

=), Ai% S ) eilx). (3.7)

Now that we have mathematically derived the sampling strategy, we can implement it.
To do this, we take advantage of the GPU and define a compute shader that runs on it.
In Chapter 4, we describe the implementation of the sampling algorithm — illustrated in
Algorithm 4.1 — as well as the entire data transformation process in detail.

3.3 Inmitial Lighting Configuration

In addition to the target radiance and geometry, the optimizer requires an initial lighting
configuration to optimize. Moreover, the optimizer only optimizes existing light sources;
no light sources are added or removed during the optimization process. Therefore, the
initial lighting configuration has a significant impact on the final result. Apart from
the total number of light sources, the initial parameters of each light source also greatly
affect the results. A light is defined by its position, color, and intensity, all of which can
be optimized.

Our initial lighting configuration consists of a grid of light sources evenly distributed
within the bounding box of the scene. The light sources are initially set to a low-intensity
white color. Figure 3.3a displays an initial light grid, while Figure 3.3b compares the
initial intensity and color with the target illumination in Figure 3.3c. In our evaluation,
Chapter 5, we adjust the grid size and aim to find an optimal size for each map.

Because of the simple initial light layout — a uniformly distributed grid of light sources
within the scene’s bounding box — and the layout of our scene, or during the optimization
process, light sources may be placed outside rooms and behind walls. This may affect
the rendering time and increase it unnecessarily, but these light sources will not lead to
any further problems. Therefore, we are going to ignore light sources that are outside of
the scene and do not have a visual effect on the scene.

The following Chapter 4 describes the implementation of our method in detail. In
Chapter 4.1, we describe the data layout of the binary scene files, and in Chapter 4.2, we
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(a) Initial light grid (b) Initial light color/intensity (¢) Target illumination

Figure 3.3: Illustration of the initial light configuration. The initial light layout is
illustrated in Figure 3.3a. Figure 3.3b illustrates the scene illuminated by an initial light
configuration. Each light source within the initial configuration has a low intensity white
color, resulting in a rather dark scene compared to the target scene shown in Figure 3.3c.

explain the extraction of all the data we need. The construction of the radiance target
is documented in Chapter 4.3. Chapter 5 compares various optimization schemes and
initial starting configurations to determine the best strategy for reconstructing the target
illumination.
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CHAPTER

Implementation

As described in Chapter 2.4, Quake III Arena stores the geometry and the lightmaps in
a binary scene file. To use the geometry and lightmaps, we need to extract them from
the binary files and convert them into a suitable format. After parsing the BSP file, the
geometry, the lightmaps, and the albedo textures are used to describe a radiance target,
which is needed to perform the inverse rendering.

The implementation can be divided into the following major steps:
e BSP file format: A brief overview of the relevant parts of the BSP file format.
Section 4.1.

e Parsing BSP file: Loading the binary data from the BSP file and converting them
into a readable representation. Section 4.2.1.

e FEzxtracting the necessary data: Data such as geometry, lightmaps, or associations
between assets must be extracted and bundled into a consistent representation.
Section 4.2.2.

o Constructing the scene: The scene graph, which is used by the framework to model
the scene, must be built. Section 4.2.3.

e Defining the radiance target: The extracted albedo textures and lightmaps are used
to define a radiance target on the geometry. Section 4.3.

4.1 BSP File Format

The BSP file format is a binary file format and was developed by id Software. In the
following section, we provide a compact overview of the file format used in Quake ITI
Arena based on the specifications provided by Proudfoot [Pro].

17
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type version lump([0]
4 byte 4 byte 8 byte (4 byte offset, 4 byte size)

f_Hf_H —

r )
4942 5350 2e00 0000 a83e 1boo 153b 0000
9000 0000 70l1a 0000 0O1b 0000 408e 0000
b034 0200 4c28 0100 40a9 0000 708b 0100
9854 0400 6447 0000 fc9b 0400 7c68 0000 }{eader
7804 0500 2800 0000 fcS5c 0300 442e 0000 144 byte
408b 0300 58c9 0000 abo4 0500 7862 0900
c079 1boo 549e 0100 cO79 1boO 0000 0000
1867 0e00 e853 0300 9874 1300 00co 0600—’)

9834 1200 100a 0100 ©Obb 1100 98b9 0100
7465 7874 7572 6573 2f67 6f74 6869 635f
626c 6f63 6b2f 6b69 6Cc6C 626C 6f63 6b0OO
0000 0000 0000 00O 0000 0000 0000 0000
0000 0000 00O 00O 0000 0000 0000 0000
0000 0000 0100 0000 7465 7874 7572 6573 ;)—-Ijln]ps
2f67 6f74 6869 635f 626c 6f63 6b2f 626¢C
6f63 6b73 3135 0000 0OOO 0VOO 00O 0000
0000 0000 0000 00O 0000 00O 0000 0000 I
0000 0000 0000 00O 0000 0000 0100 0000 |
7465 7874 7572 6573 2f67 6f74 6869 635f
626c 6f63 6b2f 6b69 6Cc6C 626C 6f63 6b5T :

|

|

6900 0000 00O 0VDOO 0ODPO VOO0 VOO 0OOO

0000 0000 00O 0VDOO VOO0 VOO0 VOO 0000

0000 0000 0100 00O 7465 7874 7572 6573

2f67 6f74 6869 635f 7472 696d 2f70 6974
Figure 4.1: Snippet from a BSP file illustrating the binary structure. The first 4 bytes
represent the file type, the second 4 the version number. The 8 bytes that follow, 4 bytes

each for the offset and the size, describe the first lump.

Because of the lack of official documentation, we have to rely on third-party documentation
and resources. Specifically, we use the source code review by Fabien Sanglard [San12],
the map specification by Kekoa Proudfoot [Pro], and the BSPViewer by Lee Zher Huei
[Huel6).

The BSP file format consists of four basic data types: unsigned byte, integer,
float, and string. The detailed specification can be found in the appendix.

Each BSP file starts with a header followed by a list of lumps containing the actual map
data. The header specifies the file type, the file version, and for each lump contained
in the file the offset relative to the beginning of the file and the lump size. Figure 4.1
illustrates the structure of the binary file.

The scene data is stored in 17 lumps. Each lump is dedicated to a specific kind of scene
information. The most important lumps for our purpose are the lumps describing the
surface of the scene, i.e., the geometry and the lightmaps. The following list provides an
overview of all the lumps needed to extract the static geometry and the lightmaps:

o Texture lump: Textures are stored in separate image files. The texture lump stores
the location and name of these texture files in a list.
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Lightmap lump: The lightmap lump stores the actual lightmap data in a list. Each
lightmap consists of 128 x 128 texture elements (texels). Figure 4.2 shows a lightmap
stored in a BSP file.

Vertex lump: The vertex lump stores a list of vertices describing the scene geometry.
Each vertex consists of a position, albedo texture coordinates, lightmap texture
coordinates, and a vertex color.

Mesh Vertex lump: The mesh vertex lump stores a list of offsets. These offsets are
used to describe a triangulation of a surface defined by a set of vertices.

Face lump: The face lump stores information about coherent entities, i.e., about
the surfaces of the scene. These entities are called faces and each face represents a
polygon, a triangle mesh, or a Bezier surface. Each face specifies the associated
albedo texture and lightmap as well as a triangulation of the face. Depending on
the face type, the geometry-related members of the face have different meanings.

Faces of the type polygon describe a list of vertices within the vertex lump and a
list of offsets within the mesh vertex lump. Each offset in the offset list identifies a
single vertex in the vertex list by its offset from the first vertex. Every sequence of
three consecutive offsets specifies three vertices that form a triangle. In this way,
the vertex list and the offset list are used to describe a valid triangulation of the
entire polygon. Figure 4.3 illustrates the composition of a valid triangulation.

In the same way as polygons, faces of the type mesh describe a valid triangulation
by a list of vertices in combination with a list of offsets.

Entries of the type Bezier surface describe a grid of control points that represent a

smooth surface. Each 3 x 3 subsection of the grid forms a biquadratic Bezier patch.

These patches can be used to describe a triangulation of the face by approximating
the smooth surface.

BSP Loader

The BSP loader takes the path to the scene file to be loaded as an input parameter. We

parse the file, extract all the necessary information, and convert it into a suitable format.

Then we create a scene graph that contains all the static geometry as well as the albedo
textures and lightmaps associated with it.

The BSP loader consists of several parts:

File parsing. Section 4.2.1.
Mesh construction. Section 4.2.2.

Scene creation. Section 4.2.3.
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Figure 4.2: Lightmap stored in a BSP file.

VertexLump

Vol valvalva]va]vs[ve|v [ve[ve|
Vs* e /

MeshVertexLump [~ /
lols[ef1][3[1][2]3]e]4] . /

FaceLump[5] | -

type: polygon
vertexOffset: 2 -~
vertexCount: 4 V2
meshVertexOffset: 2
meshVertexCount: 6
Figure 4.3: Composition of a polygon’s triangulation. The polygon is defined by the
vertices vo to vs within the VertexLump. The triangulation is defined by the offset 09 to
o7 within the MeshVertexLump. In this example, the first three offsets (0, 1, 3) describe
the points (v2, v3, v5) of the first triangle. The second three offsets (1, 2, 3) describe the

points (v3, v4, v5) of the second triangle.
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4.2.1 File Parsing

The first step is to load the binary file into appropriate data structures. The file header
consists of the file type, the version number, and the location of the lumps stored in the
file. Therefore, we first load the header from the binary scene file and then check for
compatibility. For each lump, the header specifies both the offset from the beginning of
the file and the size in bytes. With this pair of offset and size, we load all the needed
lumps to construct the static geometry into the corresponding data structures. As a
result we get a Face list, a Vertex list, a MeshVertex list, a Texture list, and a
Lightmap list containing the raw data from the file.

We use the Face list, the MeshVertex list, and the Vertex list to create the BSPMesh
list as described in Section 4.2.2. Each entry in the Texture list stores a string, that
describes the location and name of the actual texture file. These texture files are loaded
via the framework during the scene creation step, as described in Section 4.2.3. Lightmaps
are directly stored in the BSP file, and each lightmap consists of 128 x 128 texels. Each
texel consists of three values (RGB) between 0 and 255. Figure 4.2 shows a 128 x 128
lightmap that was stored in a BSP file.

4.2.2 Mesh Construction

Faces in the BSP file format represent different entities, such as polygons, biquadratic
Bezier surfaces, or meshes — based on the type property — as described in Section 4.1.
Depending on the specific type, members of the face have different meanings and represent
surfaces in different ways. The optimization framework uses triangle meshes as the surface
representation, so we need to convert them into a consistent structure. We convert the
different surface representations into an indexed triangle list and bundle this surface
representation together with the associated textures in a newly introduced structure
called BSPMesh. A BSPMesh is a simple container that holds the indexed triangle list
and the associated albedo texture and lightmap.

Faces of the type polygon define a sublist of vertices in the Vertex list by a vertex
offset and a vertex count. This sublist of vertices can be used directly in the BSPMesh.
Furthermore, polygons describe a triangulation of the surface through a sublist within
the MeshVertex list with a mesh-vertex offset and a mesh-vertex count. This sublist of
offsets can also be used directly in the BSPMesh as indices.

The faces of the type mesh are similar to those of the type of polygon. Each mesh
describes a sublist of the Vertex list using a vertex offset and a vertex count. A valid
triangulation is described by a sublist of MeshVertex defined by a mesh-vertex offset
and a mesh-vertex count. Figure 4.4 illustrates the conversion of a Face into a BSPMesh.

Biquadratic Bezier surfaces do not store a valid triangulation of the surface directly.
The sublist of vertices within the Vertex list, described by a vertex offset and a vertex
count, forms a rectangular grid of control vertices with the dimensions defined in the face.
Within the grid of control vertices, each 3 x 3 grid forms a patch, with neighboring patches
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Vertex List
PRREEREEEE

MeshVertex List
lo]s[e]1]3]2]2]3]e]4] BSPMesh[5]

vertices: [Va, Vi, Va, Vs]
indices: [0, 1, 3, 1, 2, 3]

Face[5]

lightmap: 1
type: polygon texture: 6
vertexOffset: 2
vertexCount: 4
meshVertexOffset: 2
meshVertexCount: 6
texture: 6 J
lightmap: 1

Figure 4.4: Tllustration of the transformation and the bundling of the geometric informa-
tion together with the textures into a unified surface representation.

sharing adjacent vertices. We used these patches to create a triangulation through a
tessellation step. To tessellate a patch, each horizontal and vertical line is approximated
by a sequence of points. We use the Quake III default of 4 vertices for each line, resulting
in 16 points per patch. Figure 4.5 illustrates the tessellation of two adjacent lines.

As a result, we get a consistent surface representation for all the static geometry in the
scene as a triangle list. Together with the associated lightmap and albedo texture, the
geometric information is bundled into a BSPMesh list.

4.2.3 Scene Creation

In the last step, we use all the extracted surface descriptions and combine them to
construct the scene. The framework internally uses a scene graph to describe scenes, so
we insert all the extracted data into an empty scene graph. The vertices in the BSP file
are stored directly in world-space coordinates without any instancing. Therefore, we
cannot take full advantage of the scene graph. Each extracted surface is inserted as a
separate node, bundling the geometry and textures associated with it directly at the root.

First, we create a scene graph and insert the root node. The root node can be used to
translate, rotate, and scale the complete scene. For each entry in the previously created
BSPMesh list, we create a new node and associate the geometry, albedo texture, and
lightmap with it. We attach the node directly to the root node.

4.3 Preparing the Radiance Target

At this point, Quake III Arena maps can be loaded and viewed in the framework. The
last step that needs to be done is to build the radiance target. It stores the desired
radiance for each vertex in the scene. The lighting information extracted from the binary
scene file and stored in lightmaps contains the lighting information for the entire surface.
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L
v

(a) Evaluation of a single point on a quadratic Bezier curve

(b) Resulting approximation of two adjacent quadratic Bezier curves

Figure 4.5: Tessellation of two adjacent quadratic Bezier curves; vy, ve, and vs form the
first curve, and v3, v4, and vs form the second curve.

For this purpose, to build the target, this lighting information must be sampled and
bundled at the vertices of the scene. As briefly discussed in Chapter 3.2, for each vertex
in the scene, we sample its neighborhood to build the target for that vertex. To perform

the sampling, we define a compute shader that is executed for each triangle in the scene.

Each triangle in the scene contributes to the radiance target of three vertices — the three
vertices that make up the triangle. We take uniform samples of the triangle, as illustrated
in Figure 3.2b, and calculate the weight for each vertex within each sample. We then
apply the weight and add the weighted sample point to the radiance target. Algorithm
4.1 illustrates the sampling process performed by the shader. Figure 4.6 illustrates the
albedo textures and the lightmaps as well as the resulting radiance target.

We use the lightmaps in combination with the textures as the radiance target because the

desired lighting setup should illuminate the textured scene similarly to the baked lightmap.

The baked lighting can include effects such as indirect illumination, which means that
colored light can be reflected from objects onto other objects in the scene. This effect
is called color bleeding and can be seen in Figure 2.1c, where green light is reflected
from the green wall onto the right cube in the scene. To evaluate a current light setup
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Algorithm 4.1: Target Building

1 for each triangle ¢t do

2 Vg, V1, U <— vertices of ¢

3 samples < barycentric sample positions
4 for w of samples do

5 W, W1, W < W

6 X 4— Vg W + V1 w1 + V2 W2

7
8
9

r < texture (z) X lightmap (z)

wo X triangleArea (1)
vertexArea (vg) X length (samples)
wi X triangleArea (¢)
(s
(t
(s

add to radiance target of vy < r x

add to radiance target of vy < r X TeTtexAres (v1) x Iength (samples)

wz X triangleArea (1)
vertexArea (v2) X length (samples)

10 add to radiance target of ve < r X
11 end

12 end

(a) Albedo Texture (b) Lightmap (c) Target

Figure 4.6: Scene with albedo texture only (a). Scene with lightmap only (b). Scene
with albedo texture and lightmap projected onto the vertices (c).

during the optimization process, the scene is illuminated, and the resulting illumination
—i.e. the light reflected from each surface — is compared to the target illumination. As
mentioned above, we want to consider the effects of colored light reflecting from colored
surfaces, so we need to use the textured scene to evaluate a current light setup. This
leads to the need to include texture information in the radiance target as well.

Now we have parsed the original BSP file and loaded the data into the rendering system,
including the geometry as triangle meshes, textures, and the lighting target. We can now
build a lighting confirmation that matches the target lighting. At this point, we have
not defined any light sources in the scene. Therefore, in Chapter 5, we describe various
optimization schemes, including different initial lighting configurations and optimization
strategies to build a matching lighting environment.
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With the scene loaded into the framework and the radiance target constructed, we can
now perform the inverse rendering to reconstruct a lighting configuration. We describe
several optimization schemes to reconstruct a lighting configuration for a given scene
and then evaluate the resulting configuration by comparing the objective function and
the illuminated scene visually against the target illumination baked into the lightmaps.
Each optimization scheme is defined by an initial light configuration and by one or more
optimization phases. To set up the initial lighting, we calculate the scene’s bounding box
and distribute a grid of point lights uniformly within that box. Each optimization phase
consists of an optimization algorithm and its parameters.

In a first step, we compare various basic optimization schemes, which are defined by the
initial lighting setup and a single optimization phase. Our aim is to demonstrate the
impacts of different initial light configurations, optimization algorithms, and optimization
parameters. Subsequently, we will assess more complex optimization schemes that involve
a sequence of optimization phases. Our objective is to identify an optimization scheme
that can reconstruct the most visually appealing lighting setup for a scene.

We use the following three maps to evaluate the lighting reconstruction:

o Map 1: Arena Gate (q3dm1.bsp)
e Map 2: House of Pain (q3dm2.bsp)

e Map 3: Arena of Death (q3dm3.bsp)

FEach optimization algorithm has a maximum iteration limit per run. We have set a
maximum iteration limit of 400 for Adam and a theoretical limit of 10000 iterations for
L-BFGS, although the latter is never reached because the algorithm terminates before
that. When we display the data, we consider only improvements; temporary declines
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Figure 5.1: Comparison of the impact of different step sizes on all three maps using the
Adam optimization algorithm. The results of all three runs of each scheme are shown.

ADAM - 11x11 Light Grid
Map 1 Map 2 Map 3

— 1.00 Step Size
—— 0.80 Step Size
—— 0.60 Step Size

0.40 Step Size

©
©

<
~

0.20 Step Size
0.10 Step Size
0.08 Step Size
0.06 Step Size
—— 0.04 Step Size
—— 0.02 Step Size

35

o
£y

“
“

Now
L—
w I
=

IS

Obijective Function
Obijective Function
Obijective Function

2.0

0 S0 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
iteration Iteration Iteration

Figure 5.2: Comparison of the objective function during the optimization process of
different step sizes using the Adam optimization algorithm.

in performance are disregarded. To evaluate a single lighting configuration, we use
approximately 100 000 rays per light source throughout the evaluation process.

5.1 Basic Optimization Schemes

First, we compare the effects of different step sizes for both algorithms. To do this, we
use an 11 x 11 light grid as our initial configuration and 100 000 rays per light source.

We start with the Adam optimization algorithm. To avoid outliers, we have three runs
for each configuration and each map. All results are shown in Figure 5.1. Although the
sample size of three runs per configuration is not large, it seems that a smaller step size
leads to better results for all maps — if the iteration limit is not reached too early.

Figure 5.2 shows the objective function during each optimization run. We choose the
best of the three runs to compare. As a result, we can see that a smaller step size may
lead to a better approximation but requires more iterations. Furthermore, it seems that
the smallest step size (0.02) did not reach the best result because of the limit of 400
iterations.
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Figure 5.3: Comparison of the impact of different step sizes on all three maps using the
L-BFGS optimization algorithm. The results of all three runs of each scheme are shown.
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Figure 5.4: Comparison of the objective function during the optimization process of
different step sizes using the L-BFGS optimization algorithm.

Now we repeat the same experiment using the L-BFGS algorithm and compare the two
algorithms. All the results using the L-BFGS algorithm are shown in Figure 5.3. It is
clearly noticeable that the variance between runs with the same configuration is much
higher than with the Adam optimization algorithm. Furthermore, this variation does
not lead to a clear indication of an optimal step size. It seems that the initial step size
does not have much influence on the final results. However, a major advantage of the
L-BFGS algorithm is clearly noticeable: It terminates much faster, or terminates at all,
before reaching the hard-coded iteration limit. We define an iteration as one call to the
renderer. The Adam algorithm requires a single evaluation of the objective during an
iteration. However, the L-BFGS algorithm may internally require multiple evaluations of
the objective during an single iteration.

Second, we want to compare different grid sizes. We start with the Adam optimization
algorithm and a step size of 0.1. Based on the results of the previous example, a step
size of 0.1 leads to a good balance between the quality of the result and the number of
iterations needed so that the iteration limit is not reached too early. For the comparison,
weusea dHxbH a7x7 a9x9 an 1l x 11, and a 13 x 13 light grid.
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Figure 5.5: Comparison of the impact of different grid sizes on all three maps using the
Adam optimization algorithm. The results of all three runs of each scheme are shown.
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Figure 5.6: Comparison of the objective function during the optimization process of
different grid sizes using the Adam optimization algorithm.

As expected and shown in Figure 5.5, a higher number of lights can better approximate
the target lighting environment. However, the benefit of more lights is not linear. For
example, it appears that a 5 x 5 light grid is not enough to approximate the light
configuration in Map 1, and there is a large performance gain by using a 7 x 7 grid.
However, the benefit of a grid larger than 7 x 7 is not as great as between a 5 x 5 and a
7 x 7 grid.

Figure 5.6 shows the objective function during the best run of each setup. It is also
noticeable that with more lights, fewer iterations are needed to achieve better results than
with fewer lights. However, because of the 100000 rays per light source, each iteration
takes longer to evaluate with more lights. In the end, there is a trade-off between accuracy
and runtime.

If we now focus on the results of the L-BFGS optimization algorithm, shown in Figure
5.7, we again see a higher variance within runs. It seems that for map 1, the 13 x 13 grid
is the best because all three results are better than all other results. However, the best
result for map 2 is obtained with the 9 x 9 light grid, but the other two results with the
9 x 9 grid are within the four worst results.
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Figure 5.7: Comparison of the impact of different grid sizes on all three maps using the
L-BFGS optimization algorithm. The results of all three runs of each scheme are shown.
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Figure 5.8: Comparison of the objective function during the optimization process of
different grid sizes using the L-BFGS optimization algorithm.

Figure 5.8 shows that the L-BFGS algorithm needs fewer iterations compared to the 400
iterations of the Adam algorithm. In our evaluation, the L-BFGS algorithm always stops
before 200 iterations. Overall, the L-BFGS is much faster in terms of runtime compared
to the Adam algorithm.

Adding more light sources always reduces performance, but adding more lights as needed
can also lead to other artifacts. Too many lights can lead to overfitting. A single light
source in the original lighting configuration may be approximated by multiple light
sources in the reconstructed lighting configuration. This can result in multiple shadows
or noticeable bright spots on the surface of the scene.

5.2 Complex Optimization Schemes

Now we want to combine different phases to build even better optimization schemes.

In addition to the step size and the grid size, we also vary the light parameters that
are optimized during a single optimization phase. Specifically, the optimization can be

restricted to one or more of the following light parameters: position, color, and intensity.

The default configuration of each light created within a light grid is white with an
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Figure 5.9: Comparison of the results of all optimization schemes.

intensity of 1.0 as illustrated in Figure 3.3b. We demonstrate all optimization schemes
on map 1, and we repeat each experiment three times to reduce outliers.

The first optimization scheme consists of three phases. In the first phase, only light
intensity and color are optimized. In the second phase, the position is optimized; in the
final phase, all three scene parameters are optimized. For all three phases, the Adam
algorithm is used with a step size of 0.1 and an iteration limit of 400. Based on the
results in Section 5.1, we chose a 9 x 9 grid for map 1.

The second optimization scheme is very similar to the first, but we change the order of
the phases. First, we optimize only the position of the light sources, then the color and
intensity, and finally all three parameters.

In the third optimization scheme, we use the L-BFGS algorithm with a step size of 1.0 in
the first phase and the Adam algorithm with a step size of 0.1 in the second phase. In
both phases, we optimize all parameters.

The fourth and fifth optimization schemes serve as references. Each scheme consists
of three phases in which all scene parameters are optimized. The fourth optimization
scheme uses the Adam algorithm with a step size of 0.1, and the fifth scheme uses the
L-BFGS optimization scheme with a step size of 1.0. For a compact overview of all
optimization schemes, see Table 5.1.

Figure 5.9 illustrates the best result of all three runs for each scheme. The fourth
optimization scheme performs best, followed by the third optimization scheme. It seems
that the best strategy is to use the Adam algorithm repeatedly. A significant disadvantage
is that the fourth scheme terminates slowly. That is where the third scheme excels. In
terms of speed/accuracy, the third scheme seems to be the best.
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Scheme 1
Phase | Algorithm | Parameter Step Size
1 Adam Intensity, Color 0.1
2 Adam Position 0.1
3 Adam Position, Intensity, Color 0.1
Scheme 2
Phase | Algorithm | Parameter Step Size
1 Adam Position 0.1
2 Adam Intensity, Color 0.1
3 Adam Position, Intensity, Color 0.1
Scheme 3
Phase | Algorithm | Parameter Step Size
1 L-BFGS | Position, Intensity, Color 1.0
2 Adam Position, Intensity, Color 0.1
Scheme 4
Phase | Algorithm | Parameter Step Size
1 Adam Position, Intensity, Color 0.1
2 Adam Position, Intensity, Color 0.1
3 Adam Position, Intensity, Color 0.1
Scheme 5
Phase | Algorithm | Parameter Step Size
1 L-BFGS | Position, Intensity, Color 1.0
2 L-BFGS | Position, Intensity, Color 1.0
3 L-BFGS | Position, Intensity, Color 1.0

Table 5.1: Compact overview of the optimization schemes.

Looking at all the results as shown in Figure 5.10, we can see that the greatest disadvantage
of the Adam optimization algorithm is that it never terminates; therefore, the iteration
limit has a significant impact on the accuracy and runtime of the algorithm. Setting a low
limit can lead to inaccurate results, while setting a high limit can lead to an excessively
long runtime.

Now we want to visually compare the results of each scheme. Figure 5.11 shows the
results of the best run for each scheme. The first row shows the resulting radiance, the
second row shows the rasterized scene, and the third row shows the path traced scene
with the reconstructed lighting configuration.

We can see that the overall lighting ambience of our results is very close to the original
lighting stored in the lightmaps. Even potential point lights used to bake the lightmaps
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Figure 5.10: Comparison of the objective function of all runs.

could be successfully approximated, as shown in Figure 5.11e or Figure 5.12.

The general lighting mood can be reproduced without any manual adjustments, as shown
in Figure 5.11e. However, if we look closely, we can notice some artifacts, such as light
sources that are too close to the surface or light sources that are outside the scene. Figure
5.13 demonstrates such artifacts. Fortunately, these artifacts can be easily fixed manually
by dragging/removing the problematic light sources. Another approach would be to
formulate a penalty term within the objective function to penalize such situations.

Finally, to demonstrate the potential of the inverse rendering application presented in
this thesis, we use the approximated lighting environments to render the scenes with a
physically based path tracer. Figure 5.14 shows some of the highlights of each map.
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(a) Target (b) Scheme 1 (¢) Scheme 2

(d) Scheme 3 (e) Scheme 4 (f) Scheme 5

Figure 5.11: Visual comparison of the best results with respect to the objective function
of each optimization scheme. The first row shows the resulting radiance, the second
row shows the rasterized scene, and the third row shows the path traced scene with the
reconstructed lighting configuration.
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a) Original ) Reconstruction ¢) Original (d) Reconstruction

Figure 5.12: Comparison of approximated light sources with light sources baked into the

lightmaps.
a) Original ) Reconstruction ¢) Original ) Reconstruction

Figure 5.13: Artifacts caused by point lights that are placed too near to a surface.
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(a) Map 1 (b) Map 2

(c) Map 3

Figure 5.14: Path-traced images using the approximated lighting environments.
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CHAPTER

Conclusion

In this thesis, we demonstrate the capability of a novel inverse rendering application [Pri23]
to estimate light source parameters from baked lighting information. Our methodology
involves the extraction of the geometry and baked lighting information from scene files
of the game Quake III Arena, the construction of a radiance target from the baked
lighting information, and the subsequent application of various optimization schemes to
produce a physically based lighting setup that accurately matches the baked lighting
information. We achieve a successful reconstruction of the overall lighting ambience for
different scenes that preserves the original look of the game. We successfully reconstruct
the overall lighting atmosphere for different scenes, preserving the original look of the
game and improving the visual quality of these scenes by enabling modern physics-
based rendering techniques. Moreover, we demonstrate the use of these physically based
reconstructed lighting setups by rendering the scenes using modern techniques, such
as global illumination and soft shadows. Our research also illustrates that the initial
lighting configuration plays a significant role in determining the quality of the final result.
Therefore, the quality of a reconstructed lighting setup is not determined solely by the
optimization scheme applied but also by the initial configuration.

To achieve the best result, we can recommend an optimization scheme consisting of several
phases in which all light parameters are optimized at once using the Adam optimization
algorithm. A smaller step size produces a better result but may increase the number of
phases needed to reach the best result. In addition, a single phase using the L-BFGS
optimization algorithm at the beginning of the scheme reduces the total number of phases
but may lead to a slightly worse result. The light grid chosen for the initial configuration
should be as small as possible and as large as necessary. Continually increasing the grid
size and comparing the results will reveal a certain grid size where the benefit of adding
more lights is negligible compared to the increased complexity.

In conclusion, we highlight some potential areas for further work. As mentioned above, the
initial configuration has a major impact on the result, especially because the framework
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does not dynamically add or remove light sources during the optimization process.
Because of the structure of the scenes and the rather simple construction of the initial
configuration by placing light sources uniformly within the bounding box of the scene,
light sources end up behind walls or outside rooms. To this end, a better initial lighting
configuration generation can significantly reduce the total number of lights without
compromising the quality of the resulting lighting configuration.

Furthermore, automating the dynamic addition or removal of light sources during the
optimization process could improve usability and reduce the impact of the initial configu-
ration.

Another problem we encounter is when light sources are placed too close to the surfaces
of the scene, either during the initial configuration generation or during the optimization
process. A possible solution would be to formulate a penalty term within the objective
function to penalize such situations.

The last possible improvement we want to mention is the subdivision of the triangles
in the scene. The radiance target is defined at the vertices in the scene. However, the
baked lighting information stored in the scene files describes the lighting information for
the entire surface of the scene, not just the vertices. We project the lighting information
onto each vertex, and much information is lost. A finer mesh may produce better results,
but it may also increase the complexity of the reconstruction process. At some point, a
finer subdivision than the lightmap result may not yield much improvement.

We have reconstructed a physically-based lighting environment from lighting information
stored in highly optimized binary scene files. We have also analyzed and compared a
variety of ways to reconstruct this lighting environment.
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Appendix

Detailed File Specification

Since there are no official specifications, we have to rely on third-party documentation.
To this end, the following specification is heavily based on the work of Proudfoot [Pro].
This appendix serves as a detailed description of all the data we need to extract from
BSP files. Game specific data or other data that are not necessary to construct the static
scenes are omitted.

Data Types

All the structures stored in a BSP file consist of four basic data types and records of
these basic types. The basic types are:

Basic Types
Type Definition
ubyte unsigned byte
int 4-byte integer, little-endian
float 4-byte IEEE float, little-endian
, string of n ASCII bytes, not necessarily null-

string([n] .

terminated

File Structure

Each BSP file starts with a header followed by a list of lumps. The header contains the
layout of the file and is, therefore, used to determine the location of the lumps stored in
it. In the following, we will describe all the lumps we need for the reconstruction of the
static geometry and textures associated with it.

Header

The header has the following structure.
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Header
Member Definition
File type. BSP files distributed with Quake 11T
Arena: "IBSP"
Version number. BSP files distributed with
Quake ITI Arena: 46

string[4] type

int version

lump [17] lumps Lump’s location described by an offset and size.
lump
Member Definition
, Offset from the beginning of the file to the be-
int offset ..
ginning of the lump.
int size Size of the lump.

Vertex Lump

The vertex lump stores a list of vertices and each vertex has the following structure.

Vertex
Member Definition
float [3] position Vertex position.
float (2] [2] texcoord Verjuex texture coordinates. O=surface,
1=lightmap.
float [3] normal Vertex normal.
ubyte[4] color Vertex color. RGBA.

MeshVertex Lump

The mesh vertex lump stores a list of offsets.

MeshVertex
Member Definition
Vertex index offset, relative to first vertex of
corresponding face.

int offset

Face Lump

The face lump stores information about surfaces in the scene. Each face has the following
structure.
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Face

Member Definition

int texture Texture index.

int effect (not used)

int type Face type. 1=polygon, 2=patch, 3=mesh

int vertex

Index of first vertex.

int vertexCount

Number of vertices.

int meshVertex

Index of first meshVertex.

int meshVertexCount

Number of meshVertex.

int lightmap

Lightmap index.

int [2] lmStart

int [2] lmSize

int [2] ImOrigin

float[2] [3] lmVecs

)
not used)
)
)

float [3] normal

(
(
(not used
(
(

not used)

int [2] size

Patch dimensions.

Texture Lump

The texture lump contains a list of the path and the name of each texture.

Texture

Member

Definition

string[64] name

Texture name.

int surface

(not used)

int content

(not used)

Lightmap Lump

The lightmap lump contains a list of lightmaps. The data of each lightmap are directly

stored in the BSP file.

Lightmap

Member

Definition

ubyte[128][128] [

3] data | Lightmap color data. RGB.
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