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Abstract

In this work, we propose total variation-based methods for smoothing textured surfaces
in point-based rendering and reducing noise in Monte Carlo-rendered images. Initially,
we survey the challenges and existing state-of-the-art methodologies in these two research
domains. Subsequently, we delve into the details of our proposed total variational models,
each aimed at smoothing point-rendered textured surfaces and reducing noise in Monte
Carlo-rendered images, respectively. For smoothing textured surfaces in point-based ren-
dering, our model incorporates geometric features and is then combined with an advanced
Pull-Push method. This combined approach enables us to effectively fill gaps and smooth
discontinuous surfaces. The models tailored for denoising Monte Carlo-rendered images
leverage noise-free auxiliary features and noise estimation techniques. Our approach effi-
ciently eliminates noise while preserving crucial image features. We conduct comprehensive
comparison experiments against existing state-of-the-art techniques to evaluate the effec-
tiveness of our methods. Although our implementations are currently offline, both the
smoothing and denoising processes can be achieved within a few iterations. Given the
simplicity of our approach’s implementation, we foresee the potential for a GPU-based
implementation, paving the way towards real-time applications.
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Chapter 1

Introduction

Point-based rendering and Monte Carlo rendering are two essential techniques in the field
of computer graphics. Both of these techniques are remarkable for their capacities. Point-
based rendering is recognized for its ability to efficiently capture complex 3D geometry.
However, it is often challenging to create smooth, continuous surfaces from point-sampled
objects. On another front, Monte Carlo rendering methods are highly valued for their
ability to produce realistic lighting and shading effects. However, one significant challenge
associated with these methods is the presence of noise in the rendered images, especially
when the number of samples per pixel is low. Addressing these challenges is the primary
objective of this thesis.

In this thesis, we aim to smooth the reconstruction of textured surfaces by point-based
rendering and reduce noise in Monte Carlo rendered low samples per pixel images. To
maximize efficiency, we avoid performing pre-computations in the object space. All our
processing steps occur in the image space. We delve into the field of image restoration, a
critical process in image processing that involves retrieving an undistorted image from a
distorted one. The process of image restoration often involves solving an inverse problem.
Mathematically, given a distorted image ug, the goal of an inverse problem is to find the
original, undistorted image, represented by u, from this distorted version. Variational
methods are a widely utilized approach for solving inverse problems. These methods strive
to minimize a squared energy function with a regularity penalty R(u), given by:

u:argmin%Hu—uQHQJrR(u) (1.1)
u

This penalty R(u) encourages the solution to be smooth while reducing distortions. In
solving such optimization problems, algorithms typically reformat the problem as a con-
strained optimization task, which enables them to iteratively find the optimal solution
for w. A prominent example of a regularization term R(u) is the total variation-based
regularization Ry (u), well-known for its capability to smooth an image while preserving
significant structural features.
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In this research, we apply total variation-based methods as a post-processing step in image
space to address the previously discussed challenges. We adapt the total variation-based
techniques to effectively smooth discontinuous surfaces while preserving essential features
from the original point-based rendering. To address the noise in low sample per pixel
frames produced by Monte Carlo rendering, we propose a total variation-based method
that integrates auxiliary features and noise estimation techniques. Our approach enables
effective noise reduction while maintaining important image features.

This thesis is organized as follows: The Chapter 2 begins with a comprehensive explana-
tion of the fundamental concepts behind total variation-based methods. We then delve
into the challenges associated with obtaining continuous surfaces from point-based ren-
dering and explore the difficulties in denoising Monte Carlo rendering. This chapter also
presents an overview of the related approaches currently used to address these challenges.
In Chapter 3, we detail our proposed total variation-based models, designed specifically
to address the challenges of obtaining continuous surfaces from point-based rendering and
denoising Monte Carlo rendering, respectively. Then, in Chapter 4, we proceed to evaluate
the effectiveness of these models by conducting a thorough comparison of our results with
those obtained using state-of-the-art methods. Finally, in Chapter 5, we present our con-
clusions, summarizing the key findings from our work. We also discuss future perspectives,
suggesting possible directions for further study and development based on our research
findings.



Chapter 2

Background

In this thesis, we address two primary research issues: the smoothing textured surface
reconstruction from point cloud-rendered images and the denoising of path-traced images.
We tackle these problems by formulating them as constrained optimization problems, which
are based on the total variation principle. The initial part of this chapter begins by
explaining the mathematical representation of a constrained optimization problem in the
context of our research problems. Subsequently, we demonstrate the fundamental concept
of total variational models, highlighting their effectiveness within the scope of our research
issues. Lastly, we present recent work related to each research problem, discussing their
respective strengths and weaknesses.

2.1 Mathematical Foundations of Total Variation-
based Methods

Constrained optimization problems refer to optimization functions whose solutions are
bound by constraints. A constrained optimization problem is solved by finding the best
solution (either maximum or minimum) that satisfies certain conditions. In the context
of image denoising and inpainting, the objective is to minimize the difference f(u,uo)
between the reconstructed image u and the noisy or incomplete image ug, subject to specific
constraints g(u) that ensure the solution’s feasibility and optimality:

u = arg min f(u, ug)

subject to g(u) = ¢

To solve such problems, we utilize the Lagrange multiplier method, which introduces new
variables for each constraint, resulting in a new objective function:

L(u, ) = f(u,uo) — Ag(u) — c) (2.1)
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By solving Euler-Lagrange equations 2.2 and 2.3, we can iteratively find the optimal solu-
tion for u.

oL
5o =0 (2.2)
oL

5y =0 (2.3)

Total Variation (TV) based methods are classic mathematically constrained optimization
strategies for image denoising and inpainting tasks. Owing to their ability to effectively
smooth images while preserving edges, TV models demonstrate considerable promise in
resolving our research issues. As a foundation for further exploration, we will next outline
the core concept of TV-based methods, focusing on the classic Rudin-Osher-Fatemi (ROF)
model.

The TV model was initially introduced in | |. TV-based methods incorporate the TV
term to construct the objective optimization function. In the context of image processing,
the TV term is essentially the 11 norm of the gradient of the restored image u, represented
as Rry(u) = |Vu|. Drawing on the statistical observation that natural images exhibit
local smoothness and that the pixel intensity transitions gradually across most regions,
[ ] suggests that the 11 norm of the image gradient is particularly effective for image
restoration tasks.

To provide a comprehensive understanding of how this method enhances image smoothness,
we will next explain the ROF model contributed by | ]. The optimization function
for the ROF model in its discrete form is defined as:

A
u:argmin§||u—u0||2+ |Vu| (2.4)

where %|ju — ug||* is the data fidelity term for preserving important features from the
noisy images and |Vu| is the TV term for promoting piecewise smoothness of the restored
image. The strategic interaction of these two components enables the model to smooth
images effectively while preserving essential structures. The two components are defined
as:

Ju — UOH2 = Z(uid - uoi,j)2 (2.5)

Vul =" V(0:)? + (8,u)? (2.6)

where d,u and J,u are the first-order differences of u along x and y directions, respectively.

TV-based methods had made significant success in the field of image denoising | ]
and image inpainting | | owing to their ability to not only efficiently compute the
optimal solution, but also maintain sharp edges in the image. Numerous algorithms have
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been developed to solve optimization problems of TV models, including Primal-Dual meth-
ods [ |, alternating direction method of multipliers (ADMM) method | |, and the
Split Bregman method | ]. According to the work by [ |, these optimization al-
gorithms share fundamental similarities. No single algorithm universally outperforms the
rest across all optimization problems. The choice of algorithm can significantly influence
the problem-solving process. In this thesis, specific algorithms are selected for different
models based on their suitability for the problem at hand and the clarity of their working
principles.

In the field of computer graphics, there is a related work that employs a TV-based model
to smooth fluid surfaces obtained via sphere rendering | ]. Their approach applies
a screen-space post-smoothing filter to the depth buffer to enhance the image of surfaces
obtained via sphere rendering. Remarkably, this filter integrates the ROF model with a
locally adapted balance parameter. Our first research problem, filling and smoothing point
rendered images, exhibits similarities with this application. Inspired by it, we designed a
custom TV-based loss function and applied it to the depth map to infill holes in an edge-
aware manner. Then the textured surface is smoothed, guided by the smoothed depth
map. Furthermore, we extended our TV models to denoise Monte Carlo rendering, which
also possesses geometric features that can contribute to custom objective function design.
Nonetheless, the inpainting in point-rendered images and denoising tasks in Monte Carlo
rendering differ from traditional image processing tasks. The specifics in data structure and
noise properties are taken into consideration so that the custom TV models can reconstruct
the final image as best as possible.

2.2 Reconstruction of Point-Rendered Surfaces

Point-based geometry is represented by 3D positions sampled from a continuous surface,
often accompanied by associated attributes such as normal vectors, depth values, color,
and other material properties. Points were initially proposed as rendering primitives in
[ |. Given that topological consistency is not strictly necessary in rendering, point-
sampled objects offer greater flexibility compared to other models. One popular method
is one-pixel point rendering, where each point in the point cloud directly corresponds to
a pixel in the rendered image. By interpreting each point as a pixel, this method can be
highly efficient [ |. However, one-pixel point rendering also has its challenges. The
lack of a continuous surface representation often leads to noticeable surface discontinuities
in the rendering. This issue becomes particularly challenging when dealing with massive,
unstructured raw point cloud data. To mitigate these issues, numerous studies have been
conducted | 1 ] to fill the holes and gaps between samples. In the following
section, we will explore and discuss recent related work to tackle this research problem.



CHAPTER 2. BACKGROUND 6

2.2.1 Related Work

Traditional methods generally fall into two broad categories: image-space techniques and
object-space techniques. Besides these, deep learning-based methods have been introduced
for both categories.

e Object-space reconstruction techniques. Some methods aim to reconstruct the
entire point cloud into a renderable surface representation, such as a mesh. The
mesh can be described based on an implicit surface that is locally fitted to the data
[ [ il ], or it can be approximated by local higher-order polynomials
[ ]. However, rendering a locally fitted surface requires dynamic adjustment of
the sampling rate to match the current viewing parameters for each frame, making these
approaches computationally demanding. Moreover, these methods tend to be inefficient
when only part of the scene is viewed. They typically perform slower than approaches
that employ surface elements like splats. In splat-rendering, points are interpreted as
object-space disks or ellipses, accompanied by normal vectors and radius. These over-
lapped splats are rendered instead of points to bridge the gaps between neighboring
point samples. The high-quality Elliptical Weighted Average (EWA) splatting frame-
work | |, which employs object-space reconstruction kernels and image-space
filters, results in hole-free, high-quality rendering. Nevertheless, such implementation
can be computationally expensive when dealing with highly complex models.

e Neural rendering approaches. Deep learning-based approaches have been proposed

to generate high-quality | ], photo-realistic | | point renderings from low-
resolution point clouds. However, their complex network structures limit them to offline
applications. In [ |, a deep learning method is proposed for real-time point render-

ing, which uses calibrated camera images and estimated point clouds as inputs. However,
the limitation of their neural network’s architecture is that it can only fill in gaps up to
a specific size. This results in non-continuous surfaces when the point cloud is sparse or
when the camera approaches an object too closely.

e Image-space operators. As the quantity of surface points grows, it becomes more
beneficial to transfer surface approximation algorithms to image space. In | ], an
iterative hole-filling technique is employed for datasets of moderate size. Efficient pyra-
mid Pull-Push algorithms are utilized in | | and | ]. A noted drawback of
these Pull-Push based methods is the introduction of blocking artifacts.

In this research, we go back to the basics of rendering points directly. Using a TV-based
method as a post-process step, we fill in the holes in a geometry-aware manner in the image
space.
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2.3 Denoising Monte Carlo Rendering

Path tracing takes a leading role in graphics rendering research, attributed to its capability
to produce physically-based illumination effects. Monte Carlo methods offer an efficient
approach to compute rendering results through stochastic sampling of light paths. As the
quantity of sampled paths increases, the estimated image converges toward an accurate
solution. Monte Carlo methods universally encounter noise (variance) in the estimated
pixel values, particularly when the sampling rate is low. Traditional denoising techniques
in computer vision typically make assumptions that the noise is evenly spread across the
image or follows a specific statistical distribution. However, these assumptions may not
hold for Monte Carlo noise. Monte Carlo noise carries unique characteristics. Firstly,
noise resulting from Monte Carlo rendering is unevenly distributed within the image, with
complex lighting areas typically possessing more noise. Secondly, the noise can correlate
with the scene’s geometry, while standard denoising methods assume noise is independent
of image content. Furthermore, Monte Carlo noise often presents as high-frequency noise
which impacts fine details within the image. Its removal can subsequently lead to the loss
of these details. Therefore, denoising techniques for Monte Carlo rendering often need to
take into account the specific properties of the noise. The related work addressing the
denoising of Monte Carlo rendering will be introduced next.

2.3.1 Related Work

This section primarily focuses on post-processing techniques. These methods are based
on statistical analyses of sample sets obtained from Monte Carlo rendering, along with
additional feature information.

Alongside noisy images, auxiliary first hit image features such as per-pixel normal, depth,
and albedo colors can also be acquired from the path tracer. According to [ | and
[ |, the outcomes of the restoration process can be enhanced by utilizing so
obtained feature buffers. These buffers provide a wealth of noise-free data about image
structures. In | |, an offline method based on anisotropic diffusion guided by nor-
mal and positions is proposed to blur noisy images iteratively. Locally adaptive filters
can be derived from auxiliary features to prevent blurring samples across geometric edges.
The A trous filter, proposed in [ |, leverages wavelets for real-time filtering and
integrates a customized edge-aware stop function. | ] introduces a real-time block-
wise reconstruction pipeline that also utilizes auxiliary features to design a multi-order
regression-based model. Moreover, reprojecting and accumulating samples across multiple
frames can yield a larger effective spp count to reduce noise and enhance temporal stability.
In | | and its subsequent work | |, a hierarchical wavelet local filter guided
by spatiotemporal luminance variance shows promising results in denoising for temporally
accumulated 1 spp frames. Deep learning-based approaches also represent a compelling di-
rection for achieving real-time Monte Carlo denoising | 1,1 |. For example,
the OptiX Neural Network Denoiser | | uses recurrent connections in each neural
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network layer to address temporal noise.

Most real-time denoising strategies rely on image space filtering due to its simplicity and
efficiency. As suggested in | ], we can borrow locally adaptive denoising strategies
from the field of image processing to effectively deal with Monte Carlo noise. Drawing
inspiration from this, we adaptively modify the aggressiveness of denoising parameters
in the TV model, thus addressing the characteristics of the noise in different image areas.
Building upon prior work, we utilize auxiliary features to isolate fine details and incorporate
temporal information to ensure both temporal stability and to acquire more valid samples.



Chapter 3

Proposed Methods

In this chapter, we provide an in-depth description of our TV-based methodologies for
inpainting and denoising tasks, in Section 3.1 and Section 3.2, respectively. In Section 3.1,
we integrate gradually new features into the fundamental TV model, eventually allowing
us to smooth the textured surface from point rendered images efficiently. This section also
explains in detail the algorithms we used to solve the corresponding optimization problems.
In Section 3.2, we utilize auxiliary features and noise estimation techniques to adapt TV
models for Monte Carlo denoising tasks.

3.1 TV-based Methods for Smoothing Point-
Rendered Images

Figure 3.1 shows an example of a point-rendered texture image, paired with its corre-
sponding depth map (where each pixel value signifies the distance from the viewpoint,
as illustrated in Figure 3.3b) and normal map (which represents surface orientations, as
illustrated in Figure 3.1b). Our goal is to infill the discontinuous surface, especially the
discontinuous surfaces near the camera, as marked regions in Figure 3.1. These auxiliary
features, such as depth and normal maps, can offer valuable information for surface recon-
struction. We propose to employ a TV-based method to bridge gaps in the depth map.
Using the infilled depth map, we proceed to reconstruct both the normal map and the
texture image. The reasons that we first smooth the depth map and then use it to guide
the reconstruction of textured surface and normal map are as follows:

1. A smoothed depth map can provide basic and consistent information for the recon-
struction of other maps. It can serve as a more accurate and stable guide for the
reconstruction of the normal map and texture images, yielding higher quality results.

2. TV-based methods are known for their edge-preserving properties. They can effectively
smooth within regions while preserving sharp discontinuities at the boundaries. Given
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(a) Point-Rendered Albedo (b) Point-Rendered Normal (c) Point-Rendered Depth

Figure 3.1: Point-Rendered Images

that depth maps represent more directly the scene geometry compared to normal maps
and texture images, using the TV model to smooth it first is a more straightforward
approach to restoring the underlying geometry.

We begin by applying the Beltrami framework as the baseline model to the raw depth
map. The objective function of this model is solved using an efficient primal-dual algorithm
proposed in | ]. Observations from the results by this initial model allow us to gradually
add new features to enhance the reconstruction performance. Each improvement will be
detailed in the subsequent sections.

3.1.1 Beltrami Framework

The Beltrami framework can effectively balance the preservation of important features and
the reduction of staircasing artifacts in the reconstructed image [ |. The discrete form
of the Beltrami framework for inpainting is defined as :

m&n{( 1+52||Vu||2+%||u—u0||2)} (3.1)

where u € RM*N represents the unbiased image and uq € RM*" denotes the raw, distorted

image. The components of this optimization problem are defined as:

IVull> = ((Oeuig)” + (Dyuiz)?) (3:2)
i

[ — wol|* = Z(um — ug, )’ (3.3)
i

Ae = AXp is the weighted binary mask, where X, represents a binary foreground mask
with 0 representing holes and 1 representing foreground pixels:

~ /0, hole
XDii = 11, foreground pixel
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And the Vu = (9] ,0;]) satisfies the Neumann boundary conditions through a forward

Ty
difference scheme:

o) Uige1 — Ui, if1<i<M, 1<j<N
O i = {0, if1<i<M,j=N (34)
+ Ui Ui, 1f1<Z§M,1§j§N
Oy iy = {0, iti= M, 1<j<N (3.5)

In Equation 3.1, # and X serve as balancing parameters that mediate between the preser-
vation of important features and the avoidance of staircasing artifacts. Staircasing is a
common issue introduced by TV models since the TV term |Vul tends to create artificial
edges that divide the image into piecewise constant patches. The Beltrami regularization
term /1 + B2]|Vul|? reduces this issue by allowing soft gradients to remain smooth. The
functional with this term can be efficiently solved using a primal-dual projected gradient
algorithm | ].

Solving Algorithm

To solve the minimization problem, we can reformat Equation 3.1 into two separate sub-
problems:

F(Ku) == /T + B2[Vau]? (3.6)

Glu) = 2 u ol (3.7)

Here, K is a linear operator, which in this context represents the gradient operator V. By
using the concept of the Legendre-Fenchel transform | |, a primal problem can be
transformed into a primal-dual form:

min _ (F(Ku) + G(u)) = min max (< Ku,¢ > —F*(¢) + G(u)) (3.8)
gER]WXN 3GRJ\/IXN ¢€(RNI><N)2

J/

TV Vv
Primal Primal-Dual

where ¢ is a dual variable with ¢ € (RM*)2 F* is the convex conjugate of F'. So, we can
rewrite the objective functional 3.1 in this equivalent primal-dual form:

min  max (Z < Vu,¢ > +—‘52_”¢H2 + ﬁHu — u0HQ> (3.9)

WERMXN pc(RMXN)2 — I} 2
27-]

After  transforming the Beltrami inpainting problem into a  primal-dual
form, we can iteratively update ¢ and wu wusing the following algorithm:
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(a) Raw Depth Map (b) Result by Beltrami (c) Reference by Splatting

Figure 3.2: Analysis of Results by the Baseline Model

Algorithm 1 Primal-dual for Beltrami

Initialize k = 0, kyaz, 01, 02, A, 8, u* = ug, ¢* = 0 with u, ug € RV and ¢, ¢*! €
(RMXN)Q
while |(u*T! — u®) /uf| < tol && k < kypax do
repeat
S (1= 01)¢" + 86, Vb / /BT — G2
P B max(|¢+H], B)
uk“ < (1 — )\692>Uk -+ 92(diV¢k+1 -+ )\EUO)
until convergence of u

Figure 3.2 provides an example of a depth map smoothed using the Beltrami model and
a splat-rendered depth map as reference. Upon observing the result, we encounter several
issues:

1.

There are discontinuous surfaces near the camera. This typically appears when one
zooms in closer to the object, leading to a scenario where the projected distances between
adjacent points significantly exceed the pixel size. In cases where two consecutive surface
layers are projected onto the same image space, points on the back surface can be
visible through the gaps or holes in the front surface and ultimately contribute to the
final rendered image. During the smoothing process, these points are misinterpreted as
being part of the front surface, leading to inaccurate reconstruction.

. We can see that the staircasing artifacts still remain a challenge.

. Due to the sparseness of the foreground points, it takes a relatively long time to archive

pleasing smoothness on the front surfaces. This leads to the background features being
oversmoothed. Therefore, finding a balance between undersmoothing and oversmooth-
ing poses a significant challenge.

To address the misinterpretation of the front surface, we propose two solutions:

a. Pruning the occluded background pixels before iteratively smoothing.
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b. During the smoothing process, detect the pixels that cause distortion from the back-
ground, and apply adaptive weights for the data fidelity term to effectively ignore
these distortion-causing pixels.

To tackle the issue of staircasing artifacts, we propose exploring;:
a. Models that incorporate a curvature term.
b. Models that incorporate a normal-related term.
Finally, to balance between undersmoothing and oversmoothing, we propose two solutions:
a. Blending the results from undersmoothed and oversmoothed models.
b. Adopting an adaptive hybrid model.

In the following subsections, we will delve into each of these solutions and discuss how they
can help us overcome the challenges we face in reconstructing smooth textured surfaces.

3.1.2 Techniques Against Occluded Points

To address the misinterpretation of the front surface, we can detect these occluded pixels
and prune or ignore them. There are two ideas to do this: splatting based method and
utilization of an adaptive data fidelity term.

Pruning via Splat-Rendered Depth Comparison

By comparing the raw depth points (Figure 3.3b) with the splat-rendered depth map
(Figure 3.3d), points located behind the front surface originally have larger depth values
than their pixel value in the splat-rendered depth map. By identifying and removing these
occluded pixels, we can prevent them from distorting the smoothing result.

e —— [¢] o O O O O
—S—= O O
B s _ei 4»+LL I — © 9] © o o = ® o © x X X ><>< O—0
— — X X
(a) Depth Map by Splatting (b) Raw Depth Map (¢) Pruned Depth Map

(d) Depth Map by Splatting (e) Raw Depth Map (f) Pruned Depth Map

Figure 3.3: Pruning via Splat-Rendered Depth Map
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(a) Results without Pruning (b) Results with Pruning (c) Results by Splatting

Figure 3.4: Results with Pruning by Splat-Rendered Depth Map

After pruning, we are left with additional holes to close, as illustrated in Figure 3.3f. The
pruned depth map is then smoothed using the TV model as per usual. Although this will
take longer, the surface will be smoothed correctly, leading to better reconstruction results,
as shown in Figure 3.4b.

Adaptive Weights for Data Fidelity Term

Another solution, to address the issue of sparse points near the camera not covering the
surface behind them properly, is using adaptive weights for data fidelity terms. Without
any adjustments, after several smoothing iterations, we obtain a fitted surface as shown in
the Figure 3.5b.

N

o o o o \ O— OO
o o ; W\ | o @ o
o o ° o o ¢ Y oo 7 o—o
(b) Surface after Warming
(a) Raw Depth Points Up (c) Adaptively Fitted Surface

Figure 3.5: Tllustration of the Process for Adaptively Weighting the Data Fidelity Term(I)

The orange line represents the fitted surface, black circles are the near points, and gray
circles represent the back pixels that cause distortion. We can detect these distortion-
causing pixels by comparing their original depth values with the depth value on the fitted
surface since they should be behind the surface. Through the comparison, the adaptive
data fidelity term G(u; ;) is then updated as follows:

2(uij — uo,,)* lu; i — ug, | > =6
) — J 2\ 0i,5/) » 4,5 0;,
Gloas) {M(\Um —up,, | — 15), else J

2

0,7

We assign a very small weight, , to the data fidelity term of such pixels. This increases
the influence of the variational term on these pixels, allowing them to be more heavily
smoothed by their neighboring front pixels. These neighboring pixels are assigned a weight
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Data Fidelity Curve

spatially adaptive distance

0 0.2 0.4 0.6 0.8 1
£

(a) Data Fidelity Curve (b) Spatially Adaptive § (c) Adaptively Fitted Surface

Figure 3.6: Illustration of the Process for Adaptively Weighting the Data Fidelity Term(II)

of the data fidelity term that is close to the initial weight. Figure 3.6a illustrates how the
data fidelity term changes as the weight varies.

Through this adaptive approach, we can achieve a more accurately reconstructed surface.
However, as the smoothing iterations progress, neighboring pixels on another back surface
may be influenced by the adaptive weights of the data fidelity term. These pixels tend to
smooth out and approach the depth value of the pixels on the front surface edges. This
pulling forward of pixels results in poor preservation of edges. Such pulling forward of
pixels is particularly pronounced when a small § value is set. Conversely, a large o value
yields higher runtimes for the process of infilling the foreground surface. To mitigate these
issues, a spatially varying 0 value is necessary. We can define a spatially varying delta

value as: 1

14+ e—8(z—threshold)

—5(2) = _6min + <_5max - 5mm) (310)

where z represents the pixel value in the depth map, s controls the sharpness of the curve
and the threshold is a parameter depending on the specific dataset. It is also shown in
Figure 3.6b, in which the horizontal axis represents the depth map’s pixel value z, while the
vertical axis denotes the spatially varying —(z). As points draw closer to the camera (i.e.,
z — 0), the value of —¢ approaches zero, enabling rapid convergence of closed surfaces.
Conversely, when z — 1, =0 — —(djnaz ), preserving the edges in the middle. By leveraging
a spatially varying §(z), we can achieve a front surface that converges while avoiding the
oversmoothness of edges. Figure 3.6¢ provides an illustrative example of these outcomes.

3.1.3 Curvature-based Regularization Model

To mitigate the staircasing issue, the High-order TV model with a squared 12 data fidelity
term (HTVL2 model) serves as our first solution, which employs a curvature regularizer,
represented by |VZu|. The model is defined as:

Ae
u:argmin7|]u—uo|]2+a|Vu|+B|V2u] (3.11)
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where,

V2ul =) \/(@caxui,j)Q + (0y0suij)? + (0:0yui;)* + (0,0,ui5)
g

The curvature term involves the second derivative of the image, meaning that it penalizes
changes in the surface curvature across neighboring points, rather than simply smooth-
ing the surface piecewise. While the first-order term favors locally constant patches, the
higher-order term allows the model to better capture the curvature of the surface. This
strikes a balance between smoothing out the surface and preserving the original geometry,
leading to a reduction in staircasing artifacts. Nevertheless, the introduction of the curva-
ture regularizer results in a non-convex optimization problem. Such problems are typically
more complex as they often possess multiple local minima, complicating the search for
the global minimum or the optimal solution. Moreover, non-convex optimization usually
demands more computational resources. For example, the Euler-Lagrange equations associ-
ated with the curvature regularizer are fourth-order nonlinear partial differential equations
(PDEs). These equations present significant challenges in terms of discretization and com-
putational cost. To solve a high-order variational optimization problem, we employ the
Split Bregman method. Originally proposed in [ |, the Split Bregman algorithm is
designed to efficiently solve 11-regularized optimization problems. Notably, it consistently
provides relatively optimal solutions for non-convex problems | |. By leveraging
the Fast Fourier Transform (FFT) and shrinkage operators, this method is equipped to
handle high-order variational models with improved efficiency.

In the subsequent sections, we first provide a brief introduction to the Split Bregman
algorithm. Then, we describe the steps involved in utilizing the Split Bregman algorithm
to solve the optimization problem for the current HT'VL2 model.

Split Bregman Algorithm

The Split Bregman algorithm is employed to convert the complex minimization problem
into several subproblems. In the context of solving 11-regularized optimization problems,
these subproblems can be efficiently addressed by the FFT, the analytical soft shrinkage
equation, and the projection formula without requiring iterative methods. The general
form of l1-regularized optimization problems can be expressed as:

muin |D(w)| + H(u) (3.12)

In this equation, |®(u)| denotes the 11 regularizers, and both H(u) and ®(u) are assumed
to be convex. For instance, in the context of the ROF model (defined by Equation 2.4),
H(u) represents the data fidelity term 2|u — wuol* and |®(u)| stands for the first-order
variational term |Vu|. For each 11 norm regularizer, an auxiliary splitting vector variable
w and a Bregman iterative parameter b are introduced to reformulate the original problem
to:

(", W) = arg min |w| + H (u) + gHW — ®(u) — b3 (3.13)

U,W
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In the case of ROF model, we have v € RM*N Vu € (RM*V)2 w € (RM*N)? and
b € (RM*N)2 to update with the update rate . The Equation 3.13 allows us to decouple
the 11 and 12 components of the functional 3.12 and then minimize v and w separately
using the following steps:

0
uFt! = arg min H (u) + §||Wk — ®(u) — b2 (3.14)
0
w" T = arg min |w| + §HW — (uF) — b3 (3.15)

Lastly, we just need to update b for finishing a complete update iteration with the following
step:
VA = P 4 (o (uFTh) — whT) (3.16)

The effectiveness of the Split Bregman method in solving an objective function relies heavily
on the efficiency of solving subproblems 3.14 and 3.15. For the differential subproblem 3.14,
within the context of TV-based models, we can leverage the FFT to accelerate this sub-
optimization process. This concept will later be illustrated using solving subproblem of
for the HTVL2 model as an example. For the subproblem 3.15, since this function is a
typical 11-12 problem and w has no other coupling elements, we can compute the optimal
value of w via soft shrinkage operators. The soft shrinkage operator is defined as follows:

shrink(z,~y) = ﬁ « max(|x| — v,0) (3.17)
x
The shrinkage operator essentially reduces the values of x by ~, but it does not allow values
to go below zero. Hence, w can be calculated with the following formula:

1
wh = shrink(®(u) + b, 5) (3.18)

Summarizing the above, the Split Bregman algorithm for the optimization problem with a
11 regularizer is presented in Algorithm 2.

Algorithm 2 Split Bregman

Initialize k = 0, Kpaz, W* = 0, b¥ = 0, tol and 0
while |(u"™! — u) JuF| < tol && k < ke, do
repeat
ut! ¢+ argmin, H(u) + &||w* — ®(u) — b¥|3
W shrink(®(u*+1) + bk, 1)
bk+1 — bk 4 (q)(uk—i-l) _ Wk+1)
kE+—k+1
until convergence of u
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In preparation for outlining the algorithms being used to solve subproblems 3.14, a few
definitions are necessary. Primarily, it’s critical that the definitions of the gradient and
Hessian matrix satisfy periodic boundary conditions. By choosing these boundary condi-
tions, each discrete differential operators can be interpreted as a circular convolution of w.
This choice allows us to utilize the FF'T in the Split Bregman algorithm, greatly enhancing
its efficiency in solving subproblems. For more detailed information on this technique, refer
to | |. To meet the periodic boundary conditions, we can discretize the gradient and
Hessian matrix as follows:

(Vu) = (07 u, 0 u), (3.19)
s (0-0u 0OFu
WW—(@qui@u> (3:20)

The first-order forward differences of u at point (i, j) along x and y directions are defined
as:

oty = {ut L SIS Y 520

- U e
The first-order backward differences at point (i, j) are given by:

=i RS 529

o= {1 i LS 529

Deriving from the first-order derivatives, the discrete second-order derivates at point (4, j)
are as follows:

Ui N — 25 + Ui j41,

ifl1<i<M,j=1

8;8;1%]- = 8;8;1%,] = § Ujj—1 — 211,1'7]' + Uj j+15 ifl1<q< ]\47 1< ] <N (325)
Uijo1 — 25 +uzn,  f1<i<M,j=N
Unrg — 22U + Uiy, ifi=1,1<j<N

(9;8y_ui,j = 8y_5gjuw = q Ui—1j — QUZ'J -+ Uit1,5, fl<i< M, 1< j <N (326)
ui_17j—2ui,j—|—u17j, lf’L:M, 1 S]SN
U5 — 2ui7j + Ui+1,5, if 7 = 1, 1 S j S N

aiajui,j = 8;8;%’] = U1, — 2um~ + Uit1,5, fl<i< M, 1< 7 < N (327)

Uiy — 2Uij + U g,

ifi=M1<j<N
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Solving Algorithm

In this section, we apply the Split Bregman algorithm (as detailed in Algorithm 2) to
solve the objective function for the HTVL2 model. An explanation of how the FFT is
incorporated into the solution process is also provided. First, by using Equation 3.13, the
objective function 3.11 of the HTVL2 model can be transformed into the following form:

Ae 0 0
E(u,w,v;b,d) = 7Hu—u0|]2+alw]+51]|W—Vu—b|\2+ﬁ\v\+§2HV—V2u—dHZ (3.28)

In the HTVL2 model, there are two 11 regularizers: Vu € (RM*N)? and VZu € (RM*V)4,
Therefore, we need two auxiliary parameters: w € (RM*N)2 and v € (R4 and
two corresponding Bregman iterative parameters: b € (RM*M)2 and d € (RM*N)%. The
update rates are controlled by 6; and 6y, respectively. With (w,v,b,d) fixed, we have a
differential minimization functional for u as described by Equation 3.14, denoted as E(u).
Through 0E(u)/0u = 0, its Euler-Lagrange equation can be derived:

Au+6,VTVu + 0.V Vu = Aug + 6, VT (w — b) + 6,V (v — d) (3.29)

Recognizing that discrete differential operators behave like circular convolutions, we can
apply 2-dimensional discrete FFT for efficient resolution of the u subproblem. The equa-
tions need to be restructured to make them suitable for FFT processing. The operators on
the left side of Equation 3.29 can be explicitly expressed in these forms (Proof provided in
Proof 3.1.3):

VVu = —div(Vu) = —(0,9; + 9, 0} )u (3.30)
V'V = divi(VPu) = (8,070, 0F + 20,00, 0] + 0,070, 0 )u (3.31)

() om()
() rra(®) o

() ()] o
F(Oy (s,7)) = (— cos (%’”) +1+isin (%T)) (3.35)

Here, N and M represent the number of columns and rows, respectively. Instead of using
i and j (to avoid confusion with ¢, which represents the imaginary part of a complex
number), we use s and r to represent pixel indices. They also denote the frequencies in
the discrete frequency domain with s € [0, N) and r € [0, M).

F(0f (s,7))
F(9, (s,7))
F(@;(s,r))
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Proof. Through the application of the difference mapping property of DF'T, we can derive
the DF'T definition for the forward difference operator as follows:

FO0Fulk, 1)) = Xy Xopmg OF tmpe™ 2ol

m=0 p=0 ~x

_ n—1 n—1 —27i(km+lIp)/n
= Zm:O p=0 (Um+1p — Ump)e ( %4

=2 powmﬁmmmw—xg)gmwfwmww

_ n - —2mik(m—1)/n ,—2milp/n __ n—1 n—1 —2mi(km+lp)/n
= Zm:l > p=0 um,pe ( € Dm0 p=0 Ump€ )

= (cos (2”k) + ¢ sin (2””3)) 22;10 Z;é umme—%i(km“”)/" _ Z;—:lo Z;é umype—Qm(km—Hp)/n

= (cos (2”]"’) + i sin (2“k)) F(u(k,l)) — F(u(k,l))

This leads us to obtain:

F(O (k1) = ( (#) 1 +isin (#))
Similarly, we obtain:

F (0 (k1) = (_ (#) Lt <#)>

F(0, (k1)) = <cos (%ﬂ) —1+isin (%Tl))

(o) rn()

where n represents the number of columns and £ serves as the horizontal index, m denotes
the number of rows, and [ acts as the vertical index. O

By substituting equations 3.32, 3.33, 3.34 and 3.35 into F(VTV) and F(V? V?2), we obtain:

2ms 2nr
T e iR
F(VTV) = —2(cos N TS 57 2) (3.36)
2ms 2mr
2T o2\ _ _
F(VZV?) = 4(cos N + cos 2)? (3.37)

We cannot directly apply FFT to both sides of Equation 3.29 since A, is not a scalar factor
and F(Au) # AcoF(u) | ]. To use FFT for this optimization problem, we introduce
another auxiliary parameter u and another Bregman iterative parameter b. The equivalent
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objective function of Equation 3.28 is then defined as:
E(u, @, w,v;b,b,d) = %Hu —u||* + %Hu — i —b|?
+ a|w] +%|]W—V&—b\|2 (3.38)
O+ Sy - V- d]?
The subproblem of u that we aim to solve is now:
u:arg;nin%”u—uoHQ—l—%Hu—ﬂ—BHQ (3.39)

with the solution of wu: o p
e 0 ~ 7
— b 4
U 2>\e+90uo+2>\e+90<u+ ) (3.40)

With (u,w,v,b,d) fixed, we have a differential minimization function for @, E(u), as
described by Equation 3.38. From this, we derive the Euler-Lagrange equation 0F(@)/0u =
0. We then apply the FFT to both sides of this Euler-Lagrange equation, yielding:

.7-"(90 + 91VTV + QQVQTVQ) 9} ./T"('EL) = ]:(Ho(u - B) + 91VT(W — b) -+ QQVQT (V — d))
(3.41)

where o represents an element-wise multiplication. The operators on the right side of
Equation 3.41 are explicitly rewritten as:

VT = —div=—(3; +8,) (3.42)
V¥ =div? = 9, 0] + 20,0, + 0,0, (3.43)

The solution of u with the current w, v, b, and d, is given by:
w=R(F'(—)) (3.44)

with,

G = bo(u — ) + 6, VT(w — b) 4+ 6,V (v — d)
2 2 2 2
& =06y — 20;(cos %S + cos % — 2) + 465(cos %8 + cos % —2)?
where F~! represents the discrete inverse Fourier transform. ¥ is the real part of a complex
number. — in Equation 3.44 stands for pointwise division of matrices.

Following this, the updates for w, v, b, and d are analogous to Equation 3.16 and Equation
3.18. The algorithm for solving the object function for HTVL2 model, including the
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Algorithm 3 Split Bregman for HTVL2 Model

Initialize k = 0, @F = ug, wF =0, vF =0, bF = 0, b* = 0, d* = 0, tol, kpaz, B0, 01, 02
& < 0y — 20, (cos 22 + cos 2 — 2) + 46, (cos 2= + cos T — 2)?
while |(u*T! — u*) /uf| < tol && k < kpax do

repeat
k41 20k 0 ~k | Tk
U g, Yo T oxEgg (@ +0%)
AL AP according to Section 3.1.2
G« 90(Uk+1 - bk) + 91VT(W’“ - bk) + 92V2T (Vk - dk)
Y %(]_-—1<J-'(§G)))
Wil max (VA + bF — &, 0) Zhrripy
vt max (|V2€L’“+1 + dF| — %, 0) —gigiﬁigz‘
gk+1 V. gk + Lan Y
bk+1 — bk + Vﬂk+1 _ Wk+1
dFHL o dF 1+ W2kt _ ket
k+—FkE+1
until convergence

adaptively reweighting data fidelity method introduced in Section 3.1.2, is summarized in
Algorithm 3:

In Figure 3.7, we display an example of smoothing results by the ROF model and the
HTVL2 model. Both models incorporate adaptively weighted data fidelity terms. Since
we lack a mesh-rendered depth map for this dataset, we use the splats-rendered depth map
as the reference for comparison. The example images show that the curvature term can
reduce staircasing artifacts while achieving a similar smoothness level on the front surface.

) ¥
(a) Result by ROF Model (b) Result by HTVL2 model (c) Reference by Splatting

Figure 3.7: Impacts of the Curvature Regularizer
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3.1.4 Normal-based Regularization Model

Another approach to reducing staircasing artifacts is to employ a model that incorporates
a normal-related regularizer. Alongside the HT'VL2 model, the model is defined as:

Ae
u = arg min 7||u — o> + a|Vu| + 8|V:u| + v|Vu — o(N,, N,)| (3.45)

The additional term, v|Vu — o(N,, N,)|, represents the normal related regularizer, where
N, and N, denote the x and y component of point normal, respectively. Since the gradient
of the depth map represents the rate of change in depth values along the x and y directions,
it should maintain consistency with the x and y components of the normal map to ensure
that the reconstructed surface properly follows the surface’s orientation and structure. This
additional term can help prevent staircasing, better preserve edges and detail features, and
speed up the smoothing process.

Solving Algorithm

The function defined by Equation 3.45 now incorporates three 11 regularizers a|Vu|, 5|V?ul
and v|Vu — o(N,, N,)|. In addition to the variables @ and b, we introduce three auxiliary
parameters w, v, t, and the corresponding three Bregman iterative parameters b, d, and
e, with w, t,b,e € (RM*N)2 and v,d € (R™*N)%. The step of solving the subproblem of
u is the same as shown in Equation 3.40. The Euler-Lagrange equation derived to solve @
is:

Ooii+ (01 +05)VTVi+0,V? V2 = Oy(u—b)+0, VT (w—b) +60,V*' (v—d) +0;VT (¢ N+t —e)
3 (3.46)
And the solution of u with fixed u, w, v, t, b, b, d and e, is given as:

) (3.47)

u= §R(F—1( ¢

with:

N = (N,, N,)
G=0(u—0)+6VT(w—Db)+ 6V (v-d)+6V (6N +t—e)
§=F (0o + (61 + 03)VTV + 6,V>'V?)
B 2ms 2mr 2ms 2mr 9
= 0y — 2(01 + 05)(cos N Teosr 2) + 465(cos N T sy 2)

The updates for w, v, t, b, d, and e are analogous to steps described in Algorithm 3. The
algorithm for solving the optimization function of the HTVL2 model with the normal-based
regularizer (HTVL2-N model) is summarized in Algorithm 4.

Figure 3.8 presents examples of outcomes generated by different models, comparing those
incorporating a normal-related term versus those without it. The model with the normal-
related term achieves a similar smoothness level to the model without it but with fewer
iterations, less staircasing artifacts, and better preserved edge features.
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Algorithm 4 Split Bregman for HTVL2-N Model
Initialize k = 0, @F = ug, w* =0, vF = 0, t* = 0, b* = 0, b* = 0, d* = 0, e* = 0, t0l,
907 81; 027 937 kma:c
& < 0y — 2(61 + 05)(cos 22 + cos 2 — 2) + 46 (cos 222 + cos T — 2)?
while |(uFT! — u*) /uk| < tol && k < kypar do
repeat
ubtl

20k 0 ~k | Tk
2X5+6o Uo F 2>\’§3—90 (u +b )

AP AP according to Section 3.1.2

G+ Op(u" — %) + 6, VT (wh — bF) + 0,V (vF — d*) + 6;VT (0N + t* — ")

e m(F D (FE)

3
k+1 ~ k1 k « Vaktl4pk
k41 27 k+1 k| _ B V2art! yd*
vt (—max(|Vu+ +d|—%,0)m

t"! ¢ max (V@A — oN + €] — " O)%
Bk+1 . 51@ + Gl gkt
b+l « bF + Vaktl — whtl
dk—l—l — dk + VQﬂk—i-l _ Vk—l—l
ek-i—l — ek + Vﬂk'H —oN — tk+1
k+—k+1
until convergence of u

)

(a) Result by HTVL2 Model (b) Result by HTVL2-N (c) Reference by Splatting

Figure 3.8: Impacts of the Normal-based Regularizer

3.1.5 Undersmoothing and Oversmoothing Issues

This section explores two approaches to mediate the issues of undersmoothing and over-
smoothing by the infilling process. Firstly, we propose a technique that blends the outcomes
of two models: the HTVL1 model with the normal-based regularizer (HTVL1-N model)
known for its capability to maintain sharp characteristics and edges, and the HTVL2-N
model recognized for its fast convergence of the foreground surface. Subsequently, we
introduce an adaptive hybrid HTV-N model as a second method to navigate the trade-off.
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Blending

The model with a squared 12 data fidelity can indeed lead to fast convergence, but it
may oversmooth detail features, especially pixels that are far from the camera in a depth
map. This oversmoothing can result in background fusion, where fine details and texture
in the background are lost or blended together. Previous studies in the field of denoising
have shown that the TV model with 11 norm for data fidelity term offers some potential
advantages over TV model with squared 12 norm for data fidelity term | ]. The TV
model with a 11 data fidelity term (TV-L1 model) is particularly good at eliminating noise
containing strong outliers. The TV model with a squared 12 data fidelity term (TV-L2
model) often leads to over-regularized outcomes, whereas the TV-L1 model successfully
removes outliers while maintaining minor details. However, the solution of the TV-L1
model is in general not unique.

There are existing studies that utilize high-order variational models with an 11 data fi-
delity term for image processing tasks | ]. In the context of handling point-rendered
depth map inpainting, our empirical results suggest that using an 11 norm for data fidelity
better preserves fine details in the image. However, one trade-off is that models using 11
data fidelity term tend to converge relatively slowly. We propose a blending method that
integrates the results from two models. The first model uses a squared 12 data fidelity
term, recognized for smoothing foreground surfaces, albeit at the risk of oversmoothing
background surfaces. The second model, deploying an 11 data fidelity term, is excellent
at preserving detailed features but may undersmooth the foreground surfaces within a
reasonable number of iterations. By blending the outcomes of these two models, we aim
to balance their respective strengths and mitigate their weaknesses, leading to improved
overall results.

The energy function for the HTVLI-N model, as a variant of the HTVL2-N model, is
defined as follows:

u = argmin A.|u — ug| + | Vu| + B|Vu| + v|Vu — o(N,, N,)| (3.48)

The object function of the HT'VL1-N model remains in the 11 regularization class and can
be resolved using the Split Bregman algorithm. In this scenario, four auxiliary splitting
vector variables, z, w, v, and t, and four Bregman iterative parameters, b, d, e, and c,
are introduced. With these variables and parameters fixed, the Euler-Lagrange equation
is derived from Equation 3.48 as follows:

(014-03) VTV u+0,V* V2ut-0,u = 6, V7 (w—b) +60, V% (V—d) +65VT (aN—l—t—e) +04(ug+z—c)
(3.49)
And the solution of u with fixed w, v, b and d, derived by Equation 3.49, is given as:
F(G)

u= E)%(]-"‘l(T)) (3.50)
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with:

G = 01VT(W — b) + 0,V (V — d) + 93VT(0N +t— e) + 04(up + 2z — )
§ = .F((Ql + 03)VTV + 6,V*'V? + 94)

2ms 2mr 2ms 27r
= —2(0; + 65)(cos 7 Teos— - 2) + 465(cos 7 Teos—r - 2)* — 0,
The Algorithm to resolve the objective function of the HTVLI-N model is detailed in

Algorithm 5:

Algorithm 5 Split Bregman for HTVL1-N Model
Initialize k =0, w=0,v=0,t=0,2=0,b=0,d=0,e =0, ¢c =0, tol, 0, 65, 05,

kmam
& < —2(01 + 63)(cos 2= + cos L — 2) + 405(cos 2 + cos & — 2)% — 6,
while |(u*T! — u*) /uf| < tol && k < kypar do
repeat
G+ VT (wk — bk) + 6,V (Vk — dk) + 65T (O‘N +th — ek) + 04(ug + 2k — ck)
k+1 -1 (F(G)
uFtt §R(]: ( : ))
AL < AF according to Section 3.1.2
a uk+1 k
W max (Va4 b - & 0)%
2,k +1
vFTL e max (|V2ub 4 db| — %, 0) —WVQU,M:;Q‘
uk+1_o. k
5! max ([Vu*™ — o N 4 ¥ — 7,0) —lgukﬂ_o_%iik‘
k+1 Wkt gyt ck
2 max (Jubt — o + F| — >‘94 ,0) |uk+17ugick|
bFtl « bF + Vbt — whtl
dFt! « dF 4+ V2Rt — vl
ek+1 — ek + VukJrl —oN — tk+1
Rk bt gy — SR
k+—FEk+1
until convergence of u

Upon solving the outcome of the HTVLI-N model through the Algorithm 5, we subse-
quently compute a normalized local variance map, denoted as Var,om-m, by applying the
Equation 3.53 to each pixel located at coordinates (x,y). This calculation of Var,,.m, is
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made within a predefined local window size n.

n/2 n/2
plx,y) = % YD uw+iy+y) (3.51)
i=—n/2 j=—n/2
1 n/2 n/2
Var(r,y) = | = Y D (ulz+iy+j) — plz,y))’ (3.52)
[ S —
Var — Varmpn

Varnorm = 3.53
ar Varme: — Varmn ( )

Following its calculation, the normalized local variance map, Var,omm, is then smoothed
using a filter to prevent abrupt transitions on the blended surfaces. Through our tests,
we found that using a guided filter, directed by the infilled depth image, generates a
satisfyingly smoothed variance map. The Var,..,, is then employed to derive a weights
map W using the equation as follows:

/ 1
 1+4exp ( — (Varperm — threshold) x sharp,level)

!

W = (W) (3.55)

(3.54)

Our blending process is designed such that pixels in regions with high variance should
be contributed more by results from the HTVL2-N model. To achieve our objective, we
manipulate the variance values by raising them to a power, denoted as p. This operation
amplifies the difference between weights of high and low variance areas in the image.
Consequently, regions with high variance become more pronounced, areas of low variance
are deemphasized. To mitigate the impact of sharp features, which also present relatively
high variance values but should ideally be resolved by the HTVLI-N model, we set a
threshold to filter out pixels representing detailed features. This weights map subsequently
is used in blending the results produced by the HTVL1-N model, represented as u;, and
those by the HTVL2-N model, denoted as us, as defined below:

u=(1—W)u; + Wuy (3.56)

This blending strategy is straightforward and effective. However, it’s essential to carefully
select the parameters to control the weights map. This simple approach can result in
abrupt transitions in w. This can be seen in the example shown in Figure 3.9.

Adaptive Hybrid Model

Drawing inspiration from the work | |, we propose an adaptive hybrid model in this
section. The model seeks to utilize both the 11 and 12 norms of data fidelity. Specifically,
we capitalize on the 11 norm for the preservation of crucial details, while employing the 12
norm for the efficient filling of surface holes. This adaptive hybrid model is defined as:

A
5 [l = wol* + a|Vul + B|V?ul + 9|V = o (N, N)| - (3.57)

u = argmin Ag |u — ug| +
u
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2 £

(a) Result by HTVL1-N (b) Result by HTVL2-N (c) Blended Result

Figure 3.9: Hlustration of the Blending Process

e ! [ S
(a) Result by HTVL1-N (b) Result by HTVL2-N (¢) Result by Hybrid Model

Figure 3.10: Impacts of the Hybrid Terms

After a few initial warming-up steps (in this case, we set the number of warming-up steps to
three) using the 11 norm data fidelity term weighted by the original A.;, we then reweight
this term with the weights map derived from Equation 3.55. The algorithm to solve the
optimization function of the adaptive hybrid model is described in Algorithm 6:

Figure 3.10 shows an example of the resulting output from the hybrid model. In this
case, the smoothed depth map doesn’t exhibit the abrupt transition typically seen in the
blending method.

3.1.6 A Fast Pipeline for Real Time Application

Due to the numerous holes to be infilled, the iterative optimization process requires between
100 and 150 iterations per model to generate desired outcomes. However, this process is
not realistic for real-time applications. To accelerate the process, we propose to add a
step before the TV-based smoothing process so that most holes are filled, allowing the TV
models to refine the result thereafter.

Here, we employ the advanced Pull-Push algorithm implemented by [Sch23] as the initial-
ization step. This technique conceptualizes the rendered points as 3D splats. These splats,
when projected onto the screen, cover an area that depends on several factors: the splat’s
radius, the distance between the splat and the camera, the splat’s orientation, and the
camera settings. The pull phase involves recording the nearest projection of a 3D splat in
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Algorithm 6 Split Bregman for Hybrid Model
Initialize k = 0, @* = ug, w* =0, vF =0, t* =0, b* =0, d* = 0, € = 0, tol, 6,, 6;,
927 037 04, kwarmup; kmax
& < 0y — 2(61 + 05)(cos 22 + cos 2 — 2) + 46, (cos 222 + cos HL — 2)? — 6,
while |(u*T! — u*) /uf| < tol && k < kpar do
repeat
if k == Eyarmup + 1 then
Compute W according to Equation 3.55
>‘el <— )\1(1 — W)
else
uFHl

205 0o (~k | Tk
INE+0, O + 2,10, (@ + %)

AL AF according to Section 3.1.2
PUARRED W according to Section 3.1.2
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screen space at each level. If multiple splats cover the same area, the one closest to the
camera is retained. The subsequent push phase fills in the gaps where values are missing
and performs a depth test to replace occluded points. This methodology effectively takes
into account the surface orientation while filling in the gaps, thereby resolving point vis-
ibility issues. The computational cost of this Pull-Push Algorithm depends solely on the
resolution of the input texture, making it a very fast solution. The advanced Pull-Push
method results in a depth map with noticeable blocking artifacts on the boundary when
the splat size is sufficiently large to fill surface gaps. Its efficiency allows us to fill most
surface holes using a smaller splat size, which prevents the formation of blocking artifacts
on the boundary.

We continue to use blending techniques to strike a balance between surface smoothness
and feature preservation. Unlike the raw point-rendered depth map, this method feeds now
different data structures after the advanced Pull-Push process to the TV model. Through
experimental analysis, we have discovered that in this case, blending results by the HTVL2-
N models with varying balance parameters can yield good reconstructed surfaces with
preserved details for real-time inpainting. We use the HTVL2-N model with different
balance parameters to smooth the original depth map and post-processed depth map by
advanced Pull-Push method, respectively. These balance parameters differ in their level
of aggressiveness for each model. The result using the original depth map as input retains
the most detailed features but undersmooths foreground surfaces. Conversely, the result
using the HTVL2-N model combined with the Pull-Push method can fill surface holes near
the camera within 10 optimization iterations. Applying the same blending methodology
described in Section 3.1.5, we blend these two outputs to generate the final reconstructed
depth map. Compared to our previous method, this combined approach is significantly
faster, delivering a smoothed depth map within 20 iterations. Although the real-time
reconstructed depth maps may not be as visually appealing as the results demonstrated
in previous sections, they are still quite satisfactory for real-time applications. Figure 3.11
exhibits the fast pipeline, complemented by an example of the results generated by this
pipeline and instances of intermediate productions within the pipeline.

3.1.7 Reconstruction of Textured Surfaces

In Section 3.1.2, we utilized splat-rendered depth maps to prune occluded points, which
helped us prevent incorrect surface interpretations. Having obtained the reconstructed
depth map, we can now utilize it to prune the raw normal map and albedo image. Following
the pruning, we implement depth map D guided interpolation for both the normal map and
albedo image. This allows us to correctly close most holes on the pruned surface. Consider
a pixel, denoted by I(z,y), within the image I, for which interpolation is required. If it
holds a valid depth value D(z,y), we search for valid neighboring pixels within its local
window  of size n. A neighboring pixel is marked as valid if it carries a valid value
in /(4,j) and has a depth value similar to the original pixel. This similarity is assessed
based on the condition |D(z,y) — D(1, j)| < threshold. Upon verification, this neighboring
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Raw Depth Map Smoothed Depth Map Blended Depth Map

HTVL2-N Model Compute W Blend

Infilled Depth Mapt Smoothed Depth Map

Pull-Push
HTVL2-N Model

Figure 3.11: The flowchart illustrates our proposed fast pipeline for smoothing a point-rendered
depth map. Initially, we use the HTVL2 model with different balance parameters to smooth the
original depth map and the depth map that has been post-processed with the advanced Pull-
Push method, respectively. These balance parameters differ in their level of aggressiveness for
each model. Subsequently, we blend the outputs from both these stages to generate the final,
reconstructed depth map.

pixel is added to the valid neighboring set (2,. Additionally, we assign it a weight w; ; =
1/(|D(x,y)—D(i,7)|+eps). The weights of all valid neighboring pixels are then normalized.
The final interpolated pixel value is then computed with: I(z,y) = m >, Wil (i, j)
The algorithm used for interpolation is presented in Algorithm 7. ’

Using the interpolated normal map or albedo image as input for the next smoothing step,
the final reconstructed texture images are obtained by applying the TV model for each
color channel of the interpolated images separately. Here, we show an example of the

interpolated normal map and textured image guided by the smoothed depth map in Figure
3.12.

(a) Smoothed Depth Map (b) Interpolated Normal Map (c) Interpolated Albedo

Figure 3.12: Infilled Textured Surfaces

We summarize the pipeline for smoothing point rendered textured surfaces: We start with
a raw depth map, generated by point-based rendering. This map is smoothed and infilled.
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Algorithm 7 Depth Map Guided Interpolation

1: Inputs: I, D, window_size, threshold
2: Output: [interpolated
3: for I(z,y) in I do

4:  if I(z,y) invalid A D(z,y) valid then

5: w <+ 0

6: Define Q by window_size

7: Initial Linterpolated(,y,:) <=0

8: for I(i,j) in © do

9: if D(i,7) valid A |D(x,y) — D(i,7)| < threshold then
10: Compute w; ; < 1/(|D(z,y) — D(i,j)| + eps)

11: Compute w < w + w;

12: Compute Iinterpolated(x7 Y, :) <~ [interpolated(ma Y, :) + wi,jj(iv ja :)
13: end if

14: end for

15: Compute Linserpotated(T, Y, :) = Linterpotatea(, Y, 1) /w

16: else

17: Compute Linterpotated(T, Y, 1) < 1(x,y,:)

18:  end if

19: end for

This step may use a hybrid model or blend results from HTVL1-N and HTVL2-N models,
both of which strive to smooth discontinuous surfaces while preserving detailed features.
Alternatively, a combination of TV models and the advanced Pull-Push method can be
used for fast smoothing. Subsequently, we use the smoothed depth map to prune the
raw normal map and albedo image. The pruned map and image are then interpolated,
under the guidance of the smoothed depth map, to fill in most of the remaining gaps.
Typically, the interpolated normal map has minimal holes after this process. Finally, we
apply TV model smoothing to the interpolated albedo images, handling each color channel
separately. This results in the final, smoothed image output. The summary involves three
different approaches to smoothing raw depth maps, the whole pipeline with all of which is
illuminated in Figure 3.13.
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Depth Map

Raw Depth Hybrid Model Smoothed
Map Depth Map

Figure 3.13: This flowchart illustrates the proposed pipeline for smoothing point-rendered tex-
tured surfaces. It outlines three alternate strategies for smoothing raw depth maps.

3.2 TV-based Methods for Denoising Monte Carlo
Rendering

In this section, we repurpose our proposed models for denoising Monte Carlo rendering. As
done in the state of the art work, we initiate by demodulating the noisy rendered images and
then implement temporal accumulation through the reprojection method. Subsequently,
we employ our proposed TV model to denoise the preprocessed images. Two critical
aspects of this approach involve utilizing auxiliary features and concerning Monte Carlo
noise to adaptively adjust the balance parameters of TV model. The following sections
briefly introduce the demodulation and temporal accumulation steps. The methodology
for setting adaptive parameters is explained in detail.

3.2.1 Demodulation

In the context of Monte Carlo denoising, the presence of high-frequency components within
the first-hit albedo often poses significant challenges for the denoising process. These high
frequencies, primarily due to detailed texture or fine geometry, can introduce noise arti-
facts, complicate noise estimation, and disrupt the efficiency and accuracy of the denoising
algorithms. Demodulation is introduced as a preprocessing step to address this issue,
wherein the pixel color is divided by the albedo. This operation seeks to separate the
image content into a high-frequency albedo component and a smooth lighting component.
Conceptually, this is denoted as:

Pixel Color

Light —
6 Albedo

(3.58)
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The above equation is derived from a simplified representation of the rendering equation,
which is given by:

Lo(p,y) = Lo(p, wy) + /Q A(p) F(wr, o, 1) La(p, w3) (s - n)dws (3.59)

In this equation, L,(p,w,) represents the outgoing radiance at a point p in direction w,,
L¢(p,w,) is the emitted radiance at the point p in direction w,, and F'(w;, w,, n) is a function
that depends on the light, view directions and the surface normal. In this simplified
rendering equation 3.59, the albedo map corresponds to the albedo A(p), and the normal
map corresponds to the surface normal n. Then, all the denoising steps are performed on
light components. Finally, the remodulation step reintroduces the albedo information into
the denoised result.

3.2.2 Temporal Accumulation

The inherent stochastic nature of Monte Carlo rendering, which involves random sampling
of the scene’s light paths, leads to the generation of noise. Temporal accumulation is a
strategy employed to minimize this noise by accumulating samples across multiple frames.
Because the average of several independent, identically-distributed random samples tends
to converge toward the expected value of these samples, temporal accumulation can reduce
noise effectively. By accumulating samples across multiple frames for the noisy 1 spp data,
the effective spp can be greater than 1. This helps reduce the variance and subsequently,
the noise, enhancing temporal stability.

The process of temporal accumulation via reprojection in this work is outlined as follows:

1. Each pixel from the current frame is projected into world space using image space
coordinates, the depth map, and camera projection, rotation, and position matrices.

2. These 3D coordinates are then reprojected into the image space of the previous frame
using its camera matrices. This operation uses the constraints of the normal map and
world-space positions to identify the corresponding pixel from the previous frame.

3. The noise reduction is achieved by calculating a weighted sum of pixel information from
both frames.

3.2.3 Utilization of Auxiliary Features

Auxiliary features provide better geometric information that can be leveraged to preserve
edges and prevent over-smoothing in the images. We compute a coherence map for the
depth map, normal map, and albedo texture, respectively. For each pixel, we identify the
maximum value across these maps. Subsequently, we employ the exponential function to
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map this value into the range of [0, 1]. This forms the final coherence map, denoted as W:

W = maX{Walbedoa Wdeptha Wnormal} (360)
W = exp(—s4W) (3.61)

Each coherence map is derived by taking the normalized second-order image gradient for
each color channel so that important features are assigned larger values compared to pixels
on smooth surfaces. The scalar factor sy dictates the sensitivity of the weight a with
respect to the values in the coherence map W. A larger s, implies that regions with
high coherence will have an aggressive influence on the TV term, resulting in more intense
preservation of these regions. In contrast, regions with low coherence will contribute less
influence on the variational term, allowing more changes during the denoising process.
However, an excessively large s, may lead to edge artifacts. On the other hand, a smaller
s4 makes the influence of the coherence map W less pronounced. This might result in a
more uniformly denoised image but also means that important details in high-coherence
areas are not preserved. The final coherence map is then used to weight the variational
term in a TV model. For instance, adapting the ROF model, the optimization function is
now defined as:

Flu) = Sl — woll* + &l Vel (3.62)

where a now varies spatially, with:

a=aW (3.63)

3.2.4 Hybrid Denoising Model

Similar as described in the inpainting, the type of data fidelity terms holds a significant
impact on the denoising results. In the Monte Carlo denoising tasks, both 11 and squared
12 data fidelity terms come with their respective strengths and limitations. The squared 12
data fidelity is particularly effective in minimizing large errors. However, due to its inherent
sensitivity to outliers and its quadratic penalty on large errors, it tends to excessively reduce
the magnitude of errors. As a consequence, the inherent smoothing effect of the squared 12
norm can lead to a blurring of sharp features in the denoised images. On the other hand,
the 11 data fidelity penalizes the absolute difference between the denoised and original
pixel values linearly. This makes it more robust against outliers compared to the squared
12 norm. Edges or features like shadows and other high-frequency features that are often
viewed as "outliers” in an image can be better preserved by using the 11 norm than the
squared 12 norm. The squared 12 norm over-penalizes outliers due to its quadratic error
penalty and consequently causes loss of details. Conversely, the 11 norm doesn’t over-
penalize outliers, maintaining a balance between noise removal and feature preservation.
However, in terms of noise suppression efficiency, the 11 norm may not always perform as
well as the squared 12 norm

Furthermore, in Monte Carlo rendering, noise often manifests as darker pixels in dark
areas. If the dark noise pixels significantly outnumber the correctly exposed pixels, then
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the median pixel value will be darker. In such a scenario, an model with 11 data fidelity
term could indeed result in darker output in these areas.

In light of these observations, we propose a hybrid model that take the strengths of both
forms of data fidelity, similar to the model proposed in Section 3.1.5. The hybrid denoising
model is defined as:

A
u = arg min A |u — uo| +§|\u—u0|\2+a\w| (3.64)

where ac is computed as described in Section 3.2.3, A\; and Ay are scale balance parameters.
Since A, is a constant scale, no additional auxiliary parameter is needed to be introduced
to solve the optimization problem for the denoising model. The algorithm to solve the
optimization problem defined by Equation 3.64 is summarized in Algorithm 8.

Algorithm 8 Split Bregman for Adaptive Hybrid Denoising Model

1: Initialize k = O, whk = 0, bk = 0, 2k = O7 ck = O, tOl, 91, 62, kmaz; /\1, /\2, (a7}
2: W «+ According to Equation 3.60

3: a + apexp(—sW)

4: £+ Ny — 6, —2€2<COS%+COS2—]@T —2)

5. while |(u* ! — u®) Juk| < tol && k < ke, do

6: repeat

T G« )\2Uk+1 + 91(”0 + Zk — Ck) + GQVT (Wk — bk)

1/ F(G

s ukt e R(F(ED)) o
9: 2" max (Juf — ug + ¥ — 3—1, 0) —\ZHI:ZEEH
10: - wF e max ([Vu* ™ + b — &, 0)%
11 L kb bt gy — ok
12 bl bl 4 Vbt — whtl
132 k< k+1

—_
B~

: until convergence of u

3.2.5 Noise Estimation

A noise estimation matrix Wy 1S a quantitative representation of the level of noise
present in an image, with higher values in the matrix indicating a higher likelihood of noise.
In this section, we derive the noise estimation matrix either by Median Absolute Deviation
(MAD) or spatiotemporal variance adapted from [ |. The noise estimation matrix,
combined with auxiliary features, is then used to compute a new and improved coherence
map, which is employed to adaptively weight the TV regularization terms, as given by:

W = maX{WAu:villarya WNoise} (365)

where,

WNoise =1- eXp(—sEWN) (366)
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W Auzitiary 18 computed as described in Section 3.2.3. W ;s and Wy are matrices with
each entry (i,j) corresponding to a pixel in the image. Wyx(i,j) is the value of MAD
or spatiotemporal variance, and W ;s (4, ) lies in the interval [0, 1], A higher value of
Wi (i, 7) indicates that the pixel is more likely to be noisy. By applying these weights, we
can enforce the TV regularization to have a stronger influence in areas of the image where
the noise level is estimated to be higher and a weaker influence in areas where the noise
level is estimated to be lower. This approach allows us to more effectively reduce noise,
particularly in noisy regions with sharp geometric characteristics. The following sections
explain the MAD and spatiotemporal variance used in our method in detail.

MAD

The MAD | ] operates under the assumption that noise remains stationary within a
small pixel window, denoted as w, surrounding the observed pixel. The mathematical
expression for MAD is given as:

median(|D}|)

ow(P) =~ 5745

(3.67)
In this equation, |D}| corresponds to the diagonal detail coefficients at the highest level of
the wavelet transformation. The wavelet transform enables the decomposition of an image
or signals into different frequency sub-bands and scales. These diagonal detail coefficients
at the finest level of the wavelet transform represent the smallest-scale, highest-frequency
details in the image, which are typically representative of noise. The constant 0.6745 is
a scaling factor that has been empirically determined to obtain optimal results. o,(p)
represents the estimated noise standard deviation for the window centered on the pixel p.

Spatiotemporal Variance

In this section, we determine the variance of color luminance for each pixel, which then
serves as a guide to locally adjust the weights of TV terms. We employ temporally esti-
mated variance, leveraging information from different temporal samples, as a more reliable
noise estimator compared to spatial variance. A high value of spatiotemporal variance
generally indicates a greater likelihood of noise in pixel values.

Firstly, the first raw moment, p;, is calculated using the samples from a small window W
around pixel ¢ as follows:

1
TR 3.69
Wl =
where L; represents the luminance of the j™ pixel in the window W and |W| is the number
of pixels in this window. The second raw moment, us,, is similarly calculated as:

1 2
M2 = > (L) (3.69)

JEW
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Here, |W| represents the number of pixels in the window, and the summation is performed
over the luminance values of all pixels in this window. These moments are then temporally
accumulated to generate integrated moments p, and p , using py = ap, |+ (1 — o)y,
and phy = apy, |+ (1 — a)py,. However, when the geometric constraints discussed in
Section 3.2.2 are not met, we opt for raw moments in instead of integrated ones. The
temporal variance is then determined from the integrated moments with o/> = o, — ,u’lf.
In scenarios where temporal history is scarce, we alternatively estimate the variance a§2
spatially. It should be noted that a low variance doesn’t necessarily imply an absence of
noise; it could merely suggest consistent noise across space and time.

Lastly, we summarize the denoising pipeline: The process begins with demodulation, which
is employed to eliminate the object’s inherent color, thereby isolating the lighting infor-
mation. Subsequently, we utilize reprojection to temporally accumulate samples. Here, we
also apply a logarithmic operation to the image’s light components to aid our smoother in
efficiently dealing with the noisy components saved in High Dynamic Range (HDR) for-
mat. After these preprocessing steps, we utilize auxiliary features and a noise estimation
matrix, calculated either through the MAD or the spatiotemporal variance, to adapt the
weights of the variational terms of the TV model. With these steps completed, we feed
the noisy light components into our TV model for denoising. The final step of the process
involves performing an inverse logarithmic operation and remodulation to reintroduce the
original texture into the denoised results.



Chapter 4

Experiments and Evaluation

In this chapter, the results by our proposed methods for two research problems are evalu-
ated. We compare our results to results by the state of the art methods. A discussion and
interpretation of these results in the context of our research questions are also made. In this
chapter, we present a comprehensive evaluation of the results obtained using our proposed
methods for the task of smoothing textured surfaces rendered by point-based methods
(Section 4.1) and the task of reducing noise in Monte Carlo rendered images (Section 4.2).
To validate the effectiveness of our approaches, we compare our results against those ob-
tained by state-of-the-art methods. For the denoising task we conducted ablation studies
to assess the impact of our innovative contributions. Throughout the chapter, we discuss
and interpret these results within the context of our research objectives.

4.1 Smoothing Point-Rendered Images

In Section 3.1, we proposed three alternatives for smoothing textured surfaces: the blending
method (see Section 3.1.5), hybrid model (see Section 3.1.5), and a fast pipeline combined
with the Pull-Push algorithm (see Section 3.1.6). We now turn our attention to a compara-
tive analysis of our proposed methods against established point cloud rendering techniques.
Specifically, we compare our results to the High-Quality-Splatting (HQS) method and the
Point-to-Pixel (PP) rendering method, the latter of which incorporates the advanced Pull-
Push Algorithm as a crucial post-processing step to fill in the holes in its raw output. Both
of these methods have been implemented by | |. The comparison focuses primarily on
the subjective visual quality produced by each approach.

Figures 4.1, 4.2, 4.3, and 4.4 display comparisons of our results with those from different
rendering methods across four datasets: Baker and the Bridge, Walkman, Stanford Dragon,
and Neuschwanstein. The renderings of these four datasets, produced by the other meth-
ods, are sourced from | |. The first three datasets, originally in mesh format, are
sampled into point clouds and rendered for evaluation. Their mesh-rendered images are
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served as references. The Neuschwanstein dataset is large raw point cloud data, and there-
fore mesh-rendered images are not provided for comparison. We compare the depth map,
normal map, and albedo images filled in by our methods with images rendered by HQS
and PP methods. To better assess our methods, we present reconstructed images from
both distant and close-up views of the point cloud. For images rendered from a distant
perspective, which display fewer discontinuous surfaces, we employ our blending method
and hybrid model. For surfaces with less non-smoothness, these strategies achieve satis-
factory results within 50 iterations. On the other hand, images rendered from a close-up
view are smoothed by our fast pipeline. This method is particularly good at filling a large
number of holes on surfaces near to the camera quickly with preserved geometric features,
typically within just 20 iterations.

Primarily, we successfully infilled most holes. For images rendered from a distant view, we
achieved exceptionally smooth surfaces while preserving detailed features, often resulting
in outcomes comparable to those qualitative results from HQS. For images rendered from
a very close perspective, our fast pipeline managed to smooth even highly discontinuous
surfaces. However, this success is heavily dependent on the output of the preceding Pull-
Push step. Secondly, while both HQS and the advanced Pull-Push Algorithm possibly
introduce artifacts along boundaries, our method exhibits no such significant boundary
artifacts. This advantage is particularly evident when dealing with data of simple geometry
(like the Walkman and Stanford Dragon datasets) or when images are rendered from a close
perspective. Additionally, Our method, while currently implemented in MATLAB as an
offline approach, shows promise for real-time applications. The straightforward nature of
the implementation, combined with satisfactory results achieved within just 20 iterations
using our fast pipeline, suggests that a GPU-based implementation could yield processing
times close to 10 ms per frame. This outcome would fulfill the needs of real-time point-
based rendering applications.

However, owing to the characteristics of the TV term, edges in a depth map are prone
to blend into the background. The blending technique we proposed mitigates this over-
blurring of edges to a certain extent, the infilled depth map may still exhibit blurred
boundaries. These artifacts are consequently carried over into the reconstructed normal
map and albedo images since they are initially interpolated with guidance from the infilled
depth map. Furthermore, due to the nature of a TV-based model, where its energy function
doesn’t focus on preserving total energy, a consistent outcome is a reduction in image
contrast following the smoothing process.
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Figure 4.1: This figure displays the comparison for the Baker-Bridges dataset. Two images have
been selected, one rendered from a distant view and the other from a close view. The first three
rows of images from top to bottom represent the depth map, normal map, and albedo image of
the distant view. From left to right, the columns depict results by PP rendering with Pull-Push,
our blending method, our hybrid method, HQS rendering, and the mesh-rendered reference. The
next three rows show the depth map, normal map, and albedo image from top to bottom of the
close view. From left to right, the columns represent results by PP rendering, PP rendering with
Pull-Push, our fast pipeline method, HQS rendering, and the mesh-rendered reference
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Figure 4.3: This figure displays the comparison for the Stanford Dragon dataset. Two images
have been selected, one rendered from a distant view and the other from a close view. The first
three rows of images from top to bottom represent the depth map, normal map, and albedo
image of the distant view. From left to right, the columns depict results by PP rendering with
Pull-Push, our blending method, our hybrid method, HQS rendering, and the mesh-rendered
reference. The next three rows show the depth map, normal map, and albedo image from top
to bottom of the close view. From left to right, the columns represent results by PP rendering,
PP rendering with Pull-Push, our fast pipeline method, HQS rendering, and the mesh-rendered
reference
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Figure 4.2: This figure displays the comparison for the Walkman dataset. Two images have
been selected, one rendered from a distant view and the other from a close view. The first three
rows of images from top to bottom represent the depth map, normal map, and albedo image of
the distant view. From left to right, the columns depict results by PP rendering with Pull-Push,
our blending method, our hybrid method, HQS rendering, and the mesh-rendered reference. The
next three rows show the depth map, normal map, and albedo image from top to bottom of the
close view. From left to right, the columns represent results by PP rendering, PP rendering with
Pull-Push, our fast pipeline method, HQS rendering, and the mesh-rendered reference
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Figure 4.4: This figure displays the comparison for the Neuschwanstein dataset. Two images
have been selected, one rendered from a distant view and the other from a close view. The first
three rows of images from top to bottom represent the depth map, normal map, and albedo
image of the distant view. From left to right, the columns depict results by PP rendering with
Pull-Push, our blending method, our hybrid method and HQS rendering. The next three rows
show the depth map, normal map, and albedo image from top to bottom of the close view. From
left to right, the columns represent results by PP rendering, PP rendering with Pull-Push, our
fast pipeline method and HQS rendering.
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4.2 Denoising Monte Carlo Rendering

In Section 3.2, except the de/remodulation and temporal accumulation, we introduced
three enhancements aimed at improving the results produced by the base ROF model for
Monte Carlo denoising. In this section, our focus on the empirical validation of these
proposed enhancements through a series of comparative and ablation studies. Our goal
is to evaluate whether these adjustments can lead to noticeable improvements, thereby
justifying their integration into the model. Following this, we will evaluate the performance
of our updated method in relation to the current state of the art methods in the field. The
experiments are performed on the datasets provided by | |, which include 5 scenes:
Classroom, Sponza, Sponza glossy and Living room, and San Miguel. All the subsequent
experiments incorporate demodulation and temporal accumulation steps as part of the
processing pipelinel. All results displayed in this section are post gamma correction, using
a gamma value of 2.2. We use the Root Mean Square Error (RMSE) and the Structural
Similarity Index Measure (SSIM) to evaluate the quality of denoised images.

4.2.1 Impact of Auxiliary Features

This section is dedicated to analyzing the effect of auxiliary features on the denoising
results produced by TV models. We establish the ROF model, defined by Equation 2.4,
as our baseline. Subsequently, we adapt this model by incorporating auxiliary features to
reweight its TV term, as defined by Equation 3.62. The results obtained from both models
are then compared, enabling us to evaluate the influence of these auxiliary features.

For the same scene, all parameters remain consistent. The only difference lies in the
variation term, which is either weighted or unweighted by auxiliary features. Visual com-
parisons of the quality differences are displayed in Figure 4.5. The results are as expected.
Given that the coherence map values, computed by Equation 3.60, fall within the range
[0, 1], the geometry-aware model applies similar penalties to smooth surface pixels as the
model without geometric feature guidance. Conversely, pixels representing sharp features,
such as edges, are assigned to less aggressive variation terms, increasing their preservation
likelihood. For instance, in the denoised images of the Classroom scene produced by the
standard ROF model, the edges of the chairs are noticeably oversmoothed. The nearby
background pixels, which were originally dark, appear brighter than intended. In contrast,
the geometry-aware model applies adaptive TV terms to edge and non-edge pixels, pre-
venting the appearance of unnatural bright transitions. Additionally, the incorporation of
albedo texture also enhances detail preservation, as evident in the Spnoza scene where the
green and red curtains exhibit well-preserved textures. The parameter s4 in Equation 3.63
controls the degree to which features are preserved. A larger s, value results in better-
preserved features and nearby shadows but can also potentially retain artifacts in these
areas. This is evident in the unremoved noise on the artificial flowers in the Living Room
image denoised by the ROF model guided by auxiliary features. We also computed the
SSIM and RMSE metrics to statistically assess the effect of utilizing auxiliary features. The
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Auxillary Sponza Sponza glossy Classroom Living room San Miguel

Features | RMSE SSIM | RMSE SSIM | RMSE SSIM | RMSE SSIM | RMSE SSIM
without | 0.050 0.915 | 0.076 0.825 | 0.069 0.865 | 0.064 0.878 | 0.087 0.666
with 0.041 0.929 | 0.070 0.833 | 0.035 0.920 | 0.047 0.901 | 0.080 0.699

Table 4.1: This table delivers a statistical comparison between the base model and the model
enhanced with auxiliary features, using SSIM and RMSE as performance metrics. Lower RMSE
values and higher SSIM scores indicate better performance.

findings, as presented in Table 4.1, indicate that the model guided by auxiliary features
tends to yield results with reduced RMSE and increased SSIM. This quantitative analysis
aligns with our visual observations.
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Figure 4.5: This figure presents a series of comparisons between outputs generated by the stan-
dard ROF model and the ROF model guided by auxiliary features (termed as ROF_AF model).
The scenes shown, from top to bottom, represent examples from the Sponza, Sponza-Glossy,
Classroom, and San-Miguel scenes, respectively. Columns from left to right display the results
produced by the ROF model, the ROF_AF model, and the reference, respectively. The incor-
poration of Auxiliary Features allows for the preservation of finer details. However, it is worth
noting that this occasionally results in residual noise within areas of sharp detail.

4.2.2 Comparative Analysis of Data Fidelity Terms: L1 Norm
vs. Squared L2 Norm

In this section, we delve into a comparative analysis between results produced by the
TV model with 11 norm of data fidelity term and the squared 12 norm of data fidelity
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term, respectively. The advantages and limitations of both types of data fidelity terms
were outlined in Section 3.2.4. In this section, we visually illustrate these characteristics
through examples. Figures 4.6 and 4.7 respectively showcase the results produced by the
TV-L1 and TV-L2 models. Moreover, we also present results from the proposed hybrid
model, which incorporates both types of data fidelity. The TV-L1 and TV-L2 models used
for these tests are defined as:

Atlu —uo| + o - |Vu| (4.1)
Aol — ugl]* + a - |Vl (4.2)

Here, the « is computed as described in Section 3.2.3.

As stated in Section 3.2.4, the TV-L1 model tends to outperform the TV-L2 model in
preserving sharp features and shadows. This property is noticeable in the denoised images
of the Sponza scene (Figure 4.6) and the Classroom scene (Figure 4.7), where the blue insets
show better preserved sharp features by the TV-L1 model compared to the denoised results
by the TV-L2 model. The marked patches in the images denoised by the TV-L2 model
demonstrate oversmoothed edges and shadows. Similarly, the denoised results of the Living
room scene by the TV-L1 model (Figure 4.7) show better preserved shadows. This behavior
is also evident when we denoise images with reflections. The 11 norm data fidelity, owing
to its robustness to outliers, manages the highlights, which are often treated as outliers by
the model, in a manner that minimizes their influence on neighboring pixels. This results
in neighboring pixels retaining more of their original values, thereby leading to a more
effectively preserved sharp contrast between the highlight and its surroundings. On the
other hand, the squared 12 norm of data fidelity minimizes the sum of squared differences
between the original and denoised images. This tends to amplify larger differences (outliers)
so that a bright highlight in a darker region could heavily influence its neighboring pixels
during the denoising process. As the model tries to minimize the overall error, it may
distribute the intensity of the highlight spot across its neighboring pixels, causing the
highlight to appear less sharp or intense. This phenomenon can be observed through the
blue insets in the example of the Sponza glossy scene in Figure 4.6.

Furthermore, we observe differences in the illumination of darker areas within a scene when
comparing the results of the TV-L1 and TV-L2 models. Typically, results produced by the
TV-L1 model tend to be darker compared to the reference image, while the TV-L2 model
tends to result in brighter images. These can be observed through the red insets from
the Sponza and Classroom scenes in Figures 4.6 and 4.7. In the context of Monte Carlo
rendering, noise often manifests as darker pixels in areas of the scene with less illumination.
This is due to these areas receiving less light and, consequently, fewer samples contributing
to the final pixel color. When the number of samples is relatively low, the noise can often
appear darker than the true color of these pixels. In the region where dark noise pixels
considerably outnumber the correctly exposed pixels, the median pixel value will be darker.
Since the TV-L1 model would converge towards the median, this may result in a darker
output in these dark areas with less correctly exposed pixels. Conversely, the TV-L2 model,
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which works to minimize the mean squared difference, may yield a brighter result. This
is due to the mean, which the TV-L2 model converges towards, being more influenced by
the brighter pixels. Consequently, the resulting image might be slightly brighter overall,
particularly in dark regions of the images. The darker pixels in areas with less illumination,
denoised by the TV-L1 model, can be seen in the red insets of the Sponza and Classroom
scenes in Figures 4.6 and 4.7.

In response to these observations, we propose the use of a Hybrid model with both types of
data fidelity terms as a balanced solution. From the examples provided, it’s evident that
this model effectively preserves sharp features while successfully reduce the overly dark
results that the TV-L1 model often produces in darker areas.
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Figure 4.6: This figure presents a comparison of the denoising results of the Sponza scene and
Sponza-glossy scene produced using the TV-L1 model, TV-L2 model and hybrid model.
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Figure 4.7: This figure presents a comparison of the denoising results of the Classroom scene
and Living room scene produced using the TV-L1 model, TV-L2 model and hybrid model.

4.2.3 Influence of Noise Estimation Techniques

In this section, we investigate the role of noise estimation techniques in noise reduction.
We use the hybrid geometry-aware model defined by Equation 3.64 as a baseline to denoise
images. Then, maintaining all other model parameters at the same settings as this baseline,
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Error Sponza Sponza glossy Classroom Living room San Miguel
Estimate [ RMSE SSIM | RMSE SSIM | RMSE SSIM | RMSE SSIM | RMSE SSIM
None 0.0413 0.929 | 0.062 0.853 | 0.034 0.921 | 0.034 0.919 | 0.085 0.700
MAD 0.0343 0.938 | 0.065 0.852 | 0.035 0.919 | 0.033 0.921 | 0.083 0.70
VAR 0.037 0.933 | 0.068 0.847 | 0.035 0.921 | 0.034 0.920 | 0.084 0.692

Table 4.2: This table presents a statistical comparison between the base model and the model
enhanced with noise estimation techniques, using either MAD or VAR. The comparison is con-
ducted using SSIM and RMSE as performance metrics, where lower RMSE values and higher
SSIM scores indicate better performance.

we incorporate a noise estimation step into the calculation of the coherence map (as detailed
in Section 3.2.5). We explore two noise estimation methods: MAD and spatiotemporal
variance (VAR). We then compare the results obtained by these techniques.

Statistical results presented in Table 4.2 show that noise estimation steps significantly
improve the denoising results of the Sponza scene. For other scenes, the impact is com-
paratively smaller. From a purely statistical standpoint, the difference between the results
produced by models utilizing MAD and VAR noise estimation methods is minimal.

Nevertheless, upon considering subjective image quality, the results of models that incor-
porate noise estimation methods exhibit notable differences compared to those that do not.
This can be observed in Figures 4.8 and 4.9. By weighting the TV term with the noise
estimation matrix, we are able to effectively remove noise that the baseline model did not
eliminate, particularly noise located at sharp geometric areas. Although this process may
result in the loss of some very detailed features, which explains the minor improvements
shown in the statistical data, we believe that this is a worthwhile trade-off for significant
noise reduction. In terms of visual differences, images denoised by models using MAD or
VAR for error estimation show only marginal differences, consistent with the minor differ-
ences in SSIM and RMSE values. In certain areas, the model using MAD better preserves
details, while in others, the model using VAR performs better. However, for complex
scenes, noise estimation with VAR leads to superior noise reduction compared to MAD,
as evidenced by the insets in the denoised San Miguel scene and the blue insets in the
Sponza-glossy scene. This observation is consistent with the declaration in | ], where
it is suggested that the MAD technique might encounter difficulties in complex scenarios.

For a real-time implementation of our proposed method, both MAD and VAR could be
taken into consideration due to their similar denoising performance. The choice between
them would be influenced by their respective implementation speeds.
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Figure 4.8: This figure displays the visual differences between the results obtained from models
that incorporated error estimation versus those that did not.The models incorporate either MAD
or VAR for error estimation. The insets marked with "None” shows the results of the model
without noise estimation.
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Figure 4.9: This figure displays the visual differences between the results obtained from models
that incorporated error estimation versus those that did not.The models incorporate either MAD
or VAR for error estimation. The insets marked with ”None” shows the results of the model
without noise estimation.
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4.2.4 Results

In this section, we compare our proposed methods with five state-of-the-art methods:
Blockwise Multi-Order Feature Regression (BMFR) | ], Nonlinearly Weighted First-
order Regression (NFOR) [?], Guided Filtering (GF) [?], OptiX Neural Network Denoise
(ONND) | ], and Spatiotemporal Variance-Guided Filtering (SVGF) | ].
We present both objective and subjective comparisons of these methods.

Objective quality comparisons are presented in Tables 4.3 and 4.4. We employ the mean
RMSE and mean SSIM to evaluate image quality. Video Multi-method Assessment Fusion
(VMAF)! is used to assess video quality. VMAF is a metric designed to evaluate the
perceived visual quality of videos and has shown a good correlation with subjective quality.

Error Sponza Sponza glossy Classroom Living room San Miguel
Estimate [ RMSE SSIM | RMSE SSIM | RMSE SSIM | RMSE SSIM | RMSE SSIM
BMFR 0.028 0.906 | 0.056 0.849 | 0.036 0.926 | 0.032 0.938 | 0.090 0.698
GF 0.061 0.937 | 0.074 0.844 | 0.059 0.911 | 0.061 0.903 | 0.101  0.692
NFOR 0.031 0.891 | 0.050 0.835 | 0.032 0.926 | 0.027 0.940 | 0.081 0.704
ONND 0.069 0.744 | 0.067 0.774 | 0.043 0.866 | 0.0563 0.912 | 0.098 0.625
SVGF 0.066  0.880 | 0.090 0.854 | 0.056 0.924 | 0.043 0.920 | 0.116 0.702
Ours(M) | 0.034 0.938 | 0.051 0.872 | 0.035 0.919 | 0.033 0.921 | 0.083 0.700
Ours(V) | 0.037 0.933 | 0.055 0.869 | 0.035 0.921 | 0.034 0.920 | 0.084 0.692

Table 4.3: This table presents a statistical comparison between our proposed methods and the
state-of-the-art methods. The comparison is conducted using mean SSIM and mean RMSE as
performance metrics, where lower RMSE values and higher SSIM scores indicate better perfor-
mance.

Filter Sponza | Sponza glossy | Classroom | Living room | San Miguel
VMAF VMAF VMAF VMAF VMAF
BMFR 65.63 32.33 44.59 50.83 20.86
GF 60.48 23.62 26.43 21.76 27.65
NFOR 59.84 34.48 50.88 55.06 23.89
ONND 39.76 24.92 43.58 55.34 19.65
SVGF 46.41 18.94 37.59 39.94 10.59
Ours(M) | 63.70 36.64 50.14 50.30 34.10
Ours(V) | 59.39 27.06 50.02 50.26 31.21

Table 4.4: This table presents a statistical comparison between our proposed methods and the
state-of-the-art methods using VAMF', where higher VAMF scores indicate better perceived visual
quality of videos.

model version v0.6.1 from VMAF-on-browser: https://vmaf.dev/
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Parameters | Sponza | Sponza glossy | Classroom | Living room | San Miguel
g 1.0 1.0 0.5 0.5 0.5

SA 10.0 10.0 10.0 5.0 5.0

SEy, 3.0 3.0 5.0 3 10.0

5By 1.0 1.0 1.0 1.0 5.0

Table 4.5: A\; =0.1, 0; = 0.5, Ay = 0.5, 03 = 5, kpmar = 20, tol = 4e — 3 fixed for all scenes.

Overall, based on statistical comparisons, our reconstructed results closely align with the
reference images. In the majority of our test scenes, our results align comparably with other
real-time methods in terms of RMSE, SSIM, and VMAF, with only minor differences at
most. Specifically, our method demonstrated superior performance in certain aspects: it
achieved the highest mean SSIM for the Sponza scene, the highest mean SSIM and VMAF
for the Sponza-glossy scene, and the highest VMAF for the San Miguel scene.

The quality of results by TV-based methods are dependent on the balance parameters. To
achieve the best results, the parameters of the models were individually selected for each
scene. Individually selected the parameters for each specific scene allows us to fully exploit
the potential of our method and achieve the best possible results. The selected parameters
corresponding to each scene are enlisted in Table 4.5. The figures used for subjective quality
evaluation also employ models with scene-dependent parameters. On the contrary, we also
conducted tests where the same parameters were used for all scenes. These experiments
demonstrated that our methods still deliver reliable results under consistent conditions.
The statistical data for this can be found in Tables 4.6 and 4.7.

Error Sponza Sponza glossy Classroom Living room San Miguel
Estimate [ RMSE SSIM | RMSE SSIM | RMSE SSIM | RMSE SSIM | RMSE SSIM
BMFR 0.028 0.906 | 0.056 0.849 | 0.036 0.926 | 0.032 0.938 | 0.090 0.698
GF 0.051 0.937 | 0.074 0.844 | 0.059 0.911 | 0.061 0.903 | 0.101  0.692
NFOR 0.031 0.891 | 0.050 0.835 | 0.032 0.926 | 0.027 0.940 | 0.081 0.704
ONND 0.059 0.744 | 0.067 0.774 | 0.043 0.866 | 0.0563 0.912 | 0.098 0.625
SVGF 0.066 0.880 | 0.090 0.854 | 0.056 0.924 | 0.043 0.920 | 0.116 0.702
Ours(M) | 0.034 0.938 | 0.051 0.872 | 0.038 0.912 | 0.045 0.908 | 0.084 0.684
Ours(V) | 0.037 0.933 | 0.055 0.869 | 0.044 0.904 | 0.045 0.908 | 0.091 0.665

Table 4.6: This table presents a statistical comparison between our proposed methods and the
state-of-the-art methods. The model employs the same parameters set for all scenes.
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Filter Sponza | Sponza glossy | Classroom | Living room | San Miguel
VMAF VMAF VMAF VMAF VMAF
BMFR 65.63 32.33 44.59 50.83 20.86
GF 60.48 23.62 26.43 21.76 27.65
NFOR 59.84 34.48 50.88 55.06 23.89
ONND 39.76 24.92 43.58 55.34 19.65
SVGF 46.41 18.94 37.59 39.94 10.59
Ours(M) | 63.70 36.64 41.04 36.62 28.61
Ours(V) | 59.39 27.06 30.56 36.39 20.28

Table 4.7: This table presents a statistical comparison between our proposed methods and the
state-of-the-art methods using VAMF. The model employs the same parameters set for all scenes.

Subjective quality of the proposed methods are evaluated, with examples displayed in Fig-
ures 4.10, 4.11, 4.12, 4.13, and 4.14. Broadly speaking, our method demonstrates a strong
ability to preserve detail features and illumination across most scenes. For instance, the
Classroom scene insets and the red insets from the San Miguel scene represent cases where
our algorithm successfully maintains the original illumination and shadows, while methods
like GF and SVGF often underperform, tending to overblur these elements. The Sponza
scene insets show that our methods outperform in preserving sharp geometric features and
detail textures. Importantly, our method stands out in handling regions with reflection,
as shown in denosied results of Sponza-glossy scene. Where most methods struggle with
overblurring in reflective regions, our method with noise estimation by spatiotemporal vari-
ance effectively eliminates high-frequency noise while maintaining good reflection quality.
This performance is consistent with the impressive statistical results shown previously.

Our methods have been implemented in MATLAB and remains an offline approach. How-
ever, given the straightforward implementation and that satisfactory results are achieved
within 20 iterations, we believe that an implementation on a GPU can achieve process-
ing times of around 10 ms per frame. This performance would meet the requirements for
real-time denoising applications.

Our methods do present certain limitations. In some cases, such as noticeable in the blue
insets of the Living Room scene, we also encounter oversmoothing. This problem typically
occurs due to an aggressive selection of balance parameters. To optimize performance for
a specific scene, these parameters should ideally be chosen in a manner that is dependent
on the scene itself. Furthermore, the red insets in Figure 4.10 emphasize areas where our
methods lightly darken less illuminated regions. It is also noticeable in the ONND method’s
results. This effect is especially apparent in the first 2-3 frames, owing to the limited valid
samples. This is a consequence of the 11 norm data fidelity term in our denoising model.
Although the 11 norm data fidelity term preserves shadow features better, it also introduces
this darkening effect as a trade-off. Moreover, our methods can also introduce artifacts in
more challenging areas of a scene, particularly where sharp geometric transitions coincide
with intense color changes, our method sometimes introduces artifacts. These artifacts
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often appear as overly bright pixels within the background. Specifically, dark pixels, which
originally belong to the background but are adjacent to bright, high-intensity edges, can be
smoothed out by our model. This results in these dark pixels being mistakenly smoothed
into bright pixels. This phenomenon is particularly evident in the blue insets of Figure
4.10. It’s worth noting that this type of artifact is not unique to our method, but can also
be found in results produced by the GF method, although GF typically generates more
severe artifacts. Another characteristic issue is staircasing artifacts, a consequence of the
TV term’s nature. These can be observed in the red insets of the Classroom and Living
room scenes. Additionally, as the camera moves in and out, pixels on the sides of the
frames often have fewer valid samples even after reprojection, and our method struggles to
remove strong noise in these areas without oversmoothing neighboring regions. Finally, the
insets of the San Miguel scene illustrate that our methods struggle to effectively eliminate
high-frequency noise, even at the cost of overblurring many features. This reveals the need
for additional refinement in handling complex noise distributions.
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Figure 4.10: This figure illustrates the Sponza scene denoised using our method and compares
it with a reference image rendered at 4096 spp. Our method successfully preserves sharp features
and shadows, demonstrating performance comparable to the BMFR method and superior to the
ONND and GF methods.
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Figure 4.11: This figure illustrates the Sponza-glossy scene denoised using our method and
compares it with a reference image rendered at 4096 spp. Our method with noise estimation
by spatiotemporal variance effectively eliminates high-frequency noise while maintaining good
reflection quality.



CHAPTER 4. EXPERIMENTS AND EVALUATION 61

Ours(V)

Reference, ™,

L

Figure 4.12: This figure illustrates the Classroom scene denoised using our method and compares
it with a reference image rendered at 4096 spp. Our method demonstrates effective preservation
of sharp features and illumination, outperforming the ONND and SVGF methods.



CHAPTER 4. EXPERIMENTS AND EVALUATION 62

Reference G

Figure 4.13: This figure illustrates the Living room scene denoised using our method and com-
pares it with a reference image rendered at 4096 spp.These figures exhibit staircasing artifacts
due to the nature of the Total Variation term and oversmoothing issue in certain regions.
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Figure 4.14: This figure illustrates the San Miguel scene denoised using our method and compares
it with a reference image rendered at 4096 spp. Our method effectively preserves shadow features.
In comparison, the GF method falls short in preserving shadow features. However, our method
encounters challenges in effectively removing high-frequency noise.



Chapter 5

Conclusion and Future Work

In this master thesis, we have advanced the application of TV-based methods to two tasks
within computer graphics: smoothing discontinuous textured surfaces from point-rendered
images and denoising images from Monte Carlo rendering. Concerning the smoothing
of discontinuous surfaces, several alternative smoothing pipelines were developed. These
pipelines, built upon specific TV models and integrating geometric information, success-
fully addressed discontinuities in the depth map, and subsequently reconstructed textured
surfaces without introducing significant boundary artifacts. Our methods have demon-
strated their efficacy in producing appealing, uniformly smoothed reconstructions after
several optimization iterations. Furthermore, we proposed an efficient pipeline that in-
corporates the advanced Pull-Push algorithm to produce smooth, infilled surfaces even
with highly discontinuous inputs, within a few numbers of iterations. These methods have
proven effective in smoothing discontinuous surfaces while preserving essential geometric
features from the original rendering. In the field of denoising Monte Carlo rendering, our
TV model was extended and enhanced by incorporating auxiliary features and noise esti-
mation techniques. By leveraging characteristics of the TV-based methods, we designed
a hybrid, adaptive model that reduces noise without significantly compromising feature
preservation. Coupled with temporal accumulation, our approach can efficiently mitigate
noise in 1 spp path traced frames, maintaining key features and offering competitive results.

Looking forward, we foresee our approach to be used as a post-processing step within
real-time point-based rendering pipelines. However, the temporal stability of video frames
featuring the inpainted textured surfaces is yet to be assessed. Future research should
address this to ensure the consistent performance of our method over time.

In terms of denoising Monte Carlo rendering, the denoising of temporally accumulated 1
spp frames can be achieved in a few numbers of iterations, making the transition to a GPU
implementation a natural progression for real-time applications. Notably, our results still
display aliasing issues, which could be mitigated by incorporating a Temporal Anti-Aliasing
(TAA) step into our denoising pipeline. It could also be worthwhile to test our method
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on high spp frames, without relying on temporal accumulation. Moreover, considering the
different noise characteristics of direct and indirect illumination, our TV model could be
employed to denoise these two aspects separately, using balance parameters with different
levels of aggressiveness. The separately denoised images for direct and indirect illumination
can be recombined to generate the final denoised image. This approach could potentially
yield more effective noise reduction and overall improved image quality.
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