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Kurzfassung

Die Produktion von traditioneller Animation geschieht in mehreren Schritten, in denen
verschiedene Zwischenprodukte entstehen. Bildverarbeitungsverfahren und maschinelles
Lernen könnten dafür benutzt werden, einige dieser zeitaufwendigen Schritte zu au-
tomatisieren. Lösungen des maschinellen Lernens erfordern jedoch große Mengen an
Beispieldaten, welche für die Zwischenprodukte der Animation nicht erhältlich sind.
Die finalen Produkte auf der anderen Seite sind in Form von Videoveröffentlichungen
und online Streamingdiensten leicht verfügbar. Das Ziel dieser Arbeit ist es diese Kluft
zu überbrücken, indem ein Werkzeug erstellt wird, welches durch maschinelles Lernen
die Zwischenprodukte aus finalen Produktionen rekonstruiert. Diese rekonstruierten
Zwischenprodukte können dann Grundlage von zukünftigen Arbeiten sein.

Einzelbilder traditioneller Animation bestehen aus Vordergrund- und Hintergrundelemen-
ten, welche in unterschiedlichen Arbeitsschritten produziert werden. Vordergrundelemente
werden produziert in dem zuerst eine farbcodierte Strichzeichnung gezeichnet, welche
dann ausgemalt und mit dem Hintergrund zusammengesetzt wird. In dieser Arbeit wird
maschinelles Lernen dazu benutzt um zuerst Vordergrund- und Hintergrundelemente
zu trennen und dann die farbcodierte Strichzeichnung der Vordergrundelemente zu
reproduzieren.
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Abstract

The creation of traditional animation is performed in multiple steps, creating various
intermediary products. Image processing and machine learning could be used for the
automation of some of these time-consuming steps to help animators and studios. However,
machine-learning solutions require large amounts of example data, which are not available
for the intermediary products of animation. On the other hand, final animation is more
easily available through public datasets, video releases, and streaming services. This work
aims to bridge this gap by creating a tool to predict intermediary products of animation
from frames of the final video, using machine learning. The predicted production data
can then be used for further research.

In particular, frames of traditional animation are made out of background and foreground
elements, which are produced through different workflows. Foreground elements are
created by first creating color-coded lineart. These are then colored and composited
with the background. In this work, machine learning is used to “undo” these steps by
separating a final frame into the foreground and background and recreating the lineart
from the former.
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CHAPTER 1
Introduction

1.1 Motivation
Traditional animation is the process of creating movies and TV shows through a series of
illustrations. Unlike 3D computer graphics animation or puppet animation, all frames of
traditional animation are hand-drawn, allowing artists full freedom in how to pose and
render objects and characters, giving the medium a unique look. This style of animation
enjoys particular popularity in Japan. According to the Japanese Animation Association
[MSR+19], the worldwide market for Japanese animation has been growing since 2009,
reaching a market value of 2.2 trillion Yen (about 20 billion USD) in 2018.

Some tasks in the production of traditional animation, like designing characters, writing
dialog, and storyboarding scenes, require creativity and problem-solving skills. Others are
about executing repetitive tasks according to input from previous steps. The latter may
include cleaning up line-art, drawing blends between line-art (inbetweens), and coloring
line-art according to the colors selected by the character designer and color director.
Automating the repetitive tasks with computers would free up artists to spend more time
on other tasks, increasing quality or quantity. Traditional image processing methods, like
edge-detectors (see Section 2.2), may be used to accomplish this. Traditional methods
depend on carefully set thresholds and parameters, yet are frequently outperformed by
machine-learning models, where all parameters are set automatically through a training
process. Machine-learning methods, on the other hand, require datasets for training and
benchmarking. This work aims to create a machine-learning model for the creation of
such datasets from final frames of animation.

1.2 Problem Statement
In animation, douga is color-coded line-art that is created for each frame of a sequence
as an intermediary result. It contains information on the shape and motion of moving

1



1. Introduction

Figure 1.1: Example crop of a frame and corresponding douga. Lines that will appear
in the final frame are drawn in black, edges between shades, highlights, and colors are
drawn in blue, green, and red respectively. Filling is used to denote the different shades,
highlights, and colors with different purple, yellow, and green tones respectively. The
color-coding is not universal, as different productions use different colors. Art by Tonari
Animation.

objects, and the shape and placement of highlights and shadows. Stationary parts of
a scene are not drawn in douga. Figure 1.1 shows a section of a frame of animation
and the corresponding douga. Which elements are drawn in a douga depends on the
art-style, but they usually include lines that should be visible in the final frame and edges
between different shades, highlights, and colors. See Section 2.1 for more information
about animation production. Manually creating such a dataset would be time consuming
and require trained professionals, as will be discussed in Section 1.3.

This work tackles the task of creating a machine-learning model to synthetically create
douga from final frames of animated works. Synthetic datasets created this way can
then be used to train future machine-learning models, similar to how synthetic line art
datasets have already been used to train other models [IZZE17, Yon17]. The generated
images can also be useful by themselves for teaching purposes or when studios need to
re-create scenes for changes, but the original intermediary data is not available.

2



1.3. Challenges

1.3 Challenges
Douga is generally not readily available and kept by studios for archiving purposes at best.
It can take a trained professional 30 minutes or more to draw one such image, depending
on the complexity of its content. There is no industry standard for the color-coding used
in douga and different studios and even different productions within the same studio use
different colors. Additionally, douga can be ambiguous or require scene understanding to
understand lights and shadows in a scene correctly.
The industry-standard resolution for TV shows is 1920 by 1080 pixel, almost twice as
large as the largest images used for existing machine-learning image-generation models
(For example, Karras et al. [KALL18] use 1024 by 1024 pixels, most use fewer). The
frequencies of elements in douga are imbalanced, with the most frequent element being
about 800 times more prominent than the rarest. This is known to be challenging for
existing models [LGG+18]. Lastly, douga contains small and thin objects (primarily ~2
pixels wide lines) that are frequently missed by existing models.

1.4 Goals and Contributions
The goal of this thesis is to create a machine-learning model capable of generating datasets
of synthetic douga images from existing frames of animation. Our contributions are as
follows:

• A proposed standardized schema to represent douga information suitable for auto-
matic computer processing.

• A machine learning model which achieves higher prediction accuracy by dividing
douga reconstruction into two segmentation problems, which can take advantage of
different training data.

For the former, a set of line categories with corresponding color palette for representing
the most common parts of douga is introduced. This allows consistency within the
training data and the output. This palette is described in Section 5.1 and can be seen
being used in Figure 1.1.
For the latter, two networks are combined into the final model. The first network deals
with the separation of moving parts (called cels), which would be part of the douga, and
stationary parts (called backgrounds and books), which would not be part of the douga.
The second network deals with the generation of douga from these cels.
To train these networks, a small dataset (about two hundred images) of douga is created
by professional animators and combined with a larger dataset (over five hundred images)
of masks created by the student. While the professional dataset is used as the final
metric of quality, the amateur dataset is used to provide additional input to the model.
Different ways of combining the datasets are compared. An overview of this process can
be seen in Figure 1.2.

3



1. Introduction

Figure 1.2: A visual overview of our work, which is divided into two sub-problems: Cel
Segmentation is described in Chapter 4, Douga Generation in Chapter 5.
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CHAPTER 2
Background

2.1 Animation Production
Animation is achieved by creating images and showing them in quick succession. Smooth
motion requires generating dozens of images for each second. Traditional animation
is the process of drawing these images by hand, either on paper or using a computer
and a graphics tablet. Two different workflows have been established for this process.
Western full animation, where most frames of video have a unique drawing, allowing for
smooth motion [Whi09], and Japanese limited animation, where drawings are shown for
multiple frames, sometimes several seconds, leading to “choppy” animation but reduced
production costs [Li10, Mor15]. The latter is booming, having reached a record high in
sales for the sixth consecutive year in 2018 [MSR+19].

Frames of traditional animation are split up into two parts: static elements and dynamic
elements. The static elements are unchanged over the duration of a shot (typically
several seconds) and may be re-used for many shots. Dynamic elements are characters
and the objects they interact with, and they may change multiple times per second.
Therefore, a more time-consuming workflow can be used for the generation of static
elements, incorporating more details and more complex shading. On the other hand,
moving elements, called cels, need an optimized workflow, incorporating less detailed
drawings and simpler shading.

Before the advent of computers, moving elements were drawn on transparent sheets of
celluloid. This allowed artists to reuse the background drawings for multiple frames. For
each frame, the appropriate cel would be laid over the background and a photo would be
taken. Computers allow artists to store and composite their drawings digitally, making
the use of celluloid sheets obsolete. Nonetheless, the drawings of moving elements are
still called cels, similar to how computer folders are still called folders because they serve
the same function as their analog equivalent.

5



2. Background

The generation of dynamic elements is split up into several steps, performed by different
artists. Starting with the storyboards created by the director, the first and second
key animations are created, which contain lineart for key-poses, extreme positions of
movements. These are then cleaned up and extended with inbetweens, frames between
the key poses to create consistent and fluid motion.

These inbetweens and cleaned up key animation, called douga (literally “moving image”),
contain color-coded lineart. They contain both lines that should be solid in the final
frame, as well as edges between differently colored areas, including edges between shades
and highlights. Their purpose is to finalize the position and motion of objects, giving the
coloring artist instructions on how to color the frame. Additionally to the line art, douga
may also contain color-coded areas to specify which areas should be in shadow or light
and which areas should have a different color than the areas around them. See Figure 1.1
for an example.

While one team is working on the moving parts of the animation, a separate team can
work on the static parts. These are backgrounds and static foreground elements, called
books, that can be laid over moving parts during compositing.

Afterward, these are colored and composited together with the backgrounds, books, and
effects, like glow or blur. See Figure 2.1 for an example. An overview of the entire process
is visualized in Figure 2.2. This work only focuses on the process after the second key.
In this work, effects added during compositing are ignored.

2.2 Image Processing

The pipeline described is fundamentally a series of image processing steps and will be
approached as such in this work. A short overview of the image processing operations
that are referenced throughout this work is provided here.

Image Convolution Many local image operations can be represented as an image
convolution. The discrete convolution of two images f and g is calculated as follows:

(f ∗ g)x,y =
∑
i∈Z

∑
j∈Z

fi,j · gx+i,y+j

f is called the kernel of the convolution. For most operations, the kernel is 0 for all
points but a finite number around (0, 0). When fx,y and gx,y are scalars, the kernel can
be represented as a matrix containing the values around the kernel center. If the kernel
size is an even number, the position of the center is ambiguous and should be specified.
For the purpose of this overview, this is ignored, and later sections will exclusively deal
with kernels of an odd size.

6



2.2. Image Processing

Figure 2.1: An example frame in its different stages. Art by Tonari Animation.

Image Gradient The gradient of an image is the change between neighboring pixel
values. If the image is given as a function g mapping two coordinates to a real value,
then the gradient can be expressed mathematically the following way:

[
gx

gy

]
=

[
dg
dx
dg
dy

]

If the image is given as an array of pixel values, as is the case with raster images, the
gradient can be approximated using a convolution operation:

gx =
[
−1 1

]
∗ g

gy =
[
−1
1

]
∗ g

7



2. Background

Figure 2.2: The standard 2D limited animation workflow. This work focuses on the task
of 2D animation (sakuga) after the layout (genga) has been finalized. Translated from
Furansujin Connection [Fur16].
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2.2. Image Processing

These kernels have an even number of elements in one dimension. This results in the
result being shifted by half a pixel compared to the input. To avoid this, a different set
of kernels can be used:

[
−1 0 1

]
,

[||−1
0
1

]||
A visualization of this operation can be seen in Figure 2.3b. Using the image gradient
allows the computation of further image properties. One of which is the magnitude of an
edge, which is calculated as follows:

√
g2

x + g2
y

Another is the edge angle, which is calculated as follows:

tan−1
(

gy

gx

)

Sobel Operator Similar to the image gradient is the Sobel operator or Sobel-Feldman
operator [Sob14]. Its only difference is that a smoothing filter is applied along the edge.
Its kernels are as follows:

[||−1 0 1
−2 0 2
−1 0 1

]|| ,

[||−1 −2 −1
0 0 0
1 2 1

]||
The magnitude and angle of edges can be calculated the same way they are calculated
from the image gradient. A visualization of this operation can be seen in Figure 2.3c. It
is slightly softer than the image gradient but otherwise identical.

Gaussian Blur In order to remove noise and high-frequency features in an image, a
common tool is to blur the image. A widely used method to blur images is to use the
probability density function of the Gaussian distribution to create a convolution kernel.
The Gaussian kernel is calculated as follows:

Gx,y(σ) = 1√
2πσ2

e− x2+y2
2σ2

The variable σ here controls the radius of the blur. Larger values will remove more
frequencies from the image. This kernel is non-zero for every x and y. It is unbounded.
The kernel can be cut off at a distance, as values further away from the center contribute
little to the result. The threshold depends on the application. A visualization of this
operation can be seen in Figure 2.3d.

9



2. Background

(a) Shapes and
lines.

(b) Image gra-
dient.

(c) Sobel oper-
ator.

(d) Gaussian
blur.

(e) Difference
of Gaussians.

(f) Image lapla-
cian.

Figure 2.3: Examples of the four edge filters.

Difference of Gaussians The difference between two Gaussian blurred versions of
an image can be used as an edge-detector. It can be applied by applying the following
convolution kernel:

DoGx,y(σ1, σ2) = Gx,y(σ1) − Gx,y(σ2)

Where σ1 and σ2 control the radii of the two Gaussians. A visualization of this operation
can be seen in Figure 2.3e.

Image Laplacian The sum of the second derivative along both spatial axes is called
the Laplacian. It can be used for edge-detection and can be expressed in terms of
convolution. The discrete Laplacian kernel in 2D is defined as follows:

[||0 1 0
1 −4 1
0 1 0

]||
A visualization of this operation can be seen in Figure 2.3f.

2.3 Convolutional Neural Networks
Machine learning solutions are able to automate processes by observing pairs of inputs
and their expected outputs as examples. At first, a parameterized function fΘ : X → Y
is constructed, where X represents the domain of inputs and Y represents the domain
of outputs. Θ represents the parameters describing the mapping between inputs and
outputs. In- and outputs are usually vectors. For image processing, the input could
be a vector containing the red, green, and blue values for each pixel of the image. The
output may be a classification, containing a probability for each class, or another image.

10



2.3. Convolutional Neural Networks

f is usually defined as a composition of linear and non-linear functions. Cybenko et al.
[Cyb89] proves that, a function of the form

fW,V,a(x) = W T · h(V · x + a)

with W ∈ Rn, V ∈ Rl×n, a ∈ Rl, x ∈ Rn and h being an element-wise continuous
sigmoidal function, called the non-linearity or activation function, can approximate
any function arbitrarily well, independent of the choice of h given a sufficiently large l.
The parameters W , V and a can be approximated numerically using gradient descent
methods.

A function σ is sigmoidal if it is a one-dimensional, real-valued function that tends
towards 0 if its parameter tends towards negative infinity, and 1 if its parameter tends
towards positive infinity.

lim
x→∞ σ(x) = 1

lim
x→−∞ σ(x) = 0

Different choices of f have different advantages and disadvantages in terms of processing
and memory requirements and rate of convergence. There is no general method for
finding a good function, but different templates have been established empirically for
different tasks.

Non-Linearities Many different functions have been proposed as non-linearities. The
simplest and, according to Papers With Code [Pap20b], most widely used, is the Rectified
Linear Unit (ReLU). It is defined as

ReLU(x) = max(0, x)

This function does not meet the requirements for Cybenko’s proof, as it is not sigmoidal.
However, the weighted sum of two translated ReLU functions can be:

ReLU(x) − ReLU(x − 1)

Convolution When dealing with image data, the in- and output vectors tend to have
high dimensionality. A single frame of RGB Full HD video has over 6 million values.
Performing general linear operations on such values is expensive and does not take
advantage of the spatial consistency in image data. Discrete convolutions represent sparse
linear transformations, suitable for images [LCBB97].

A convolution is local with regard to the spatial dimensions. Each output depends on
a neighborhood of its corresponding inputs. It is also invariant with regards to spatial

11



2. Background

translation. Translating the input causes the same translation in the output. The
parameterization of a convolution operation, the kernel, describes the influence of each
input in the neighborhood of the output.

For machine learning, the convolution is usually combined with pixel-wise matrix multi-
plication. For each spatial position in the kernel, a matrix is stored, that is applied to
the input to create the summand for the output. The kernel is stored as a 4-dimensional
array. Unlike the kernels in Section 2.2, these can not be represented as a single matrix.

The 2D convolution ya,b ∈ Rm, with a ∈ Z, b ∈ Z, of the input vectors xa,b ∈ Rn with the
kernel matrices zi,j ∈ Rm×n is calculated as follows:

ya,b =
∑
i∈Z

∑
j∈Z

zi,j · xa+i,b+j

The only difference to the convolution used in image processing is that · denotes a
vector-matrix multiplication. The output may have a different number of channels. A
visualization of this operation can be seen in Figure 2.4a.

A variation of the convolution is the strided convolution. It combines the discrete
convolution with an under-sampling of the input, reducing its size along the spatial
dimensions. The strided convolution y of input x with strides s ∈ N1, t ∈ N1 is calculated
as follows:

ya,b =
∑
i∈Z

∑
j∈Z

zi,j · xs·a+i,t·b+j

A visualization of the strided convolution can be seen in Figure 2.4b.

The transposed convolution, frequently misleadingly called deconvolution, is similar to
the strided convolution. Instead of under-sampling, the input is over-sampled, increasing
its size along the spatial dimensions. The transposed convolution with spatial strides s
and t is calculated as follows:

ya,b =
∑
i∈Z

∑
j∈Z

z(a mod s)+i·s,(b mod t)+j·t · x[ a
s ]+i,[ b

t ]+j

If the kernel size is not divisible by the stride, the number of non-0 summands is not the
same for each output pixel. This can lead to undesirable checker-board patterns in the
results [ODO16]. Choosing the size of the kernel to be a multiple of the stride avoids
this. A visualization of the transposed strided convolution can be seen in Figure 2.4c.

Lastly, a dilated convolution or atrous convolution [YK16] is a convolution where the
input is under-sampled relative to the kernel, but not relative to the input. The dilated
convolution of the input x with the kernel z and dilation rates d ∈ N1 and e ∈ N1 is
calculated as follows:

12



2.3. Convolutional Neural Networks

Input

Output

(a) Convolution with kernel size 3.

Input

Output

(b) Convolution with kernel size 4 and stride
2. The input is scaled down by a factor of
2.

Input

Output

(c) Transposed convolution with kernel size
4 and stride 2. The input is scaled up by a
factor of 2.

Input

Output

(d) Convolution with kernel size 3 and dila-
tion rate 2.

Figure 2.4: A visualization of the different types of convolutions.

ya,b =
∑
i∈Z

∑
j∈Z

zi,j · xa+i·d,b+j·e

A visualization of the dilated convolution can be seen in Figure 2.4d.

An in-depth overview of convolutional operations in machine learning is given by Dumoulin
et al. [DV16].

Pooling Like convolutions, pooling layers operate on rectangular regions of the input
and apply a reduction operation on them. Like with convolutions, these regions may be
overlapping and may be strided. Average pooling layers output the channel-wise average
for each region. It is frequently used to downscale feature maps along spatial dimensions.
Max pooling layers output the channel-wise maximum for each region. If each channel
represents the presence of a feature, the max pooling layer removes information about
the exact position of the feature without reducing its presence. Max pooling is used more
frequently than average pooling, according to Papers with Code [Pap21a].

Depth Although Cybenko et al. [Cyb89] proves that a universal approximator is
sufficient to model any function, it has been demonstrated, that a composition of several
such approximators, called deep models, outperform individual approximators on many
tasks [SLJ+15, KSH17]. Some models are hundreds to thousands of layers deep [HZRS16].
Other works suggest that increasing depth beyond a certain point (depending on task and
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model) may decrease accuracy [HZRS16, SGS15]. The problem of decreasing accuracy in
deep models can be mitigated by using residual learning.

Residual Learning He et al. [HZRS16] suggest replacing the learned functions in the
model with functions of the following form:

h(x) = f(x) + x

Where f is a learned function. The result is, that not the mapping itself, but the residual
mapping f(x) = h(x)−x is learned. Their experiments suggest that the residual mapping
tends to be easier to learn for gradient descent optimizers. This is also called adding a
skip connection between x and f(x), as information can “skip” f .

Classification Classification is the task of estimating which distribution an observed
value is a result of. Given a set of distributions Xn for n = 1, . . . , N and a discrete
distribution Y between 1 and N, the task of classification is to predict y ∼ Y , given
x ∼ Xy. Equivalently, given two dependent variables x ∼ X and y ∼ Y , with y discrete,
the task is to estimate y given x. x is an observed value, and y is its classification.
Because y is discrete, it is not possible to create a differentiable function that predicts it.
As an alternative, one can create a model to predict probabilities for each possible value
of y, given x. The function, that is estimated is the conditional probability:

f(x, y) = P(Y = y|X = x)

When the conditional distribution of P(X = x|Y = y), called the prior probability, is
known, P(Y = y|X = x), called the posterior probability, can be calculated using Bayes
theorem:

P(Y = y|X = x) = P(Y = y)P(X = x|Y = y)
P(X = x)

Distributions Predicting the probability of each possible value of y amounts to pre-
dicting the parameters of a distribution. Depending on the domain of y, different families
of distributions can be used. The learnable function is used to predict the parameters of
this distribution.

The Bernoulli distribution is used when classifying between two classes, binary classifica-
tion. It has one parameter p, representing the probability of a value being part of the
first class. The probability of the value being part of the second class is 1 − p.

Instead of modeling a function, that predicts probabilities directly, it is common to
predict the logits of the probabilities. The logit of a probability p is defined as:
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Figure 2.5: Difference between the posterior probability and the posterior logits. If the
values of the classes follow normal distributions, the logits follow a quadratic function,
which may be easier to learn than the probabilities.

logit(p) = log( p

1 − p
)

One of the motivating factors for this approach is the fact that, when classifying between
two classes that can be described by the normal distributions with means µ1 and µ2
and standard deviations σ2

1 and σ2
2, the logits form a quadratic function. Formally, the

posterior logits of the two distributions are:
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( 1

2σ2
1

− 1
2σ2

2

)
+x

(
µ1
σ2

1
− µ2

σ2
2

)
− µ2

1
2σ2

1
+ µ2

2
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2
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A graph of the posterior probabilities and their logits can be seen in Figure 2.5.

For classification with more than two classes, a categorical distribution is used. It has
one parameter for each class, representing the probability of an element belonging to
that class. As the probabilities need to add up to 1, it is common to normalize them
by dividing each parameter by the sum of all parameters. When estimating logits, the
probabilities can be calculated with the following expression:

P (Y = i) = epi∑n
j=1 epj

Where Y is the stochastic variable, i ∈ N, pi is the (unnormalized) logit of P (Y = i) and
n is the number of classes.
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Multivariate distributions are multi-dimensional. They represent distributions of vectors,
with each coordinate following a scalar-valued distribution. Images can be seen as
multivariate distributions with each pixel following a distribution of colors or classes.
The axes of the vectors can be independent or dependent. In the independent case, the
distribution can be described by the parameters of the distribution of each axis. The
probabilities of the stochastic variable X = (X1, . . . , Xn) having the value x = (x1, . . . , xn)
can be calculated as follow:

P (X = x) =
nᴨ

i=1
P (Xi = xi)

If the axes are not independent the probability can be calculated the following way:

P (X = x) =
nᴨ

i=1
P (Xi = xi|

i−1ᴧ
j=1

Xj = xj)

It is the product of the conditional probabilities for each axis given all previous axes. The
prediction of the parameters depends on all previous axis. This approach has been used
for language models like GPT-3 [BMR+20] and the image generation model Pixel-RNN
[OKK16].

Multivariate dependent distributions can be approximated as a mixture of independent
distributions. This is called a mixture model . For this purpose, multiple independent
distributions Yj are predicted, as well as a scalar categorical distribution Z giving each
of the multivariate distributions a probability. The probability is calculated as follows:

P (X̂ = x) =
m∑

j=1
P (Z = j) · P (Yj = x)

With increasing m, distributions can be approximated more accurately, but the number
of parameters also increases.

Loss Function To estimate the parameterization of the function, it is necessary to
define a differentiable measure for how “good” or “bad” a given parameterization is. This
is done by defining a loss function l, that maps an example’s true result from the dataset,
and the model’s prediction for the same input, to a real value. The smaller the result of
this function, the better the parameterization.

To perform the least-squares approximation, the mean squared error (MSE) is used. The
loss function is set to be the squared difference between the real values and the predicted
values.

lMSE(ŷ, y) = (ŷ − y)2
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2.3. Convolutional Neural Networks

When approximating distributions, a common loss function is the cross entropy. It
represents the expected amount of data that is needed when compressing a set of symbols,
following an (unknown) distribution p, using the approximate distribution q. It is minimal
if p = q, that is if the approximate distribution is equivalent to the real distribution.
Given a sample X of p, it can be estimated as follows:

CE(X, q) = −
∑
x∈X

1
|X| log Pq(x)

Where Pq(x) represents the probabilities or probability density of x according to the
estimated distribution q. Taking the exponent of this equation and negating it leads to
the following expression:

−e|X|·CE(p,q) =
ᴨ

x∈X

Pq(x)

This expression is identical to the expression that is maximized for maximum likelihood
estimation. Therefore, minimizing the cross-entropy is equivalent to maximizing the
likelihood.

This leads to the following loss function:

lCE(Ŷ , y) = − log PŶ (y)

Where PŶ (y) is the predicted probability of y according to the model.

Optimizer fΘ and l are chosen to be differentiable, allowing the use of gradient descent
to approximate the parameters of the function. In its simplest form, the gradient of l
over Θ is calculated and Θ is subtracted by the result, multiplied by a learning rate η.

Θt+1 = Θt − η∇Θ
1

|X|
∑
x∈X

l(fΘt(x))

Instead of evaluating l for all examples, it is common to evaluate it over a random
sample of examples. This method is called stochastic gradient descent. Several other
variations exist. According to Papers with Code [Pap20a], the most widely used variation
is Adam [KB17]. Instead of subtracting the gradient from the parameters directly,
Adam keeps an exponential running average of the gradient and uses that to update the
parameters. Additionally, they divide each dimension of the update by the square root
of an exponential running average of their squares, to normalize updates. Dimensions
of the parameter that tend to get small updates, have their updates scaled up, whereas
dimensions that tend to get large updates have their updates scaled down. Its update
rule is defined as follows:
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m0 = 0

v0 = 0

gt = ∇Θ
∑

x∈X̂t

l(fΘt(x))

mt+1 = β1 · mt + (1 − β1) · gt

vt+1 = β2 · vt + (1 − β2) · g2
t

Θt+1 = Θt − η · mt

1 − βt+1
1

/(√
vt

1 − βt+1
2

+ €

)

With β1 and β2 being the factors for the exponential running averages, € being a small
value to avoid divisions by zero, and X̂t being the random sample of the examples at
step t.

Lipschitz Continuity To analyze the convergence of optimizers it is necessary to
measure properties about the function that is to be minimized. One such property is the
Lipschitz continuity and its corresponding Lipschitz constant. A real-valued function f
is said to be Lipschitz continuous if the following equation is true for all pairs of points
x1, x2 for some constant K:

|f(x1) − f(x2)| ≤ K · |x1 − x2|

The Lipschitz constant is the smallest value for K for which the equation holds. Every
function with a bounded first derivative is Lipschitz continuous. Linear functions, all
commonly used activation functions and compositions thereof are Lipschitz continuous.

Given a function f , with a Lipschitz continuous gradient with Lipschitz constant K,
gradient descent with a learning rate smaller or equal to 1

2K converges to a local minimum.
[Arm66]

Batching Adam and stochastic gradient descent only operate on samples of the entire
training set at each step. The subset of the training set is called a batch. This reduces
the memory and processing requirements per step. It allows choosing a trade-off between
performing more, less accurate updates and fewer, more accurate updates. If the loss is
the average over the samples in a batch, the resulting gradient is an unbiased estimate for
the real gradient. As the sum is a linear operation, this is the case for the cross-entropy
loss and mean squared error. The Adam optimizer, however, is biased, because the
division of two unbiased estimates is generally not unbiased.
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Parameter Initialization Gradient descent is a method for improving a given param-
eterization. But before it can be applied, it is necessary to create a starting point, initial
values for all the parameters of the model. Initializing the weights with zero would lead to
most of the gradients of the model being zero, and convergence is impossible. Choosing
the weights too small causes activations, and therefore gradients, to tend towards zero
with increasing depth. Choosing the weights too large causes activations and gradients
to grow exponentially and to “explode” with increasing depth. Glorot et al. [GB10]
notice that the speed of convergence hinges on the distribution of activations throughout
the model. They suggest a method for initializing the parameters such, that the output
of the linear operations in the model approximately has the same variance as its input.
This method is called Xavier initialization or Glorot initialization.

Given a linear operation on the value x ∈ Rn, parameterized by the matrix W ∈ Rm×n

as follows:

y = W · x

They prove that the expected variance of y is equal to the expected variance of x if the
following condition holds:

n · V ar(W ) = 1

Further, it might be desirable to have an equal variance of the gradient for each layer.
The variance of the gradients is stable for the following condition:

m · V ar(W ) = 1

These two conditions cannot both be true if m /= n. They suggest the following
compromise:

V ar(W ) = 2
n + m

When initializing W , values are sampled from a uniform or normal distribution with the
desired variance.

Glorot et al. [GB10] do not take into account the properties of the activation functions.
Using the most common activation function, ReLU, Xavier initialization has been found
to perform poorly for networks with many (e.g. 30) layers [HZRS15, Kum17]. He et al.
[HZRS15] suggests the following condition for the initialization of the weights:

1
2n · V ar(W ) = 1
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Batch Normalization Another solution to overcoming vanishing or exploding gradi-
ents is batch normalization. Glorot et al. [GB10] realize that it is beneficial to keep the
variance of the activations stable and that weights can be chosen in a way to obtain that
property. Ioffe et al. [IS15] provide a different solution to this problem. At each step, they
calculate the mean and the variance across spatial dimensions of the activations within a
batch and use these to normalize them to mean zero and variance one. Although created
with the intent to normalize the gradients of the parameters, Santurkar et al. [STIM18]
demonstrate that this normalization of the gradients is not necessarily desirable, nor is
batch normalization effective at it. They link its effectiveness to a smoothing (reduction
of the Lipschitz constant) of the loss function.

Generalization and Regularization The goal of approximating a function to per-
form the desired transformation on example data is to then be able to use this function
on new data. A model that performs well on examples that were not used during training
is said to generalize well. Overfitting is the problem of having a model that performs well
on the training data, memorizing mistakes and outliers therein, while not learning general
features of the data, that can be used on values outside the training data. Generally
speaking, there could be any number of functions, that give the right answer for values of
the training set, and arbitrary answers for values outside the training set. One method
to evaluate this property is to split the dataset into two sets: The training set and the
test set. The training set is used for estimating the parameters of the model. The test
set is not used for parameter estimation or model design, but to estimate the accuracy of
the model on potential future data points.

Instead of finding a single function that approximates the dataset, one can try to find the
set of functions, that do. One approach to achieve this is to train many models separately
and average their results [SHK+14]. This, however, can be prohibitively expensive for
large models. Srivastava et al. [SHK+14] propose an approximation to this task. Instead
of training several models separately, a single model is trained, with activations being
set to zero with a certain chance. They call this method dropout. This can be seen as
training 2n different models with shared weights, where n is the number of activations or
hidden units. For inference, instead of evaluating all 2n models, they instead multiply
each activation by the probability of it being set to zero during training.

Inference The ground truth in a classification task is discrete. Each element belongs
to exactly one class. To create a differentiable classifier, it is common to not work with
the classes themselves but with categorical distributions of classes. Instead of estimating
the one true class, a probability for each class is estimated. To use the model, its output
needs to be turned into discrete values. The most common way of doing this is to return
the mode of the predicted categorical distribution. Each element is classified as its most
likely class.

Evaluation After a model has been trained it can be evaluated to compare it with
other models. Several measures have been suggested for different tasks. Accuracy is
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the percentage of elements that are correctly classified by a classifier. When used in
segmentation tasks, it is the number of pixels, that are correctly classified. Given the
number of correctly classified elements TP and the total number of elements N, the
accuracy is calculated as follows.

accuracy = TP
N

The intersection over union (IoU) or Jaccard index [FI+18] is a measure for the similarity
between two sets and can also be used to calculate the similarity between a predicted
segmentation and the true segmentation. Given the number of true positives TP, false
positives FP and false negatives FN it is calculated as follows.

IoU = TP
TP + FP + FN

The above measures are useful when tasked with modeling a function through pairs of in-
and outputs. For generative models, where the task is to predict a distribution from a
sample of it, other metrics are required. Image generation tasks aim to produce images
based on examples, in a way that they look similar to humans. Therefore, the quality
metric should be more sensitive towards features that humans focus on, and indifferent
towards features that humans do not perceive. The Inceptions score (IS) [SGZ+16] and
Fréchet Inception Distance (FID) [HRU+17] use the conditional label distribution of an
Inception v3 model [SVI+16], pre-trained on ImageNet [DDS+09], as an approximation
to human vision. As humans are adept at differentiating the different classes in ImageNet,
a model trained on doing so might, at least, focus on similar features. Studies with
human participants indicate that both metrics correlate well with the similarity that
humans assign to samples of distributions [SGZ+16, HRU+17].
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CHAPTER 3
Related Work

The problem of reconstructing production data requires solving two sub-problems. As the
final frames are compositions of images, created through different work-flows, segmentation
can be used to split them up. Afterwards, edge-detection and image-to-image translation
methods can be used to recreate the douga from the dynamic parts of the frame.

3.1 Synthetic Datasets
Existing machine learning solutions rely on the availability of training data in large
quantities. For example, the ImageNet [DDS+09] dataset of photos of people, animals,
and objects, contains over 14 million annotated images. Creating these datasets requires
manual acquisition and annotation. For segmentation datasets, this requires between 20
minutes [BFC09] to 90 minutes [RVRK16] per image.

To speed up the process of collecting training examples, computer graphics can be used to
create synthetic datasets automatically. This allows the generation of a virtually infinite
number of examples. This method has been used to perform semantic segmentation
and bounding box detection for urban street scenes [RVRK16, RSM+16, WU18], kitchen
scenes [SBLL20], toys and dishware [HLWK18], and indoor scenes [MHLD17].

Richter et al. [RVRK16] use the computer game Grand Theft Auto V, which produces
photo-realistic renderings of a fictional city, to automatically create a dataset and semantic
segmentations for street scenes. Ros et al. [RSM+16] and Wrenninge et al. [WU18]
create and render their own virtual worlds to generate a synthetic dataset.

Wrenninge et al. [WU18] evaluate the effect of training on synthetic datasets for image
segmentation and object boundary detection in street scenes. They train a model on
different synthetic datasets and calculate the model’s accuracy on real data. They find
that training on synthetic data alone tends to harm accuracy on real data, measuring a
decrease in mean IoU from 68% to 45% in their best configuration. They also find that
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realism of the synthetic data is important, measuring a variation in mean IoU between
45% and 22% depending on which synthetic dataset is being used. Lastly, they find that
training on both real data and synthetic data improves mean IoU compared to training
only on real data, even when synthetic-only training suggests that the synthetic dataset
represents the ground truth poorly.

McCormac et al. [MHLD17] find that pre-training on a synthetic dataset of indoor scenes
and then fine-tuning on real data improves mean IoU from 29% to 48% on the NYUv2
dataset [NSF12] and from 37% to 50% on the SUN RGB-D dataset [SLX15].

Although they are exclusively targeting photos of real scenes, these works suggest that
synthetic examples, combined with real examples, improve the accuracy of classification
models for various domains.

Li et al. [LLW17] use augmentation on a dataset of a smaller domain to train a model on
a wider domain. Their goal is to detect lines in textured/hatched grayscale hand-drawn
illustrations. For training they take a dataset of texture-less hand-drawn illustrations
and assign a synthetic texture to each connected component in the image. The model is
then trained to remove these textures, restoring the original lines.

3.2 Segmentation
Image segmentation is the task of assigning a label to each pixel of an image. Existing
research focuses on identifying object classes. There are datasets with labeled photos of
everyday objects [EVGW+11] and street scenes [GLU12, COR+16] that are being used
as benchmarks for segmentation models. The student is not aware of the existence of
datasets or models for the segmentation of traditional animation, nor illustrations in
general.

Both the task of identifying dynamic elements in an image and the task of identifying
lines and edges can be interpreted as segmentation tasks. In the former case, each pixel
would be classified as being produced by either the workflow for dynamic elements or the
workflow for static elements. In the latter case, each pixel would be classified as either
belonging to one of the line and edge classes or as not belonging to either.

Models Originally designed for medical applications, the U-Net architecture [RFB15]
has been successfully used for image segmentation [IS18]. It consists of a sequence of
strided convolutions, followed by a sequence of strided transposed convolutions. Skip
connections are used between outputs of the same size. This structure allows the
incorporation of both local and global information into the segmentation of a pixel.
According to Papers with Code [Pap21b] the U-Net architecture is the most popular
model for image-to-image translation and segmentation.

Long et al. [LSD15] take successful image classification architectures and investigate
their use as segmentation models. Image classification models reduce a spatial image into
a nonspatial output through strided convolutions and pooling layers, usually removing
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(a) An illustration from a Manga. (b) The line image generated from the
input using Manga Line Extraction.

Figure 3.1: Example from the work by Li et al. [LLW17].

more and more spatial information every few layers. Long et al. counter this reduction
by using bilinear upscaling on the outputs of the layers and adding skip connections
between downscaling layers and the final output.

An alternative approach to translating classification models to segmentation models is
presented by Chen et al. [CPSA17]. Instead of downscaling the image through pooling
or strided convolutions, they increase the dilation rate of all layers following a pooling or
strided convolution in the original model. This is equivalent to evaluating a classification
network for each neighborhood in the input image. A visualization of how the strided
convolutions in ResNet correspond to dilated convolutions in DeepLab can be seen in
Figure 3.2.

Li et al. [LLW17] use a model similar to ResNet to extract lines from Manga, Japanese
comics. These consist of hand-drawn grayscale illustrations with textures or hatching.
The model performs a binary classification, identifying whether a pixel belonging to a
line. An example of this work can be seen in Figure 3.1.

Peng et al. [PZY+17] find that incorporating a large neighborhood of pixels (25 by 25
pixels) into the classification of a pixel increases accuracy. As 2D convolutions with large
kernels require both a large amount of time and memory, they split up 2D convolutions
into pairs of 1D convolutions, along the horizontal and vertical axis. An example of a
segmentation generated with this model can be seen in Figure 3.3.

Pre-Training ImageNet [DDS+09] is a dataset of photos and labels representing which
objects are present in the image, without spatial information. This dataset represents the
de facto standard benchmark for image classification tasks and has been well explored.
Although it does not carry any spatial information, it can be used for training segmentation
models. Before training a model on segmentation, a sub-graph of it is trained on ImageNet
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full resolution

1/2 resolution

1/4 resolution

1/8 resolution

ResNet DeepLab

Figure 3.2: The scales of the ResNet [HZRS16] and DeepLab [CPSA17] models. While
the former scales down the feature maps by half after each block, the latter increases the
dilation rate by two after each block.

(a) An image of the Cityscapes dataset
[COR+16] of street scenes.

(b) The semantic segmentation of the same
image. The different classes of objects (cars,
pavement, sky, buildings, etc.) are identified
by the model and visualized with separate
colors.

Figure 3.3: Example from the work by Peng et al. [PZY+17].
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Input Image Possible 
Segmentations

Predicted 
Probabilities

Prediction

Figure 3.4: When the input is ambiguous, due to low contrast, blur or compression
artifacts, giving each pixel a low chance of containing the class, minimizes the loss. As
a result, no pixel reaches the threshold to be classified as the object, and the object is
missing in the segmentation.

classification, allowing it to learn useful priors from a large dataset. This has shown to
improve accuracy on some segmentation tasks [PZY+17] but hurt accuracy on others
[ZGL+20].

ImageNet exclusively contains photos. It is unknown how well it performs on illustrations.
The Danbooru dataset [Bra19] is a similar dataset for illustrations, containing information
on the presence of object classes and user tags.

Loss Function The training set can be thought of as a sample of the distribution of
pairs of final images and corresponding douga. The task is to model the conditional
distribution of douga images given a final image. Ideally, there would be a single douga
corresponding to a given final image, but due to inaccuracies in the model and ambiguous
inputs, this is generally not the case.

Cross entropy minimization allows the prediction of the marginal distributions for each
pixel. However, the marginal distributions do not represent the multivariate distribution
of possible segmentations. As an example, suppose the input suggests there to be a thin
vertical line-shaped object that is either at position a, b or c with equal probability. The
prediction that would minimize the cross entropy loss would assign a probability of 33%
to each pixel of the three possible lines. The probability of the object being present is
below 50% for each pixel and, therefore, the model assumes that there is no object. See
Figure 3.4 for a visualization.

For the task of representing edges between shapes, the existence of a line is more
important than its exact position. Therefore, classification is not a suitable framework of
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Figure 3.5: Cross entropy and focal loss with γ = 2 with regards to the probability given
to the ground truth. Examples, for which the model is confident, have a lower loss with
focal loss, than when using the cross entropy.

the problem. Instead, the problem can be framed as the task of sampling the distribution
of possible segmentations. See Section 7 for an exploration of this solution..

As described in Section 2.3, cross entropy minimization leads to a maximum likelihood
estimator, assuming infinite model capacity and training examples. Other training
objectives have been suggested, to trade accuracy in some regions for accuracy in others.

Lin et al. [LGG+18] modify the cross entropy by a factor such that the weight of “easy”
examples is less than that of “hard” examples. They call this focal loss If pt is the
probability the model gives to the true class, then the focal loss can be calculated as
follows:

FL(pt) = (1 − pt)γ · − log(pt)

With γ controlling how much to reduce weighting of accurate examples. At γ = 0, focal
loss is equivalent to cross entropy. The authors suggest a value of γ = 2. A plot of both
the cross entropy and the focal loss can be seen in Figure 3.5.

For an in-depth comparison of different loss functions see Shruti [Jad20].

Perturbation Szegedy et al. [SZS+14] notice that the prediction of classifiers is
sensitive to changes barely visible to the human eye. They use the gradient of the model
to calculate a change within a fixed range, that maximizes the prediction error. That is,
given an example x, that the classifier can correctly classify, they calculate an example
x, that is indistinguishable from x for a human, but causes the classifier to misclassify it.
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One way to calculate this x, is to use gradient descent. If the classifier is locally linear, x,

can be efficiently calculated as x + € · sign(∇xl(Θ, x, y)), where € is the amount of change
applied to the example and l(Θ, x, y) is the loss for example x with ground truth y and
learned weights Θ.

Goodfellow et al. [GSS15] demonstrate how perturbation can be used to improve
generalization. To accomplish this, they apply perturbation to the training examples
during training. This is a form of adversarial training.

3.3 Edge-Detection
Traditional edge-detection algorithms, including the Canny edge filter [Can86] and
high-pass filters, were previously used for the task of creating line art from colored
illustrations [IZZE17, Yon17]. However, these depend on a threshold parameter and tend
to either not detect all edges or detect edges where there are none. They are also not
able to distinguish between the different types of edges.

In the machine learning context, edge-detection can be either interpreted as an image
segmentation task, where pixels need to be classified as either being part of an edge or
not, or as an image to image translation process, where a model estimates a new color
image from an existing one. While conceptually similar, the two interpretations lead to
different methods.

Pang et al. [PLS+18] and Song et al. [SPS+18] solve inverse sketching and try to replicate
the way humans create sketches. However, their goal is to replicate the behavior of an
amateur, whereas this work focuses on line art generated by professional illustrators.
Additionally, both works focus on creating sketches from photos.

Zhang [Zha17] uses machine learning to generate edge images for the use with automatic
coloring solutions. However, these do not reflect the douga used during the production
of traditional animation. It does generate colored line art, but they do not explain the
meaning of the colors, and they do not appear to be useful for animators. Further, it
is limited to images with a resolution of 512 by 512 pixel, whereas industry standard
resolution is 1080 by 1920 pixel. Additionally, they train the model on static illustrations,
which tend to have more detail and more complicated shading than illustrations made
for animation. An example of this model can be seen in Figure 3.6.

3.4 Image Generation
Images can be represented as points in a space with a dimension for each pixel and
channel. The generation of images is then the task of sampling a distribution in that space,
learned from a sample of the real distribution. Several methods for this exist. Generative
adversarial networks (GANs) [GPAM+14] and variational auto encoders (VAEs) [KW13]
do not model the probability density function of the distribution explicitly but implicitly
by learning a mapping (the generator or decoder respectively) from a known distribution
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(a) A frame of a TV series. (b) Line art predicted by SketchKeras.

(c) Crop of the real douga the frame was
composed of.

(d) Same crop in the SketchKeras prediction.
The resolution is less than a third.

Figure 3.6: Limitations of the line art generated by SketchKeras [Zha17]. Original web
series frame and corresponding douga by Tonari Animation.

(most commonly a multivariate normal distribution) to the approximation of the target
distribution. Recurrent models (RNNs) [CRC+20] and flow-based generative models
[KD18] give an explicit solution to the probability density function of the underlying
approximated distribution.

Additionally to, or instead of the known distribution, these models may also take
additional inputs as conditional variables. This allows generating images of specific
classes (e.g. cats or dogs) [BDS18] or transforming images from one class to another (e.g.
horses to zebras) [IZZE17]. The task of generating plausible production data from final
frames is a kind of image-to-image translation where the goal is to sample the distribution
of potential intermediate images, given a final image.
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Figure 3.7: Overview of the Generative Adversarial Network. G and D are learned
functions and represent the generator and the discriminator respectively. X represents
the samples of the input data, Y the samples of the corresponding target data. Z is a
known distribution, usually a normal distribution. Ŷ represents the generated samples.

Generative Adversarial Networks Goodfellow et al. [GPAM+14] reformulate the
problem of approximating a distribution as a two-player minimax game. The method
jointly optimizes two models. One model, the generator, maps samples from a known
distribution (e.g. a normal distribution) to the target distribution and the second model,
the discriminator, differentiates between fake images created by the generator and the
real training samples. By training a differentiable classifier on classifying between real
and fake images, this classifier can be used to calculate a gradient from fake to real
images, that the generator can be trained with. A visualization of the network structure
is given in Figure 3.7.

In its minimax formulation, the loss for the generator is the negative loss of the discrimi-
nator. It can be written as follows:

min
θG

max
θD

E(log DθD
(y)) + E(log(1 − DθD

(GθG
(z))))

Where G and D represent the generator and the discriminator respectively, and y ∼ Y
and z ∼ Z. This formulation tends to provide insufficient gradient to G when D is
accurate. An alternative proposed by the original author is to use a different loss function
when updating the Generator. Instead of minimizing log(1 − D(G(z))), they minimize
− log(D(G(z))). Fedus et al. [FRL+17] call the latter non-saturating, as the loss does not
saturate for both generator and discriminator. For examples, that are easy to discriminate,
the discriminator loss tends towards zero while growing linearly for the generator, and
vice-versa. A graph of the loss of G for a saturating GAN and its non-saturating counter
can be seen in Figure 3.8.

The training objective for the discriminator is to reduce the cross-entropy between its
prediction and whether an input is real or fake. The training objective for the generator
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Figure 3.8: The generator loss for a saturating GAN and a non-saturating GAN, given
two distributions for real and fake examples. The saturating GAN uses the negative D
loss for the generator. This loss saturates at 0 for poor images. The alternative, the
non-saturating GAN, uses a separate loss for G, that provides useful gradient for poor
examples.

is to reduce the cross-entropy between the discriminator prediction and an image being
real. This approach tends to be unstable as either the generator or the discriminator or
both can get stuck in local minima and stop to provide useful gradients to each other.

Several workarounds have been proposed to address the instability of GAN training.
Arjovsky et al. [ACB17] examine alternate loss functions. The original authors of the
GAN approach have suggested the cross entropy as a measure for the difference between
the target distribution and the generated distribution. Arjosky et al. instead use the
earth mover’s distance or Wasserstein metric. The Wasserstein distance between two
distributions Y and Ŷ is defined as follows:

W (Y, Ŷ ) = sup
||f ||L≤1

E
y∼Y

(f(y)) − E
ŷ∼Ŷ

(f(ŷ))

Where f is a Lipschitz continuous functions with Lipschitz constant less or equal to 1.
For training the generator, a multiplicative constant of f can be ignored. It is sufficient
to compute K · W (Y, Ŷ ). Therefore it is enough to solve the following expression:

max
θ

E
y∼Y

(fθ(y)) − E
ŷ∼Ŷ

(fθ(ŷ))

This can be approximated using gradient descent methods. f replaces the discriminator
of the original GAN formulation. To constrain f to Lipschitz continuous functions, the
absolute values of its weights are constrained to be less or equal some constant value.
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To avoid the constraint on the weights of f , Gulrajani et al. [GAA+17] propose placing
an additional loss on the Euclidean length of the gradient of f . The loss function that
they use for the discriminator model is as follows:

E
y∼Y

(f(y)) − E
ŷ∼Ŷ

(f(ŷ)) + λ E
y∼Y,ŷ∼Ŷ ,a∼U(0,1)

((||∇f(y · a + ŷ · (1 − a))||2 − 1)2)

The first part is identical to the original Wasserstein GAN. For the last part, a random
interpolation between a real example and a fake example is selected, the length of the
gradient of f at that point is calculated and its squared difference to the value 1 is added
to the loss. Therefore, the summand is minimal if the gradient of f has a length of 1 in
the convex hull of the real and fake examples.

Mao et al. [MLX+17] suggest yet another loss function. Instead of having the discrimi-
nator predict the logit probability of an image being real, they predict the probabilities
itself. The loss function for the discriminator is as follows:

1
2 E

y∼Y
((D(y) − b)2) + 1

2 E
z∼Z

((D(G(z) − a)2)

The loss of the generator is as follows:

1
2 E

z∼Z
((D(G(z) − c)2)

If a = 0 and b = c = 1, the discriminator predicts probabilities between 0 and 1. Instead
one might chose to predict probabilities scaled between -1 and 1.

Previous works have aimed at automating the coloring step. They require large collections
of correlating pairs of colored frames and line art to accomplish this. By taking colored
images and edge images created from the colored images, Isola et al. [IZZE17] and
Yonetsuiji et al. [Yon17] are able to automate the process of coloring line art. Additionally,
the tool by Yonetsuiji et al. allows the user to select colors for individual areas and the
tool will complete the coloring. See Figures 3.9 and 3.10 for examples.

These works use the Canny edge filter [Can86] or similar traditional image processing
methods to generate edge images and these do not reflect the line art used during the
creation of traditional animation. Its quality hinges on the selection of a threshold
parameter and the color-coding of douga is not taken into account.

Variational Auto Encoders Kingma et al. [KW13] use an auto encoder to find a
mapping between a normal distribution and the target distribution. Two models, an
encoder and a decoder are optimized jointly. The encoder maps an image to a normal
distribution, represented by its mean and the diagonal of its covariance matrix. The
decoder maps a sample from a normal distribution to an image.
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(a) An edge image generated from a photo,
using a traditional edge-detection filter.

(b) A color image generated from the edge
image.

Figure 3.9: Example of the model by Isola et al. [IZZE17].

Figure 3.10: Screenshot of the interface of the Paints Chainer [Yon17] application.
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The training objective is to minimize both the difference between an image and the result
of encoding and decoding it, and the Kullback-Leibler divergence between an image’s
latent distribution and a standard normal distribution. The former means that for each
image there is a latent point that is approximately decoded to it. The latter means that
the latent distribution over all images approximates a standard normal distribution. The
result is that images can be generated by decoding samples from the standard normal
distribution. As the decoder only approximates the inverse of the encoder, results tend
to be blurry.

Flow-Based Models The VAE can be improved by modelling the decoder as a function
that can be inverted explicitly. Dinh et al. [DKB14] propose a set of invertible functions as
the building blocks for their model. Kingma et al. [KD18] improve on it by introducing
the invertible 1 × 1 convolution. Invertible differentiable functions (bijectors) allow
explicitly calculating the probability density function of a known distribution transformed
by the function. This allows minimizing the cross-entropy between samples and the
approximated distribution directly. This solves the instability present in GANs and the
blurriness present in VAEs. The target distribution can be sampled by decoding samples
from the known distribution.

As the composition of bijective functions is itself a bijective function, models created this
way are also bijective. If X is a distribution with probability density function PX , the
probability density function Pf(X) of the transformed distribution f(X) is calculated as
follows:

Pf(X)(y) = PX(f−1(y)) ·
||||det

(
d

dy
f−1(y)

)||||
This equation can be inserted into the cross entropy loss and simplified to attain the
following:

lCE(x) = − log
(
PX

(
f−1(y)

))
− log

(||||det
(

d

dy
f−1(y)

)||||)
To evaluate it, the log probability of the distribution X, the inverse of f and the log
determinant of its Jacobian need to be known. These can be efficiently calculated for all
functions used in such models. The log probability of a unit normal distribution is given
as the following quadratic function:

log(PX(x)) = −x2 1
2 + 1

2 log
( 1

2π

)
Many common operations in machine learning are not bijective. Therefore, Kingma
et al. [KD18] introduce three invertible operations to build their fully bijective model.
An invertible 1x1 convolution, which performs a matrix multiplication on each pixel
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of its input with learned weights. The weights are stored and optimized as their LU
decomposition, speeding up the calculation of its inverse. The log determinant of its
Jacobian is the log determinant of the weights matrix. An affine coupling layer, which
performs a lifting operation on the input. When only performing additions, the log
determinant of the Jacobian of a lifting scheme is always 0. And an invertible version
of batch normalization, which just applies a denormalization in its inverse. The log
determinant of its Jacobian is the sum of the logs of the scalar factors.

The lifting scheme allows them to incorporate arbitrary non-bijective functions into the
model. Given a non-bijective functions g and h, which may be modelled by a convolutional
neural network, the following function, that operations on two parts of the input vector
separately, is bijective:

f(xa, xb) = (xa · g(xb) + h(xb), xb)

Its inverse is as follows:

f−1(xa, xb) =
(

xa − h(xb)
g(xb)

, xb

)

And its log Jacobian determinant as follows:

log
(

det
(

d

dx
f(xa, xb)

))
= sum(log(|g(xb)|))

Recurrent Neural Networks A series of elements x = (x1, . . . , xN ) can be predicted
by finding a function f(x, h) such that for a hidden state h = (h1, . . . , hN ), f(xi, hi)
predicts (xi+1, hi+1). This method has been used for the generation of text [SMH11] and
hand-writing [Gra13], among others.

As each prediction depends on all previous evaluations of f , this method is not well
suited for parallel hardware. An alternative is to have f not depend on the hidden state
but, instead, a window of x. This still requires sequential prediction during generation,
but allows training to be parallelized per element. This method has been used for the
generation of text [VSP+17, RNSS18].

A single element is predicted as a distribution over all possible symbols. For text, this is
a categorical distribution over a set of characters or words, predicting a probability for
each. When dealing with images, the set of symbols becomes a set of colors. This turns
the task of generating images into a classification task, which is a well-studied class of
problem.

Generally, RNNs operate on one-dimensional sequences of elements, whereas images
are a two-dimensional plain of elements. Oord et al. [OKK16] address this by using a
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Figure 3.11: Oord et al. [OKK16] predict pixel of an image one by one, line by line. The
pixel y is predicted by a rectangular window of previously predicted pixel x.

rectangular window, spanning a fixed number of rows and columns over the image, as
the input to the learned function. See Figure 3.11.

To generate images, Chen et al. [CRC+20] re-purpose the GPT text generation model
by Radford et al. [RNSS18] by replacing its alphabet of letters and letter combinations
with 512 colors. Unlike the rectangular window used by Oord et al. [OKK16], they do
not model spatial awareness directly. Pixel are predicted one by one, line by line, each
depending on a window of previously predicted pixel.

Choromanski et al. [CLD+20] introduce an unbiased approximation to the attention
layers used in these models that has a runtime of O(n) instead of the original O(n2),
with n being the size of the window that each prediction depends on. This method could
also be use for image generation, but this has not been attempted yet to our knowledge.

3.5 Image Augmentation
Augmentation is the task of creating new training examples from existing ones by applying
transformations to them. These include random color changes, scaling, rotation, flipping,
and cropping. Additionally, it includes adding noise, following a distribution like the
normal distribution, to images, and masking, where pseudo-random pixels of the image
are painted over. Different shapes can be used for these masks, like rectangles with
random size and position [ZZK+20] or samples from a dataset of shapes [LRS+18]. As the
amount of available training data is orders of magnitude smaller than the ones required
by existing successful image processing tasks, augmentation is a valuable tool. Zhao et
al. [ZZC+20] examine the effect of augmentation during GAN training.
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CHAPTER 4
Cel Segmentation

The goal of this work is to recreate douga. However, creating example douga requires
professionals. A simpler but related problem is the task of segmenting cels from frames.
Such segmentation maps contain a subset of the information of douga, but creating them
is simple enough that an amateur can do it.

The segmentation maps for this work are stored as images where each pixel of a frame
is colored either white, for pixels belonging to a cel, or black, for pixels belonging to
the background or books. We manually create a dataset of such segmentation maps. A
segmentation model is trained on this data. Different augmentation methods, model
sizes, and loss functions are compared, and the best combination is used for the douga
reconstruction in Chapter 5.

4.1 Dataset
To our knowledge, there is no easily available dataset of segmentation maps for frames
of traditionally animated TV shows and movies available. Therefore, a dataset of
segmentation maps is created manually from final color frames. Color frames are selected
from an internal database of random animation data. Creating the segmentation maps
takes about 10 minutes per image on average, with some complex images taking as much
as 60 minutes.

Frame Selection Budget and time constraints make it necessary to be selective about
which frames to use for examples. There are various methods of selecting examples, with
different advantages and drawbacks. If the goal is to maximize the average accuracy
over the entire dataset, examples should be created for a random sample of the dataset.
If weighting the examples is an option, importance sampling can be used to achieve
the same goal more efficiently. When the goal is to create a model that achieves high
accuracy on an arbitrary subset of the dataset, one can limit it to certain features.
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Figure 4.1: Distribution of image resolutions in the segmentation dataset. The majority
of images have a resolution of 1920 × 1080 pixel. The numbers represent the number of
images with the same resolution.

Not all examples are created equal. Examples the model is already performing well on
provide little new information. Their loss is small, and such is their impact on the gradient.
Examples can be selected iteratively, taking into account the model’s performance on
previously selected examples, by expanding the number of examples for classes the model
is performing at poorly. This process can be repeated multiple times.

Another method is to select a wide range of different examples, increasing the chance of
including “difficult” ones. Clustering algorithms, like k-means clustering, can be used to
find a representative subset of the dataset. Each possible example’s (squared) distance
to an example in the subset is minimized.

A mix of these approaches is taken here. First, a small number of random color frames
from the database are selected as examples using k-means clustering on edge images of
the frames to identify visually distinct frames. The GCN model [PZY+17] is trained on
this initial dataset. The trained model is then used to find new images for examples.
The model is used to estimate the “difficulty” of additional frames. The model outputs
a Bernoulli distribution for each pixel. This distribution’s entropy can be used as an
estimate for the model’s confidence in the result. Then, additional frames of the highest
confidence and of the lowest confidence are selected. The former contains already mostly
correctly labeled frames that can be added to the dataset with little adjustment. The
latter contains difficult frames for which segmentation maps need to be created manually.
This process is repeated until a total of about 500 frames is selected.

Finally, the dataset is randomly partitioned into a training set and a test set. Throughout
this work, the former is used for training and the latter is used for testing. A sample of
the segmentation maps can be seen in Figure 4.4.
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Figure 4.2: Histogram of the distribution of dynamic elements in the segmentation maps.
A value of 1 represents frames that were created entirely by the workflow for moving
elements. A value of 0 represents frames that only contain backgrounds.
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Figure 4.3: Histogram of the release years of the productions frames are segmented from.
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Figure 4.4: Examples of the manually predicted segmentation maps. The white areas
represent pixels belonging to a cel and the gray areas represent pixels belonging to the
background or books. The corresponding color image is visible in the corner. Color
images by AIC, BONES, Group TAC, Kyoto Animation, MADHOUSE, P.A. Works,
Production I.G, Shaft, Shin-Ei Animation, SILVER LINK., Studio 3Hz, Studio DEEN,
Studio Gokumi, Toei Animation, Wit Studio and Xebec.

The resolution of the segmentation maps corresponds to the resolution of the original
frames. The majority of the images have a resolution of 1920 by 1080 pixels, which
corresponds to the now-standard 16:9 aspect ratio. Many older productions were made
with an aspect ratio of 4:3 and later re-released at a resolution of 1440 by 1080 to fit
modern displays. Figure 4.1 shows the distribution of image resolutions.

The dataset contains frames consisting entirely or mostly of moving elements, and frames
with only a few small or no moving elements, and everything in between. A histogram
of the distribution of moving elements can be seen in Figure 4.2. The oldest show
that is segmented is from 1965. Most frames are taken from shows released in 2010 or
later, which may be explained by the increase in the number of animation productions
released in the past decade as well as the increase in online distribution [MSR+19]. The
distribution of release years in the dataset can be seen in Figure 4.3.
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4.2 Data Augmentation
In order to increase the amount of variation in the training examples, random transfor-
mations are applied to the images during training, effectively increasing the number of
training examples.

Pixel-wise Transformation The examples’ brightness and contrast are varied ran-
domly following a normal distribution with a standard deviation of 25% and 50% respec-
tively. Additionally, the colors’ hue is rotated randomly following a normal distribution
with a standard deviation of 45◦.

Affine Transformations and Cropping During training, random scaling by a factor
between 0.5 and 2 and random rotation by -10 to 10 degrees is applied to the images. All
images are padded or cropped to a resolution of 1920 × 1080 pixel to allow for efficient
batch processing. Additionally, frames are flipped horizontally with a chance of 50%.

Background Replacement During training, the frames’ backgrounds are replaced
with random other backgrounds with a certain probability. A separate dataset of
frames containing only backgrounds is created to accomplish this. The existing hand-
made segmentation is used to composite the original frame with the randomly selected
background. The probability of replacing the background is selected such that each
replacement background has the same probability as each training example.

Texture Overlays Frames are randomly overlaid with textures of paper, wood, con-
crete, dirt, and metal with a certain chance. The texture is selected independently for
foreground and background. Fifteen textures are collected from Texture.com [tex20].
The textures are normalized to a mean value of 1.0 as to not change the overall brightness
or color of the images. Textures are tiled over the size of the image at a random offset.
They are applied by multiplying them with the images. A sample of the textures can be
seen in Figure 4.5.

Rectangular Erasure A randomly placed rectangular area is removed from the image.
The size of the rectangle follows an uniform distribution between 0 and 50% of the
corresponding dimension of the image and is selected independently for the two axes.
Both the segmentation mask and the color image are set to zeroes within the rectangular
region.

Hard Examples Early runs have shown that the model is accurate on some kinds
of images, particularly close-up shots of character’s heads, and inaccurate at extreme
close-up shots of other body parts and shots of objects. As the former is much more
common, the model may be incentivized to ignore other shots. To test this hypothesis, a
separate training set containing only these “hard” examples is created. This dataset is a
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Figure 4.5: The data is overlayed with various concrete, wood, paper, metal, and dirt
textures. Textures are collected from Texture.com. [tex20].

subset of the whole dataset and has 73 images. Testing is still performed using the full
test set.

4.3 Model
The model is based on an existing segmentation model by Peng et al. [PZY+17], the
Global Convolution Network (GCN). It contains the blocks of the ResNet model [HZRS16]
followed by convolutions. The convolutions are factorized into horizontal and vertical
convolutions, allowing larger kernels (25 pixels) while keeping the computation and
memory requirements low. The latter is their main contribution. They demonstrate the
model on the PASCAL VOC dataset [EVGW+11] of photos of everyday objects.

The GCN model is made out of the ResNet model’s residual blocks, global convolution
blocks, and boundary refinement blocks (BR). A visualization of the GCN model can be
seen in Figure 4.7.

4.4 Pre-Training
The residual blocks from the ResNet model are pre-trained on ImageNet classification.
He et al. [HGD19] demonstrate that pre-training can speed up convergence and improve
accuracy for small datasets. ImageNet features photos of everyday objects, people, and
animals. On the other hand, this work focuses on stylized, non-photo-realistic illustrations.
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Figure 4.6: Different augmentations of the same image. Affine transformations and
contrast and brightness changes are applied to it. The background is replaced randomly.
Rectangular regions are removed. Cel image by Tonari Animation, backgrounds by Shaft,
Studio Chizu and Tonari Animation.

Features learned from ImageNet may not necessarily transfer well to the segmentation of
traditional animation.

4.5 Loss Functions

Both binary cross-entropy and focal loss are used for training and compared. Only
pixel-wise loss functions are examined. Future work may examine loss functions that
consider entire images, like mixture models and adversarial models.

4.6 Training Procedure

The Adam optimizer is used for training with a learning rate of 1e − 4, linearly decreasing
to 1e − 5 over 4,000 epochs. A batch size of 4 is used for every run. For the entire
dataset, a single epoch encompasses 108 optimizer iterations. Training is stopped once
the validation loss does not decrease for 100 epochs. All runs, except for the run with
Resnet-101, are performed on four Nvidia GTX 2080Ti. The Resnet-101 run is performed
on a single Nvidia V100 due to its increased memory requirements.
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Figure 4.7: Visualization of the GCN model [PZY+17] as it is used for cel segmentation.
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4.7 Implementation
The implementation is based on an existing implementation of the GCN architecture in
PyTorch [PGM+19]. It is extended by several functionalities:

• It is extended to read color images from an existing animation database and read
and encode segmentation maps and douga from our proposed representation.

• It is extended by both existing augmentation methods (brightness and contrast
changes, affine transformations, rectangle erasure) and augmentation making use
of the inherent layered nature of animation (background replacement and per-layer
augmentation).

• The model itself is extended with dropout for regularization.

• It is extended by several loss functions: binary cross-entropy loss, binary focal loss,
and adversarial loss.

• Programs for the visualizations and evaluations used throughout the works are
implemented.

4.8 Evaluation
A comparison between the different experiments and the accuracies achieved with each
can be seen in Table 4.2. For each run, both the highest accuracy achieved and the
number of iterations to achieve it are presented.

The GCN model with a ResNet-50 backend pre-trained on ImageNet is used as a baseline.
This baseline resembles the model that the authors of the GCN model Peng et al.
[PZY+17] use. Variations to the model are compared to this model. This model achieves
a validation accuracy of 90%. Accuracies are subject to noise. An accurate comparison
requires future experiments.

• Using the shallower and smaller ResNet-34 over ResNet-50 as the backend for
the GCN model degrades validation accuracy. Using ResNet-101 over ResNet-50
improves it. Due to the memory requirements of the ResNet-101 model, these runs
are performed on different hardware. Therefore, the training time is not comparable
with the other runs. It may be surprising that increasing model capacity does not
harm generalization but even improves it. Using an even larger model may improve
the accuracy further.

• Performing the background replacement improves validation accuracy from 90% to
92%. Training with textures diminishes the accuracy to 88%. If the model relies
too much on texture borders, as the texture for the foreground and background
are selected independently, adjusting the frequency at which textures are presented
during training may improve accuracy.
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Background or Book 55.8% 4.2% 96.9%

Cel 1.8% 38.1% 90.0%

Precision 92.9% 95.5%

Table 4.1: Confusion matrix of the best model for cel segmentation on the validation
dataset.

• After training only on hard examples, the model achieves a training accuracy
only half a percentage point less than when training on all images. However,
the validation accuracy, using the same validation images as for the other runs,
decreases to 84%.

• Using Dropout or focal loss both slightly improve validation accuracy by half a
percentage point.

• Performing rectangular erasure on both the color image and segmentation maps
improves validation accuracy from 90% to 93%.

After these observations, a run is performed combining all variations that improved vali-
dation accuracy – namely, the larger ResNet-101 backend, focal loss, dropout, background
augmentation, and rectangle erasure. Doing so leads to the highest validation accuracy of
93.9% and a test accuracy of 99.8%. This accuracy is achieved after 148 hours of training
over 6 days. A plot of both the pixel-wise accuracy and the focal loss for both training
and validation batches can be seen in Figures 4.8 and 4.9. As the training is subject to
random augmentation, they are noisy. The data is approximately evenly sub-sampled for
the plot. Segmentation maps created with this model can be seen in Figure 4.10.

To visualize which features the model is responding to, Mordvintsev et al. [ACM15] use
gradient descent to optimize an input to the model towards particular activation. They
call this deep dream. Their code is adapted to visualize the features of the second-to-last
layer of the model. This visualization can be seen in Figure 4.11.
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Figure 4.8: Accuracy graph of the final run.
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Figure 4.9: Loss graph of the final run.
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(a) Medium closeup shots to long shots, as well as group shots, are accurately segmented.

(b) Low contrast and blurred shots, shots with CG elements, and extreme closeups are segmented
incorrectly.

Figure 4.10: Examples of validation images segmented by the segmentation model. Gray
and white color represent correctly labeled background and foreground, respectively. Red
represents background elements that are incorrectly labeled as foreground elements. Blue
represents foreground elements that are incorrectly labeled as background elements. The
color input can be seen in the top left corner of each image. Color images by Group TAC,
HORNETS, MADHOUSE, NAZ, P.A. Works, Satelight, Shaft, SILVER LINK. and
Xebec.50
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ResNet-50 (Baseline) CE None Affine, Brightness 99.6% 90.0% 34.4h

ResNet-34 CE None Affine, Brightness 99.5% 88.5% 20.5h

ResNet-101 CE None Affine, Brightness 99.6% 91.2% 64.1h1

ResNet-50 CE None Affine, Brightness,
Background

99.6% 92.1% 25.9h

ResNet-50 CE None Affine, Brightness,
Background,

Textures

98.7% 87.9% 24.7h

ResNet-50 CE None Affine, Brightness,
Hard Only

99.1% 83.9% 5.4h

ResNet-50 CE Dropout Affine, Brightness 99.6% 90.6% 20.6h

ResNet-50 FL None Affine, Brightness 99.6% 90.5% 35.6h

ResNet-50 CE None Affine, Brightness,
Rectangle
Erasure

99.7% 92.5% 2.7h

ResNet-101 FL Dropout Affine, Brightness,
Background,

Rectangle
Erasure

99.8% 93.9% 148.3h1

Table 4.2: Comparison of different models and augmentation. The highest accuracy
achieved over the test data and training data are presented; higher is better. The number
of iterations after that accuracy is achieved is presented; lower is better.
1 Not comparable with other timings, as it was run on different hardware.
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4. Cel Segmentation

Figure 4.11: A visualization of the segmentation model created by maximizing the
activation of the second to last layer on random noise. Each image represents a feature
dimension in the layer and what general structure it is most sensitive towards.
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CHAPTER 5
Douga Reconstruction

The second step to this work is to use the cel segmentation and additional data to
reconstruct douga. Like the cel segmentation, this task involves acquiring a dataset,
selecting augmentation methods, a model, and a loss function, and evaluating the
results. As douga classes are more ambiguous than the classes of the previous task,
both pixel-wise loss functions and adversarial loss functions are evaluated. Finally, the
pre-trained segmentation model is incorporated into the douga generation to use the
larger segmentation dataset.

5.1 Douga Schema
The purpose of douga is to specify and communicate the position, shape, and movement
of objects in an animation. It contains information on the kind of color in each region of
the frame (e.g., shades and highlights), but not the color itself. Douga differs between
productions and studios in what classes of lines and regions are represented and how
they are represented. For consistency within the dataset and the output of the model, a
standard representation is required. Therefore, we propose a set of classes and a palette
to represent them. Through discussions with professional animators, the most common
and most useful classes were selected, as well as suitable colors for each class.

Classes The generated images assign each pixel one of ten different classes. Additionally,
several classes are separated by instance. The instance information is not used in this
work. The aim is to include all primary features present in real douga while still being
easy to process automatically. Real douga often includes written notes to give further
instructions to the color artists, or crosses to identify regions as transparent. These are
intentionally left out in order to simplify processing. Automatic processing of notes may
require OCR methods, which are beyond the scope of this work. For some frames in
productions, multiple douga are used to create transparency and parallax effects during
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5. Douga Reconstruction

compositing. These cases are ignored. Semi-transparent foreground elements are treated
as part of the background, and all dynamic elements are included in a single douga. The
colors are chosen such that the individual classes can be easily separated in code. An
example of some encoded classes can be seen in Figure 1.1. A sample of the dataset can
be seen in Figure 5.1.

The following classes are encoded:

Flat Area Areas that are invisible on the cel or contain flat coloring are colored white.

Visible Line Lines that will be drawn as lines in the final image are drawn as black
and brown lines. These are used for outlines, edges on objects, and details.

Shading Line Lines that mark the edge between two shades in an area are drawn as
dark purple lines. These are not visible as lines on the final image, but instruct
the color artist to use a brighter color on one side and a darker one on the other,
according to the lighting in the scene.

Color Edge Lines that only exist in the line-art to mark the edge between two differently
colored areas are drawn as green and cyan lines. These are used for patterns on
clothes, blush on faces, and other details.

Highlight Line Lines that represent the edges of highlights on surfaces are drawn as
red lines. These serve a similar role as the Shading Lines.

Book Line Outlines of books, which are areas that will be occluded in the compositing
step, are represented by gray lines. As they will be occluded by another layer later,
it may not be necessary for the animators to draw the occluded areas.

Shading Fill Areas that are shaded darker than their surroundings are represented by
different purples. This helps the color artists to identify which side of a Shading
Line should be darker.

Color Fill Areas that are colored differently from their surroundings are represented by
light green and cyan tones. The exact colors are not specified in the douga but by
a style guide available to the color artists.

Highlight Fill Highlighted areas that are shaded brighter than their surroundings are
represented by different light yellow tones. These serve a similar role as the Shading
Fills.

Book Fill Parts of the cel that painted foreground elements will occlude after the
compositing step are represented by different light grays. See Book Line.
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5.2. Dataset

Figure 5.1: Interpretations of what the original douga could have looked like for each
of the color images shown in the top-left corner. Douga drawn by Tonari Animation
artists. Color images by A-1 Pictures, C2C, CloverWorks, diomedéa, Doga Kobo, J.C.
Staff, MADHOUSE, P.A. Works, Production I.G, Toei Animation and White Fox.

5.2 Dataset
To train a model, a dataset of examples is required. Original douga is generally not readily
available. After consultation with professional animators and directors, it became clear
that a dataset would have to be created by professional hands. To create the training
data for the model, professional animators were given colored frames from existing series
and movies and asked to recreate the douga corresponding to these frames.

Frame Selection The same considerations as to the frame selection for cel segmen-
tation, described in Section 4.1, apply when selecting this task’s frames. The number
of examples is limited to about 200 images. This is about half the size of the smallest
dataset used by Isola et al. [IZZE17].

Again, a mix of different approaches is taken to select the frames used as examples. An
initial set of 60 frames is chosen randomly, excluding frames with on-screen text. Early
experiments and the experiments on cel segmentation show that the model performs
better on certain types of shots, particularly medium shots and close-ups of humans.
Therefore, it is decided to focus on these types of shots. This limitation is somewhat
arbitrary. However, one may argue that, in practice, a tool that works reliably for a
certain class of images is more useful than a tool that works unreliably for a broad class
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5. Douga Reconstruction

of images.

Additionally to the initial 60 frames, a random sample of a thousand frames is taken
from the internal database, and images not meeting the criteria are manually removed.
These criteria are:

• Only frames showing human-like characters and no animals.

• No frames with interlacing artifacts or frames that are overly blurry. These
are primarily common in old shows, ca. pre-2000. These are the result of the
distribution, not necessarily the production of a show.

• No images with on-screen text. These are commonly found in title or credit sections.
During production, these would be placed during compositing and are therefore not
interesting for this work. Some releases also contain subtitles in the video stream.

• No overly dark or bright images, for some definition of “overly”. During production,
these would be drawn in neutral colors and then darkened or brightened during
compositing and are therefore not interesting for this work.

• Only medium shots to close-ups.

Acquisition To create the training data, professional animators draw interpretations
of what the selected frames’ original douga might have looked like. These are drawn in
drawing applications like Clip Studio Paint [Cel01] or Retas Studio [Cel08], following the
agreed-upon color palette. A computer program then reads these images. Each pixel is
individually compared to the colors in the palette, and the closest match is chosen to
identify the class. An example of this process is shown in Figure 5.2.

5.3 Augmentation
The same augmentation as for the cel segmentation can be used. Brightness and contrast
are randomly changed, rotation, scaling, cropping and flipping are applied.

5.4 Model
The GCN model [PZY+17], as described in Section 4.3 is used for douga generation as
well. The number of outputs on the last layer is increased to ten, which corresponds to
the number of pixel classes in our douga dataset. Additionally, the kernel size for the
GCN blocks is increased from 25 to 49 pixels, as early experiments have shown this to
improve the classification of shaded and highlighted areas. See Figure 5.6.
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5.5. Loss Function

Figure 5.2: The process of reading the douga created by the artist. The first image
shows the douga, as created by the artist and colored according to the proposed color
palette. This image is decomposed into its classes, based on a list of colors. As multiple
colors may represent the same class, a reconstruction from these classes is not necessarily
identical to the input. Artwork by Tonari Animation.

5.5 Loss Function
Multiple loss functions are considered. Their main difference is whether they rate each
pixel independently or the entire image as a whole. Each has its own advantages and
disadvantages.

5.5.1 Pixel-wise Loss
The task of generating douga can be framed as a segmentation task. The model produces
a probability for each class and pixel in the input. The most probable class of each
pixel is selected, and the associated color is written to the output. The loss function is
calculated from the probability given to the pixel’s actual class.

As the loss only operates on individual pixels, spatial correlation is not taken into account.
This leads to the problem visualized in Figure 3.4. A related problem is the problem
of differentiating between multiple similar classes. For example, a pixel may get a 30%
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Figure 5.3: Distribution of image resolutions in the douga dataset. The majority of
images have a resolution of 1920 × 1080 pixel. The numbers represent the number of
images with the same resolution.
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Figure 5.4: Histogram of the frequency of each class in the douga dataset.
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Figure 5.5: Histogram of the release years of the productions from which douga is
predicted for.

Figure 5.6: The effect of increasing the kernel size of the GCN blocks. The leftmost image
is the interpretation of what the original douga could have looked like by Tonari Animation
artists. The center image shows the result of the GCN model trained with a kernel size
of 25. The rightmost image shows the result of the GCN model trained with a kernel size
of 49. Fewer pixels of the shaded areas (blue) are missed with the larger kernel. Color
image by Shaft.

probability of being a solid line, a 30% probability of being a shading edge, and a 40%
chance of being a flat area. While the pixel’s chance of belonging to either line class is
60%, it will be classified as a flat area because neither of the line classes reaches a higher
probability than the class for flat areas. This error is introduced through the application
of the argmax function. The mode of the distribution does not necessarily represent
plausible samples.

Our douga dataset is imbalanced, with the most common class being about 8,000 times
more common than the rarest. The accuracy is not always the best measure for imbalanced
datasets. A classifier that classifies everything as flat areas would achieve an accuracy of
85% while providing no information about a particular input at all. Solutions to this
problem aim to change the weighting of the elements when calculating the loss.

One method is to give each class a weight relative to the inverse of its occurrence in
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5. Douga Reconstruction

the dataset. In other words: missing elements of a rare class is given a higher loss than
missing the same number of elements in a common class. An alternative solution is to
discount high-confidence predictions, as is done with focal loss [LGG+18]. While the
index over union is a popular measure to compare results, it cannot be used as a loss
function directly, as it is not differentiable.

5.5.2 Adversarial Loss
An adversarial model can calculate a loss for the entire image instead of individual pixels.
The model is split into two parts: the generator and the discriminator. The generator is
given a color frame and suggests a douga that could correspond to the given color image.
The discriminator is given douga from the ground truth and douga generated by the
generator and is tasked with differentiating between them. Because the discriminator
is a differentiable model, its gradient can be used to train the generator to trick the
discriminator.

There are multiple different ways of encoding the douga. In the ground truth, each
pixel is labeled with exactly one categorical class. The distribution of values is not
continuous. During training, the generator’s output needs to be continuous, or at least
allow calculating a meaningful gradient. Several encodings are examined.

Three-Channel Image Stripping away the semantics of the different colors, douga
is just a color image with three channels. GANs have been used successfully for the
generation of color images.

Ten-Channel Image Douga can be encoded as an image with one channel for each
class. A channel in a pixel is set to the number one if it holds the corresponding class
and zero otherwise. Mapping such an image to the corresponding three-channel douga
is a linear transformation. To retrieve the three-channel douga, one performs a pixel-
wise left multiplication with a matrix containing the class colors as column vectors. A
discriminator operating on three-channel images can be turned into one operating on
ten-channel images by left multiplying its first linear transformation by said matrix.

Logits of a Categorical Distribution The previous method allows the generator to
output any value for any channel. However, it is already known beforehand that real
douga in its ten-channel encoding only contains values between zero and one, and the
values sum up to one per pixel. The original output of the generator can be constrained to
values adhering to these properties. One method of accomplishing this is to interpret the
generator’s outputs as the logits of a categorical distribution. The generator is extended
by the softmax operation.

Argmax A problem with all previous encodings is that the generated douga can be
easily identified by its continuous values. Whereas the ground truth only contains values
exactly belonging to one class, the generated images may deviate from the exact colors or
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5.6. Incorporating Segmentation

contain mixtures of several classes. For example, a value in the generated image may be
1, whereas in the ground truth it is 0. Being continuous, the only way to move the output
towards the correct value is to move through the values between them. But all of these
are less frequent in the ground truth than either 0 and 1. A range of insurmountable loss
values may separate the incorrect value (1) from the correct one (0), preventing gradient
descent methods from convergence. When using the ten-channel encoding, this can be
mitigated by performing argmax to retrieve a one-hot coding of the most prominent
channel of a pixel. The argmax function is not differentiable, but one can approximate
its gradient with the gradient of the softmax function.

Additionally to the encoded douga, the discriminator may be given the colored image
to predict the conditional probability. Yonetsuiji et al. [Yon17] claim they get better
results when not giving the discriminator access to the original input when performing
automated coloring.

The 34 layer version of the ResNet model [HZRS16] is used as the discriminator. Both
RMSprop and Adam are tried as optimizers, the learning rates 1 · 10−4, 1 · 10−5 and
1 · 10−6 are tried. Both training only with the adversarial loss and training with a
linear combination of adversarial and pixel-wise loss are performed. The non-saturating
adversarial loss is used for all experiments. Training is attempted on the full images,
images scaled down to half the size on both axes, and crops of the original images.
Several combinations of these options are run for 4000 epochs. None of these lead to
satisfactory results, frequently showing no correlation between the input and the output
or being indistinguishable from noise. This may be the result of an insufficient number
of iterations, an insufficient number of examples (200 compared to 400 to 1.2 million
[IZZE17]), the image resolution being too high (0.5 to 2 million pixels compared to
66 thousand pixels [IZZE17], and 1 million pixels [KLA+20]), too small batch sizes (4
compared to 32 [KLA+20]) or insufficient network capacity for the given task in either
the discriminator or the generator or both. Further experiments are deferred to future
work. Example results of training with adversarial loss can be seen in Figure 5.7.

5.6 Incorporating Segmentation
The end goal of this work is to produce douga from colored images. While it is possible
to train a single model on that task, the number of douga example images available is
magnitudes smaller than the datasets that have been used for other image generation
tasks. As a remedy, cel segmentation maps have been created. While these contain much
less information than douga, they do contain some shared information and incorporating
them into the douga generation training might improve douga generation.

Chapter 4 deals with the prediction of cel segmentation maps. The model used for this
purpose already contains some of the information useful for douga generation. This
section deals with methods of extending the douga generation model of this chapter with
the segmentation model to simplify douga generation. The models can be combined to
one larger model in multiple ways.
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5. Douga Reconstruction

Figure 5.7: All the experiments with the adversarial loss result in images similar to these.
Color images by C2C, feel., Studio Chizu and TMS Entertainment.

Synthetic Cel Model The segmentations predicted from the segmentation model can
be used to remove the backgrounds from the color images, effectively “undoing”
the compositing step of production. This allows the douga generation model to
operate on approximations of the original cels alone, potentially simplifying the task.
However, as the predicted segmentations contain visible errors, it may also make
the task more difficult. Douga cannot be generated for parts that were erroneously
classified as background and removed. Areas of the cel that are occluded by books
(static foreground elements) cannot be reconstructed this way. Image inpainting
methods (see [LRS+18]) may be used to reconstruct them, but this is beyond the
scope of this work. See Figure 5.8a.

Concatenated Model This is similar to the Synthetic Cel Model. Instead of pre-
separating the color image, the color image is extended with an additional channel
containing the segmentation information. This allows the douga generation model
to deal with errors in the segmentation, as the original image is still fully available.
See Figure 5.8b.

Manual Cel Model Hand-made segmentation maps can be used to first separate the
color image into cel and background. This is used as a baseline to evaluate the
effect of errors in the segmentation model. See Figure 5.8c.

Color Model The segmentation information can be ignored. Given enough model
capacity and training examples, the douga generation model should be able to
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learn to distinguish dynamic and static elements in frames. This is only used as a
baseline for comparison. See Figure 5.8d.

 Cel Seg-
mentation

Douga 
Generation

Color 
Image

× Douga
Image

(a) One model to predict the foreground segmentation from color and a second to predict douga
from the cel.

(b) One model to predict the foreground segmentation from color and a second to predict douga
from the original color and the predicted foreground segmentation.

(c) Manually created cel masks to compare the effect of errors in the cel segmentation model on
the douga generation. This is only used for comparison.

Douga 
Generation

Color 
Image

Douga
Image

(d) One model predicting douga from color. This is used as a baseline.

Figure 5.8: Visualization of different methods of incorporating cel and douga data.

5.7 Post-Processing
Real douga is composed of lines of fixed width, yet our model is not constrained to images
with this property. Even results with high per-pixel accuracy can look perceptually
unappealing. Noise and uncertainty in the classification within a connected area of the
image can lead to these areas being split up into multiple differently classified areas.
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5. Douga Reconstruction

Class-weighting causes the model to avoid the misclassification of rare classes (e.g., lines)
over the misclassification of frequent classes (e.g., filled areas) leading to an overestimation
of the probability of a pixel belonging to a line. The result of this is that lines become
thicker than they should be. Post-processing can be used to counter these artifacts.

The line width can be fixed using skeletonization [ZS84], a method to identify lines and
erode them to a width of 1 pixel. Afterward, dilation can be used to increase the line
width to 3 pixels. Skeletonization only operates on binary images. To apply it, the
prediction is first reduced to two classes: areas and lines. Afterward, the unprocessed
prediction is used to recover the original line classes.

To constrain each area to a single class, connected components are identified in the
binary image used for skeletonization. For each detected component, the unprocessed
predictions are averaged, and the class with the highest prediction is selected for the
entire area. See Figure 5.9 for a visualization of the post-processing steps.

5.8 Evaluation
The models described in Section 5.6 are compared using the evaluation images from
the dataset described in Section 5.2. These frames were not used during the training
of the models. Per-pixel accuracies, intersection over union (IoU), as well as training
times are compared. Finally, the per-pixel and per-class accuracies are compared with
SketchKeras [Zha17] and Manga Line Extraction [LLW17].

Using the Color Model, a validation accuracy of 94.7% is achieved. The validation
accuracy of the Synthetic Cel Model is slightly higher, with 95.4%. This suggests that
incorporating the synthetic segmentation data does help with the douga generation, even
though this data occasionally fails to remove backgrounds altogether or even removes
parts of the image that should have douga. Using the Concatenated Model, the accuracy
drops slightly to 95.2%.

New segmentation maps are hand-created for the Douga by the student to evaluate the
effect of errors in the predicted cel segmentation maps. The cel segmentation model does
not see these. The highest accuracy of 95.7% is achieved with the Manual Cel Model.
The douga segmentation is improved by 0.4% when using hand-made segmentations over
automatic cel segmentations. Further experiments are required to determine whether
this is merely a result of noise. All results can be seen in Table 5.3.

The accuracy and loss values for both training and validation set for the Synthetic Cel
Model can be seen in Figure 5.13 and Figure 5.14 respectively.

A confusion matrix for the Synthetic Cel Model is given in Table 5.1. Note that book
edges and book fills are ignored as they make up less than 0.1% of the pixels. The recall
of underrepresented classes is lower than that for others. The recall for all line classes
is worse than their corresponding fill classes. This is a result of using accuracy as the
training objective. Other training objectives may be considered in future works.
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(a) Initial prediction from the model. (b) Prediction after topological refinement.

(c) Prediction after skeletonization and topo-
logical refinement.

(d) Ground Truth.

Figure 5.9: Prediction for an image with and without connected component averaging on
the model trained with weighted cross-entropy. Artwork by Tonari Animation.
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Weighting the classes in the loss calculation by the reciprocal of their frequency decreases
the per-pixel accuracy from 95% to 91%. This is expected. One may expect the IoU
to increase, as it tends to give more weight to in-frequent classes. However, this is not
so. The IoU decreases from 33% to 29%. The lines in the predictions are visibly thicker.
Table 5.2 shows the corresponding confusion matrix. For several classes the precision is
higher, but the recall is lower.

Detecting connected areas and averaging the classification within them reduces the
per-pixel accuracy from 95.4% to 89.4%. For areas that are already mostly labeled
correctly, it increases the accuracy by spreading the correct class. On the other hand,
it can also spread the incorrect class in partially mislabeled areas, increasing the error.
Missing lines in the classification causes unrelated areas to be connected. Using this
method with weighted cross entropy increases the accuracy from 89.4% to 91.3%.

Eyes are drawn with multiple differently shaded parts and differ between shows. They
tend to be difficult for the model. Frequently they lack most details as in Figure 5.11, or
contain incorrect lines.

The validation set created for this work is used for a comparison with SketchKeras [Zha17]
and Manga Line Extraction [LLW17]. As these do not differentiate between line and
fill classes, all line classes and all fill classes were combined into one. As SketchKeras
and Manga Line Extraction output scalar images instead of classifications, a threshold
is applied to the result. This threshold is chosen according to the frequencies of the
two classes in the validation set. An accuracy of 77.7% and 95.6% is achieved on the
validation dataset using SketchKeras and Manga Line Extraction respectively. Confusion
matrices for both models are given in Table 5.5. Although Manga Line Extraction has
a higher overall accuracy than SketchKeras, its recall for edges is less than half. The
example image in Figure 5.12 shows about half the edges are missing in the Manga Line
Extraction result.
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(a) Good network predictions on the validation set.

(b) Sub-optimal network predictions on the validation set. Some shaded and highlighted areas
are assigned incorrectly. Small details are missing.

Figure 5.10: Evaluation of the douga prediction model. Left shows predictions by
professional animators and right by the model. Original color images by A-1 Pictures,
Daume, Production I.G, TMS Entertainment and ZEXCS.
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5. Douga Reconstruction

(a) Crop of a cel. (b) Artist interpretation of
what the douga for the cel
might have looked like.

(c) Prediction of the model.

Figure 5.11: In some cases, it is ambiguous whether two adjacent regions should be classi-
fied as flat (white) and highlight (yellow) or shaded (blue) and flat (white). More context
may be necessary to make this decision accurately. Color image by TMS Entertainment.
Douga by Tonari Animation.
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Flat Area 86.6 0.3 0.1 <0.1 <0.1 1.2 0.1 0.2 97.9
Visible Line 0.6 1.3 <0.1 <0.1 <0.1 0.2 <0.1 <0.1 60.4
Shading Line 0.2 <0.1 0.2 <0.1 <0.1 0.2 <0.1 <0.1 37.6
Color Edge 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 1.3

Highlight Line 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 16.7
Shading Fill 0.5 0.1 0.1 <0.1 <0.1 7.1 <0.1 <0.1 90.4
Color Fill 0.1 <0.1 <0.1 <0.1 <0.1 0.1 0.1 <0.1 23.4

Highlight Fill 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.3 70.8
Precision 98.1 72.7 53.4 24.6 31.5 80.1 52.1 57.3

Table 5.1: Confusion matrix of the Synthetic Cel Model on the professional dataset. All
values are percentages. The book classes are omitted as they make up less than 0.1% of
the pixels.
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Flat Area 82.2 2.5 1.3 <0.1 0.4 1.8 0.1 0.1 93.0
Visible Line <0.1 1.9 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 90.8
Shading Line <0.1 0.1 0.5 <0.1 <0.1 <0.1 <0.1 <0.1 85.4
Color Edge <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 7.3

Highlight Line <0.1 <0.1 <0.1 <0.1 0.1 <0.1 <0.1 <0.1 53.4
Shading Fill 0.8 0.5 0.6 <0.1 <0.1 5.9 <0.1 <0.1 75.1
Color Fill 0.1 <0.1 <0.1 <0.1 <0.1 0.1 0.1 <0.1 26.6

Highlight Fill 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.2 58.2
Precision 98.7 37.7 20.2 10.8 15.2 74.8 49.0 66.3

Table 5.2: Confusion matrix when using weighted cross entropy. All values are percentages.
The book classes are omitted as they make up less than 0.1% of the pixels.
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Color Model 98.0% 94.7% 65.4% 31.0% 59.2h

Synthetic Cel Model 97.5% 95.4% 55.3% 32.6% 36.1h

Concatenated Model 97.6% 95.3% 47.8% 32.3% 50.3h

Manual Cel Model 98.1% 95.7% 51.2% 32.6% 41.8h

Table 5.3: Comparison of different methods for incorporating segmentation maps into
douga generation.
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5. Douga Reconstruction

(a) SketchKeras (b) Manga Line Extraction

(c) Ours (d) Ground Truth

Figure 5.12: Comparison of different line segmentation models. Input image and ground
truth by Tonari Animation.
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5.8. Evaluation
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Figure 5.13: Accuracy graph for the training of the Synthetic Cel Model.
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Figure 5.14: Loss graph for the training of the Synthetic Cel Model.
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5. Douga Reconstruction
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Weighted Cross Entropy 94.1% 91.4% 45.0% 30.0% 106.2h

Focal Loss 97.5% 95.4% 55.3% 32.6% 36.1h

Table 5.4: Comparison of different loss functions for douga generation.
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SketchKeras Edges 2.78% 0.23% 92.35%
Areas 22.05% 74.95% 77.27%

Precision 11.20% 99.69%
Manga Line Extraction Edges 0.98% 2.02% 32.67%

Areas 2.41% 94.59% 97.52%
Precision 28.90% 97.91%

Ours Edges 2.90% 0.18% 94.27%
Areas 5.70% 91.23% 94.12%

Precision 34.72% 99.81%

Table 5.5: Confusion matrices of SketchKeras [Zha17] and Manga Line Extrac-
tion [LLW17] on our douga dataset.
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CHAPTER 6
Conclusion and Future Work

In this thesis, we use machine learning to reconstruct douga from color frames of animation.
We present a class-based representation of douga, evaluate the suitability of segmentation
models for the reconstruction of douga from color frames and propose a method for
incorporating cel segmentation maps into the training procedure, which contain less
information but are easier to create. Finally we compare our results with two existing
line detection models on our dataset.

Two datasets are created and organized: A dataset of segmentation masks and a dataset
of douga corresponding to existing color images. These datasets are used to perform
cel segmentation on frames of traditional animation and the reproduction of douga, an
intermediary product of the production process.

Different methods of augmentation and regularization are compared. Using the seg-
mentation information to randomly replace the backgrounds and perform independent
augmentation on both background and cel improves the cel segmentation accuracy (92.1%
vs. 90.0%). So does rectangle erasure (92.5% vs. 90.0%). Regularizing the model through
dropout improves the validation accuracy (90.6% vs. 90.0%). Increasing the model’s size
from the ResNet-50 to the ResNet-101 model improves cel segmentation accuracy (91.2%
vs. 90.0%).

Different loss metrics are compared. For the douga generation from cels, using focal loss
over cross-entropy loss improves the accuracy (90.5% vs. 90.0%). Focal loss was not
attempted for the cel segmentation from final frames, as its classes are well balanced.

We find that using predicted segmentation masks improves the douga generation compared
to using the douga dataset alone (from 94.7% to 95.4%), even though the generated
segmentation masks have visible inaccuracies. The accuracy does not reach the same level
as when using manually created segmentation masks (95.7%). The accuracy with predicted
segmentation masks is closer to the accuracy with manually created segmentation masks
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6. Conclusion and Future Work

than they are to the accuracy without any segmentation masks. Further experiments are
necessary to determine the significance of these differences.

Edge cases in the visual description of douga are identified. For scenes with multiple
shading levels, it is ambiguous whether two adjacent areas should be interpreted as a
neutral and a highlighted area or as a shaded and a neutral area. Scene understanding
regarding the placement of objects and light sources or knowledge about character designs
may be necessary to differentiate between these cases accurately.

The predictions of the model contain visible artefacts, including visibly wider lines and
inconsistent classification of connected areas. Using topological analysis of the result and
skeletonization, these problems can be alleviated. Although the result may look visibly
closer to the ground truth, it does not have a higher per-pixel accuracy.

Our work outperforms both SketchKeras [Zha17] (77.7%) and Manga Line Extraction
[LLW17] (95.6%) on our validation dataset. Additionally, our model is capable of
differentiating between different line and area classes, whereas the other models are not.

6.1 Future Work
Problems arising from the non-uniqueness of the solutions (see Figure 5.11) may be
solvable through generative models, including auto-regressive models like PixelRNN
[OKK16] and adversarial models like Pix2Pix [IZZE17], as well as mixture models.
Instead of providing a single solution, they can provide a sample of possible solutions.
This may be beneficial to both cel segmentation as well as douga generation.

With about 200 images, the douga dataset is comparatively small. To our knowledge, the
smallest dataset previously successfully used for image-to-image translation had twice as
many images [IZZE17] and many are orders of magnitude larger. Expanding the dataset
may help to improve the results.

Increasing the model’s size from the ResNet-50 to the ResNet-101 model improves the
accuracy for cel segmentation. Increasing it further, both in width and in depth, may
improve the accuracy. This may be true for both cel segmentation and douga generation.
Due to hardware constraints, no attempts are made on larger models.

Augmentation is used to alleviate the impact of the small size of the dataset. Further
methods of augmentation may be explored in the future. Instead of merely erasing
rectangles from the images during training, more complicated shapes may be masked
[LRS+18]. Further exploration of augmentation with texture overlays may be beneficial.
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