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Kurzfassung

Diese Arbeit beschäftigt sich mit der Umsetzung eines Plugins für die Open-Source Game
Engine Godot 3.5, mit dem Ziel einfach grafische Darstellungen von Pflanzen zu erzeugen.
Konkret sollen dadurch Pflanzen aus dem Agroecosystem Projekt modelliert werden.
Dafür werden die Daten aus Dateien, die einem vordefinierten Dateiformat entsprechen,
geladen, welches die abstrakte Struktur der Pflanzen beschreibt. Nach dem Laden erzeugt
das Plugin 3D Oberflächen, zum Darstellen der Zweige bzw. der Äste und Stämme und
verwendet Instancing, um die Blätter effizient darzustellen. Eine der Kernfunktionen
dabei ist die adaptive Anpassung des Detailgrads der Oberflächen anhand der Distanz
der Kamera zu der jeweiligen Pflanze.

In der Umsetzung des Plugins wurde die GDPlugin Funktionalität Godots verwendet,
um das Plugin möglichst reibungslos in Godot einzubauen. Das prozedurale Erstellen der
Oberfläche wird mithilfe eines Algorithmus umgesetzt, welcher aus "Tree Skeletons"(Baum
Skelette) die besagten Oberflächen erstellt. Durch einige Einschränkungen in Godot 3
war es nur möglich den Algorithmus auf der CPU und nicht auf der GPU umzusetzen. In
Tests stellte sich heraus, dass Modelle, die aus dem Plugin statisch exportiert wurden, zu
besserer Leistung führten, als Modelle mit adaptivem Detailgrad.
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Abstract

This bachelor’s thesis explores the development of a plugin for the open-source game
engine Godot 3.5, aimed at providing an easy way for procedurally creating pleasing plant
visualizations, specifically in the frame of the Sustainable Agroecosystem project. This is
achieved by importing data conforming to a predefined format that abstractly describes
the structure of plant organisms. Upon import, the plugin generates 3D surfaces for
the branching structures and employs instancing for rendering leaves efficiently. One
of the key features of the plugin is its adaptive surface subdivision mechanism, which
dynamically generates the surface at different levels of detail based on the proximity to
the camera.

The plugin’s implementation leverages Godot’s GDPlugin feature to seamlessly integrate
into the engine’s workflow. The procedural generation of plant structures is achieved
through algorithmic processes that translate "tree skeletons" into 3D surfaces. However,
due to limitations inherent in Godot 3, the adaptive subdivision mechanism is implemented
on the CPU. In tests, this resulted in the following: Exports of models in the highest
level of detail yielded better performance than models with adaptive subdivision.

The thesis covers the design, implementation, and theory behind the plugin. An evaluation
of the plugin’s functionality and performance is conducted, highlighting its capability to
dynamically adapt the mesh at runtime. Performance comparisons between the adaptive
subdivision approach and using the exported surface are presented, revealing the issues
with the implementation on the CPU.

In conclusion, the developed plugin presents a novel approach to procedurally generate
and render complex plant structures within the Godot 3.5 game engine. It extends the
capabilities of the engine in creating realistic virtual environments while addressing the
challenges of adaptive subdivision on the CPU. The thesis explores the intricacies of
integrating such plugins into game engines and opens avenues for further optimizations.
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CHAPTER 1
Introduction

In the field of computer graphics, the generation of plant models has been a topic of
study since the early days. It poses various difficulties, like the high complexity of models,
often with a large amount of triangles and possibilities such as self similarity, instancing
for smaller plants which might aid in performance. All the while finding application in
multiple industries. From the entertainment sector via movies and games, to serious
fields, e.g. architecture, city planning or in the agriculture sector.

Sustainable Agroecosystems (SusAgro) falls into the last category, exploring how different
environments and vegetation combinations interact with each other and influence the
growth of plants. This thesis aims to implement a performant extension for the Godot
game engine, to provide high fidelity visualizations for the simulations in the frame of
that project, as well as publicly providing it as an open source extensions to enable the
Godot community to use the same concepts for performant plants in 3D Games. Thus,
this thesis falls into an overlap between the entertainment and serious sector.

To achieve something to that end, an open format was created together with SusAgro
that can be adopted and generated by others should they want to.

The main contribution of this paper is an extension of Godot 3.5 for generating high
fidelity geometry from vegetation data generated by the AgroSus Project. This is done
by converting the AgroSus Data into the skeleton graph made up of chains based on
the work of Pirk [Pir13]. Secondly an adaptation of Bloomenthal’s approach [Blo85] for
modelling plants from the skeleton is implemented, using Hanson & Ma’s [HM95] Parallel
Transport Frame algorithm instead of the Frenet Frames as suggested by Pirk as well as
Runions et al. [RLP]. Lastly, the on the fly subdivision approach of Pirk is implemented
using Godot 3.5’s capabilities and evaluated.
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1. Introduction

1.1 Motivation
The data generated by simulations of SusAgro is an abstract description of the skeleton
and rough shape of plants. In order to facilitate intuitive understanding of the data, this
projects aims to provide adequate visualization of said abstract data. In addition to
aiming to be of help in gaining understanding, this can also be useful in communicating
the findings without the need of submersing oneself deeply in the material. Visualizing
large amounts of geometry can significantly impact performance, in turn hindering the
process of visualizing and engaging with the data. Therefore, the aim is to provide a
performant visualization.

1.2 Godot
Godot is an open source game engine, that’s been in publicly available since 2014 [Engb].
Since then, it’s received many updates and is now at version 4. The thesis project uses
version 3.5 as that was the newest version at the start of the project.

Game engines are tools that provide various functionalities to the developers using them.
They are the interfaces that bring together the artefacts of the various departments
involved in the development, from 2D or 3D art, Audio and the Code that handles the
logic of the games and provide ready-made functionality that the developers can use,
like physics engines, animation tools, and many more [BW20]. There are a multitude of
game engines [TE19], each with various functionalities and focus, supporting different
programming languages and target platforms [BW20].

1.2.1 Godot compared to other Engines

To provide a context for the area in which Godot operates, the two most common game
engines for games released on steam are used for comparison, Unity Engine & Unreal
Engine [Ste]. Like Unity & Unreal, Godot provides the tools to develop both 2D and 3D
games/scenes, as well as providing a marketplace/a community where people can add
plugins to enhance the functionality of the core engines [BW20].

While Godot is open source [Engb], Unity & Unreal are both proprietary software. They
differ in various aspects as well, and one key aspect that is relevant for this work will be
discussed here briefly. Most game engines take care of the rendering process so that it does
not have to be implemented from the ground up by developers. However, since the needs
for how the games should be rendered often differs from project to project, engines like
Godot, Unity & Unreal expose some of the graphical API to the developers. Both Unity
& Unreal allow developers to write their own shaders in High Level Shader Language
(HLSL), while Godot provides its own shader Language based on GLSL. Further, they
differ in what aspects of the rendering pipeline are exposed to the developers. This has
also changed over the releases of different versions. With Unity introducing different
rendering pipelines for different granularity of control as of 2018.1, and Godot upgrading
the used OpenGL version from OpenGL ES 2 with Godot 3 to OpenGL ES3 in Godot

2



1.2. Godot

4 (though the main Focus of Godot 4 is the Vulkan based renderer) [Enga] [Uni]. The
functionalities that are exposed determine what tools the developers have at hand to
implement their desired solutions, something that will be discussed later on and was a
limitation in the development of this project.
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CHAPTER 2
Related Work

This chapter will showcase and introduce some of the developments and methods in the
field of procedural generation of plants, as well as important existing tools.

The field of Computer Graphics has long been examining ways of (efficiently) bringing
plants to the screen via models for scientific, industrial and entertainment purposes. Some
of the earliest work in visually modelling plant life stems from Honda [Hon71]. Later
on, the work of Lindenmayer & Prusinkiewicz [PL90] paved the way for many a method
through their works with L-Systems, a rule based approach for describing the way plants
grow. Both considered the process of plant generation as recursive structures which lend
themselves well to the rule based generative approach, as noted Palubicki et al. [PHL+09]
who based their work on the approach of Ulam [Ula62]. Ulam, in contrast, considered
plant growth as a self organizing process where the patterns emerge, rather than being
defined up front. Other works have explored ways to make the process of generating
plant models more accessible. Such as the work of Deussen and Lintermann [LD99] who
introduce a graph based workflow made up of different components describing structural
and geometrical elements to generate the plant geometry.

In the following sections will explore various approaches of both the recursive and self-
organizing kind. Afterwards the issue of creating the 3D surfaces and techniques for
handling them will be discussed, as it poses its own set of challenges depending on the
demands of the application of the models, from highly detailed to simplified.

2.1 Plant Generation

The process of generating plants for computer graphics can generally be split into two
steps:

5



2. Related Work

1. Creating the abstract description of the form of the plant (e.g. words in the case of
L-Systems, more on that later)

2. The production of actual 3D graphical representations of plants. In most mainstream
applications these will be 3D meshes, however they could also be renderings of
point clouds (e.g. when visualizing 3D Scans)

Further the process of generating plants can generally speaking be categorized into
reconstruction of real world data (static modelling) and procedural modelling (which can
be further subdivided into various different categories) this thesis focuses on procedural
methods.

2.2 Static (Data driven) modelling
Static, data driven, methods usually create representations from real world data like
pictures or 3D scans of plants.

In the case of pictures a further processing step is needed to generate representation in
3D space, e.g. Lopez et al. [LDY10] use pictures of trees to create a 3D skeleton graph
of the trees. These skeleton graphs can in turn be used to generate 3D surfaces. The
concept of skeleton graphs will introduce and discussed later on in more detail.

3D scans can be visualized directly and convincingly given that the resolution is high
enough, by directly visualizing the resulting point clouds. However, techniques for
generating polygonal meshes were also developed, e.g. Xu et al. [XGC07] introduced a
method that generates a tree skeleton from the point clouds and results in polygonal
models with minimal user interaction.

In that same vein, Hu et al. [HLZ+17] tackled the issue of generating trees from airborne
LiDAR point clouds which usually have few samples on tree branches making the geometry
generation difficult. To remedy this, they segment the different trees using a normalized
cut segmentation. And introduce a process of retrieving a natural tree skeleton via the
addition of trunk points and refinement through the use of direction fields and angle
constraints.

Many more techniques were developed in this field but, as this is not the focus of this
thesis, will not be elaborated on further. Interested readers can find further methods
mentioned in the works of Yi et al. [YLG+18] & Pirk et al. [Pir13].

2.3 L-Systems
One of the frontiers of procedural plant generation in computer graphics were Lindenmayer
& Prusinkiewicz with their work on L-Systems. In their initial form, conceived by
Lindenmayer in 1968, L-Systems were abstract descriptions of plant organs and their
growth behaviours in development. At their core they are rewriting systems, rewriting

6



2.3. L-Systems

Figure 2.1: Example of curves generated by basic OL-Systems and visualized using Turtle
interpretation [PL90, p. 11]

words to create new ones, similar to Chomsky’s context free grammars, however the
rewriting happens in parallel for each character of the word instead of sequentially [PL90,
p. 1-3]. An L-system consists of an alphabet of characters, production rules which define
rewriting for a given character, as well as a starting word called the Axiom [PL90, p. 4].
The characters can represent different organs of the plants, e.g. stem, flower or leaf.

2.3.1 Turtle Interpretation

To interpret the words produced by the L-Systems in a graphical manner, Prusinkiewicz
& Lindenmayer [PL90, CH1, p. 6-7] use the turtle interpretation for drawing lines in 2D
space by interpreting the symbols as instructions for a "turtle" moving through space see
figure2.1 for an example. This approach is based on the ideas of diSessa and Abelson
[dA]. Later on extending it to the 3rd dimension by introducing three vectors for defining
the turtles heading [PL90, CH1, p. 18].

2.3.2 Tree like Structures

To allow for branched (tree-like) structures, adaptations to the original system were
needed and the Bracketed OL-System was introduced [PL90, CH1, p. 24], which
added "[" & "]" as means to create a stack like functionality for delimiting branches in an
L-System word see figure 2.2 for a visualization.

2.3.3 Context Sensitivity

To account for the context which surrounds the individual organs in a plant context-
sensitive (IL-)Systems were added to the toolbox of L-Systems, making it possible for
rules to take into account the characters before and/or after the one examined by the
production rule [PL90, CH1, p. 30-31], see figure 2.3. Context sensitivity within as well

7



2. Related Work

Figure 2.2: Example of structures generated by bracketed OL-System and visualized
using Turtle interpretation [PL90, p. 25]

as without the plant is also of vital focus in many later works that do not make use
of L-Systems, e.g. the work of Palubicki et al. [PHL+09] views trees as self organizing
organisms and takes into account the context of each bud to determine its fate.

2.3.4 Parametric L-Systems

The development of plants as well as its parts is made up of different processes, one of
which is the elongation of its segments over the course of its life. This process can be
described by growth equations [PL90, CH 1.9, p36-40] which can have different forms,
and only some of them can be modelled or approximated by DOL-Systems or IL-Systems,
thus leading to the introduction of Parametric L-Systems. Parametric L-Systems extend
L-Systems through the addition of parameters of real numbers to letters, as well as
parametric production rules that apply to them. These enable the modelling of the
various growth functions a plant might have, from elongation to its branching angle [PL90,
CH 1, p. 40-46]. To expand on this, later on a technique by Yi et al. [YLG+18] will be
introduced, which uses growth equations to limit and model the growth of self-organizing

8



2.3. L-Systems

Figure 2.3: Matching in a context sensitive L-Systems [PL90, p. 31]

trees.

2.3.5 Methods built on L-Systems

As mentioned before, many methods were developed using the L-System approach, a few
of which will be introduced in the next paragraphs.

Briefly touching on the topic of meshing which will be explored in more detail later on
in section 2.5, Lluch et al. [LVM04] used L-Systems and the turtle interpretation to
generate contours at each displacement of the turtle. These contours are saved into nodes
with some additional information and later used to generate the geometry. This is similar
to the approach of using Coordinate Frames to generate generalized cylinders, which
are also used in this thesis as well as by Pirk [Pir13] based on Bloomenthal’s [Blo85]
work, which will be explored in more detail in section 2.5.

Manipulation of L-Systems & Improving the usability of plant modelling

As L-Systems can get quite complex, the manipulation of them can become difficult
for non-experts. Further, even small changes require the whole System to be re-run, as
well as the result having to be interpreted again. To enable modellers to dynamically
make changes to the plants generated by L-Systems, Rynkiewicz [RN16] introduced an
approach that allows users to make changes to the 3D model without the need to change
the underlying system. To achieve this, they parse the string produced by the L-System

9



2. Related Work

to create a skeleton of the tree, consisting of separate Bézier curves for each branch. The
geometry is then generated by using points on the Bézier curve as centre points for a
cylindrical mesh. Again an approach similar to the one of Bloomenthal [Blo85] which
will be expanded upon in section 2.5. The ease of manipulation is then achieved by
exposing handles for the Bézier curves, enabling the adaptation of each branch segment
individually.

There have been many other techniques developed for improving the usability of plant
modelling, e.g. Sun et al. [SJJ09] exposed few explicitly named parameters to increase
the ease of generating plants without the need for deep understanding of the functionality
of L-Systems. While Ijiri et al. [IOI06], a few years earlier, allowed users to control
the development of L-Systems by providing them with an interface to a) modify the
generating rules responsible for the local structures and b) draw a line controlling the
axis and depth along which the fractal structure will grow. However, as they hold little
relevance to this thesis, this area won’t be expanded upon further.

Tackling the problem of data size with L-Systems

Meshes of plant’s can become highly detailed, posing challenges for both the transmission
of data over the network and the rendering of such detailed geometry.

To tackle the issue of displaying the geometry, multiresolution is often used to reduce
the complexity of the objects. To that end different Levels of Detail (LOD) are created
where each level has the same model at a different resolution. Various geometry based
simplification methods exist, however, as Lluch et al. [LCV03] argue, they may fail to
simplify the geometry of trees properly, as they do not take into account the structure
of the tree. To remedy this issue, they propose generating the LOD not based on
the geometry, but on the structure of the tree using parametric L-Systems. In this
"procedural multiresolution" approach, they create a "weighted tree" which holds the
modules (branches) weighted by how much they contribute to visual structure. They
achieve this by analysing the structure of the trees for various quantifiable features like
length or texture and using those for the creation of the weighted tree. The result is a
structure that holds the different LOD’s as the branches from most to least important,
and can thus be used to efficiently render the trees. In addition to efficient rendering,
they also propose using this for the progressive transmission.

In comparison, Jaeger et al. [JSJC10] make use of the inherent self similarity of rule based
generators to reduce the amount of data needed to encode a plant. They observe that at
a given cycle of generating a model, there will be similar patterns. These similarities are
then used by referencing them instead of explicitly saving each instance. Key differences
of the patterns like branching and phyllotaxy angles do not need to be stored as they
can be reproduced from the physiological age (branching order). Using this technique
they are able to reproduce the plants later on, requiring less storage, which consequently
requires less bandwidth. Further, it is possible to generate a variety of models by using
different ages in the generation. However, a caveat of this technique is, that it will only
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2.4. Self organizing plants

work with rule based generators (and not for example with self organizing techniques)
due to required self similarity and reliance on the physiological age as parameter for the
development. In addition, it is also not possible to take into account changes caused by
the environment or interaction, like e.g. pruning by a user.

Parallel L-System processing

Lipp et al. [LWW] in turn make use of the structure inherent to L-Systems to create
highly parallel algorithms for both the derivation and the interpretation of arbitrary
L-Systems.

To achieve this in the derivation they first analyse the modules for their output length
and resulting offsets in parallel, before doing the actual rewriting in parallel, using the
length and offset calculated in the previous steps. For the production, they noticed that
most of the turtle states & commands can be represented as matrices and leverage the
associativity of matrix multiplications by accumulating them in parallel before combining
them in a separate pass. Finally, they found push & pop commands used for branching
can easily split the work into two separate threads.

By employing these strategies they showed, that for L-Systems which grow quickly their
algorithms are superior to a highly optimized Single CPU implementation. Further, they
argue that the advantages of a GPU based solution become even more pronounced when
taking into account CPU-GPU transfer times.

2.4 Self organizing plants

Arguing that the repetitive character diminishes in more mature trees, Runions et al.
[RLP] take an approach that views plants as self organizing organisms instead of recursive
structures pioneered by Ulam [Ula62]. Runions et al. "Space Colonisation Algorithm"
is based on a previous work by Runions et al. [RFL+05] for generating leaf veins in 2D
space. At its core, the algorithm works by iteratively adding new nodes onto the existing
tree structure, growing the plant step by step. The growth of these new elements is guided
by points marking the available space. To populate the space with these points, a three-
dimensional shape is used as input. The shape is then filled with attraction points that
guide the growth of new nodes. They signify the existence of empty (available) space and
are removed when they are within a defined distance of a branch (kill distance) signifying
that the space is no longer available, see figure 2.4 for a step by step visualization of the
algorithm. The algorithm terminates when all attraction points have been erased or there
are no more nodes in the reach of the remaining attraction points [RLP, p 2-3]. After the
termination, the resulting structure of nodes is processed further, redundant nodes are
removed and the remaining once relocated to keep the structure of the skeleton graph.
Additionally, the graph can be smoothed out further by creating curve subdivisions [RLP,
p 2]. The resulting skeleton graph akin to methods described later on in section 2.5 is
then used for the creation of the 3D model of the plant [RLP, p 2].
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Figure 2.4: Step by step visualization of the Space colonization algorithm [RLP, p. 3]

This novel method was adapted soon after by Palubicki et al. [PHL+09] in 2009 expanding
on the concept of self organizing plants by doing two main things:

1. They introduce the internal allocation of resources to determine the fate of buds.
Proposing two different models: the extended Borchert-Honda (BH) model (con-
sidering each branching point one at a time) and the priority model (taking into
account entire axes).

2. In addition to competition for space, they also take into account the competition
for light through an approximation using a voxel grid to propagate the shadows
cast by buds and branches.

Expanding on this idea, Yi et al. [YLG+15] achieve finer control over tree species
properties by integrating the BH as well as the priority model, utilizing their different
approaches of allocation for different aspects of the modelling.

As mentioned previously in Sect 2.3.4 plants growth patterns can be described by growth
functions. Yi et al. [YLG+18] noted this lack of realism important for applications like
agriculture, forestry and co, in the modelling via self-organizing plants and addressed that
issue in their 2019 paper. They propose integrating growth modelling by constraining
the resources allocated in each iteration of the algorithm through a growth equation, see

12



2.5. Meshing

Figure 2.5: Pipeline of modeling trees using growth equations [YLG+18, p. 3]

figure 2.5. This approach not only leads to more realistic growth speed and thus models
at the different stages of development, it also has the advantage of limiting the height a
plant can grow to, consistent with the behaviour of real plants.

2.5 Meshing

As mentioned in the beginning of section 2.1, most (procedural) plant generation methods
can be split into two processes. This section will discuss the second step of this process:
Generating a visual representation of plants in the form of a 3D mesh.

2.5.1 Core of Meshing

One of the seminal methods for generating a mesh for a branching plant, in that case a
tree, stems from Bloomenthal [Blo85], who represents the tree’s branching pattern as a
skeleton graph consisting of points and their connections. To produce smooth models
of the bending branches, cubic splines that go through the data points are used. These
splines then form the axes for the generalized cylinders that are used to create the surface
of the tree. To produce the surface (mesh) from the splines, cross-sections of varying
radii are taken along the curves. With the axial resolution describing the number of
cross-sections taken along the curves, while the circumferential resolution describes the
number of points on each cross-section see figure 2.6. To prevent unwanted twisting
continuous Frenet Frames are calculated at each cross-section, consisting of three vectors,
the Tangent, Normal & Binormal. The Frenet Frames (or more specifically their normal
and binormal) form the orientational basis for the vertices generated at each cross-section.
The vertices created this way are then connected to from the surface mesh and the
ramiform, the places where branching occurs, are modelled using free form-surfaces.

Many of the techniques that followed in the area of tree modelling have since used it or
very similar techniques for generating their meshes, e.g. Sun et al. [SJJ09] mention using
it, while Rynkiewicz & Napieralski [RN16] simply describe their modelling approach as
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Figure 2.6: Circumferential resolution visualized as dots on the circle in cyan and axial
resolution visualized as orange dots in the center of the branch.
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points on Bézier curves being the centre of cylindrical meshes, using normal, binormal
and tangent for calculating the bending.

Meanwhile, both Runions et al. [RLP] & Pirk [Pir13, Ch.6.1.2] use the approach while
improving on the Frenet Frames by utilizing "parallel transport frames" (PTF) (see
Hanson & Ma [HM95], which eliminate the issue of not being able to compute Frenet
Frames in points where the acceleration is zero.

Further, Pirk et al. [Pir13, Ch.3] proposed a new approach for the structure in which to
represent the model of a tree. Making use of the "Human Visual Systems" limitations,
they divide the model into two distinct entities: the main branching structure as skeleton
graph and the overall shape of the foliage as leaf clusters. This abstract representation
reduces the memory footprint (especially for multiple trees of the same species) for
both storage and transmission. The clusters are textured/filled in the modelling step
with branch patches of a predefined library, thus allowing for the use of LOD as well as
instancing as these smaller branches don’t have to be unique models [Pir13, Ch.3].

To aid in the real time rendering, Pirk [Pir13, Ch. 6] also discusses multiple techniques
to be applied for efficient processing and rendering of trees. First of, it is pointed out,
that the handling of the surface mesh on the CPU is costly and thus proposed to instead
use a skeletal graph on the CPU while handling the generation of the mesh on the GPU.
To that end, they put forth the following process:

1. They create Chains, sequences of edges for each branch. A chain then directly
relates to the space curves needed to generate the surface mesh over a whole branch.
(These chains will be discussed in more detail late on in 3.5)

2. The PTF algorithm is applied onto each chain, producing smooth frames along the
entire branches.

3. Refining the skeleton graph consisting of the chains on the GPU in the "control" &
"evaluation" shader stages.

4. Generating a generalized cylinder along each refined branch (chain) in the "geometry"
shader stage.

This approach allows for refining the mesh based on the distance of the camera on the
fly being highly efficient on the GPU while also allowing for interaction with the tree e.g.
through wind by applying these forces on the coarse skeleton graph.

2.5.2 Improving the Mesh

Previously, it was already noted, that many techniques create the geometry for the
individual branches as generalized cylinders. However, they often do not utilize the
ramiform free-form surface, e.g. in [RLP] and not minding the ramiform might produce
visual artefacts or inconsistencies as noted by Lluch et al. [LVM04]. To that end, Lluch
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et al. [LVM04] introduced a technique (mentioned in section 2.3.5) for creating a single
polygonal mesh over the entirety of a tree. It works by first producing the contours at the
start and end of each segment in a tree and its branches. These contours are then stored
via nodes in a linked data structure akin to the cross-sections created by Bloomenthal’s
[Blo85] method. Based on this data structure (and the contours within) the geometry is
generated. In contrast to the other methods, however, the geometry is not produced by
linking the contours together directly. Instead, the junctions are refined to allow for the
generation of a single mesh. This is achieved by

1. Subdividing the segments between the parent and its child contours into further
contours.

2. Analysing these contours for intersections.

3. If there is an intersection between contours

a) They are combined to a single contour
b) Then saved into the data structure containing the original contours [LVM04,

CH 3.3].

4. With the structure produced by this refinement process it is then possible to
generate a continuous single geometry for the entire tree.

2.5.3 Foliage

Previously the generation of the surface for the branching structure of plants has been
discussed however plants have another important part, that has as of yet only briefly been
addressed, the matter of foliage. Many a method technique for displaying the leaves has
been developed, Reeves & Blau [RB85] used particle systems to render both the branching
structure and the foliage. Bloomenthal [Blo85] modelled the individual leaves, using three
polygons, bending them at their creases. Others, such as Miao et al. [MZGL13] developed
techniques for detailed modelling of leaves. Pirk [Pir13] create detailed representations
using textured quads that can dynamically refined using Non-Uniform rational B-Splines
(NURBS). The NURBS describe the surface of a leave, thus making it possible to create
varying degrees of detail by increasing and decreasing the sampling used to generate the
vertices based on the distance to the camera. Though commonly, leaves are generalized
as groups of texture quads (Billboard Clouds) [Pir13, Ch. 6.1.5, p. 101].

Many more techniques as well as different implementations of the ones introduced here
exist, but introducing them all is outside the scope of this thesis.
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CHAPTER 3
Theory and Method

This chapter will explain base concepts and elaborate on the methods that were employed
in this thesis.

3.1 Definitions

3.1.1 Tree Skeleton

Bloomthal [Blo85] describes the tree skeleton as "Any representation of the branching
pattern". In this thesis, "tree skeleton" & "skeleton graph" will be used interchangeably
to describe the abstract description of the branching structure as a graph consisting of
linked nodes, each node representing a segment of a plant. Akin to what Pirk [Pir13,
Ch. 3] term the "skeletal graph". This graph holds all the important information on the
general branching structure of a tree, like branching angles and relation of branches to
one another, but can be used to hold other important information like branch radius,
woodiness as well.

3.1.2 Coordinate Frames

A coordinate frame is given by a set of three orthogonal axes attached to a body, in our
case these axes are given by 3D Vectors, and are used to describe positions relative to
the body. With the origin of the coordinate frame being the point where the three axes
meet. In the case of this thesis, the three axes will be given by the tangent, normal &
binormal of a point on a space curve. This is based on the work of Hanson & Ma [HM95],
whose parallel transport frame algorithm, which will be described later on, is used for
moving a coordinate frame along the space curve to generate a smoothly connected mesh.
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3. Theory and Method

3.2 Generalized Cylinder

Agni [Agi72] define generalized cylinders as a space curve that represents the axis and
a number of cross-sections along said axis. These cross-sections can be of varying form
(e.g. Bloomthal [Blo85] uses disks of varying radii).

3.3 Spatial Curves

Spatial curves are an important part of modern 3D graphics. They can be used for
generating surfaces, e.g. Bloomthal’s [Blo85] modelling of the branches, as well as being
used for paths along which objects travel [Len12, Ch.11, p.317].

Some of the most commonly used curves are cubic curves due to being both flexible as
relatively simple. Their parametric representations can conveniently be written in the
form of a matrix product:

Q(t) =

ax bx cx dx

ay by cy dy

az bz cz dz




1
t
t2

t3


or

QQQ(t) = CCCTTT (t)

where t is a point on the curve CCC is the matrix of coefficients and TTT (t) the vector holding
the variable and the degrees of the (cubic)polynomial function [Len12, CH 11, p.317-318].

The coefficients of the classes of cubic curves discussed in this chapter can further be
split into two important components, GGG the geometrical constraints (ggg1, ggg2, ggg3, ggg4)
and their blending functions (basis matrix MMM), both of which can be represented using
separate matrices. This leaves us with

QQQ(t) = GGGMMMTTT (t)

where

GGG =
[
ggg1 ggg2 ggg3 ggg4

]
=

(ggg1)x (ggg2)x (ggg3)x (ggg4)x

(ggg1)y (ggg2)y (ggg3)y (ggg4)y

(ggg1)z (ggg2)z (ggg3)z (ggg4)z


and
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MMM =


a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4


with ai, bi, ci, di being the coefficients of the blending functions for the geometric con-
straints at the given point on the curve t [Len12] CH 11, p.318-319.

3.3.1 Hermite Curves

The first class of curves that will be introduced here are cubic Hermit Curves. They
are defined by the start- & endpoint (PPP 1,PPP 2) as well as their corresponding tangents
(TTT 1,TTT 2), providing the geometric constraints GGGh for this type of curve. The blending
function matrix is given by MMMH [Len12, CH11.2, p.320].

GGGH =
[
PPP 1 PPP 2 TTT 1 TTT 2

]

MMMH =


1 0 −3 2
0 0 3 −2
0 1 −2 1
0 0 −1 1



3.3.2 Bézier Curves

The next class of curves are the Bézier curves, which can easily be translated to and
from Hermit Curves. While cubic Bézier curves are also defined through their start &
endpoint, instead of tangents they are further defined by two interior points. The four
points are called control points and give the geometric constraints GGGB. While the
curve always runs through the first and last control point, the interior control points
are approached by the curve, but the curve does not necessarily run through them. The
blending functions are given by the basis matrix MMMH [Len12, CH11.3, p.322-325].

GGGB =
[
PPP 0 PPP 1 PPP 2 PPP 3

]

MMMH =


−3 6 −3
3 −12 9
0 6 −9
0 0 3
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3.3.3 Splines

The concept of splines stems from the work of French draftsmen, bending, combining and
anchoring thin strips of wood together to create smooth, curves between specified points.
Similarly, the mathematical concept of splines is used to describe curves that are hard
to model directly. Curve segments are stitched together to create more complex curves.
Notably, the splines are permitted to have certain (dis-)continuities at the junction
points [ANW67, ][BBB87]. The (dis-)continuities are described as parametric continuity
Cn given if the n-th derivative of the curve segments in the junction point, as well as
geometric continuity Gn if the n-th derivative is non-zero and points in the same direction
[Len12, Ch.11.1, p.318]. These levels of continuity are of various importance, depending
on the application, e.g. in vector graphics sudden changes in direction (C0 but not C1)
might be wanted while in others like e.g. smooth animation it might not.

In the creation of splines there are generally trade-offs that have to be made, for that
some more concepts will be introduced:

• Interpolation vs. Approximation [Len12, Ch.11.3, p.322]

– A control point is interpolated if the curve runs through the point

– A control point is approximated if it approaches the point

• Local vs. Global control [Len12, Ch.11.5, p.331]

– Local control is given if changing a geometric constraints effects only the
corresponding curve segment and its immediate neighbours

– Global control means that a change to the geometric constraint of one segment
leads to a change in the whole curve

Hermite Spline

A hermit spline is a spline made up of segments of Hermite curves. As the first derivative
gives the tangent of a function at a given point, it follows, that a Hermite Spline has C1

in its junction points if the tangents are chosen to be equal at the junction points for
subsequent curve segments. Similarly, C0 is given if the positions of the end & start point
of subsequent segments is the same. For C2 that unfortunately isn’t the case. Further
constraints could be applied, but that would result in a lack of local control. A spline
that does that is the natural cubic spline, however as stated before at the cost of local
control [Len12, Ch.11.5, p.331-334].

A brief note one Bézier Splines: as noted in section 3.3.2, Bézier curves can easily be
translated to Hermit curves and vice versa. Thus, it follows that Bézier Splines can
exhibit the same continuities with the proper constraint.
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B-Spline

The B-Spline (Basis-Spline) achieves C2 continuity over all junction points by constraining
the blending functions to possess said C2 continuity, while also allowing for local control.
It achieves this, however, at the cost of not interpolating any of the control points. This
interpolation can be achieved with non-uniform B-Splines, however that once again
comes at the cost of continuity at the points that are interpolated. Simply put, the
interpolation can be acquired by subsequently repeating the control points. Though each
repetition results in the loss of one degree of continuity at that point [Len12, Ch.1.6-1.6.3,
p.334-345].

3.4 Algorithm(s)

3.4.1 Parallel Transport Frame

The coordinate frames defined in section 3.1.2 are the base of a cylinder at a given point
along a space curve. To achieve a smoothly connected mesh without twisting between
consecutive frames, it’s necessary to compute continuous frames. A common approach to
this problem is the Frenet Frame. However, the Frenet Frame, requires the curve to have
a non-vanishing second derivative [HM95], [Pir13, Ch.6.1.2, p.97-98].

Hanson & Ma [HM95] introduce the concept of the parallel transport frame (PTF), based
on the insight that it’s possible to transport a frame bye parallel transporting each
component of the frame.

While in its basic form the PTF does, in general, not return to its initial value in closed
curves [HM95] this is a non issue for the application in this thesis as the tree graph
doesn’t have circles.

Hanson & Ma [HM95] provide an algorithm (see algorithm 3.1) for calculating the PTF
for a given set of tangent vectors, which was adapted and implemented in this thesis.

3.5 Data Structure
The structure for holding the data of the plants needs to encompass all the information
required for the accurate construction of their surfaces. To achieve this, an approach
heavily based on Pirk’s [Pir13] as well as the seminal work of Bloomenthal [Blo85] was
chosen. As the basis for generating the mesh using space curves, the skeletal structure of
the tree is represented as segments, with each segment holding the following information
in table 3.1. It should be noted that the structure could easily be expanded to hold other
information as well, such as e.g. the woodiness or water content, which can then be used
for differences in rendering or in simulating e.g. bending from wind. This has however
been left out for the sake of the scope of this thesis.

These segments are then processed to form chains [Pir13, Ch.6.1.3, p.99] for each branch.
A chain is a sequence of segments linked together such that each segment has only a
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Algorithm 3.1: The PTF algorithm introduced by Hanson & Ma [HM95]
Input: (1) A list of unit tangent Vectors {T̂i}, i = 0, . . . , N ;
(2) An initial normal Vector V⃗0, V⃗0 ⊥ T̂0
Output: A list of parallel-transported normal vectors V⃗i, i = 1, . . . , N , V⃗i ⊥ T̂i

1 for i← 0 to N − 1 do
2 B⃗ ← T̂i × T̂i+1

3 if ∥B⃗∥ = 0 then
4 V⃗i+1 ← V⃗i

5 end
6 else
7 B⃗ ← B⃗/∥B⃗∥;
8 θ ← arccos (T̂i · T̂i+1); // 0 ≤ θ ≤ π

9 V⃗i+1 ← R(B̂, θ) ∗ V⃗i; // Rotate the Normal Vector by angle θ about B̂

10 end
11 end

Name Description
Position Holds the position of the segment
Direction Holds the growth direction of the segment
Length Length of the segment
Radius Holds the initial radius of the segment

Children Links to all child segments
Peripherals List of the peripherals (foliage) attached to the segment

Table 3.1: Table explaining the information encoded in the data structure.

single ancestor. Pirk use the Gravelius Order [Pir13, Ch.5.2.2, p.78-79] to determine
these chains representing the main trunk & its side branches based on differences in the
angle of subsequent segments as well as expending on the idea and additionally taking
into account the length & thickness [Pir13, Ch.6.1.3, p.100].
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CHAPTER 4
Implementation

This section will first describe the different ways available to extend Godot’s capabilities,
as well as Godot’s limitations in that process. Afterwards it will go into the whole pipeline
from importing the Data from Agro Godot, to transforming the data and generating
skinned and textured Meshes.

4.1 Godot

An introduction to Godot was given in 1.2 this section here describes how to extend
Godot’s functionality.

4.1.1 Extending Godot

There are multiple ways in which new functionalities can be added to Godot. These will
be discussed here, moving from close to the engine’s source code to farther away, and
can be divided into two categories. Changes that require recompilation of the engine and
changes that don’t.

Recompiling the Engine

On the side of the engine we have, of course, directly modifying the core of the engine.
This is the most powerful as theoretically everything can be changed, added or modified,
it is however also the most intrusive and most prone to breaking when e.g. a new version
is released and incompatible changes are introduced.

Modules The next level are modules written, like the engine, in C++. They allow for
adding new functionality to the engine, as the name suggests, in a modular way and
without the need to modify the core directly [Goda].
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This allows for e.g. binding to external libraries or adding entirely new functionality.
Being written in C++ it also allows for highly performant code and manual memory
management.

No recompilation

GDNative Still written in C++ (or C) but no longer in need of recompiling the engine,
Godot offers GDNative to extend its functionality [Gode]. Though on that note, Godot
introduced the successor for GDNative available from Godot version 4: GDExtentions
which replaces GDNative fulfilling the same purpose, but with fewer downsides and more
tightly integrated into the engine [Engc]. However, as this thesis is implemented in Godot
3, GDExtentions won’t be expanded upon here.

Along with the advantage of not requiring the recompilation of the entire engine, GDNative
offers some others [Gode]:

• It can be used equally in both the editor and the final application, whereas C++
modules require you to recompile the export templates.

• Stemming from the fact that the engine doesn’t need to be recompiled, GDNative
is easier to distribute and share with others.

It does however also have some disadvantages compared to C++ modules [Gode]:

• The access of GDNative is limited to the access the scripting API exposes.

• It has limitations in regard to platform support as it’s not available on Universal
Windows Platform and has only limited support for HTML5.

• In case the code requires lots of communication through the scripting API, it can
be slower than the modules which do not have that overhead.

An additional downside of GDNative in comparison to the class of extensions introduced
next is, that it has strict version requirements, only working for the exact minor version
it was compiled for.

Editor Plugins Editor Plugins provide a way to create tools that expand Godot’s
capabilities, using GDScript or C# as well as Godot’s UI and Scenes. While less powerful
than the previously introduced options, they still are highly useful and their tight
integration with Godot’s Scenes and consequently UI makes them great for creating tools
inside the Godot editor that expand Godot’s base functionality [Godc].
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4.1.2 Graphics API Limitations

Godot 3.5, the version used for this thesis, offers two renderers: OpenGL ES 3.0 (OpenGL
3.3 on desktop) which they recommend for desktop and OpenGL ES 2.0 which they
recommend for mobile [Godb]. However, while the geometry shader stage is supported as
of OpenGL 3.2 [Geo] it is not available in Godot, and while initially planned for Godot 4
these plans were later discarded [Gita], [Gitb].

Due to that the implementation of the tessellation of the models was done entirely on
the CPU, instead of the GPU using the geometry shader, like [Pir13, Ch.6.1.4, p.101]
suggested. Similarly, the tessellation stage isn’t supported, in this case because it’s only
in OpenGL core since version 4.0 [Tes].

4.1.3 Built in Functionality

As mentioned in 2.5.3 rendering large amounts of leaves can be quite expensive and while
various techniques have been developed, this thesis uses Godot’s built in MultiMesh to
achieve instancing to reduce the amount of draw calls [Godd].

4.2 Plant Data

4.2.1 File Type

In its initial stages, the JSON file format was used for its readability. Each node
represented a start and/or endpoint of a segment of a plant, with each node holding the
following information:

• ID - Unique identifier of that node used for linking nodes together.

• Position - Vector 3 holding the position of the node

• Radius - Float holding the radius of the branch at that point

• Rotation - Vector 3 holding the orientation of the branch at that point

• Children - A list holding the IDs of all the child nodes of the current node, allowing
for branching as well as a continuous branch.

• Branch - ID of the branch the current node belongs to in order to generate a
continuous mesh over the whole branch.

To reduce the file size, the decision was felled to change the format from JSON to binary,
as well as using the edges of the tree skeleton instead of the vertices. This results in
a slight loss of information (as the radius is uniform along an entire segment), but is
deemed acceptable for the reduction in size. It is also very similar to the way Pirk et al.
[Pir13, Ch.5.3.1, p.80] defined their data structure.
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In its final form, the plugin is able to read binary data from Agro Godot holding the
following information:

• Version number of the file

• Number of plants in the file

• Plants consisting of:

– Number of Organs in the plant
– 3 Types of Organs (Bud, Stem and Leaf) with:

∗ Common: ParentId, OrganType, OrganId, Energy Level, Water Level
∗ Bud: Position
∗ Stem: Length, Radius, Coordinate frame at centre of stem
∗ Leaf: Coordinate at centre of leaf

The files holding this data need to end in the .prim file extension.

4.2.2 Conversion into local Data

Upon reading the data from the file, it is converted into an RtPlant a data structure
holding the skeleton graph of a plant implemented as a class in C#. The graph is
represented by a list of branches also implemented as C# class holding its child branches
as well as the connected edges based on the concept of chains introduced in section 2.5.1.
Each edge in the branch can additionally hold its corresponding leaves, while the buds,
as well as the energy & water level are ignored for the purpose of this thesis. Further,
the data structure of an edge once it’s loaded differs from the one saved as a file. It
consists of a start & end node holding the Coordinate Frame & radius at the position.
This is needed to achieve the C1 continuity discussed in section 3.3.3. Upon converting
the edges from the file data, the start node of edge a is made the end of its predecessor b.
This ensures that the position and tangent are equal at each junction point, granting C0
and C1 continuity.

Since the binary format no longer holds the information of which branch an edge belongs
to, the chains have to be determined from the given data. As mentioned earlier, Pirk
[Pir13, Ch.6.1.3, p.100] uses an approach based of Gravelius Order to determine the
main trunk and its side arms. In this thesis a very simplified approach is taken, and the
chains are determined solely on the length, aiming for the maximum length of any chain
by iterating over all segments from outer to innermost, recursively maximising for the
longest chain.

As a branch holds the segments in a list, it would be easy to convert it to an array holding
all the data necessary to do the calculations for the mesh generation on the GPU.
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Previous ideas such as implementing it as objects linked together by references to each
other or a dictionary holding all the edges in a dictionary would not have that advantage
and were therefore discarded.

To enable the loading of the files, the plugin written in this Thesis introduced a new
Godot node called PlantLoader. This node provides a field called Plant File Path which
users can click to select their desired file. Upon selection, the file is imported and the
plant(s) in the file are loaded. Changing the selected file causes the new plants to be
loaded automatically, removing the previously loaded ones.

The node also exposes other properties as well that influence the look of the plant:

• Plant Scale - float number - Used for scaling the plants loaded up and down.

• Texture Repeat Factor - float number - Enables scaling of the texture along
the mesh of the branches, as the required scaling may differ from plant to plant. A
higher number corresponds to repeating the texture more often.

• Branch Material - Godot Material - Defines the material used for the mesh of
the branches.

• Leaf Mesh - Godot Mesh Instance - The Mesh to be used for the leaves that will
be instanced (more on that later in section 4.3.3.

• Subdivisions - The subdivisions multiplier, influencing how detailed the plants
can get.

4.3 Mesh Generation

As mentioned previously, Godot supports neither the geometry nor the tessellation shader
stages, thus the generation of the mesh as well as the subdivision happens entirely on the
CPU, using C#. This section explains how the mesh generation and the Level of Detail
was implemented.

After loading and converting plants into instances of RtPlant, as explained in the previous
sections, the mesh is generated for the editor view.

The way the mesh is generated is the same in the editor and at runtime, however the
Level of Detail depends on the distance to the camera at runtime, and therefore the mesh
isn’t continually updated or regenerated in the editor. Instead, it’s updated when any of
the values exposed by PlantLoader.cs are changed.

The next paragraphs will describe the process of generating the surface mesh.
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4.3.1 Process

The plugin generates continuous surfaces over entire branches, but not over entire plants.
Meaning each branch is its own individual surfaces. The generation process is propagated
from the bottom up (trunk to outer branches) and thus could be stopped at a certain
branch level if the need arose.

The amount of subdivisions is calculated for each branch. In the current implementation,
this is based on the length of the branch as well as the distance to the camera for LOD,
but could be easily replaced by a different mechanism.

For each segment of a branch (given by the edge), a cubic Bézier curve is generated and the
points along it are sampled x times, where x is the number of subdivisions. These points
are saved as GeometryNodes in a list, with each node holding the CoordinateFrame
(orientation, position) & radius.

However, while the list created this way holds the correct positions, tangents and radii,
the Frames are not yet continuous. To achieve this, the PTF algorithm introduced in
3.4.1 is run over the list of geometry nodes, producing a list of continuous geometry
nodes.

This new list is then the used to generate CrossSections at each geometry node, disks
represented by x vertices where x is the number of radial subdivisions. The radial
subdivisions are based on the overall subdivisions of the branch.

The CrossSections are linked together and used to create one continuous mesh over the
whole branch, akin to the process by Bloomenthal [Blo85] described in 2.5.1.

4.3.2 Texturing/UV Mapping process

To achieve a continuous texture, the V-Coordinate is set based on the position of the
current node compared to the length of the whole branch. The difference of this versus
uniform V-Coordinates can be seen in figure 4.1.

Further, the scale of the Texture is applied and the length of the branch factored in.
One issue that arose in the texturing process, however, was that in longer branches with
great difference in the start & end radii the textures ended up having highly stretched
or compressed textures towards the ends, depending on what texture scale was chosen
see figure 4.2. This stems from the fact that the same square image is projected onto
surfaces of different sizes and is a current limitation of our approach.

4.3.3 Foliage Generation

For the foliage (the leaves) of the plants a simple instancing approach was chosen. Each
RtPlant has a wrapper of a MultiMesh instance. Upon mesh generation, each branch
that has leaves adds the position and scale of the leaves to a list in the wrapper of the
MultiMesh which then renders leaves using Godot’s MultiMeshInstance.
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4.3. Mesh Generation

(a) Uniform UV (b) Relative UV

Figure 4.1: Difference between uniform distribution of the V-Coordinate irregardless of
its position along the branch vs. relative to the position along the branch.

Figure 4.2: Difference in texture stretching based on the radius difference along the
branch.
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CHAPTER 5
Results

5.1 Evaluation
The performance was evaluated by moving a camera along a predefined track through
a scene populated with plants. This was done once with the mesh being generated on
the fly, adaptive to the distance to the camera with a subdivision factor of 16 and 5
distinct LOD steps. The second time, the meshes were generated and exported from the
plugin, using the minimal LOD step (with the highest subdivisions) and the subdivision
factor of 16 as well to justify direct comparison. The plants used were trees with foliage
and medium height plants, seen in figure 5.2. The results of these measurements can be
seen in table 5.1. The stats measured were the frames per second (FPS) and the vertices
drawn each frame using Godot’s debugger monitor feature and Godot’s debugger profiler
was used for the frame time, specifically the idle time. The idle time in Godot’s profiler
is the time spent in the Process function in scripts (called every frame). The device used
for the measurements was the Lenovo Legion Y540-15IRH, with an Intel(R) Core(TM)
i7-9750H CPU @ 2.60GHz 2.59 GHz CPU, 16GB RAM and a NVIDIA GeForce GTX
1660 Ti GPU connected to an external monitor allowing for up to 144 FPS.

As can be clearly seen, the adaptive method has major drops in FPS, even going below
11 FPS at times, while the same scene with meshes at the subdivisions of the maximum
LOD step stays above 30 FPS for almost the entire time, even reaching frame rates above
116 FPS at times. Further, the average FPS show the discrepancy even more clearly, with
the adaptive method averaging out at about 23 FPS over the whole run time, while using
the meshes resulted in an average of 42 FPS. In the profiler, we see that the worst frame
for the adaptive method was frame #1 with an idle time of 234.66 ms and an overall
time of 234.78 ms for the frame. In comparison, the worst frame using just the meshes
was #1004 with an idle time of just 36.35 ms and 36.41 ms total for the frame. This
clearly shows that the adaptive mesh method implemented in C# on the CPU for Godot
is not usable for the purpose of improving the performance. However, as can be seen
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5. Results

(a) Monitor for the scene with adaptive subdivi-
sions

(b) Monitor for the scene with static meshes

(c) Profiler for the scene with adaptive subdivi-
sions

(d) Profiler for the scene with static meshes

Figure 5.1: Comparison of the performance between the adaptive subdivisions and the
exported meshes for the scene. In the profiler the frame that took the longest was selected
to show the difference in the worst case.

in the monitors, the adaptive meshing method does achieve a quite drastic reduction of
vertices drawn. Again the average was taken from the monitors and the adaptive method
came in at an average of 1988070, while the pure meshes came in at 12038166. About 6
times more vertices. Thus, it could arguably improve performance, if it would be possible
to reduce the time it takes to change the mesh, e.g. by performing the calculations on
the GPU and their corresponding shader stages.

5.2 Showcase
Texture from https://www.texturecan.com/ were used for the ground & stem/trunk
textures and the leaf texture are from https://opengameart.org/ all under the
CC0 licence.
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5.2. Showcase

Figure 5.2: The scene used for testing the performance with a subdivision factor of 16.

Figure 5.3: Some medium sized plants with a subdivision factor of 24.
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5. Results

Figure 5.4: Full view of a tree with lots of foliage from the Agroecosystem project
modelled using the plugin.34



5.2. Showcase

Figure 5.5: Full view of a scrawny tree with little foliage from the Agroecosystem project
modelled using the plugin.
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5. Results

Figure 5.6: Close up of a scrawny tree with little foliage from the Agroecosystem project
modelled using the plugin.
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CHAPTER 6
Conclusion and Future Work

This work offers many opportunities for improvements in various areas, and this section
will discuss some of those possible areas and provide a brief summary of the thesis at the
end.

6.1 Conclusion
This thesis makes two main contributions. First, the plugin for Godot 3.5 which allows
the visualization of data from the AgroSus project. Providing high fidelity geometry by
converting the data to the chain’s data-structure introduced by Pirk et al. [Pir13] to
generate the geometry. Second, the evaluation of on the fly subdivision using Pirk et al.’s
strategy in Godot 3.5, which is shown to not be usable as it is limited to the CPU and
therefore slower than static geometry.
In its current form, the plugin created during this thesis is useful for creating meshes in
the desired resolution from the imported data, providing an easy way to create pleasing
visualizations. However, it does fail at providing efficient adaptive meshes during runtime.
This stems from the fact that Godot doesn’t expose certain stages of the render pipeline,
which would be required in order to process the plants on the GPU. This results in the
adaptive subdivision being done entirely on the CPU, which, as mentioned, fails at being
efficient enough to be viable. Still, this thesis shows that it is possible to drastically
reduce the amount of vertices that need to be drawn, which shows that this might be a
viable approach in future Godot versions that do expose enough of the GPU capabilities
to handle the adaptive generation on the GPU.

6.2 Performance
The likely most prominent area for improvement is that of performance. While it seems
this is not possible in Godot 3 without changes to the core of the engine, it might be
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6. Conclusion and Future Work

possible to achieve major improvements in Godot 4. One possible avenue to explore
would be the generation of the meshes using compute shaders and the RenderingDevices
available in Godot 4. In the same vein, integrating the tree-skeleton plus leaf clusters
approach introduced in 2.5.1 could result in further improvements to the performance,
and it might be possible to implement them using compute shaders as well.

6.3 Texturing
Another possible area of improvement would be the area of texturing. For one, the
stretching issues of textures issue mentioned in 4.3.2. Further, it might be interesting
to generate the texture procedurally as well. This would make it possible to take into
account further information on the state of branches such as woodiness or hydration to
change the look of the individual branches.

6.4 Meshing
The area of meshing also leaves many possibilities for improvements, from integrating
Lluch et al.’s’ [LVM04] approach for creating a single continuous mesh, to enabling
making the branches and trunk more gnarly by using shapes other than circles for the
cross-sections.

6.5 Animation
Being able to efficiently generate the mesh from the skeleton graph on the fly would allow
for efficient animation of vegetation by applying the forces to the tree graph, as described
by [Pir13, CH 6, p.97] e.g. the forces of wind, or in case of a game it might be possible
that the player characters traversal of a tree might lead to bending of the branches.
Similarly, since SusAgro simulates the growth of vegetation, it might be interesting to
skip the export and import step and instead directly visualize the data generated by it.

6.6 Interactability
Finally, enabling interaction with the tree-skeleton like e.g. pruning might be an interest-
ing area for extension as well.

38



List of Figures

2.1 Example of curves generated by basic OL-Systems and visualized using Turtle
interpretation [PL90, p. 11] . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Example of structures generated by bracketed OL-System and visualized using
Turtle interpretation [PL90, p. 25] . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Matching in a context sensitive L-Systems [PL90, p. 31] . . . . . . . . . . 9
2.4 Step by step visualization of the Space colonization algorithm [RLP, p. 3] 12
2.5 Pipeline of modeling trees using growth equations [YLG+18, p. 3] . . . . 13
2.6 Circumferential resolution visualized as dots on the circle in cyan and axial

resolution visualized as orange dots in the center of the branch. . . . . . . 14

4.1 Difference between uniform distribution of the V-Coordinate irregardless of
its position along the branch vs. relative to the position along the branch. 29

4.2 Difference in texture stretching based on the radius difference along the branch. 29

5.1 Comparison of the performance between the adaptive subdivisions and the
exported meshes for the scene. In the profiler the frame that took the longest
was selected to show the difference in the worst case. . . . . . . . . . . . 32

5.2 The scene used for testing the performance with a subdivision factor of 16. 33
5.3 Some medium sized plants with a subdivision factor of 24. . . . . . . . . . 33
5.4 Full view of a tree with lots of foliage from the Agroecosystem project modelled

using the plugin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.5 Full view of a scrawny tree with little foliage from the Agroecosystem project

modelled using the plugin. . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.6 Close up of a scrawny tree with little foliage from the Agroecosystem project

modelled using the plugin. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

39





List of Tables

3.1 Table explaining the information encoded in the data structure. . . . . . . 22

41





List of Algorithms

3.1 The PTF algorithm introduced by Hanson & Ma [HM95] . . . . . . . . 22

43





Bibliography

[Agi72] Gerald J. Agin. Representation and Description of Curved Objects. Technical
report, October 1972.

[ANW67] J.H. AHLBERG, E.N. NILSON, and J.L. WALSH. The Theory of Splines and
Their Applications. In Mathematics in Science and Engineering, volume 38,
pages 1–8. Elsevier, 1967.

[BBB87] Richard H. Bartels, John C. Beatty, and Brian A. Barsky. An Introduction to
the Use of Splines in Computer Graphics. 1987.

[Blo85] Jules Bloomenthal. Modeling the mighty maple. In Proceedings of the
12th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’85, pages 305–311, New York, NY, USA, July 1985. Association
for Computing Machinery.

[BW20] Andrzej Barczak and Hubert Woźniak. Comparative Study on Game Engines.
Studia Informatica, (23):5–24, December 2020.

[dA] Andrea diSessa and Harold Abelson. Turtle Geometry.
https://mitpress.mit.edu/9780262510370/turtle-geometry/.

[Enga] Godot Engine. About Godot 4, Vulkan, GLES3 and GLES2.
https://godotengine.org/article/about-godot4-vulkan-gles3-and-gles2/.

[Engb] Godot Engine. First public release! https://godotengine.org/article/first-
public-release/.

[Engc] Godot Engine. Godot - Introducing GDNative’s successor, GDExtension.
https://godotengine.org/article/introducing-gd-extensions/.

[Geo] Geometry Shader - OpenGL Wiki. https://www.khronos.org/opengl/wiki/Geometry_Shader.

[Gita] GitHub. Issue - Add Support for Geometry Shaders · Issue #10817 ·
godotengine/godot. https://github.com/godotengine/godot/issues/10817.

[Gitb] GitHub. PR Geometry shader support by Chaosus · Pull Request #28237 ·
godotengine/godot. https://github.com/godotengine/godot/pull/28237.

45



[Goda] Godot - Custom modules in C++. https://docs.godotengine.org/en/3.6/development/cpp/development/cpp/custom_modules_in_cpp.html.

[Godb] Godot - List of features. https://docs.godotengine.org/en/3.6/about/about/list_of_features.html.

[Godc] Godot - Making plugins. https://docs.godotengine.org/en/3.6/tutorials/plugins/editor/tutorials/plugins/editor/making_plugins.html.

[Godd] Godot - MultiMesh. https://docs.godotengine.org/en/3.6/classes/classes/class_multimesh.html.

[Gode] Godot - What is GDNative? https://docs.godotengine.org/en/3.6/tutorials/scripting/gdnative/tutorials/scripting/gdnative/what_is_gdnative.html.

[HLZ+17] Shaojun Hu, Zhengrong Li, Zhiyi Zhang, Dongjian He, and Michael Wimmer.
Efficient Tree Modeling from Airborne LiDAR Point Clouds. 2017.

[HM95] A. Hanson and Hui Ma. Parallel Transport Approach to Curve Framing. 1995.

[Hon71] H. Honda. Description of the form of trees by the parameters of the tree-like
body: Effects of the branching angle and the branch length on the sample of
the tree-like body. Journal of Theoretical Biology, 31(2):331–338, May 1971.

[IOI06] Takashi Ijiri, Shigeru Owada, and Takeo Igarashi. The Sketch L-System:
Global Control of Tree Modeling Using Free-Form Strokes. In In Smart
Graphics, volume 4073, pages 138–146, July 2006.

[JSJC10] M. Jaeger, R. Sun, J. Jia, and V. Chevalier. EFFICIENT VIRTUAL PLANT
DATA STRUCTURE FOR VISUALIZATION AND ANIMATION. undefined,
2010.

[LCV03] Javier Lluch, Emilio Camahort, and Roberto Vivó. Procedural multiresolution
for plant and tree rendering. In Proceedings of the 2nd International Conference
on Computer Graphics, Virtual Reality, Visualisation and Interaction in
Africa, AFRIGRAPH ’03, pages 31–38, New York, NY, USA, February 2003.
Association for Computing Machinery.

[LD99] Bernd Lintermann and Oliver Deussen. Interactive Modeling of Plants. Com-
puter Graphics and Applications, IEEE, 19:56–65, February 1999.

[LDY10] Luis Lopez, Yuanyuan Ding, and Jingyi Yu. Modeling Complex Unfoliaged
Trees from a Sparse Set of Images. Comput. Graph. Forum, 29:2075–2082,
September 2010.

[Len12] Eric Lengyel. Mathematics for 3D Game Programming and Computer Graphics.
Course Technology, Cengage Learning, Boston, MA, 3rd ed edition, 2012.

[LVM04] J. Lluch, R. Vivó, and C. Monserrat. Modelling tree structures using a single
polygonal mesh. Graphical Models, 66(2):89–101, March 2004.

[LWW] Markus Lipp, Peter Wonka, and Michael Wimmer. Parallel Generation of
L-Systems.

46



[MZGL13] Teng Miao, ChunJiang Zhao, XinYu Guo, and ShengLian Lu. A framework
for plant leaf modeling and shading. Mathematical and Computer Modelling,
58(3):710–718, August 2013.

[PHL+09] Wojciech Palubicki, Kipp Horel, Steven Longay, Adam Runions, Brendan
Lane, Radomír Měch, and Przemyslaw Prusinkiewicz. Self-organizing tree
models for image synthesis. ACM Transactions on Graphics, 28(3):58:1–58:10,
July 2009.

[Pir13] S. Pirk. Efficient Processing of Plant Life in Computer Graphics. 2013.

[PL90] Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The Algorithmic Beauty
of Plants. The Virtual Laboratory. Springer, New York, NY [u.a.], 1990.

[RB85] William T. Reeves and Ricki Blau. Approximate and probabilistic algorithms
for shading and rendering structured particle systems. In Proceedings of the
12th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’85, pages 313–322, New York, NY, USA, July 1985. Association
for Computing Machinery.

[RFL+05] Adam Runions, Martin Fuhrer, Brendan Lane, Pavol Federl, Anne-Gaëlle
Rolland-Lagan, and Przemyslaw Prusinkiewicz. Modeling and visualization
of leaf venation patterns. ACM Trans. Graph., 24:702–711, July 2005.

[RLP] Adam Runions, Brendan Lane, and Przemyslaw Prusinkiewicz. Modeling
Trees with a Space Colonization Algorithm.

[RN16] Filip Rynkiewicz and Piotr Napieralski. Procedural fractal plants generation.
page 12, December 2016.

[SJJ09] R. Sun, J. Jia, and M. Jaeger. Intelligent tree modeling based on L-system.
2009 IEEE 10th International Conference on Computer-Aided Industrial
Design & Conceptual Design, 2009.

[Ste] SteamDB Technologies. https://steamdb.info/tech/.

[TE19] Marcus Toftedahl and H. Engström. A Taxonomy of Game Engines and the
Tools that Drive the Industry. In DiGRA Conference, 2019.

[Tes] Tessellation - OpenGL Wiki. https://www.khronos.org/opengl/wiki/Tessellation.

[Ula62] Stanislaw Ulam. On some mathematical problems connected with patterns of
growth in figures. In Mathematical Problems in the Biological Sciences, pages
215–224. 1962.

[Uni] Unity. Scriptable Render Pipeline Overview.
https://blog.unity.com/technology/srp-overview.

47



[XGC07] Hui Xu, Nathan Gossett, and Baoquan Chen. Knowledge and heuristic-based
modeling of laser-scanned trees. ACM Transactions on Graphics, 26(4):19,
October 2007.

[YLG+15] Lei Yi, Hongjun Li, Jianwei Guo, Oliver Deussen, and Xiaopeng Zhang. Light-
Guided Tree Modeling of Diverse Biomorphs. Pacific Graphics Short Papers,
page 5 pages, 2015.

[YLG+18] Lei Yi, Hongjun Li, Jianwei Guo, Oliver Deussen, and Xiaopeng Zhang. Tree
Growth Modelling Constrained by Growth Equations. Computer Graphics
Forum, 37(1):239–253, 2018.

48


	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Godot

	Related Work
	Plant Generation
	Static (Data driven) modelling
	L-Systems
	Self organizing plants
	Meshing

	Theory and Method
	Definitions
	Generalized Cylinder
	Spatial Curves
	Algorithm(s)
	Data Structure

	Implementation
	Godot
	Plant Data
	Mesh Generation

	Results
	Evaluation
	Showcase

	Conclusion and Future Work
	Conclusion
	Performance
	Texturing
	Meshing
	Animation
	Interactability

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

