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Kurzfassung

Osteoarthrose (OA) ist weltweit die häufigste degenerative Gelenk Krankheit, wobei
ein Endstadium innerhalb von 10 bis 15 Jahren erreicht wird. In 3.4% der Fälle tritt
jedoch eine sich schnell entwickelnde KOA auf (AKOA), bei sich die Entwicklung bis
zum Endstadium auf 1 bis 4 Jahre reduziert und häufig auf ein künstliches Kniegelenk
hinausläuft. Eine frühzeitige Diagnose von AKOA könnte mehr Zeit verscha�en, um
alternative, weniger invasive, medizinische Behandlungen zu finden. Außerdem würde die
Forschung im Bezug auf krankheits modifizierender Medikamente beschleunigt werden,
indem AKOA Patienten als Testgruppe einfacher rekrutiert werden können. Bisher
ist die Vorhersage von AKOA anhand eines Röntgenbildes nicht möglich, da keine
wesentlichen optischen Unterschiede KOA von AKOA im frühen Stadium zu erkennen
sind. Da Neuronale Netzwerke in der Lage sind Strukturen auf Bildern zu erkennen,
welche für das menschliche Auge nicht ersichtlich sind, werde ich in dieser Arbeit ein
Convolutional Neural Network (CNN) verwenden als Klassifizierer verwenden, um AKOA
zu prognostizieren.

Die mir zur Verfügung stehenden Daten extrahierte ich aus den Datensätzen drei verschie-
dener Studien. Als Input für das Netzwerk dienten neben dem Röntgenbild, numerische
Informationen über Body Mass Index (BMI), Alter, Geschlecht, Western Ontario and Mc-
Master Universities Arthritis Index (WOMAC) score, symptome in der Hüfte, Zuführung
von Kniearthrose Medikamenten und die Kellgren-Lawrence (KL)-grade. AKOA wurde
zuerst mit > 10% Gelenkspalt Verringerung (JSN) und später mit > 20% Gelenkspalt
Verringerung innerhalb von mindestens 2 Jahren definiert. Beide Definitionen verwen-
dete ich, um die Vorhersagekraft des Netzwerks zu optimieren. Mit numerischen Daten
trainierte ich ein Extreme Gradient Boosting (XGBoost) Modell unter Einbezug aller
numerischer Features und dem Osteoarthritis Research Society International (OARSI)
score von Sklerose und Osteophytose. Hierbei erziehlte das Netzwerk eine AUC (Fläche
unter der Receiver Operating Characteristic (ROC) Kurve) von 0.6616 (20% JSN/ 2
Jahre). Um die Bilddaten zu integrieren, nutze ich ein CNN, dessen Architektur auf
einem Residual Network (ResNet) 50 basiert. Das CNN mit rein Bilddaten als Input,
klassifizierte mit einer AUC von 56.26% (10% JSN/ 2 Jahre). Nach dem Hinzufügen der
wichtigsten numerischen Daten (Geschlecht, BMI, kontralaterale KOA, KL-grade) als
Input, erreichte ich eine AUC von 68.78% (20% JSN/ 2 Jahre).

Diese Ergebnisse zeigen, dass es möglich ist eine Risikoeinschätzung über die Entwicklung
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von AKOA mithilfe eines Röntgenbildes und der numerischen Daten von Geschlecht,
BMI, KL-grade und der Information über vorliegende KOA zu machen. Da bisher keine
anderen verlässlichen Hilfsmittel und Methoden zur Verfügung stehen, haben Neuronale
Netzwerke großes Potenzial dies zu ermöglichen.



Abstract

Osteoarthritis (OA) is a slowly degenerative joint disease, with cartilage loss as one of
the most characteristic symptoms accompanied by pain and functional disability. The
knee region is the most a�ected area. 22.9% of the worldwide population over the age
of 40 were a�ected in 2020 by Knee Osteoarthritis (KOA). Besides normal KOA, which
develops over multiple years, the accelerated form of KOA(AKOA) develops between
1 and 4 years and is accompanied by increased pain and movement restrictions as well
as a higher chance of obtaining a knee replacement. The development of AKOA is not
yet predictable on the basis of a single X-ray image because there is no obvious optical
di�erence between the baseline X-ray of KOA and AKOA. Since Convolutional Neural
Networks (CNN) are able to identify image structures, a human eye can not see, I want
to realise an early diagnosis of AKOA by using a Convolutional Neural Network (CNN)
as a classifier between slow- and fast-progressing KOA.

For this purpose, I used the data from three di�erent studies, including knee X-ray,
Body Mass Index (BMI), age, gender, Western Ontario and McMaster Universities
Arthritis Index (WOMAC) scores, hip symptoms, knee medication injection and Kellgren-
Lawrence (KL)-grade, as input for binary classification models. I defined AKOA once
with Joint Space Narrowing (JSN) > 10%/ 2 years and once with JSN > 20%/ 2 years
and performed di�erent experiments in order to find the best method to predict AKOA. I
trained the numeric data only on an Extreme Gradient Boosting (XGBoost) model. Here
I achieved the highest performance of an Area Under the Curve (AUC) of 0.6616) when
including the Osteoarthritis Research Society International (OARSI) score of sclerosis
and osteophytosis to the numeric input data (20% JSN/ 2 years). To use image data
only and the combination of both I created di�erent CNN models, whose architecture
is based on a Residual Network (ResNet) 50 model provided by ImageBiopsyLab. The
CNN model, which I trained only with image data, yielded an AUC of 56.26% (10% JSN/
2 years). Using the image data complemented with the most important numeric features
(gender, BMI, contralateral KOA, KL-grade) as input, I achieved an AUC of 68.78%
(20% JSN/ 2 years). Comparable results, but obtained with other class definitions than
in this work, were higher and yielded AUCs of around 0.8.

These results show that it is possible to make a risk assessment about the development of
AKOA using the baseline X-ray image, gender, BMI, the KL-grad and the information
about contralateral KOA. Until now, radiologists are not capable of predicting fast-
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progressing KOA. Hence, these networks have a great potential to be used as AKOA
prediction tools.
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CHAPTER 1
Introduction

1.1 Motivation and Problem Definition

Osteoarthritis is a degenerative joint disease, with loss of cartilage as one of the most
characteristic symptoms [1]. Accompanied by a lot of pain and movement restrictions,
especially for knee or hip osteoarthritis, the most e�ective treatments so far are pain
medication and joint replacement. Besides being a radical medical intervention, joint
replacement is very expensive and is considered to be a high socioeconomic burden, due
to high costs for health insurance [2].

The most a�ected area of the joint disease Osteoarthritis (OA) is the knee region [3].
In 2020 22.9% of the worldwide population over the age of 40 were a�ected by knee
OA (KOA) [4]. Usually, KOA progresses slowly over several years and with current
possibilities, diagnosis happens proportionally late [5]. Among all KOA patients, 3.4%
reach the advanced stage of disease already within 4 years, and some even less than 12
months measured from the time where no radiographic symptoms were visible.

The fast-progressing course is known as accelerated KOA (AKOA) [6]. The exact
definition of AKOA varies between di�erent studies. Here, fast-progressing KOA is
defined using joint space narrowing (JSN) per year. It is proven that this specific form of
KOA leads to an increased likelihood of frequent knee pain, as well as to even higher
movement restrictions. Thus, the quality of life is significantly reduced compared to
regular OA [7]. Additionally, one out of seven of these patients receives a knee replacement
in a median time of 2.3 years [8]. Early detection of AKOA would bring more time to
determine alternative and less radical medical interventions [8, 9].

Concerning drug development, the prediction of disease would also bring a clear advantage.
The long and so far unpredictable progression of KOA, makes it almost impossible to
realise a disease modification relating to the intake of drugs. Hence, if it would be possible
to detect fast progressors in the early stage, this group of patients could represent a
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1. Introduction

more homogenous test group resulting in faster results [10]. With the currently available
knowledge, the chance to develop AKOA can be roughly estimated including typical
risk factors like Body Mass Index (BMI) and age [6]. Still, too little is known about the
development, etiology and exact prediction factors of AKOA [11]. It is not yet possible
to make a precise classification between slow- and fast-progressing KOA patients based
on a single radiograph. Hence, a method is missing which takes, in addition to the most
relevant demographic and clinical factors, a knee X-ray image into account to classify
between the slow and fast progression of KOA.

1.2 Aim of the Work

The analysis of radiographs, i.e., defining the severity of KOA performed by a human, is
highly a�ected by subjectivity. This makes the use of neural networks very attractive in
order to achieve more uniform and accurate decisions. Some approaches exist, also based
on Convolutional Neural Network (CNN) models, which predict AKOA among slow and
non-progressing patients. More clinically relevant, however, because of a higher number
of available images, is the case of predicting only between slow- and fast-progressing KOA
patients. Therefore, this thesis aims to develop a new strategy based on a neural network,
which can di�erentiate between slow- and fast-progressing KOA at an early stage. This
could allow an earlier start of disease treatment, which could result in more e�ective and
less radical medical interventions [11]. The accurate detection of fast progressors would
also facilitate the selection of patients to test disease-modifying drugs [10].

The aim of this work is to use next to the X-ray image data demographic and clinical
characteristics of the patient (numeric data) to answer the research question “Is it
possible to classify KOA progression into fast and slow progression (defined
by JSN per year) using Convolutional Neural Networks?". The first task is to
figure out how to define the classes, slow and fast progressors, and which demographic
and clinical factors are important to consider. The next goal will be to implement
a model, which will be able to consider a baseline X-ray image in combination with
the most relevant clinical and demographic factors to classify between slow- and fast-
progressing KOA. Even if most of the existing studies identified AKOA among slow-
and non-progressing patients, the exclusion of non-progressors could better represent the
cohort of radiographs taken in a hospital. To accomplish the challenge, defined in the
research question, I want to figure out the optimal architecture and model parameters,
the most relevant numeric factors and the better threshold of the class definition to be
able to predict AKOA.

1.3 Methodological Approach

The first step consists of a literature review that focuses on the di�erent factors influencing
the progression of KOA. In addition to these findings, I consider medical expert opinions
to make a pre-selection of the most common criteria leading to AKOA and to define the
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1.4. Structure

exclusion criteria for the composition of the sub-cohort of patients for this work. The
data I use consists of three di�erent datasets with the aspect of having as diverse data as
possible. I compile di�erent batches of data, using di�erent class definitions. The first
definition of at least 10% JSN per two years was previously defined by Image Biopsy
Lab(IBLab), according to previous literature and medical experts’ opinion. As a second,
a more extreme threshold, I use 20% JSN per two years, in order to increase the di�erence
between slow and fast progressors. I use these definitions further to label the data by
classes 0 and 1, corresponding to slow- and fast-progressing KOA, respectively. I analyse
the data of all three datasets, concerning possible correlations between AKOA and some
selected numeric factors, as well as to detect possible dataset-specific characteristics,
which could influence the quality of training.

As a next step, I train an Extreme Gradient Boosting (XGBoost) model with the numeric
data, in order to create a reference and to solve the task of evaluating the importance
and the power of only the numeric features for the classification task. To add the
X-ray data as input, I create di�erent CNN models. For some training runs, I use a
pre-trained model, provided by IBLab, and apply the method of transfer learning to use
the knowledge of this pre-existing model. Other training runs I perform from scratch.
All models are based on the architecture of RetinaNet. In order to optimise the accuracy
of classifying between slow- and fast-progressing KOA, I train and evaluate five di�erent
CNN models, with di�erent data batches. For evaluation I use the area under the Receiver
Operating Characteristic curve (AUC-ROC) and Confusion Matrices. In addition, I carry
out experiments using two datasets as training set and evaluating with the third one
(e.g., training with Osteoarthritis Initiative (OAI) and Cohort Hip and Cohort Knee
Study (CHECK) and testing on Multicenter Osteoarthritis Study (MOST). This shows
the ability of a model to perform on images from a, for the model, unknown dataset.
The contribution of this work is a neural network, which classifies between fast- and
slow-progressing KOA patients using basic demographic and clinical information next
to the X-ray image of the patient. The definition of AKOA in this work is easy and
hence less prone to error compared to the definition based on the KL-grade. Besides, it
is clinically more relevant to exclude non-progressing KOA patients. Since there does not
exist such an X-ray-based method to identify AKOA yet, this new diagnostic method
would be a reliable, simple, and fast method, which only requires easily accessible data.

1.4 Structure

The thesis is structured into four big parts. The first chapter encompasses the introduction
of the topic together with the problem definition and the short preamble describing
the development of the model. For the second chapter, a clinical background regarding
KOA and its current ways of analysis is provided in order to facilitate the problem’s
comprehension. Moreover, the technicalities concerning a CNN will be clarified in the
chapter “Technical Background”. Subsequently, related work regarding the prediction
of AKOA will be presented. The next chapter will provide the full approach, from
the literature review and the data selection to the implementation of the models and

3



1. Introduction

experiments. This is followed by the sixth chapter, which lays down the results and
outcomes to be further evaluated and discussed. The final chapter encompasses the
conclusions made, as well as the appropriate next steps for further development of this
topic.
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CHAPTER 2
Clinical Background

In this chapter, the clinical background of OA and its progression and definition will
be described. Worldwide, OA is the most spread joint disease [2]. In the age group,
between 40 and 50 years, people already have an increased risk of developing OA [12].
Almost every person who reaches the age of 80 is a�ected by OA, resulting in even
higher numbers of OA patients with an increasingly ageing population [12, 13]. Despite
diagnosing OA on radiographs, symptoms may not be present though [12]. Therefore,
the number of unrecorded cases of OA could be even higher.

OA is a degenerative joint disease, which can occur in all parts of the body. The most
common area is the knee joint [3]. All parts of the knee (medial, lateral and patellofemoral
joint), as well as the surrounding tissue [12], can be a�ected [14]. The medial side of the
joint is more often a�ected by OA than the lateral side [15]. Commonly the first and
most characteristic symptom of KOA is the loss of cartilage [8]. As seen in Figure 2.1, the
articular cartilage is one of the main components of the knee joint. A healthy knee shows
an equilibrium of degenerative and regenerative enzymes to keep the cartilage maintained
[17]. Among KOA patients an increased load of degenerative enzymes can be observed,
which leads to a reduction of cartilage, ending up in JSN [17]. Next to the volume loss
of cartilage, the morphology of the subchondral and periarticular bone changes as well
[18]. As a result of early bone reformation bone mass increases locally and osteophytes
are formed [18] at the anterior and posterior endings of the bone, as seen in Figure 2.2.
These formations can then imply the increased joint sti�ness among AKOA patients [19].
Sclerosis, which manifests as thickening of the subchondral bone [20], is considered to be
another reinforcing factor that increases joint sti�ness [18]. Consequently, sti�ness of the
subchondral bone rises, which increases peak dynamic forces thus resulting in even more
bone and cartilage damage [18]. These adjustments in joints can imply inflammation,
swelling, sti�ness, and increased pain hence reducing the patient’s physical functionality
[10, 14].

5



2. Clinical Background

Figure 2.1: Anterior view of a human knee[16].

Figure 2.2: Anterior view on a healthy knee joint (left) and a knee joint with advanced OA
with visible joint space narrowing, cartilage damage and bone spurs [21].

For each patient, the development, course, and symptoms of disease can vary [17]. This
heterogeneity of osteoarthritis for each patient makes it di�cult to predict progression

6



[17, 22]. In usual cases, KOA develops over 10 to 15 years [14], but around 3.4% of
all OA patients experience a fast progression OA. Meaning within 4 years, sometimes
even less than 12 months, the advanced stage of disease is reached [6]. It is proven that
this specific form of OA leads to greater pain, even prior to radiologic diagnosis [23], an
increased likelihood of frequent knee pain, as well as to higher movement restrictions
[7, 15]. In spite of KOA being such a common and painful disease, there is still little
knowledge about concrete causes, development and treatment of knee osteoarthritis [11].
This culminates in the inability of di�erentiating the patients between slow and fast
progressors.

Disease influencing factors can be split into modifiable and non-modifiable ones [14].
Several studies showed that non-modifiable factors, for instance, advanced age, being
female, having former knee surgeries, knee injury or having a preloaded family history,
can increase the risk of developing AKOA [6, 9, 13, 14, 24]. The most common modifiable
factor is obesity corresponding to a high BMI [14] and also to hard physical work [17].
The BMI is calculated by dividing the weight by the squared height of the patient.
Depending on these results the patients can then be classified into underweight, normal
weight and overweight, corresponding to lower than 18.5 kg/m2, between 18.5 kg/m2

and 24.9 kg/m2 and greater than 24.9 kg/m2, respectively [25]. A high BMI and physical
work increase the wear and tear in cartilage and meniscus, which may lead to meniscal
pathology and influence initiation of disease [17]. This was also proved by Harkey et al.
[7]. They showed evidence of medial meniscal extrusions as being a characteristic risk of
developing AKOA even one year prior to disease onset [7]. On baseline images meniscal
pathology, for instance, meniscal tears, degenerative ligaments, and e�usion-synovitis
have been identified as radiographic symptoms of AKOA and represent an increased risk
of being a fast progressor [7].

Moreover, the geometry of the knee joint can influence the development of AKOA. Knee
malalignments influence the biomechanics of the whole joint and therefore lead to changes
in the coronal tibial slope. The slope can be measured by connecting the medial and
lateral upper part of the tibia plateau, as seen in Figure 2.3. A greater slope is primarily
associated with the incidence of Joint Space Width (JSW) reduction of the medial part
compared to the lateral part of the knee; besides medial joint space narrowing (JSN)
occurs more often. The risk of developing AKOA increases 15% with every degree of
increased tibial slope [15]. What makes this study even more interesting, is the fact that
the slope just correlates to the AKOA but not to KOA [15]. Hence, from this study,
it can be concluded that measuring the medial joint space narrowing per year makes
sense in order to define AKOA. Furthermore, it shows X-rays to be promising to use as a
prediction method for AKOA.

Another problem is the lack of disease-modifying treatment methods [10]. Since the
current most e�ective treatment consists of behavioural changes, such as body weight
reduction or decreasing peak load on joints by avoiding hard physical work [11, 14].
Medical treatments include pain medication, steroidal injections or anti-inflammatory
drugs, which have in common to only treat the symptoms, but not the causes [2, 22].
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2. Clinical Background

Figure 2.3: Frontal view of two knees with -3 degree (left) and 8 degree (right) tibial slope.
Yellow lines: vertical and horizontal reference lines. Blue lines: connection between left and right
corner of the tibia to measure tibial slope [15].

Despite these medical treatments, most of the patients receive knee replacements, causing
additional pain and costs [2, 22]. Especially among fast progressors, surgery for an implant
occurs in the median time of 2.3 years, which translates into less time for searching for
less radical methods [8].

Besides, the research in disease-modifying drugs is hampered by the unpredictability and
heterogeneity of the course of KOA [10]. Due to the long course for testing drugs on
regular KOA patients, the observation period would be quite long. The long and so far
unpredictable progression of KOA poses a big challenge to realise a disease modification,
which relates to the intake of drugs. Hence, with early detection of fast progressors, a
more homogeneous group of AKOA patients can be selected to test new drugs. This
could lead on one hand to faster outcomes and on the other hand to a higher quality of
results [10].

2.1 Grading and Scoring Systems for Knee Osteoarthritis

To be able to classify di�erent progression of OA, there exist multiple grading scales.
The most popular one is the Kellgren-Lawrence (KL) grading system with grades from 0
(no OA) to 4 as seen in the following table. The system integrates information of JSN,
osteophytes, sclerosis and deformation of bone [14]. What complicates the usage of the
KL-grading system is the fact of defining an OA grade for the whole knee, disregarding
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2.2. Definitions of Accelerated Knee Osteoarthritis

KL JSN Osteophytes Sclerosis Bone deformation

0 = None OA no no no no
1 = doubtful OA doubtful possible lipping no no
2 = minimal OA possible definite no no
3 = moderate OA definite moderat multiple yes possible
4 = severe OA marked large severe definite

Table 2.1: Description of the Kellgren-Lawrence System, splitted in JSN, osteophytes, sclerosis
and bone deformation [26].

the lateral and medial side of the joint [27]. A scoring system, which allows grading the
lateral and medial part of the knee individually is the Osteoarthritis Research Society
International (OARSI) score. It suggests a grading from 0 to 5 for the individual issues
JSN, osteophytes, and sclerosis and hence represents a more specific scoring system. This
results in a better assessment of the heterogeneous development of AKOA [27]. Since
both of the scoring systems are a�ected by subjectivity, using neural networks could
compensate for this disadvantage.

To describe the symptomatic situation of KOA, the Western Ontario and McMaster
Universities Arthritis Index (WOMAC) score was invented [28]. The scoring system is
split into three sections: pain, sti�ness and physical function, each containing di�erent
self-answered questions. Every question can be answered with a score between 0 and 4,
with 0 as none and 4 as extreme. Pain is assessed during sitting, lying, in bed, upright
standing and walking. Knee sti�ness is observed after the first walk after a break and
towards the end of the day. The physical function consists of the following 17 questions:
“using stairs, rising from sitting, standing, bending, walking, getting in/ out of a car,
shopping, putting on/ taking o� socks, rising from bed, lying in bed, getting in/ out of
bath, sitting, getting on/ o� toilet, heavy domestic duties, light domestic duties” [28].
These answers result in WOMAC pain, WOMAC sti�ness and WOMAC disability score,
scaled from 0-20, 0-8 and 0-68 respectively. All individual measurements can then be
included in the summed up WOMAC total score [28].

2.2 Definitions of Accelerated Knee Osteoarthritis

Di�erent definitions are used to classify KOA patients into no progressors, slow and fast
progressors. The most common definition makes use of the above-mentioned KL-grading
system. No changes of the KL-grade within 48 months define non-progressing KOA. An
increase of at least 1 KL-grade is classified as progressing KOA. Among these, patients
with KL-grade lower than 1 reaching a KL-grade larger than 2 within 4 years, are defined
as fast progressors; the remaining ones as slow progressors [6, 7, 15, 23]. As well the loss
of cartilage volume is used as a measuring factor of AKOA. The volume loss is observed
over a time of two years. Knees with a global reduction of more than 13-15% are classified
as fast progressors. Slow progressors show a cartilage volume loss of less than 2% [13, 29].
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2. Clinical Background

Considering now the reduction of the JSW, AKOA can also be defined by an absolute
number of JSN per time. Numbers between 0.25 mm and 1.05 mm per year can be found
in literature [30, 31, 32]. But since the initial JSW and the patient’s anatomy would also
be important to consider, absolute numbers can not help this. Using a percentage of
JSN as a class definition, I will take this aspect into account. Besides, JSN is connected
to both of the previous class definitions. The minimal JSN correlates to the cartilage
volume loss, according to Eckstein et al. [33] and JSN is also used for the definition of
the KL-grade as explained in Section 2.1. Hence, using the JSN to define AKOA could
be a promising and simple compromise.

2.3 Summary

Regarding the background of AKOA and the importance of an early diagnosis the
following facts should be kept in mind. The most characteristic symptom of KOA is the
loss of cartilage, which further leads to a local change of bone mass and consequently
to increased joint sti�ness, inflammation and pain. These symptoms are reinforced for
AKOA, of which 3.4% of all KOA patients are a�ected. Here, the end-state can be
reached between 1 and 4 years and result often in artificial knee replacements. Risk
factors for fast progressors are high age, high BMI, being female, and knee geometry. The
latter is only correlated to AKOA but not to KOA, which is promising for a prediction
tool based on X-ray images. AKOA can be defined by an increase of the KL-grade, change
of cartilage volume, and reduction of the JSW. It would be an important achievement to
predict AKOA since an early diagnosis could lower the number of knee replacements and
reduce pain and costs.
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CHAPTER 3
Technical Background

In this chapter, I delineate the current state of the art, concerning the technical methods
I use in this work to build the classification model. Technical background information
about CNNs, the di�erent layers and functions, the XGBoost model, which is used to
train on numeric data, and transfer learning will be given. The latter is applied to use
the knowledge of pre-trained models to improve the performance of the new CNN model.

3.1 Convolutional Neural Network

Figure 3.1: Simple structure of a neural network with green dots as input layer nodes, blue
dots as hidden layer nodes and the red dot as output node[34].

11



3. Technical Background

Figure 3.2: Structure of a Convolutional Neural Network. From left to right: input, feature
learning, classification. Feature learning contains convolutional layers with ReLU as activation
function and pooling layers (Section 3.1.1 and 3.1.2). Classification contains flatten, dense and
softmax layers (Section 3.1.3) [35].

The smallest building block of a neural network is a single neuron. The principal structure,
which is inspired by the human brain [35], can be seen in Figure 3.3. Each neuron has
a function f(), which depends on one or more input variables. In this example, these
variables are x and y and the function subsequently f(x, y). The output is given as z.
The process of adding input and calculating the output is called forward propagation,
which can be seen as “Forward Pass” in Figure 3.3. Backpropagation or “Backward Pass”
corresponds to the reverse calculation [34]. Multiple neurons together built a so-called
layer. An input layer, a hidden layer, and an output layer together build up a neural
network, which can be seen in Figure 3.1 [34]. In this work the input layer refers to the
image input and the output layer is represented by the two output nodes of slow- and
fast-progressing KOA.

A special form of a neural network is a CNN, which reduces dimensionality without losing
important information [35]. Multiple arrays can be processed, which allows CNN to
detect patterns on images [36], such as, for this work important, characteristic structures
of AKOA on X-ray images. This is used to recognize multiple objects and di�erentiate
images from one another [35]. A CNN can learn these characteristics of the input and
improve its classification ability by forward and backward propagation [34, 35]. With
forward propagation an output is calculated, which then can be compared to the ground
truth, the actual value [34]. Concerning this work, the prediction output for a class
1 (fast progressor) image could be for instance 0.7, which is compared to the ground
truth of 1. This di�erence is calculated with the loss function [34, 37]. For individual
tasks and applications, there exist di�erent kinds of loss functions. One common loss
function is cross-entropy. The categorical cross-entropy would be used for more than two
classes, binary cross-entropy for binary classification problems, as required in this work
[38]. Mathematically it is described as in the following equation (Equation 3.1), where ŷ
represents the output from the model and y the ground truth [37]:
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3.1. Convolutional Neural Network

Loss = ≠ 1
outputsize

outputsizeÿ

i=1
yi · logŷi + (1 ≠ yi) · log(1 ≠ ŷi) (3.1)

This loss is then sent backwards to update the weights of the neurons (backward propa-
gation) [34]. In order to find the optimised weights, the minimum of the loss function has
to be identified by using a descent gradient method [39]. A special form of it is called
Adaptive Moment Estimation (ADAM) [40], which I will also use for training my models.
In previous works, the ADAM optimizer is suggested to deliver faster and better results
than the other optimization methods, like Adadelta or AdaGrad [40, 41]. This is also
influenced by the fact that the learning rate, which defines the step size for finding the
minimum, is adapted for every single parameter in every step [37, 39].

Figure 3.3: Image of a single neuron with x and y as input variables and z as output. Left:
forward propagation, right: backpropagation. [42]

To assess the model’s performance, a metric function is added at the end. There exist
di�erent types, depending on the desired evaluation of the model, such as accuracy
metrics, regression metrics or classification metrics. Classes of the classification metrics
are for instance the Area Under the Curve (AUC), precision or recall class. Since my
model is a classification model and in most of the studies similar to my work the AUC
class is used, I will also use this metric function to make the results comparable.

Before starting the training of a neural network, the whole data has to be split into
training, tuning and test set. Usually, the largest amount of data will be used for training.
This is the data the network uses during its learning process as described above. The
data of the tuning set the model uses for validation during training and to optimise the
hyperparameters of the model. After training and tuning are accomplished, the model
can be evaluated by using the test set. Testing for instance di�erent models with the
same test set allows a good comparison of these [43].

The architecture of CNNs can be seen roughly in Figure 3.2. The input is followed
by the feature extraction part, which are the hidden layers, consisting of convolutional
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3. Technical Background

Figure 3.4: Schematic principle of a standard convolution. Light blue matrix: input matrix,
dark blue matrix: kernel (small numbers represent the weights of the kernel), green matrix:
convolution output matrix containing summed values [44].

layers with activation function and pooling layers. The classification part is assembled
of flattening, fully-connected layers and softmax function [35, 36]. The function of each
layer, which also forms the model I use, is described in the following sections.

3.1.1 Convolutional Layers

The main components of a CNN are convolutional layers. Here the first step of dimension-
ality reduction happens. These layers convert a larger matrix into a smaller matrix with
features still located at roughly the same position, as seen in Figure 3.4 [44]. The left
square of the image acts as the input matrix, in which the dark blue part represents the
kernel. A kernel, which usually has a smaller size than the image, scans the input matrix
in order to summarise the covered values [35]. The small numbers in the bottom right
corners of the kernel squares are the weights of the kernel matrix [44], which are then
multiplied by the respective area of the input matrix [35]. These results are subsequently
mapped on a feature map [45]. In this way, the size of the output matrix decreases, but
depth increases [35]. For example, when having a coloured image with all three RGB
channels as input, one independent kernel with individual weights is used per layer [35,
46]. This will provide a three-channelled output [46]. Hence the convolutional layer is
used as an extractor of high-level features, which are meant to be rough characteristics
of images, like shapes and edges [35]. The more convolutional layers added in a row, the
more abstract features can be learned by the network [47].

Convolutional layers also make use of activation functions. There are linear and non-linear
activation functions. In general, these functions convert the output into values between
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3.1. Convolutional Neural Network

(a) a)
(b) b)

Figure 3.5: Example of logistic regression using in a) a linear function and in b) a non-linear
function for classifying data points into class red and class blue [48].

Figure 3.6: Rectified Linear Unit (ReLU) function. x < 0 : y = 0, x > 0 : y = x [50].

-1 and 1 or 0 and 1 (depending on the function), which enables the network to make for
instance a binary decision [49], as required in this work. However, this classification can
not always happen linearly. Images, for example, are most of the time very non-linear
[48]. An example can be seen in Figure 3.5, where the two colours of data points can
not just be separated by a straight line. Hence a non-linear function as in Figure 3.5b
has to be added and is usually located directly behind a convolutional layer [46] in
order to make non-linear decisions and learn faster [48]. The most common non-linear
activation functions are the sigmoid, hyperbolic tangent (tanh) and the Rectified Linear
Unit (ReLU) function [46, 48]. The mathematical description of the ReLU function is:
y = max(x, 0). As seen in Figure 3.6, the function can only get activated with positive
input values. It remains zero with negative input. Hence, only parts of the input get
processed, which also decreases processing time and costs. Another advantage of ReLU
function is the constantly increasing slope, which implies no saturation with large input
values. This avoids the vanishing gradient [50]. The negative aspect of this function
would be the so-called “dying ReLU”. Once the function has reached 0 due to only
negative inputs, it is very unlikely to be activated again. A solution for this would be
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Figure 3.7: Red curve: sigmoid activation function, green curve: tanh activation function [49].

the Leaky ReLU. Here, a very small slope of 0.01x is added for negative inputs. This
compensates for the “dying ReLU” and calculates even faster due to more balanced
results [50]. The sigmoid and tanh functions are plotted in Figure 3.7. Sigmoid (red
graph) is mathematically described as seen in Equation 3.2, where fl defines the slope,
which is constantly positive [51]:

S(x) = 1
1 + e≠flx

(3.2)

Due to values between 0 and 1, this function is often used for the prediction of probabilities
[49]. The green function in Figure 3.7 is the tanh function. It has the same shape as
the sigmoid activation, but the output values reach from -1 to 1. Mathematically it is
described in Equation 3.3 [49]:

S(x) = 2
1 + e≠2x

≠ 1 (3.3)

At this point as well a so-called dropout rate can be added to a convolutional layer, which
is another regularisation method of a CNN. The rate implies in which frequency some
random input variables are set to 0 during each training step. With this, the weights
have to be adapted to a smaller number of features which improves the updating of the
weights and minimises overfitting [52].
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3.1. Convolutional Neural Network

Figure 3.8: Left: max pooling: maximum value out of the four green cells of the large matrix is
mapped in the green cell of the small matrix and so on. Right: average pooling: average value of
all green cells of the large matrix is mapped in the green cell of the small matrix and so on. [54].

3.1.2 Pooling Layers

Pooling layers represent the second part of dimensionality reduction of the input matrix
[35] and filter out the most informative features [53]. This significantly lowers GPU
memory. These layers also provide the CNN with the ability to detect an object, even
if the object’s location di�ers on the image [47]. The principle of pooling is shown in
Figure 3.8. In this example, the pooling size is defined as 2x2. Hence, pixels of this size
are summed up, using respective functions [46, 54]. The most common ones are max
pooling and average pooling. As seen in Figure 3.8, Max pooling always takes the highest
value, whereas the output of average pooling is the average of the values covered by the
pooling area size [46]. In addition to the produced noise reduction, however, pooling can
lead to loss of background or foreground texture information [55].

3.1.3 Fully-Connected Layers

Fully-connected layers or dense layers are the last layers added to a CNN. Since the
output of the pooling layer is a matrix, it has to be flattened into a vector to serve as
input for the dense layer. With the help of these layers, the neural network is able to
learn non-linear correlations of features [35]. As the name implies, fully-connected layers
connect all input and output nodes [46] and classify the images into classes [53]. To end
up finally with a probability distribution as output, a softmax function ‡i(z) is used,
which transforms the input to values between 0 and 1 (see Equation 3.4). Summed up,
all outputs result in 1. The lower term converts all values between 0 and 1 [56].
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‡i(z) = ezi

qn
j=1 ezj

(3.4)

where the input vector is represented by z and its values by zi [56].

3.2 Transfer Learning

Transfer learning is a method to make use of the knowledge of a pre-trained network. The
knowledge of a source model is used for the new model, the target model (Figure 3.9) to
save time and minimise resources. In this work I will also take advantage of this method,
using the information of a pre-trained model by IBLab to train my desired target model.
Without this method, which means training a model from scratch, the initial parameters
would be set randomly. To tune these, the network would have to perform several steps
of forward and backward propagation. These steps can be minimised by using transfer
learning. Instead of random initial weights, the weights of the pre-trained network are
used here [53]. A simple approach to the workflow to design new CNN models can be
seen in Figure 3.10.

Since image detection is mainly based on recognising simple structures, shapes and edges,
the images, which were used for the training of the source model, do not have to relate
strongly with the new dataset [53, 57]. The pre-trained model was usually trained with a
large number of images resulting in feature vectors [53]. These vectors can subsequently
be used as a basis for the new model in the form of initial weights. The architecture of
the new model is based on the architecture of the pre-trained model and one or several
of the last dense layers are replaced by new fully-connected layers [58]. Regardless of the
pre-trained model, the number of output nodes is set in the last added layer [59]. The
new model uses the pre-trained features to predict the new images [59]. The training
with the new images can then be started. In order to keep the initial weights from the
pre-trained model, these old layers are frozen while the newly added layers are trained
on the new images. To achieve high performance and reduce overfitting, the new model
is trained with a low learning rate. The fine-tuning happens by also setting parts of
the source model as trainable and training these with a low learning rate [57, 58, 59].
Another advantage of transfer learning besides reduced training time is a smaller required
amount of data to train a neural network, compared to training from scratch [59].

3.3 Residual Network (ResNet50)

For the implementation of my model, I will use the pre-trained model, which architecture
is based on the . Therefore, I will give a short overview of the model’s architecture and
its properties.

The ResNet is a residual network consisting of fully-connected layers, of convolutional
and max pooling layers with a total number of 50 layers [61]. In Figure 3.12 the whole
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3.3. Residual Network (ResNet50)

Figure 3.9: The idea of transfer learning. The source model on the left side represents the
pre-trained model. The target model on the right side represents the new model. [59]

Figure 3.10: Description of the workflow for the creation of a new CNN models using transfer
learning.

architecture of a ResNet including only 34 layers is described [60]. A general problem with
very deep networks is their complexity. The deeper a network, the more complex training
gets [62]. Due to the high number of layers, the backpropagation gradient disperses,
which leads to a high training error. A solution for this would be residual networks [62].
Residual learning blocks, which are the characteristic parts of the ResNet, include skip
connections, which enable the network to skip one or more layers (Figure 3.11) [60, 61].
These blocks consist of two ways to proceed. One is the mapping F (x) of the residual
function and the other is the unchanged mapping x of the input, also called identity
mapping [60, 62]. F (x) and x are summed up and passed to a ReLU function [62]. These
blocks are then connected in series (as seen in Figure 3.12), where the input of the first
layer in a convolutional block is connected to the output of the last convolutional layer
[60, 63]. The solid lines in Figure 3.12 represent the same dimensionality of the in- and
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Figure 3.11: Structure of a scip connection with ReLU. x: input, F (x): output of weight
layer[60].

output. This corresponds to Equation 3.5.

y = F (x, {Wi}) + x (3.5)

Dotted lines imply an increase of dimensionality, in which case Equation 5.2 is relevant.
Here, dimensions are adapted for the identity mapping with Ws [60].

y = F (x, {Wi}) + Wsx (3.6)

3.4 Extreme Gradient Boosting Machine Model

I will also test the ability of the numeric (demographic) data alone to predict AKOA. For
this purpose, I will use an XGBoost Machine model. The XGBoost model is built on the
gradient boosting framework and can be utilised for classification tasks [64]. Generally,
gradient boosting performs with high accuracy, while showing high computational speed
[65]. My task of classification was e.g., performed in less than 10 minutes. This is because
boosting models show little complexity, which also prevents overfitting [64]. Overfitting
means that a model would consider variances of the residuals to build the function of the
model. This can be seen in Figure 3.13, where the green line represents the overfitted
model, whereas the black graph corresponds to a well fitted model [66].

The structure of the XGBoost model starts with training one single model, based on
a decision tree. Depending on the performance of the classification, these weights are
adapted and used for a new decision tree, which is added afterwards [64, 65]. This
proceeds until the performance of the model stagnates [65]. Finally, these decision trees
are merged, resulting in an even more accurate model [64]. The special form of gradient
boosting models, the XGBoost model, proceeds the same way but exhibits a loss function
based on the Taylor expansion [67]. Due to the normalisation of this function, the
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Figure 3.12: Architecture of a ResNet50 [60].
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Figure 3.13: Example of a statistical model function. The black line corresponds to a normalised
model function. The green line represents an overfitted model, which includes all variances of the
residuals to build the function of the model [66].

variances of these models can be reduced [64]. Another advantage of this model is the
ability to learn how to handle missing data best [67, 68]. Concerning my application case,
some patients do not provide information for all factors I include. Hence, the handling of
missing data is an important feature here.

3.5 Area Under the Receiver Operating Characteristic

curve (AUC - ROC)

The ROC can be used as a method, which I also use in this work, to evaluate the
performance of a classification model. The predictions of a classification model are
compared to the ground truth and assessed for their correctness. It is considered a true
positive (TP) prediction, if the predicted class from the model matches the true label,
the ground truth. The TP rate, also named sensitivity, is then the chance of the model
to predict a true input as true. It is considered a false positive (FP) classification if the
model predicts a false input as true. The FP rate, 100 minus the specificity, is the chance
of the model to make an FP classification. Specificity is defined as the true negative
rate, which is the chance of the model to classify a false input as false. The ROC curve
describes the TP rate plotted over the FP rate (the blue curve in Figure 3.14). The
area underneath (AUC) can be calculated and then used as the evaluation value of a
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3.5. Area Under the Receiver Operating Characteristic curve (AUC - ROC)

classification model. The closer the blue curve passes the upper left corner, the higher
the AUC and the better the performance of the model. The sensitivity and specificity
in the upper left corner would be 1 (100%). The dashed black line represents random
guessing with an AUC of 0.5.

Depending on the classification thresholds of the model, a single point on the ROC curve
refers to a specific sensitivity and specificity [69, 70]. These can either be taken from the
diagram or can be calculated with the number of TP, FP, true negative (TN) and false
negative (FN) observations as seen in Figure 3.7 and 3.8. When setting a classification
threshold close to 1, which means that the model classifies an input only with high
certainty as true, the sensitivity is high whereas the specificity decreases. Depending on
the threshold which output between 0 and 1 corresponds to the classes, the sensitivity and
specificity can be adapted depending on the desired usage of the model. This evaluation
method can be applied for the classification of KOA patients. When having a closer look
at patients, which are classified as fast progressors, the more important task is to detect
as many fast progressors as possible. Therefore, the classification threshold can be set
close to 1.

Figure 3.14: Example of the Receiver Operating Characteristics (ROC) curve. The true
positive-rate is plotted against the false positive-rate [70].

TP rate = TP

TP + FN
(3.7)

TN rate = TN

TN + FP
(3.8)
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where TP is the number of true positive classifications, TN is the number of true negative,
FP is the number of false positives and FN is the number of false negative classifications
the model makes.
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CHAPTER 4
Related Work

In this chapter, I delineate previous work concerning the prediction of AKOA using
deep learning. Due to the high incidence of KOA, a lot of studies have been conducted
regarding the prediction of disease progression. I present several previous studies, where
statistical and machine learning models were used to find correlations between image
and numerical information and the progression of KOA.

4.1 Feature Extraction for AKOA Prediction

There are several studies dealing with the correlation of risk factors and fast-progressing
KOA. Due to the di�erent ways to define AKOA, the studies can not exactly be compared.
In most papers accelerated AKOA is defined by the change of KL-grade, as explained in
Section 2.2. The correlation of several risk factors and single characteristics to AKOA
were examined.

4.1.1 Demographic and Clinical Criteria

Several studies described with statistical regression and classification models the higher
risk of developing AKOA for patients aged older than around 63 years and younger people
with obesity [6, 13, 23]. AKOA was defined by the change of KL-grade [6, 23] and by the
percentage of cartilage loss [13], as explained in Section 2.2. The opinions concerning
the WOMAC score, which describes pain, physical function, and sti�ness, di�er between
several studies. In the study [23] di�culties when lying down, pain during straightening
the leg and during walking came frequently apparent among AKOA patients. Widera
et al. also confirmed a certain correlation between the WOMAC score and AKOA [71].
No significant correlation between the WOMAC score and AKOA could be found in the
study of Raynault et al., except a slight trend of a higher WOMAC score at baseline for
fast progressors [13]. Neither is the score significantly connected to the cartilage volume,
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which is a symptom of AKOA [29]. In the study of Raynauld et al. they suggest, next to
the previously named criteria, also a higher risk of developing AKOA among females [29].

4.1.2 Radiographic Structures

Besides, radiographic structures also play an important role in predicting AKOA. The goal
of the study from Harkey et al. was to find radiographic structures and characteristics
even before the onset of AKOA, to be able to classify between non-progressors and
fast progressors. OAI data at baseline visit and two years later was evaluated, where
AKOA was also defined by the change of KL-grade. Di�erent logistic regression models
approved the following symptoms to be predictors for AKOA: degenerative cruciate
ligaments, meniscal pathology on lateral and medial side, e�usion-synovitis volume and
infrapatellar fat pad signal intensity alteration [7]. 73% of fast progressors versus 19% of
slow progressors (defined by cartilage volume loss) showed meniscus extrusion and tear
[13].

More, a greater tibial slope can be associated with fast-progressing KOA, whereas slow
progressors did not correlate to this. Experiments also showed the relation between
malalignments, which imply a greater tibial slope, and progression of KOA [15]. These
results go along with the study of Driban et al., where previous knee injuries are linked
to AKOA [24].

4.2 AKOA Prediction Models Using Numeric Data

Using now the evaluated risk factors and characteristics, prediction models based on
demographic, clinical, and radiographic data were developed. The performance of these
models is described with the AUC, which is detailed in Section 5.2.1. The highest score
of AUC would be 1 and random guessing would be 0.5 [5].

Jamshidi et al. built di�erent feature selection models to predict cartilage volume loss,
KL-grade, and JSN using data from about 4800 patients of the OAI study [5]. All these
factors are related to the progression of KOA. Subsequently, they used these selected
features as input for di�erent binary classifiers. The Gradient Boosting Machine (GBM)
achieved the highest AUC of 0.7 predicting cartilage volume loss. The best performance
predicting JSN of an AUC of 0.95 was by using a Multi-Layer Perceptron [5]. Halilaj
et al. [22] obtained good results to predict JSN. They used knee symptoms, intake of
medication, general, nutritional, and mental health, information about walking and upper
length muscle strength, X-ray analysis, and malalignments of the knee as features for
prediction models. In addition to the baseline information, data from the following year
was also taken into consideration here. They classified three groups of JSN with an AUC
of 0.86. In this study, they also took data from the OAI study [22].
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4.3 AKOA Prediction Models Using Numeric Data and

Image Data

As proven in several studies [13, 72] many radiographic characteristics are linked to
AKOA. Hence chances are high that a CNN is able to use these specific features or find
even new characteristics on X-ray images to predict a fast progressive KOA. On the left
side of Figure 4.1 a slow-progressing KOA X-ray and on the right side a fast-progressing
KOA X-ray image can be seen. The upper images were taken at the baseline visit. The
lower ones 48 months later. Since it is very di�cult to di�erentiate between slow- and
fast-progressing KOA by looking with the naked eye at the baseline images, a CNN can
be used for this. Previous studies already obtained promising results.

In the study [11], Tiulpin et al. defined AKOA according to the KL-grade. To automate
this process they use a residual network for the determination of the KL-grade and the
OARSI-grade. They achieved an AUC of 0.98 using the OAI data for training and the
MOST dataset for testing [27]. KOA progression was then predicted [11]. In contrast to
the approach in this work, Tiulpin et al. separated KOA depending on the KL-grade
change into three groups: no progressors, who experience no KL-grade change, slow
progressors with a KL-grade change after 5 years, and fast progressors with any KL-grade
change within 5 years. They did not consider patients with an KL-grade from 0 to 1 as
fast progressors. To end up with a binary classification they merged the group of no and
slow progressors into one single class.

Data was taken from the MOST (about 4000 knees) and OAI (about 5000 knees) study.
As numeric clinical information, they selected the age, sex, BMI, surgical and injury
history of the knee, KL-grade defined by a radiologist and the WOMAC total score
into account. As in my work, the numeric and image data was trained separately and
subsequently in combination. Using a GBM the training of the clinical data achieved an
AUC of 0.76. To train exclusively with the image data, they implemented a CNN. Here
the image served as the input for a CNN with two classification branches: prediction
of KOA progression and classification of the KL-grade. As in my thesis, they used a
pre-trained backbone (se-resnext50-32 xd) as a feature extractor. Training this CNN
with the baseline image data achieved the same performance of an AUC of 0.76 as for
the GBM. In order to include the numeric and the image data, the two branched output
of the CNN is added in addition to the numeric data as input in the GBM model. The
structure of the model can be seen in Figure 4.4. This model was able to classify with an
AUC of 0.8 between non-progressors and progressors [11].

With a similar deep learning approach, the model of Guan et al. to predict KOA
progression, performed with an AUC of 0.863 even better. The structure can be seen
in Figure 4.5. Here, they defined progressing patients with at least 0.7 mm medial JSN
per two years, which is, compared to [11], more similar to the definition I am using in
this thesis. The first part of the model is divided into two separate CNNs. One network
to extract the Region of Interest (ROI) of the input X-ray image and the other one to
extract its relevant features. They merged these outputs with the extracted features of
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Figure 4.1: Examples from OAI study of slow progressor (left) and fast progressor (right)[73]

the conventional clinical risk factors (such as age, BMI or tibiofemoral angle) in a new
vector, which then represented the input of a fully-connected network. Data was used
from the OAI study, including about 4500 unilateral knee images. [32]. These results
show the high load of information an image contains to predict the progression of KOA.

The di�erence between both studies [11, 32], compared to my approach, are the classes
between which the model is classifying. The previously presented results from Tiulpin et al.
and Guan et al. di�erentiated between the two classes of non-progressors and progressors,
whereas I classify only progressors between fast- and slow-progressing patients. The
classes are clarified in Figure 4.2 and 4.3. Even if the approach I am taking is more
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Figure 4.2: Definition of class 0 and class 1 according to the study of Tiulpin et al. [11].

Figure 4.3: Definition of class 0 and class 1 according to this work.

challenging, it is more relevant for the situation radiologists are confronted with. The
question if a person is a fast-progressing KOA patient comes up more often if they have
symptoms and are already diagnosed with KOA.
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Figure 4.4: Structure of the classifier of Tiulpin et al. [11]. X-ray image as input for the deep
CNN. Baseline characteristics, clinical examination and radiographic assessment and output of
the CNN used as input for the GBM to classify into fast, slow and no progressors.
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Figure 4.5: Model structure of Guan et al. [32]. The green dashed square borders the two
CNNs, which extract the Region of Interest (ROI) and the most important features of the knee
X-ray. This output is combined with the numeric data vector in a Combined Fully Connected
Network to predict progression of JSN.
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CHAPTER 5
Materials and Methods

This chapter deals with the preparation work and the procedure of developing and testing
di�erent models to predict AKOA among progressing KOA patients. First, I describe
the data and its origin in detail. After the definition of both classes the models shall
predict, I outline the pre-processing of the entire data, including numeric and image
data. A description of the subcohort follows. Subsequently, I explain the implementation,
training and validation procedure of the XGBoost model and the CNN models.

5.1 Data

The final model in this work should be able to classify between slow- and fast-progressing
KOA on images, coming from di�erent hospitals and X-ray machines. If a neural network
is trained on image data derived from one single dataset (same technical advice, same
specific perspective used), characteristics contained only in this dataset can result in
misleading correlations to the classes [74]. Therefore, it is important to use di�erent
datasets to increase the robustness of the model. IBLab provided me with three di�erent
datasets. Since several studies have already used this data [11, 15, 23, 24], the results of
this work can be compared reasonably with other studies. In the following, I will expose
the three datasets and the subgroup, which I defined for this thesis. To finalise the
compilation of the data, I will label the data with its ground truth and will subsequently
normalise the numeric data and pre-process the image data.

5.1.1 Data Description

Since the data is the basis of training a neural network, the quality and amount of images
have a big influence on the performance of the model. The sum of the three di�erent
data sets provides me with a variety of patients showing di�erent baseline symptoms
of KOA. The data contains image data and a high amount of clinical and demographic
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information about the patients from several years. All studies are population studies and
no cohort studies, which means people without any KOA symptoms are also included.

Data from Osteoarthritis Initiative (OAI)

OAI is a public-private initiative funded by the National Institute of Ageing [75]. Their
goal is to build a source of image and non-image data to enhance research in the
progression, diagnosis, and treatment of osteoarthritis [75]. OAI contains data of around
4800 women and men, aged between 45 – 75. Participants are included, if they su�er
from frequent knee pain and/or knee sti�ness or show other characteristic symptoms
leading to an increased risk of developing KOA. This results in two groups of patients:
one group diagnosed with KOA, which will be likely to develop a progressing KOA and
the other group, the incident cohort, which exhibits risk factors for the initiation of KOA
[73]. All patients were followed up for over ten years. Anterior-posterior X-ray images of
the knee were taken at baseline (i.e., year 0) and 1, 2, 3, 4, 6, and 8 years after. The
questionnaires about demographic, clinical and health status were filled out yearly [75].

Data from the Multicenter Osteoarthritis Study (MOST)

The MOST study was also funded by the National Institute of Ageing. This study should
create a source of data for research about modifiable risk factors and for the ways they
influence the development of KOA. This dataset includes around 3000 participants, aged
between 50 and 79, with either increased risk of developing KOA, due to risk factors, or
with the presence of symptomatic or radiographic pre-symptoms. All participants were
followed over seven years. After the enrollment, visits were carried out after 15, 30, 60,
72 and 84 months. Every visit included a clinical evaluation about for instance health,
physical function and pain, in addition to X-ray imaging [76].

Data from Cohort Hip and Cohort Knee Study (CHECK)

The CHECK study was performed in the Netherlands to evaluate hip and knee OA in
its development, progression and mechanisms. The data of around 1000 patients was
collected over 10 years including X-ray images and questionnaires about medical health,
physical history, and biochemical and demographic information. Participants with more
severe OA visited yearly for examination. The ones exhibiting fewer symptoms were
examined only 2, 5, 8 and 10 years after enrollment. The CHECK Cohort was aged
between 45 and 65 years [77]. Compared to OAI, patients here showed fewer radiographic
symptoms, but higher pain scores at baseline [78].

The data from these three datasets available to me, also contain incomplete observations.
Because of the ability of the XGBoost models to handle missing data, I train with the
incomplete datasets. For the CNN models, which are not able to train with missing data,
I eliminated these observations.
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5.1.2 Numeric Data Selection

As not all clinical information, which is contained in the three studies, is relevant for
predicting AKOA, I had to consider the most significant ones. As mentioned in section
4.1 several studies and medical experts suggested the following factors to correlate with
AKOA and hence potentially play an important role in the prediction of AKOA. Besides,
age, gender and BMI are easily accessible information and hence contain nearly no
missing values in the data. The treatment of arthritis in the knee also plays a role in
the prediction, since it is connected to reduced knee symptoms. Medical experts from
IBLab also considered hip symptoms as being an indicator for painful AKOA, due to
a change in posture to avoid pain, which leads to hip symptoms. I also considered the
WOMAC score to be interesting to include in my work. Di�erent studies suggest di�erent
roles of experienced pain, sti�ness and physical functionality in terms of developing
AKOA, which I showed in Section 4.1.1. Hence, I want to examine this correlation as
well. Since Metcalfe et al. confirm a high chance of developing KOA when showing a
contralateral KOA [79], medical experts suggest finding possibly a similar pattern for
AKOA. Therefore, I also include the contralateral KL-grade. I also consider the KL-grade
of the index knee, as it is part of the definition of AKOA. I excluded the criteria which
were proven to have no significant correlation with AKOA, e.g., blood pressure [9] and
biomarkers from urine [73]. I have also excluded factors, such as degenerative cruciate
ligaments or pathological meniscus [7], which are related to AKOA but for which no data
are available in my datasets. In the following, I list all numeric criteria I include in my
work.

• Age

• Gender

• BMI

• Knee injection (medication for arthritis)

• Hip symptoms

• WOMAC disability score

• WOMAC sti�ness score

• WOMAC pain score

• KL-grade

• Contralateral KOA (KL-grade >= 3 at other knee)

Except for the KL-grade, I took all information out of the OAI, MOST and CHECK
dataset. To obtain the KL-grade of the examined and the contralateral knee I use the
IB Lab KOALA™ (Knee Osteoarthritis Labelling Assistant) software from IBLab
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[80]. The software can determine the medial and lateral KL-grade on the basis of an
X-ray image, calculating the OARSI grade of JSN, sclerosis and osteophytosis [80, 81].
An additional displayed value of the KOALA output is the JSW, where the minimal
distance is used [80]. This minimal JSW I further use for calculating the ground truth.
The output of KOALA is pictured in Figure 5.1.

Figure 5.1: Visual output report of the IB Lab KOALA™ software by IBLab. Automated
definition of the OARSI grade of JSW, sclerosis and osteophytosis to define the KL-grade. The
minimal JSW is calculated for the medial and lateral compartments.

The KL-grade can take the values of 0, 1, 2, 3 and 4. If patients are currently treated
with medication for arthritis by injections, the variable knee injection would be 1. If not,
the value turns to 0. The criteria of hip symptoms is answered subjectively by the patient
with yes (1) or no (0). A detailed description of the WOMAC score about physical
function (disability), sti�ness and pain can be found in Section 2.1. These variables can
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take values of the respective scoring system. The BMI results from the patient’s weight
divided by the squared height, which results in kg/m2. For male patients, the variable
gender corresponds to 0 and for female patients to 1.

5.1.3 Class Definition and Calculation

The performance of a classification model highly depends on the definition of its classes.
The following section treats the two class definitions, which I will use to calculate the true
labels of the input data. Annotating images with the true label, the ground truth, creates
the foundation of a classification model. Giving the network the image in combination
with its true label poses the learning process of a CNN. After the training, the network
is ideally able to predict the right label using only the input data. The goal of this work
is to predict fast-progressing KOA patients defining AKOA with JSN per year.

The advantage of the class definition using JSN is its simplicity. The JSW of a knee is
easy to measure manually or automatically on a simple X-ray image because no bone
structure has to be considered. The measurement of the JSW can be seen clearly on
the X-ray image at the bottom of Figure 5.1. In contrast to this, the class definition
using the KL-grade requires specific medical knowledge or good software to identify the
KL-grade. To define the KL-grade of a knee on an X-ray, the OARSI score of sclerosis
and osteophytosis has to be established by involving the bone structure. JSW, however,
is correlated to cartilage volume loss [30, 33] and the KL-grade and is, due to its easy
calculation, a simple and consistent approach defining AKOA.

Referencing previous studies, which used absolute numbers of JSN to define AKOA (see
Section 2.2), IBLab defined fast progressors with 10% of JSN per two years [30, 31, 32].
Since using this class definition, the signal-to-noise ratio was too little, I increased the
threshold to 20% JSN per two years. By doing this, class 1 will be more “extreme”
and the classification can be expected to be clearer and could increase the classification
accuracy. I will train all models using both ways to define AKOA. Both definitions are
described in detail. The class separation is also illustrated in Figure 4.3.

Class definition of 10% JSN per 2 years

• Class 0: “Slow progressors”: Patients with less than 10% of joint space width
reduction per two years.

• Class 1: “Fast progressors”: Patients with at least 10% of joint space width
reduction per two years.

Further, this ground truth will be abbreviated with “10 % JSN”.

Class definition of 20% JSN per 2 years

• Class 0: “Slow progressors”: Patients with less than 20% of joint space width
reduction per two years.
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• Class 1: “Fast progressors”: Patients with at least 20% of joint space width
reduction per two years.

From this point on, this will be abbreviated with “20 % JSN”.

Calculation

This section deals with the calculation of the ground truth. Since I defined AKOA with
a certain threshold of JSN per at least two years, I calculate the JSW reduction in this
period of time. These values I use to label each input image with the true label. Hence,
I extracted all images, to which an image in the following 1 or 2 years does exist, to
calculate the JSN per at least two years.

Because the visits of the CHECK and the OAI study took place every 12 months, the
number of visits corresponds exactly to the number of years:

• baseline: V00

• 12 months later: V01

• 24 months later: V02

• ...

Visits of the MOST study di�er by intervals of 15 months. Since my class definition is
based on total numbers, the visit intervals also have to be total number intervals. In
order to make the studies comparable without losing too much data, I adapted the visit
numbers of the MOST study and accept the time interval uncertainty of six months for
V02 compared to the other studies.

• baseline: V00

• 15 months later: V01

• 30 months later: V02

• 60 months later: V05

• 84 months later: V07

In the following, I define these two images (visit number interval of at least two) as one
“image pair”. One pair consists of image A and image B, which correspond to year x and
year x+1 or x+2, respectively. Because my dataset sources from a longitudinal study over
at least seven years, one single patient can provide several “image pairs”. The following
example should clarify this:
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For example, a patient provides X-ray images from baseline (V00), year 1 (V01), year
2 (V02), year 6 (V06) and year 8 (V08). I can now calculate the JSN for images, for
which an image at least 2 years later is available. In this case, the JSN can be calculated
for image V00 (image A), using image V01 (image B). The same applies to image V01
(image A) using image V02 (image B) and image V06 (image A) using image V08 (image
B). These are 3 image pairs resulting in 3 images, for which I can calculate the true JSN
per at least 2 years. The procedure is depicted in Figure 5.2.

Figure 5.2: Outline of the processing of the image labelling. All X-ray images derive from the
same right knee from year 0 to year 8. For the 1st image pair, the X-ray from VISIT 0 refers to
image A and from VISIT 1 to image B. These images are used to calculate the JSN and with this
the label for Image A. For the 2nd image pair, the X-ray from VISIT 1 refers to image A and
from VISIT 3 to image B and so on. All images are sourced from the OAI database.
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To now calculate the reduction of the JSW of image A in the following one or two years,
the JSW of image A and image B is required. Here I use the minimal JSW, which I
calculate automatically with the KOALA software (Section 5.1.2). This provides me
with the lateral and medial minimal JSW of image A and image B and hence with the
absolute value of JSN for one image pair. I can now use this value for image A to decide
if this knee X-ray belongs to a fast- or slow-progressing patient.

In the flowchart, seen in Figure 5.4, I point out the pipeline of classifying images into
fast and slow progressors. The chart images the procedure for the medial side. The same
procedure applies to the lateral side. As mentioned before, I use the minimal JSW of
image A (JSWA) and image B (JSWB) to calculate the di�erence of JSW (D) as in
the following equation (5.1):

D = JSWA ≠ JSWB (5.1)

I only consider image pairs with a positive di�erence D, which means a JSW reduction
of image A in the following 1 or 2 years. A negative di�erence D would imply an
increase of JSW. If this applies to the medial and lateral side, I exclude this image.
Developers of the KOALA software advised me to choose a margin of 0.4 mm for the
measurement uncertainty. I consider a negative di�erence D of maximal 0.4 mm as
possible measurement uncertainty and hence as 0 increase (D = 0), which prevents these
cases from being excluded. There exist cases, where instead of both only one side of
the knee, lateral or medial, shows an increase in JSW. In this case, the increase of JSW
implies a skewed knee, as imaged in Figure 5.3. Here the medial side shows an increase
in JSW, whereas the lateral side shows a decrease. These image pairs I also include in
my class calculations.

To now distinguish between class 0 and class 1, which correspond to slow and fast
progressors, respectively, I compare the value of D with the threshold. Once I calculate
the ground truth with the threshold of 10% and once with 20% of JSN. If D is below
the threshold, I consider this side of the image as class 0. Above the threshold, I specify
it as class 1. The classification of the whole knee results from merging the medial and
lateral classes. If at least one of both sides is labelled as class 1, I defined the total knee
as being a fast progressor. If both sides are class 0 or one side 0 and the other Not a
Number (NaN), I consider the total knee to be a slow progressor. Hence a skewed knee
with a NaN value on one side will end up with a valid class for the total knee.

5.1.4 Exclusion Criteria

This work will cover two di�erent kinds of exclusion criteria. Since the goal of this thesis
is to di�erentiate between slow and fast progressors I considered only a subcohort of
the patients, which show progressing KOA. Therefore, I excluded all image pairs with a
remaining KL-grade of 0 for image A and image B, because KL 0 implies no KOA and
hence no progressor. I also sort out the image pairs with remaining doubtful KL-grade,
which are also not considered to be progressors. Apart from these, I also eliminate the
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(a) Visit 0 (b) Visit 1

Figure 5.3: Example of a left skewed knee from the OAI dataset. a) Baseline visit knee X-ray
with KL-grade 2. b) Knee X-ray of 1 year later with KL-grade 4. Increase of the medial JSW of
more than 0.4 mm and decrease of the lateral JSW.

patients showing KL 4 at baseline, as being clinically irrelevant [11]. Further, these
exclusion criteria I name “Ex014”. A summary of the exclusion criteria for this batch of
data can be seen in Table 5.1.

For comparison, I also created one batch of data where I also included the non-progressors
of KOA patients (“Ex4”). Here I only excluded image pairs exhibiting a KL-grade of 4
on image A, due to clinical irrelevance (see Table 5.2). Due to a higher number of images
and a higher image entropy between the classes I expect an increased performance of the
models while applying the “Ex4” exclusion.

All class calculations and exclusion criteria are based on the output of the KOALA
software. Hence I checked them for correctness. As a basis for the landmarks, which then
serve as reference points for calculations, KOALA segments the tibia and femur on the
knee X-ray. An incorrect segmentation means consequently wrong JSW measurements.
Therefore, I inspected all KOALA outputs manually and eliminated all images with
inaccurate segmentations. In Figure 5.5 the segmented compartments of the lateral and
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KOALA out-
put Image A

KOALA out-
put Image B

Extraction
of medial

JSW (JSW A)

Extraction
of medial

JSW (JSW B)

Di�erence of
JSW D=JSW

A - JSW B
NaN

D<0

Reduction
= D/JSW A

D>=0

medial class 0
(medial slow
progressors)

class 1
(medial fast
progressors)

reduction
< threshold

reduction
>= threshold

Figure 5.4: Process of calculating the ground truth. This will be repeated for the values 10% and
20% as the threshold. Class 0 corresponds to slow progressors and class 1 to fast progressors. The
KOALA output XML contains the lateral and medial minimal JSW of the knee. This flowchart
can be transferred exactly to the lateral side.

medial part of the left and the right knee can be seen, respectively. I flipped the right
medial and the left lateral sections of the knee. An example of an excluded image can be
seen in Figure 5.6. I filtered out 139 images this way.

Since patients with knee implants will not show OA anymore, I excluded these images by
plotting the whole image without segmentation. The remaining number of images for
each batch of data I will present in chapter 6.
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Visit x Visit x+1 or x+2

KL 0 æ KL 0
KL 1 æ KL 1
KL 4 æ KL 4
implant æ implant

Table 5.1: Round 1: exclusion criteria for slow and fast progressors

Visit x Visit x+1 or x+2

KL 4 æ KL 4
implant æ implant

Table 5.2: Round 2: exclusion criteria for no fast progressors and fast progressors

Figure 5.5: Correct segmentation (produced by KOALA) on bilateral knee X-ray image (image
from the OAI study).

Figure 5.6: Incorrect segmentation (produced by KOALA) on bilateral knee X-ray image (image
from the OAI study).

5.1.5 Pre-Processing

This section covers the pre-processing of the image and the numeric data. Pre-processed
data will provide a more uniform input and consequently, the performance of the
classification model can be improved.
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Pre-Processing of the Image Data

Even if MRI images may contain more information since they consist of three-dimensional
data, the availability of X-rays among patients with no or little symptoms is higher [13].
Therefore, the input image data in this work will only consist of knee X-ray images.
The pre-processing of these images is the golden standard of deep learning. Since the
images originate from di�erent X-ray machines from di�erent hospitals, the light intensity,
brightness or contrast can vary a lot between the images. To avoid wrong biases due to
the origin of the image, all inputs should be standardised.

First, I cropped all images to the same size to diminish unnecessary information and focus
on the knee region. A medical expert defined the region of interest for defining AKOA as
in Figure 5.7. Using the length X, which corresponds to the tibia plateau (Figure 5.7),
the length of this image refers to 1.6 multiplied by X and the height to 2.0 multiplied by
X, measured from the centre of all KOALA landmarks, which correspond to the middle
of the knee. This cropping length is then applied to all input images. The obtained knee
area is expected to contain all information required to predict the progression of disease.
Since the di�erence between left and right knee shall not be considered by the network
and hence to avoid a wrong bias, I flipped all left knee images to the right side, resulting
in only right knee images, as seen in figure 5.7.

Further pre-processing I performed using the OpenCV2 library (https://opencv.org/rel
eases/). In the next step, I resize all images to the same amount of pixels, since the
architecture of my model requires the same size of all input images plus the network
learns faster, the smaller the image [82]. As a compromise between reducing training
time and not losing information, I resize the images to a width of 512 and a height
of 1024 pixels. Here I use cv2.INTER_NEAREST as an interpolation method, where
the adjacent pixel is used for interpolation. Taking only one single pixel into account
for interpolation makes this method a very fast one [83]. As a next step, I applied
normalisation in order to convert the mean of all pixel values to 0 and the standard
deviation to 1. This process minimises the amount of non-zero gradient, which decreases
the learning time of the model [84, 85]. All X-ray images consist of an amount of di�erent
pixel intensity values. This range can be distributed very di�erently for every image.
The distribution of intensity values of the Dicom images, which I used in this work, are
plotted in Figure 5.8. The x-axis represents the pixel intensity value and the y-axis
represents the number of pixels of all images. To use only a certain range of values, the
best range for 16-bit images has to be figured out. Therefore, I plotted all means, which
can be seen in Figure 5.9. I eliminated the outliers with values higher than 20,000 by
setting the lowest pixel intensity values to 0 and the maximum value to 20,000. This
narrows the range of pixel values, which then increases the contrast in the range, where
most intensity values of all images exist [86].

Thereupon, I applied a blurring method in order to reduce noise in the image, make
edges more prominent and reduce the high-frequency noise. According to previous work,
this pre-processing improves the performance by di�erentiating between real edges and
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Figure 5.7: Example of a cropped unilateral knee X-ray image (image from the OAI study). X
is the length of the tibia plateau.

noise-induced edges [87, 88]. As in other studies, I used Gaussian Blurring as a blurring
method [11, 27, 89], which acts as a low-pass filter [90]. This filter calculates for every
pixel the weighted average intensity including the surrounding pixels [91]. Contrary
to other methods, like average blurring, the central pixel is weighted the highest [87,
92]. Like this, false edges resulting from noise can be eliminated [93]. The number of
pixels taken into account is defined by the kernel size. The larger, the more blurred.
I defined the kernel size as 3 x 3, which was also used for X-ray pre-processing in the
study of Nguyen et al. [89] and achieved the highest performance during image quality
measurements [91]. I defined the parameter of the function accounting for the standard
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Figure 5.8: Pixel intensity histogram of all images of used data. X-axis: pixel intensity value,
y-axis: number of pixels.

Figure 5.9: X-axis: image number, y-axis: pixel intensity value.

deviation in the direction of X and Y [87] with 0.3.
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As the next pre-processing step, I adapted the contrast. Generally, a high contrast
image uses the widest range of pixel intensity values possible, which makes the image
clearer. Hence, the histogram of a well-contrasted image would be distributed over the
whole range of pixel intensity values, as seen on the right histogram of Figure 5.11. The
left histogram, which only covers a small range of pixel intensities, refers to an image
with a bad contrast [94]. Histogram equalisation can be applied globally to enlarge the
distribution of the intensity values over a wider range of the x-axis. A contrast rectified
image is depicted in image c) on Figure 5.10. The original image with bad contrast
corresponds to image a) on Figure 5.10. The disadvantage of the global histogram
equalisation is the declined contrast in the bright regions of the image. This can be
optimised by applying Adaptive Histogram Equalisation. Here, the image is split into
smaller regions, for each of which the histogram is equalised independently [94]. Regions
with a little range of intensity values would amplify noise. This issue can be solved by
Contrast Limited Adaptive Histogram Equalisation (CLAHE). Applying this method, an
upper threshold can be defined to limit the contrast above a certain value [94, 95, 96].
The improved e�ect of using CLAHE on X-ray images is also confirmed by Ikhsan et
al. [97], who compared CLAHE to global histogram equalisation and gamma correction.
The better results can also be seen in Figure 5.10 on image b).

Hence, I selected CLAHE to use as the contrast improving pre-processing method in
order to keep the noise as low as possible and contrast the bone structure from the X-ray
image, which enhances the learning process of the network [94, 95]. The parameters
contrast limit and grid size can be set for this application. I tested both parameters with
some values between 1 and 50, checked the result visually and used the best combination.
The grid size resulted in 15 x 15, which defines the size of the image section, where the
same equalisation is applied. The parameter contrast limit I set to 40, which is the default
value of this function. Pixels with higher intensity values are treated as noise [94] and
are redistributed to all other intensity values [95]. All pre-processing steps I used for all
images are plotted in Figure 5.12. The previously explained steps I applied subsequently
on image a). In image d) the application of Gaussian Blurring is very di�cult to see.
The e�ect of this step can be seen in image f), where I applied all pre-processing steps
the same, but with no blurring. Thus Gaussian Blurring is also important to apply, since
the bone structure on image e) can be perceived more clearly compared to image f).

Normalisation of the Numeric Data

On top of the image data, I also add numeric values to the input for the CNN models.
This section deals with the normalisation of the numeric data, which means all values
of di�erent variables have to be converted to the same scale. This is very important
because all variables are measured in di�erent ranges. Normalisation helps to compare
for example age scaled between 45 and 80 and the WOMAC pain score, which is scaled
from 0 to 20.

To evaluate a di�erence in the performance of a model using data with di�erent normali-
sation methods, I tested two di�erent methods. Two very common and simple ones are
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Figure 5.10: a) Original image. b) CLAHE applied image, where all regions can be recognized
clearly. c) Global histogram equalisation, where some regions are overexposed. [94]

the Standard Scaler and the MinMax normalisation, which were also used in previous
studies [98, 99, 100]. At first, I applied Standard Scaler normalisation, which calculates
the standard score as seen in the following equation (Equation 5.2):

Xstd = X ≠ U

S
(5.2)

where X is the variable value, U the mean and S the standard deviation of all values of
this variable [101]. The second method which I applied is the MinMax normalisation, as
seen in Equation 5.3. Xmin and Xmin comply with the lowest and highest values of this
feature. The scaled value is subsequently calculated in Equation 5.4 [102]. The desired
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Figure 5.11: Left: example histogram of un pre-processed image. Right: example histogram of
the same but histogram equalised image. [94]

new feature range between 0 and 1 corresponds to min and max.

Xstd = X ≠ Xmin

Xmax ≠ Xmin
(5.3)

Xscaled = Xstd ú (max ≠ min) + min (5.4)

5.1.6 Batches of Data

Having now di�erent class definitions and exclusion criteria, I created di�erent batches
of data to use for training my models. These batches I used in combination with the
StandardScaler and the MinMax normalisation method for the numeric data (demographic
and clinical information). For every batch, the images are preprocessed in the same way
as mentioned in Section 5.1.5. The class definition and exclusion criteria I detailed in
Section 5.1.3 and 5.1.4, respectively.

• Batch 1:

– Class definition: 10% JSN
– Exclusion criteria: Ex014
– Number of images (including missing data): 21,139
– Number of images (excluding missing data): 17,403

• Batch 2:

– Class definition: 20% JSN
– Exclusion criteria: Ex014
– Number of images (including missing data): 27,432
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– Number of images (excluding missing data): 22,024

• Batch 3:

– Class definition: 20% JSN
– Exclusion criteria: Ex4
– Number of images (including missing data): 44,538
– Number of images (excluding missing data): 25,545

5.2 Implementation

This section covers the implementation of all models I created in this thesis to classify
between slow- and fast-progressing KOA patients. First I will describe the implementation
of the XGBoost model, which I used to test only numeric data to predict AKOA and to
evaluate the importance of all features. I will then explain the implementation of the CNN
models. I created these models to train with image data only and with the combination of
image and numeric data. This section contains the description of all model structures and a
detailed explanation of each training run. My implementation can be found in the GitHub
repository with the following link: https://github.com/MAVOvo08/Masterarbeit_vogel

5.2.1 Implementation of the XGBoost Model

Model and Hyperparameter Tuning

In this section, I will examine the ability of the numeric data to predict fast-progressing
KOA. I considered the XGBoost model as the best for classifying between fast and
slow-progressing KOA, due to the high computational speed and the little complexity,
which prevents overfitting [64, 65]. Besides, the XGBoost model proved its e�ectiveness
in many machine learning competitions [103].

Hence, I trained an Extreme Gradient Boosting on the basis of the di�erent batches of
data and di�erent normalisation methods, as I pointed out in the previous Sections 5.1.6
and 5.1.5. I split the data randomly into a training set and a test set, 75% and 25%,
respectively.

The XGBoost model includes a large set of hyperparameters that need to be tuned, to
end up with the highest possible performance. The learning rate defines the shrinkage
size of the model during updating the weights. The maximum depth complies with the
complexity of a tree. The deeper, the more complex the model gets, but also the higher
the chance to overfit. The maximum number of leaves defines the highest number of
nodes, which can be added to a tree. Gamma is the “minimum loss reduction required
to make a further partition on a leaf node of the tree” [104]. The parameters alpha and
lambda correspond both to some regularisation of the weights. For gamma, alpha and
lambda, the higher the value, the more conservative the model gets [104].
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Due to the high number of parameters, it is very di�cult to find an optimal combination
by testing manually [67]. I tuned the parameters listed in Figure 5.13 according to reports
of being e�ective, referencing an online class of Nvidia [105]. After performing some grid
search iterations with the first data batches, I did not further tune the values of the
variables, which remained the same, during the subsequent iterations in order to decrease
the processing time. All variable values, which I describe in the following, I identified
as mentioned before. The subsample, which I set to 1, describes the fracture of data
which will be randomly selected to be the input for the trees before expanding them.
The optimal fraction of the first iterations was 1, which means all data will be used as
input. The “scale_pos_weight" gives the ratio between the positive and negative weights,
improving results for unbalanced classes, which I set to 2. Setting the tree method to
“gpu_hist” enables the model to spread over several graphic processing units (GPU).
Since this model only has access to one single GPU, this parameter does not influence the
model’s performance. Due to the fact that the prediction of AKOA is a binary problem,
I set the objective of the learning task to “binary: logistic”, which outputs probabilities.
The values for the parameters, where I set the same value for all training runs, can be
seen in Figure 5.13.

To tune all other parameters, I performed a grid search before every training run to
iterate over learning rate, maximal depth, maximal leaves, alpha, gamma and eta in
di�erent ranges and to find the optimal combination of parameter values (see table
5.3). Grid search implies iterating over all variables in order to test all possible com-
binations of parameters for training the XGBoost model. So the outer loop refers to
the iteration over the first variable. Inside of this loop, I iterate over the next variable
and so on. With each combination, I trained again the XGBoost model and in case
the performance of the model is better than that of the previous iteration, the results
are saved or rather overwritten. Like this, I extracted the best combination of hyper-
parameters to train the XGBoost model to classify between slow and fast-progressing
KOA. I minimised the processing time of the grid search by iterating only over three to
six di�erent values per parameter. In Figure 5.13 a summary of all parameters can be seen.

Variable Iterating Range

max_depth {4, 8, 32, 64, 128, 512}
max_leaves {4, 8, 16}
alpha {0.05, 0.1, 0.2, 0.3, 0.5, 0.7}
learning rate {0.1, 0.2, 0.4, 0.6, 0.7}
gamma {0.2, 0.5, 0.7, 0.9}
eta {0.1, 0.3, 0.5, 0.6, 0.8}

Table 5.3: Parameter ranges of the grid search to tune the hyperparameter of the XGBoost
model to find the best performance.
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Training Runs

As seen in Table 5.4 the training of the XGBoost model is structured in blocks of three
runs each. I performed the first blocks of training using the Standard Scalar normalised
data of Batch 1, Batch 2 and Batch 3 (Run A to C, Run D to F and Run J to L) and
removed all missing values. To figure out which normalisation method performs better, I
trained batch 2 once with the StandardScalar and once with the MinMax normalised
data (Run D to F and Run G to I, respectively). Due to equal results of both methods, I
did not further use the MinMax normalised data and only documented the runs with
batch 2 (Run G to I). I repeated all runs with the inclusion of missing values (Run M to
O, Run P to R and Run S to U).

One training block contains three runs with di�erent combinations of features. In addition
to the numeric data, mentioned in Section 5.1.2, I also included the OARSI score of
osteophytes and sclerosis, which I obtained by the KOALA software output. Hence,
in each first run of a training block, I trained with all available variables (age, BMI,
gender, knee injection, hip symptoms, three WOMAC scores, KL-grade, information
about contralateral KL-grade, OARSI grade of osteophytes and sclerosis). Since the
radiographic variables can already state the power of X-ray images for the classification
task, I want to assess their importance. Therefore, I excluded the radiographic variables
in the second run of each block. Although KL-grade is also a radiographic feature, this
information is more often available than the OARSI grade of sclerosis and osteophytosis.
Hence, I included the KL-grade for all training runs. Due to a high number of missing
values of the variable knee injection, which would cause a lot of data to be lost for the
runs where I excluded missing data, I removed this feature for the third run of one block
of training. I did not use an imputation method, due to a high number of missing values
for the knee injection variable and the imputed values would only be proxy values.

Thereupon, I calculated the importance of the features using the xgboost library. After
the analysis of the less important features, I excluded the four criteria with less influence
and performed new runs with every batch of data (Run V to X) with the exclusion of
missing values. The hyperparameters were tuned using grid search before each run, as I
pointed out in Section 5.2.1. All runs are summarised in Table 5.4. As a measurement of
performance, I used the ROC-AUC, as detailed in Section 3.5.

This curve describes the true positive rate plotted over the false positive rate (the blue
curve in Figure 3.14). The AUC can be calculated. The dashed black line represents
random guessing with an AUC of 0.5. The closer the blue curve passes the upper left
corner, the higher the AUC and the better the performance of the model. Depending on
the classification thresholds of the model, a single point on the ROC curve is used to
define the sensitivity and specificity [69, 70]. These can either be taken from the diagram
or can be calculated with the number of TP, FP, TN and FN observations as seen in 3.7
and 3.8. Depending on the threshold which output between 0 and 1 corresponds to the
classes, the sensitivity and specificity can be adapted depending on the desired usage of
the model.
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Run
name

Data
batch

Normalization
method

Exclusion
NaN values Features

Run A Batch 1 StandardScaler yes All
Run B Batch 1 StandardScaler yes no radiographic
Run C Batch 1 StandardScaler yes no radiographic, no knee_inj

Run D Batch 2 StandardScaler yes All
Run E Batch 2 StandardScaler yes no radiographic
Run F Batch 2 StandardScaler yes no radiographic, no knee_inj

Run G Batch 2 MinMax yes All
Run H Batch 2 MinMax yes no radiographic
Run I Batch 2 MinMax yes no radiographic, no knee_inj

Run J Batch 3 StandardScaler yes All
Run K Batch 3 StandardScaler yes no radiographic
Run L Batch 3 StandardScaler yes no radiographic, no knee_inj

Run M Batch 1 StandardScaler no All
Run N Batch 1 StandardScaler no no radiographic
Run O Batch 1 StandardScaler no no radiographic, no knee_inj

Run P Batch 2 StandardScaler no All
Run Q Batch 2 StandardScaler no no radiographic
Run R Batch 2 StandardScaler no no radiographic, no knee_inj

Run S Batch 3 StandardScaler no All
Run T Batch 3 StandardScaler no no radiographic
Run U Batch 3 StandardScaler no no radiographic, no knee_inj

Run V Batch 1 StandardScaler yes no age, hip symptoms,
WOMAC_dis, WOMAC_sti�

Run W Batch 2 StandardScaler yes no age, hip symptoms,
WOMAC_dis, WOMAC_sti�

Run X Batch 3 StandardScaler yes no age, hip symptoms,
WOMAC_dis, WOMAC_sti�

Table 5.4: Summary of all Training Runs of the XGBoost model using numeric data.
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5.2.2 Implementation of the CNN

To now accomplish the final goal of my thesis, I implemented di�erent CNN models to
be able to include image data as input to predict fast-progressing KOA. To make use of
the method of transfer learning, as discussed in Section 3.2, IBLab provided me with a
pre-trained model, the ResNetClassifier. This model, trained by IBLab, will be the basis
for all implemented CNN models in this work. The classifier encompasses as backbone
a ResNet50 model, which is a deep CNN trained on the ImageNet dataset. It consists
of 5 convolutional blocks and contains around 23.5 million trainable parameters. These
weights were then used for the ResNetClassifier. The training included X-ray images of
the wrist, knee, hip, hand, leg, spine and ankle from 10 di�erent datasets to detect the
body part and classify between the sagittal and frontal view. On the test set, a view
accuracy of 0.9950 and a body part accuracy of 0.9998 were archived.

I selected this model as a base model, due to the general ability of the ResNet50 to
classify between X-ray images. As well the large amount of data, which was used for
training and the high performance made this model attractive for my application. The
last layers of the ResNetClassifier can be seen in Figure 5.14 and a larger model summary
is imaged in Appendix C.

Models

In order to receive a high accuracy in predicting fast progressors, I created di�erent
classification models and tested them with the di�erent batches of data. My approach for
creating the models can be seen in Figure 5.15. After the creation of the first model, I
carried out training runs using di�erent data batches and evaluated them subsequently. In
the next step, I removed or added the new layers to create a new and better model. The
first models could then be used as reference models for the following ones. For all models,
I removed the last dense layer, which can be seen in the model summary in Figure 5.14.
This layer is the output layer, which solves the final classification. Since I have a di�erent
classification task and require a smaller number of output nodes than the pre-trained
model, I replace the last layer with di�erent new layers. For the implementation, I used
the Keras library of TensorFlow. Keras is an Application Programming Interface (API),
which provides building blocks for machine learning problems [106].

I started with a very simple model to observe the possible increase in performance by
adding a layer or the change of parameters. Thus, for Model 1 I added one dense layer
with a softmax function behind the max-pooling layer and with 2 output nodes. I kept
the pooling layer to transform the output shape of the pre-trained model to vectors [107].
One output node of the last dense layer is associated with class 0, the other one with
class 1. The softmax function uses a certain threshold to assign the values between 0
and 1 to the right class. This activation function is used when the number of classes is
equal to the number of output nodes [108].

For Model 2, I expanded the model with a new dense layer with 256 nodes and ReLU
as an activation function. This number of nodes corresponds to the output size of the
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Type Number of nodes Activation function Dropout

Model 1 Dense 2 Softmax function no
Model 2 Dense 256 ReLU no

Dense 1 Sigmoid no
Model 3 Dense 2048 LeakyReLU no

Dense 1024 LeakyReLU no
Dense 1 Sigmoid no

Model 4 Dense 2048 LeakyReLU 0.3
Dense 1024 LeakyReLU 0.3
Dense 1 Sigmoid 0.3

Table 5.5: All CNN models are based on the ResNetClassifier. The last layer was dropped and
the listed layers are added for the respective model.

pre-trained model. In literature, the ReLU function is considered to be the best activation
function [108] for fully-connected layers, whereas the sigmoid function is used for the
classification task [109]. I changed the output layer to a layer with only one output node
and used sigmoid as an activation function. This activation function is used for binary
classification when having one output node. Smaller networks, which come with fewer
output nodes, mean less computational resources and hence fewer costs [110]. The use of
a single output node is also confirmed in the Keras documentation [107]. When using
just one output node, the output value will range between 0 and 1. This just removes one
step at the end of the model, which allows an individual decision to be made about the
threshold. For example, a threshold of 0.5 would imply that an output of 0.5 corresponds
to class 0 and an output of 0.5 to class 1. For all subsequent models, this output layer
remains unchanged.

In Model 3, I added three new dense layers and other activation functions. The first
dense layer includes 2048 nodes, the second 1024 nodes. Both of these layers used the
LeakyReLU activation function. This function is an improved version of the ReLU
function and should prevent the neurons from dying as explained in section 3.1.1.

To build Model 4, I added an additional input layer behind the last convolutional layer
of the last block of the ResNetClassifier to enable the model to train with image and
numeric data. The next layers, which I added, are similar to the ones I added in Model 3.
The first dense layer includes 2048 nodes and uses LeakyReLU as an activation function.
This layer is concatenated with a dropout layer, which has a rate of 0.3 to minimise
overfitting and regularise the model [107, 111]. Since literature suggests a dropout rate
between 0.2 and 0.5 [59, 112], I first tested a dropout rate of 0.5 and 0.3. A rate of 0.3
provided a better performance of the model. A dropout of 1 would mean the network
would react as without a dropout and all nodes would be used. A rate of 0 would mean
this layer would not give any output [113]. Finally, I added a dense layer with 1024
nodes, LeakyReLU and a dropout layer with 0.3. A summary of all models can be found
in table 5.5.
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Training Runs

One training run is defined as one training using one model, a specific set of hyperparam-
eters and one batch of data. All training runs, which are relevant for this work, I will
describe in the following. I performed all runs using the ADAM optimizer, which has
already proven its worth in previous studies [11, 27, 40, 41]. Since the AKOA prediction
model is a binary classifier, I used the binary-cross-entropy as the loss function [38]. To
evaluate the model’s performance, I used AUC as a metric, which is a very common
metric function for binary classification [5, 11, 22, 27, 32]. I set the training batch size to
4 and applied no augmentation on the images for all runs. Image augmentation usually
reduces overfitting by, for example, cropping or rotating images or changing contrast
randomly. These methods prevent the CNN from learning noise on the images for their
classification task [114]. Training with data augmentation I leave for future work since
this was out of the scope of my work.

To check the informational content of a single X-ray image about the progression of
disease I used exclusively image data for Run 1 to 5. I applied transfer learning, as
explained further in Section 3.2, to make use of the knowledge of the pre-trained ResNet50
model (see Section 5.2.2) for Run 1 to 8 and Run 10. This method also diminishes training
time and resources compared to training from scratch [59]. Hence for these runs, I used
the architecture and the weights of the base model. For the first run (Run 1) I used
Model 1. I trained this model with the first batch of data. After loading the first 188
layers of Model 1 with the weights of the previously trained model, I froze all of them
by setting them to “not trainable” in order to keep the initial weights and make use of
the extracted features of the pre-trained model [58]. To specify my model on my data,
I trained only the newly added dense layer with a learning rate of 1≠04. This learning
rate is large enough to have a reasonable time of the training process and low enough to
avoid unstable training [115]. To examine the e�ect of fine-tuning, I froze only 153 layers
in the next run with Model 1 (Run 2), meaning in addition to the new layer all layers of
block 3 were trainable now. As said in the literature [59, 107], I reduced the learning
rate to 1≠05. Other than that, all other parameters I took over. Run 3 I performed on
Model 2. Again, I started with training only the new layers and set all 188 layers of the
base model to not-trainable. The newly added layers I trained again with a learning rate
of 1≠04. The parameters of Run 4 remained the same as for Run 3 but I used Model 3.

For the next training runs, I added the numeric data. Because the CNN is not able to
handle missing values, I deleted all rows containing any NaN values from the input data,
resulting in 16,941 images. Still using Model 3, I carried out the next run (Run 6) with
the original numeric data (not normalised) to be able to see the e�ect of normalisation.
I decreased the learning rate even further to 1≠06 to examine a change in performance.
Due to the small amount of remaining data, after the exclusion of all NaN values, I
identified the variable with the most missing values. Since this was the criteria “knee
injection”, I eliminated this variable from the dataset. I now used the remaining 22,432
images for the following training run (Run 8) on Model 4, with a reduced Dropout of 0.3.
For Run 8 I used the numeric data, which I normalised with the standard scalar function
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as explained in Section 5.1.5 and froze again the whole base model. The newly added
layers I trained with a learning rate of 1≠06. For Run 1 to Run 10 as well as for Run
14 and 15, I used the data from OAI, MOST and CHECK and split it randomly into
training, tuning and test set. The training set is composed of 80% of the total mixed
data, from which 15% correspond to the tuning dataset. For testing, I used 20% of the
mixed data.

Since the training data of the pre-trained model also included the data I used for training,
I want to rule out that the images were detected as a whole instead of classifying them
with the trained knowledge. Hence, I performed the following training runs using the
ResNet50 architecture but not the pre-trained weights. Thus, during Run 9 and Run
11 to 15, I set all layers of Model 4 as trainable since I do not use pre-trained weights.
For Run 9, the parameters and the data remained the same, but I unfreeze the whole
model. Subsequently, for Run 11, 12 and 13 I performed experiments separating my
data in the three original datasets. These results show the ability of the network to
classify new datasets. Since images, which originate from the same dataset, show several
same characteristics, the network could learn the wrong features. For Run 11, the OAI
and MOST data composed the training set and the CHECK data the testing set, which
corresponds to 2.1% of the total data (abbreviated in Table 5.6 with OMC). Run 12
trained with OAI and CHECK data and tested with the MOST dataset, which covers
21.4% of the total data (OCM). The same for Run 13, where MOST and CHECK data
provided the training set and OAI the testing set (MCO), which is contrary to all other
runs larger than the training set (76.6%). For all three runs, 15% of the respective
training set served as tuning data. To limit the training time, I reduced the learning rate
to 1≠05 and did not further reduce it.

Referring to the Results of the XGBoost model, which I used to predict AKOA using
only numeric data, I excluded the five least important features in order to minimise the
size and complexity of the model and hence reduce training time and overfitting, which I
expect to lead to higher performance [62]. I applied this to all three data batches. Run
16 corresponds to the training of Model 4 using Batch 1, which includes the image data
and only the four most important features. I used the same setting during the training
with Batch 2 (Run 15) and Batch 3 (Run 17). The learning rate remained 1≠05 and I
used the standardised data for both runs. All training runs are summed up in figure 5.6.
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Model Data
batch Numeric data Number of

frozen layers
Learning
rate

Amount
of data

Run 1 Model 1 Batch 1 No 188 1≠04 21,139
Run 2 Model 1 Batch 1 No 153 1≠05 21,139
Run 3 Model 2 Batch 1 No 188 1≠04 21,139
Run 4 Model 3 Batch 1 No 188 1≠04 21,139
Run 5 Model 3 Batch 3 No 188 1≠04 16,941
Run 6 Model 3 Batch 2 original 188 1≠06 16,941
Run 7 Model 4 Batch 2 original 188 1≠08 16,941
Run 8 Model 4 Batch 2 standardised 188 1≠06 22,304
Run 9 Model 4 Batch 2 standardised 0 1≠06 22,304
Run 10 Model 4 Batch 2 standardised 153 1≠06 22,304
Run 11 Model 4 Batch 2 (OMC) standardised 0 1≠06 22,304
Run 12 Model 4 Batch 2 (OCM) standardised 0 1≠05 22,304
Run 13 Model 4 Batch 2 (MCO) standardised 0 1≠05 22,304
Run 16 Model 4 Batch 1 standardised 0 1≠05 21,139
Run 15 Model 4 Batch 2 standardised 0 1≠05 22,304
Run 17 Model 4 Batch 3 standardised 0 1≠05 16,941

Table 5.6: Summary of all training runs with only image data (Run 1 – 5) and numeric and
image data in combination (Run 6 – 17). Run 15 - -17 include only the four most important
numeric features. Original numeric data means no normalised data was used. For standardised
numeric data, I used the standard scaler normalisation method. CNN Models 1–5 are described
in Section 5.2.2. OMC: trained with OAI & MOST data and tested with CHECK. OCM: trained
with OAI & CHECK and tested on MOST. MCO: trained with MOST & CHECK and tested on
OAI. I trained and tested all other runs with all three datasets.
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Figure 5.12: Example of a pre-processing sequence of a knee X-ray taken out of the OAI study.
a) Original image. b) Resized to 1024, 512 pixels. c) Normalised pixel intensity to values between
0 and 20 000. d) Gaussian Blurring applied. e) CLAHE applied. f) All pre-processing steps
without Gaussian Blurring.
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Figure 5.13: Parameters of the XGBoost model. Not defined values I optimised using grid
search

Figure 5.14: The last layers of the model summary of the ResNetClassifier created by IBLab. A
ResNet50 based model to classify between X-rays of wrist, knee, hip, hand, leg, spine and ankle
and between sagittal and frontal view.
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Model creation
Training with

di�erent
data batches

Adding or
removing new

layers at the end

Evaluation Best model

Figure 5.15: Process of creating the di�erent CNN models.
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CHAPTER 6
Results and Discussion

This chapter deals with the analysis of the data and the presentation and discussion of
all results, which I obtained with the XGBoost model and the CNN models.

6.1 Data Analysis

This section deals with the analysis of the data considering Batch 1 and Batch 2. Previous
studies suggest age, gender and BMI be associated with AKOA [6, 11, 13]. Thus, I will
take a closer look at the correlation between these factors and AKOA. The three datasets
provide me with a total number of 80,234 unilateral knee images, 40,120 among them
are left knee images and 40,114 are right knee images. 66.16% of the total data origins
from the OAI dataset, 24.57% from MOST and 9.27% from the CHECK study. Due to
the high proportion of OAI data, the distributions of the OAI dataset correspond mainly
to the plots including all datasets. Patients with remaining KL-grade 0 and 1, as well as
KL-grade 4 at the baseline visit, were excluded for both data batches. Batch 1, with the
class definition of 10% JSN, contains a total number of 21,139 images and Batch 2, for
which I used the class definition of 20% JSN, a total number of 27,432 images.

Comparing the data of Batch 1 and Batch 2 regarding the class distribution, a significantly
higher imbalance between the two classes can be seen for Batch 2 (Figure 6.1). Defining
class 1 with more than 10% JSN, AKOA patients covers 38.6% of the total data of
Batch 1. When increasing the threshold to 20% JSN, as expected, the ratio of fast-
progressing patients decreases to 21.05%. The distribution of female and male participants
is approximately the same for each class in both data batches (around 60% women and
40% men). The class distribution is reflected in Figure 6.1. Previous studies show
arbitrary results. In the study of Halilaj et al., more women are represented among the
group of non-progressors than in the group of progressors. Here the groups are also
clustered by JSN [22]. In the study of Raynauld et al., 73% of fast progressors are women,
versus 48% women among non-progressors [29]. These numbers are similar to the ones in
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the study from Bartlett et al., where females represent 71% of fast progressors compared
to 64% of women among non-progressors [30].

(a) 10% JSN (b) 20% JSN

Figure 6.1: Class distribution for OAI, MOST and CHECK dataset. Left: JSN 10%. Right:
JSN 20%. Green corresponds to female patients and red to male.

The age distributions for both class definitions including all three datasets are plotted
for women in Figure 6.2 and men in Figure 6.3. The left diagrams reflect the female
cohort and the right ones the male cohort. Concerning women of Batch 1 (Figure 6.2a),
the distribution is a normal distribution around about 67 years for both classes. The
orange curve of class 1 is slightly shifted to the higher age, which results in an increased
ratio of class 1 to class 0 with higher age. For example, around 50% of women older than
82 develop fast-progressing KOA, whereas only around 35% of women aged 57 exhibits
AKOA.

The female age distribution curve of 20% JSN in Figure 6.3a, also shows a normal
distribution, but around 65 years. Here the proportion of class 1 to class 0, especially
among the 51 to 80 years aged women, is very much lower than for the other class
definition. This means a large amount of the female cohort in this age range develops
KOA with a JSN per two years between 10 and 20%. The curve of class 1 is also shifted
slightly to a higher age. The class 1 to class 0 ratio decreases until the age of 65 and
then starts to increase again for higher ages.

The male cohort of the total data shows a bimodal age distribution in both data batches
(Figure 6.2b and 6.3b). This can be seen more clearly for the blue curves, the slow
progressors, and only slightly for the distributions of class 1. One peak at around 59
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years and the other at around 73 years. The class 1 distribution is in contrast to the
female cohort very centred with the curve of class 0. The ratio of class 1 to class 0 is also
much lower for the class definition of 20%.

(a) Female (b) Male

Figure 6.2: Age distribution for OAI, MOST and CHECK dataset, JSN 10 %. Blue corresponds
to class 0, orange corresponds to 1.

(a) Female (b) Male

Figure 6.3: Age distribution for OAI, MOST and CHECK dataset, JSN 20 %. Blue corresponds
to class 0, orange corresponds to 1.

In Figure 6.4, the female participant’s age and BMI of Batch 1 are plotted. The female
cohort is imaged on the diagram in Figure 6.4a, considering the OAI, MOST and CHECK
data, and on the diagram in Figure 6.4b, considering only the OAI data. All observations
of the blue class 0 concentrate in both diagrams mainly between the age of 50 and 80
years with a BMI between 20 and 37 kg/m2. For observations of class 1, the points
concentrate between 53 and 80 years and 21 and 48 kg/m2. Figure 6.5 represents the
female cohort of Batch 2. The observations are distributed the same way as for Batch 1,
except the density of the orange class 1 datapoints is generally less. Women with an age
higher than 70, exhibit generally lower BMI. One reason for this may be that overweight
people have a higher risk of developing other serious diseases in old age, which may take
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the focus away from knee problems and prevent them from participating in a study like
OAI.

Another aspect can be seen in the plots 6.4 and 6.5. Slightly fewer younger women with
less weight develop AKOA. In Figure 6.4a the density of data points of class 1 for women
younger than 57 and BMI lower than 30 kg/m2 is lower than for women younger than
57 and BMI higher than 30 kg/m2. Thus, for women aged under 57, a higher BMI has
a larger impact on the development of AKOA, compared to older women. The study
of Driban et al. also reports a low risk for women younger than 63.5 years to be a
fast progressor, except when having a high BMI [6]. Besides, the centre of data points
corresponding to class 1 is more oriented to a higher age, resulting in a higher proportion
of AKOA patients with increasing age. This trend applies for both data batches but can
be seen more clearly for Batch 2 in Figure 6.5b. In Batch 1 outliers with a BMI higher
than 45 kg/m2 correspond more likely to class 1, the fast-progressing patients. The
association of BMI and AKOA is also confirmed by the studies [6, 9, 13]. All distributions
of the male cohort do not show significant correlations between age or BMI and AKOA.
An example of this is imaged in Figure 6.6, where I took all three datasets into account
to plot the male distribution for age and BMI of Batch 1.

(a) OAI, MOST and CHECK (b) OAI

Figure 6.4: Age and BMI distribution for the female cohort with 10% JSN. Blue corresponds to
class 0, orange corresponds to 1. (a) total data of OAI, MOST and CHECK. (b) only OAI data
considered.

A further indicator for AKOA could also be the current KL-grade of the knee as seen in
Figure 6.7. Due to the fact that the KL-grade distribution of class 0 has its maximum
at KL-grade 2, whereas the class 1 distribution at KL-grade 3, patients with baseline
KL-grade 3 are more likely to be a fast progressor than being a slow progressor.

Comparing now the di�erent datasets, the MOST cohort shows some di�erences. When
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(a) OAI, MOST and CHECK (b) OAI

Figure 6.5: Age and BMI distribution for the female cohort with 20% JSN. Blue corresponds to
class 0, orange corresponds to 1. (a) total data of OAI, MOST and CHECK. (b) only OAI data
considered.

Figure 6.6: Plot of the age and BMI distribution of the male cohort of Batch 1. OAI, I
considered MOST and CHECK data.

using the threshold of 10% JSN, the data is distributed very equally over both classes
(Figure 6.8a) compared to the distribution of the total amount of data (Figure 6.1a).
This does not hold for the class distribution of MOST data in Batch 2, which shows a
similar distribution as for the total amount of data of Batch 2. That proves the presence
of many participants exhibiting a JSN larger than 10 but lower than 20% JSN among the
MOST cohort. The MOST cohort also shows a di�erent concentration of observations of
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Figure 6.7: Plot of the KL-grade distribution of Batch 2 including female and male of the OAI,
MOST and CHECK cohort. Blue: class 0. Orange: class 1.

(a) Class distribution of Batch 1. Green: females.
Red: males.

(b) Age and BMI distribution of the female cohort
of Batch 2. Blue: class 0. Orange: class 1.

Figure 6.8: Data distribution of the MOST cohort.
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class 1 for Batch 2. As seen in Figure 6.8b the orange data points of class 1 accumulate
around the age of 60 to 75 years. This is a smaller range compared to the total data
distribution as seen in Figure 6.5a. Since the amount of data for OAI is the largest one,
as mentioned before, the distributions are very similar to the ones for the total data. Due
to the small CHECK cohort, these results did not show any specific characteristics. In
general, I can say that women younger than around 60 years have a lower risk to develop
AKOA, except if they are overweight. Correlations between single features and AKOA
can only be seen slightly. Therefore, it must be a combination of several parameters
which is able to make a statement about the risk of developing AKOA.

6.2 XGBoost Model Results

This section covers the results of the hyperparameter tuning of the XGBoost model
and the appropriate training runs. Because the comprehension of a reasonable set of
parameter values is very time-consuming [67], I applied grid searching for every single run,
to find the optimal model parameter values (listed on the right side of Table 6.2). The
individual tuning is very important due to the di�erent data and feature combinations I
used for each run. For all runs, the optimal learning rate was either 0.1 or 0.2. All other
parameters showed larger variations between the di�erent runs, for example, gamma,
which varies between 0.2 and 0.9. The highest value of alpha was 0.5. As an evaluation
tool, I use the AUC, where 1 accounts for the best result.

For training with Batch 2, the best practice was performed by including all features and
missing values with an AUC of 0.6616 (Run P). The same applies to Batch 3, where I
achieved the highest results with Run S (AUC: 0.7308). Considering training runs of
Batch 2 and Batch 3, the AUC increased compared to Run D (AUC: 0.6469) and Run
J (AUC: 0.6953), for which I excluded missing data. This could result from the fact of
training with more data. On the contrary, training runs using Batch 1 showed opposite
results. The value of AUC decreased or remained the same while considering observations
with missing values. The best performance using Batch 1 was an AUC of 0.616 (Run A)
including all features but excluding NaN values.

The ROC curves of the best practices for Batch 1 (Run A), Batch 2 (Run P) and Batch
3 (Run S) are plotted in Figure 6.9a, 6.10a and 6.11a, respectively. For every point
on the ROC curve, a confusion matrix exists with respective specificity and sensitivity.
Depending on the application of the model, a threshold can be chosen. If the goal is to
detect fast-progressing patients as much as possible, the sensitivity should be as high
as possible and the specificity as low as acceptable. Since there is no treatment for
fast-progressing KOA patients, which would harm slow-progressing patients, I accept a
high number of wrongly identified as being a fast progressor instead of a high number of
wrongly identified as being a slow progressor. The red point on the ROC corresponds to
the confusion matrix on the right side. Suitable confusion matrices for high sensitivity of
Run A, P and S can be seen in Figure 6.9b, 6.11b and 6.10b, where the x-axis represents
the label, which the model predicts, and the y-axis represents the ground truth. Positive
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labels correspond to class 1, the fast progressors, negative labels to class 0. Looking
closer at Run S, the model detected among 1,585 knees 1,472 knees as fast progressors.
Among 9,550 slow- or non-progressing knees, 7,264 knees were falsely detected as fast
progressors. In Table 6.1 I listed the specificity and sensitivity of the best practice of
each batch (Run A, P and S) using the classification thresholds of 0.47, 0.21 and 0.13,
respectively.

(a)

(b)

Figure 6.9: XGBoost model results from Run A. (a) The x-axis represents the false positive
rate, the y-axis the true positive rate. The blue graph corresponds to the ROC curve of Run A,
the orange graph represents a random guess. (b) The confusion matrix of Run A taken at the red
point on the ROC curve (threshold: 0.47). The x-axis represents the predicted labels, the y-axis
the true labels. The higher the number of observations in one field, the darker the background of
this field.

Defining AKOA with 20% JSN per two years resulted in a more extreme group of patients
considered as class 1, compared to class 1 of Batch 1 where I used the threshold of 10%
JSN. Thus, observations of class 1 are more sharply demarcated from class 0, which
facilitates the learning process for the model and results in better performance. The
results in Table 6.2 confirm this. All training runs using Batch 2 resulted in higher
results than using Batch 1. Similar applies to the training results using Batch 3, for
which I considered patients with remaining KL-grade 0 and KL-grade 1. This increases
the number of observations for class 0 as well as the disparity between class 0 and class
1. This could be the reason for Batch 3, which predicts the fast-progressing patients
among the slow- and non-progressing ones, exceeding all results I achieved with Batch 1
or Batch 2.

Thereupon, I inspected the importance of the numeric features I used for the XGBoost
model. The three most relevant features for training were very similar for all runs.
Including radiographic information, except for Run S, T and U (Batch 3), sclerosis always
showed the highest impact on the prediction of AKOA. Considering all features or just
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(a)

(b)

Figure 6.10: XGBoost model results from Run P. (a) The x-axis represents the false positive
rate, the y-axis the true positive rate. The blue graph corresponds to the ROC curve of Run P,
the orange graph represents a random guess. (b) The confusion matrix of Run P taken at the red
point on the ROC curve (threshold: 0.21). The x-axis represents the predicted labels, the y-axis
the true labels. The higher the number of observations in one field, the darker the background of
this field.

(a)

(b)

Figure 6.11: XGBoost model results from Run S. (a) The x-axis represents the false positive
rate, the y-axis the true positive rate. The blue graph corresponds to the ROC curve of Run S,
the orange graph represents a random guess. (b) The confusion matrix of Run S taken at the red
point on the ROC curve (threshold: 0.13). The x-axis represents the predicted labels, the y-axis
the true labels. The higher the number of observations in one field, the darker the background of
this field.

excluding the OARSI grade of sclerosis and osteophytosis, the KL-grade of the index knee,
contralateral KOA (a KL-grade larger than 2 at the contralateral knee) and injection
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of arthritis medication were very important criteria for all of these runs. The KL-grade
was more important for Batch 2 and 3, whereas the contralateral KOA had a higher
influence for Batch 1. Generally, the KL-grade makes sense to have a high impact on the
prediction of AKOA since Dam et al. mentioned that the relevance of clinical factors
in the prediction task could depend on the patient’s current state of disease, which is
expressed by the KL-grade itself [10]. After excluding subsequently the feature knee
injection, the patient’s BMI (Run F, O, R and U) and gender (Run B and C) happened
to be the third most important criteria. The WOMAC score measuring the pain level was
only in the top three important features of Run L. Due to the relativity and subjectivity
of pain, the WOMAC score of pain su�ers from incomparability and could be influenced
by personal characteristics. Nevertheless, Davis et al. [23] found at least some single
WOMAC criteria, like pain for walking or straightening the leg, to be associated with
AKOA, whereas Raynault et al. [13] reported no correlation between the WOMAC score
and AKOA. Whether pain is an indicator for AKOA could therefore be more or less
a coincidence. Although osteophytes are a radiographic symptom of AKOA [18], this
feature shows a small impact on the classification task, which is also confirmed by Felson
et al. [19]. For the runs using Batch 1, all features were nearly on the same level of
importance (see Figure 6.12a), whereas especially for Run Q and T using Batch 2 and
Batch 3 respectively, the most important feature was by far the most important one (see
Figure 6.12b and 6.12c).

Except for Batch 2, removing features always reduces the performance of the model. To
use the information about the relevance of the features, I trained the model excluding
the four least important features for every data batch. For all three batches, the least
important features were the patient’s age, hip symptoms and the WOMAC score for
disability and sti�ness. Hence, I performed Run V, W and X including only gender, BMI,
knee injection, contralateral KOA, WOMAC pain score and the OARSI score of sclerosis
and osteophytosis. In the following, I compare these runs to the other runs of the same
batch with the exclusion of the missing data. Run V, for which I used Batch 1, yielded an
AUC of 0.608. This result is lower, compared to the AUC of Run A (AUC: 0.616), where
I took all features into account, but higher than the results of Run B (AUC: 0.6042), for
which I removed both OARSI scores, and C (AUC: 0.5908), excluding OARSI scores and
knee injection. I achieved lower AUC values for the training of Batch 2 when excluding
the least important features (Run W, AUC: 0.6374), compared to the other runs with
Batch 2 (AUC: 0.6402 - 0.6521). The same applies to Batch 3 (Run X). Hence, excluding
features with low impact could not improve the performance of the XGBoost model.

6.2.1 Summary

To sum up, I achieved the best AUC value of 0.7308 when including non-progressors
(Batch 3), all observations with missing values and all features (Run S). Even if for this
run the model classifies the fast-progressing participants among slow and non-progressing
ones, which was not the final goal of this thesis, the runs of Batch 3 help to compare
my model with previous studies. To the best of my knowledge, there is no previous
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(a)

(b)

(c)

Figure 6.12: Plots of the most important features. In (a) the features of Run B, where I used
Batch 1, in (b) the features of Run Q, where I used Batch 2 and in (c) the features of Run T,
where I used Batch 3, are plotted.

study, which discussed the problem of classifying between slow and fast progressors.
Tiulpin et al. [11] achieved similar results as I did for classifying between progressors and
non-progressors. Considering Age, Sex, BMI, KL-grade, previous surgery, knee injury
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Run name Sensitivity (TP) Specificity (TN)

Run A 0.829 0.287
Run P 0.916 0.201
Run S 0.929 0.239

Table 6.1: Sensitivity (TP rate) and Specificity (TN rate) results of all runs of the XGBoost
model

and the WOMAC score, they reached an AUC of about 0.76 with a Gradient Boosting
Machine [11]. Guan et al. [32] also classified progressors and non-progressors with an
AUC of 0.66 using age, gender, ethnicity, BMI, history of knee injuries, KL-grade and the
tibiofemoral angle as input for an artificial neural network model [32]. My results were
also higher compared to the study of Halilaj et al. [22]. They used a LASSO regression
model to predict progressing KOA among non-progressors with an AUC of 0.6 [22]. Even
with the more di�cult classification task, classifying between slow and fast progressors, I
yielded higher AUC values than Guan et al. and Halilaj et al. [22, 32] and speaks for a
high classification quality of my models.
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Run
name

No. of
images AUC Most important

features

Learn-
ing
rate

Max
depth

Max
leaves alpha gamma

A 13,304 0.6160
1. sclerosis
2. contralateral KOA
3. gender

0.1 8 4 0.1 0.9

B 13,304 0.6042
1. contralateral KOA
2. KL
3. gender

0.1 8 4 0.1 0.7

C 17,403 0.5908
1. contralateral KOA
2. KL
3. gender

0.2 8 4 0.5 0.2

D 16,941 0.6469
1. sclerosis
2. KL
3. osteophytes

0.1 8 4 0.2 0.7

E 16,941 0.6402
1. KL
2. contralateral KOA
3. gender

0.1 8 4 0.5 0.2

F 22,304 0.6521
1. KL
2. contralateral KOA
3. BMI

0.1 8 4 0.5 0.9

G 16,941 0.6469
1. sclerosis
2. KL
3. osteophytes

0.1 8 4 0.2 0.7

H 16,941 0.6402
1. KL
2. contralateral KOA
3. gender

0.1 8 4 0.5 0.2

I 22,304 0.6521
1. KL
2. contralateral KOA
3. BMI

0.1 8 4 0.5 0.9

J 25,545 0.6953
1. sclerosis
2. KL
3. contralateral KOA

0.1 64 16 0.1 0.7

K 25,545 0.6922
1. KL
2. contralateral KOA
3. knee_inj

0.1 32 16 0.5 0.9

L 32,539 0.6901
1. KL
2. contralateral KOA
3. WOMAC_pain

0.1 64 16 0.1 0.9
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Run
name

Image
amount AUC Most important

features

Learn-
ing
rate

Max
depth

Max
leaves alpha gamma

M 21,139 0.6101
1. sclerosis
2. contralateral KOA
3. knee_inj

0.1 4 8 0.2 0.9

N 21,139 0.6100
1. contralateral KOA
2. KL
3. knee_inj

0.1 8 4 0.5 0.2

O 21,139 0.5939
1. contralateral KOA
2. KL
3. BMI

0.1 8 4 0.2 0.2

P 27,432 0.6616
1. sclerosis
2. KL
3. contralateral KOA

0.1 8 4 0.1 0.5

Q 27,432 0.6556
1. KL
2. knee_inj
3. contralateral KOA

0.2 8 4 0.2 0.7

R 27,432 0.6493
1. KL
2. contralateral KOA
3. BMI

0.2 8 4 0.2 0.2

S 44,538 0.7308
1. KL
2. sclerosis
3. contralateral KOA,

0.2 8 4 0.1 0.2

T 44,538 0.7268
1. KL
2. contralateral KOA
3. knee_inj

0.2 8 4 0.2 0.2

U 44,538 0.7237
1. KL
2. contralateral KOA
3. BMI

0.1 8 4 0.2 0.2

V 21,139 0.6080
1. sclerosis
2. knee_inj
3. contralateral KOA

0.2 8 4 0.5 0.9

W 27,432 0.6374
1. sclerosis
2. KL
3. knee_inj

0.1 8 4 0.2 0.5

X 44,538 0.6733
1. sclerosis
2. KL
3. contralateral KOA,

0.1 8 4 0.2 0.2

Table 6.2: Summary of the XGBoost training runs. Left part of the table shows the results.
The right part shows the used hyperparameters of the training run.
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6.3 CNN Results

Due to the better performance of the XGBoost model using as well the radiographic
information, I expect the CNN to find even more information in a knee radiograph
about the development of AKOA. Tiulpin et al. [11] also reported good results for using
only radiographs as input. The following section discusses the results of my di�erent
CNN models. I trained these models, which are listed and described in Section 5.2.2,
on the di�erent data batches using once only image data and once image data with
complementation of the numeric data. To evaluate these, I used the sklearn metrics
library to calculate the AUC and plot the ROC curve. In Table 6.3, the AUC result for
each run is listed.

For every training, I assigned up to 600 epochs but interrupted the training if the
validation loss started to oscillate very strongly. An example of this reflects Figure 6.13.
Here the loss function for validation and training of Run 14 is plotted. The validation
loss function starts to oscillate strongly, simultaneously with a decrease of the negative
slope of the training loss function around epoche 40. This could imply that the model
found some new features to increase training performance (decrease of the training loss
function) but overfit too strongly and the performance of the classification task could
not increase (no simultaneous decrease of the validation loss function). Hence, I stopped
training runs earlier, when recognizing a strong oscillation of the validation loss.

(a) (b)

Figure 6.13: CNN model results using Model 4 (Run 14). The x-axis corresponds to the number
of epoche and the y-axis to the loss. (a) reflects the loss function of the validation set. (b) reflects
the loss function of the training set.

I achieved very low AUC results with Model 1 and Model 2 in combination with Batch 1,
where AKOA was defined with at least 10% JSN per two years (AUC: 0.500 - 0.551).
Here I used only image data. Model 1 performed better for Run 2, where I set some of
the last layers (35 layers) of the pre-trained model as trainable and increased the learning
rate to 1≠06 (AUC: 0.5514). After increasing the number of nodes from 256 to 2048 and
adding one more dense layer, the new model performed only slightly better with an AUC
of 0.5626. I could not increase the performance significantly of Model 3 by adding the not

77



6. Results and Discussion

normalised numeric data and using Batch 2 (Run 6) instead of Batch 1 (AUC: 0.5706).
This low improvement may result from using not normalised data, where each variable
scales in di�erent ranges and is therefore hard to compare.

Figure 6.14: Plot of the validation loss of Run 4 (orange) and Run 8 (pink). The x-axis
corresponds to the number of epoche and the y-axis to the loss.

Since these results are fairly low and very close to a random guess, I tried to optimise
the parameters of the model and modify the input data further. Run 8, for which I
added a dropout rate of 0.3 and used the standardised data as input, yielded an AUC
of 0.663. Because of the simultaneous change of both parameters, I could not identify
if the addition of the dropout or the modification of the input was the reason for this
improvement. Run 8 also shows reduced overfitting, which is indicated by a less oscillating
validation loss function (the pink graph in Figure 6.14). This oscillation is significantly
less, compared to the orange graph. The orange graph corresponds to the validation loss
function of Run 4, for which I used a model without a dropout rate (Model 3). Another
improvement of the AUC of Run 8 could result from the higher amount of data compared
to previous runs. Due to the elimination of the variable knee injection, fewer observations
had to be excluded because of missing values, resulting in 30% more data. For all further
runs, I kept this feature excluded.

By means of the following runs, I discuss the impact of using the pre-trained weights to
train the model. Run 8, for which I loaded and froze the first 188 layers of Model 4 loaded
with the pre-trained weights, yielded an AUC of 0.663. Freezing only the first 153 layers
(Run 10) the performance decreased to 0.5483 but increased again to 0.584 when training
without any pre-trained weights (Run 9). Comparing Run 8 and Run 9, I could observe a
decrease in the AUC. I achieved contrary results for Run 18 and 15. As before, all model
parameters remained the same for both runs, except the number of frozen pre-trained
layers. The performance of Run 15 without any pre-trained weights (AUC: 0.6878) was
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slightly higher compared to Run 18 with 188 frozen layers (AUC: 6749). Hence, I can
rule out the fact that the model recognizes images as a whole since the model did not
classify significantly better with the inclusion of the pre-trained knowledge. The best
practice I achieved was a model trained from scratch. Nevertheless, I could not find any
other correlation between the usage of the pre-trained weights and the performance of
the model. Since the pre-trained model was trained on X-ray images of all body parts,
only the basic knowledge about X-ray images could be used in my models, which could
be the reason for no improvement in performance using the pre-trained weights.

The experiments, for which I used two of the three datasets as training and tuning data
and the third one as a testing set, achieved similar results as the previous runs. The
highest AUC of 0.575 I yielded with Run 12. Here I used a mix out of OAI and CHECK
data for training and the MOST dataset as a testing set. The testing with the CHECK
dataset (Run 11) yielded the lowest results (AUC: 0.5197). Possibly, the OAI and MOST
datasets are the most similar ones, which would result in a low AUC when using a testing
dataset with new image characteristics.

Taking the results of the XGBoost model into consideration, where the most important
features of the numeric data were identified, the CNN model results did not show a
consistent behaviour regarding the number of numeric features. For all Batch 1 and Batch
2, the least important features were the patient’s age, the occurrence of hip symptoms
and the WOMAC score for physical function, sti�ness and pain. Apart from the patients’
age, all variables are very subjective and hard to compare, which could explain the
little correlation to the development of KOA. Training with Batch 2 and the four most
important features (BMI, gender, contralateral KOA and KL-grade) the fast progressors
could be identified among slow progressors with an AUC of 0.6878 (Run 15). This
shows a significant increase in performance compared to Run 9 (AUC: 0.584), in which I
trained with all numeric features. The same experiment with Batch 1 exhibited contrary
results. Run 16, where I used only the four most important features, achieved an AUC
of 0.5809, whereas Run 14, including all numeric features, yielded slightly higher results
with an AUC of 0.5918. Hence, using Batch 2, the higher number of less important
features disturbed the classification task of the model, whereas the exclusion of less
important features in Batch 1 did not show large changes in performance. These findings
could correlate with the diagrams in Figure 6.12a and 6.12b. Because for Batch 2 large
di�erences between the most important feature and the other less important ones can
be seen, which is not for Batch 1, the impact of using just important features could be
higher for Batch 2. This confirms the larger change in performance of Model 4.

Considering now the same parameters of the model but a change of the data batch, I
compared Run 16, 15 and 17 with AUC results of 0.5809, 0.6878 and 0.7646, respectively.
As seen in Table 6.3 I achieved the highest performance using Batch 3 and the lowest using
Batch 1. The better results of Batch 2 compared to Batch 1 confirmed my expectations.
The class definition of 20% JSN includes only the more severe cases of AKOA in class 1,
which could show more clear characteristics in the X-ray images or even in the numeric
data. So, the classification between slow- and fast-progressing participants could be
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facilitated using Batch 2 (Run 15, AUC: 0.6878). A similar amount of increase I observed
as well for the training run, for which I used Batch 3 (Run 17, AUC: 0.7646). Due to the
inclusion of non-progressing patients, in this trial, the model predicts fast-progressing
KOA among non, slow and fast progressors. This results on one hand in a higher amount
of data and on the other hand in an increased image entropy among the total data, which
could both be the reason for an improvement of the classification performance of the
model. The ROC curve and the confusion matrix of Run 15 is plotted in Figure 6.16
and in Figure 6.18for Run 17. The confusion matrices correspond to the red point in the
respective ROC curve. As previously explained in Section 6.2, I chose a sensitivity as
high as possible and a specificity as low as acceptable. Figure 6.15 and 6.17 show the loss
function of the training and the validation set for Run 15 and Run 17. The start of a
strong oscillation of the validation loss and a simultaneously increased negative slope of
the training loss indicates overfitting of the model at around epoche 150 for Run 15 and
at epoche 40 for Run 17. Most of the training runs were a�ected by overfitting. From the
point of strong oscillation of the validation loss, the performance did not increase and I
stopped the run. A possible reason for the overfitting results from a bad regularisation
of the models and a too large amount of model parameters. It was out of the scope of
my work to analyse this further.

Further, I compare my results to the literature. The results of Batch 3 come close to
the ones achieved in the work from Tiulpin et al. [11], where an AUC of 0.8 was yielded
as best practice. A model from Guan et al. even performed with an AUC of 0.86 [32].
The di�erence to my work is that both other studies merged the class of slow and fast
progressors and then classified between non-progressing and progressing KOA patients
[11, 32]. Besides, AKOA was defined by a KL-grade change in the following years [11]
and with a JSN of more than 0.7 mm per 2 years. Tiulpin et al. [11] confirmed a
high performance using only the X-ray image as input. I could not confirm this result
with my models and my di�erent classification tasks, where the best practice using only
radiographs was an AUC of 0.5626 for classifying between slow and fast progressors.

(a) (b)

Figure 6.15: CNN model results using Model 4. The x-axis corresponds to the number of epoche
and the y-axis the loss. In (a) the training loss function of Run 15 and in (b) the validation loss
function of Run 15 is plotted.
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(a)

(b)

Figure 6.16: CNN model results using Model 4 (Run 15). In (a) the blue graph reflects the
ROC curve of Run 15. The true positive rate is plotted over the false negative rate. The orange
curve represents the ROC curve of a random guess. In (b) the Confusion Matrix is reflected
corresponding to the red point on the graph in (a). The x-axis corresponds to the predicted labels
and the y-axis to the true labels.

(a) (b)

Figure 6.17: CNN model results using Model 4. The x-axis corresponds to the number of
epoche and the y-axis the loss. In (a) the validation loss function of Run 17 and in (b) the loss
function of the training of Run 17 is plotted.

6.4 Summary

In the following, I sum up the main findings of the data analysis, XGBoost model and
CNN model training runs:

• Data of Batch 2 has 21.05% of fast progressors, compared to Batch 1 with 38.6%.
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(a)

(b)

Figure 6.18: CNN model results using Model 4 (Run 17). In (a) the blue graph reflects the
ROC curve of Run 17. The true positive rate is plotted over the false negative rate. The orange
curve represents the ROC curve of a random guess. In (b) the Confusion Matrix is reflected
corresponding to the red point on the graph in (a). The x-axis corresponds to the predicted labels
and the y-axis to the true labels.

• For women, younger than 57 years, the BMI has a higher influence regarding the
development of AKOA.

• Women younger than 60 have a decreased risk of being a fast progressor.

• Patients with KL3 at baseline are more likely to develop AKOA.

• Best practice with XGBoost model: AUC 0.6616 (Batch 2) and AUC 0.7308 (Batch
3).

• The most important features were: KL-grade of the index knee and KOA of the
contralateral knee, OARSI-grade of sclerosis and osteophytosis.

• Best practice with CNN model: AUC 0.6878 (Batch 2) and AUC 0.7646 (Batch 3).

• Performance was highest for Batch 3 and lowest for Batch 1 and higher for JSN%
than for JSN%, due to higher image entropy..

• No significant di�erence in performance with and without weights of the pre-trained
model

• Best performance with split datasets was training with OAI and CHECK and
testing with MOST: AUC 0.575.

Therefore, for the future I recommend to use Model 4, where I added 3 dense layers in
total and used the LeakyReLU as an activation function. Here, the best results were
achieved to classify between KOA and AKOA.
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Run
name Model Data batch Numeric data No. of frozen

layers AUC

Run 1 1 Batch 1 No 188 0.5043
Run 2 1 Batch 1 No 153 0.5514
Run 3 2 Batch 1 No 188 0.5002
Run 4 3 Batch 1 No 188 0.5626
Run 6 3 Batch 2 original 188 0.5706
Run 8 4 Batch 2 stand. 188 0.6630
Run 9 4 Batch 2 stand. 0 0.5840
Run 10 4 Batch 2 stand. 153 0.5483
Run 11 4 Batch 2 (OMC) stand. 0 0.5197
Run 12 4 Batch 2 (OCM) stand. 0 0.5750
Run 13 4 Batch 2 (MCO) stand. 0 0.5333
Run 14 4 Batch 1 stand. 0 0.5918

Run 15 4 Batch 2 (BMI, gender,
contralateral KOA, KL-grade) stand. 0 0.6878

Run 18 4 Batch 2 (BMI, gender,
contralateral KOA, KL-grade) stand. 188 0.6749

Run 16 4 Batch 1 (BMI, gender,
contralateral KOA, KL-grade) stand. 0 0.5809

Run 17 4 Batch 3 (BMI, gender,
contralateral KOA, KL-grade) stand. 0 0.7646

Table 6.3: Summary of all training runs with only image data (Run 1 - 5) and numeric and
image data in combination (Run 6 - 17). Original numeric data means I used no normalised data.
For standardised numeric data (stand.) I used the StandardScaler normalisation method. OMC:
trained with OAI & MOST data and tested with CHECK. OCM: trained with OAI & CHECK
and tested on MOST. MCO: trained with MOST & CHECK and tested on OAI. I trained and
tested all other runs with all three datasets. AUC: Area Under the Curve.
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CHAPTER 7
Conclusion and Future Work

7.1 Summary

In this thesis, I investigated the ability of a Convolutional Neural Network to classify
between slow- (class 0) and fast-progressing (class 1) KOA patients. AKOA should be
defined by JSN per time. I tested two di�erent thresholds for the definition of both
classes. Once I defined AKOA by at least 10% and once by at least 20% of JSN per two
years. As input data for the network, I considered a single radiograph complemented
with demographic and clinical data, such as patient’s gender, age, BMI, the presence
of hip symptoms and contralateral KOA, the WOMAC score of disability, pain and
sti�ness and the KL-grade of the index knee. I carried out a data analysis of the data,
which is composed of the OAI, MOST and CHECK study dataset. The cohort shows an
equal ratio of women and men for both classes, which is about 60% to 40%. The class
definition of 20% JSN resulted in a decreased proportion of class 1, from 38.6% to 21.05%.
Adding also non-progressors to class 0, the fraction of AKOA knees decreased to 14.23%.
Considering the age and BMI of the female cohort, women younger have less risk to
develop AKOA, than older females or females with higher BMI, which is also confirmed
by Driban et al. [6]. Besides, patients exhibiting KL-grade 3 at the baseline visit are
more likely to develop fast-progressing AKOA than patients, which exhibit KL-grade 2, 1
or 0 at baseline.

The fundamental research question of my thesis is: “Is it possible to classify KOA
progression into fast and slow progression (defined by JSN per year) using
Convolutional Neural Networks?". I answered this question using di�erent ap-
proaches. With an XGBoost model I trained with only numeric data and for the training
of image data only and the combination of both, I implemented multiple CNN models. I
started with training an XGBoost model to predict AKOA, using all above mentioned
numeric factors, including the OARSI grade of sclerosis and osteophytosis. Sclerosis,
KL-grade and contralateral KOA, which are all radiographic characteristics, proved to
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be the numeric features with the highest impact on the classification task, which is also
confirmed in the studies [7, 15, 33]. I obtained the best classification performance using
only numeric data with the classification threshold of 20% JSN. After including the
non-progressors to class 0, the XGBoost model is able to predict with an AUC of 0.7308
fast-progressing KOA. Excluding the non-progressors from this data, the model yielded
an AUC of 0.6616. With the 10% JSN as class definition, the model is able to classify
with an AUC of 0.616 between fast and slow progressors. These results are in the same
range as the ones from similar studies (AUC: 0.6 - 0.75) [11, 22, 32].

In order to use the X-ray images in combination with numeric features as input, I created
four di�erent convolutional neural network models, which are based on the architecture
of a ResNet50. For the first runs, I applied the transfer learning method and used the
weights of a pre-trained ResNet50, which was trained on X-ray images of di�erent body
parts. Since the data I used for validation was also used to train the pre-trained model, I
had to rule out the possibility of the network to recognise the images as a whole. Hence,
for all other runs, I trained the model from scratch. I expanded the model based on the
ResNet50, which performed best, with two dense layers. Both with a LeakyReLU as
activation function and a dropout rate of 0.3, the first with 2048 nodes and the second
with 1024 nodes. I added one output node and a sigmoid function. As the best practice of
this model, I achieved an AUC of 0.6878 for classifying between fast and slow progressors.
Here I used 20% as the class definition threshold and considered as input, next to the
image data, BMI, gender, the KL-grade and the information about contralateral KOA.
To generate a reference value, I trained this model also including non-progressing KOA
patients to class 0 and resulted in an AUC of 0.7646. This good performance could result
from an increased amount of training data and a higher image entropy between class 0
and class 1.

I compared my results to similar studies, which were about classifying between non-
progressors and progressors [11, 32]. Tiulin et al. achieved an AUC of 0.8 using a change
of the KL-grade in the following years as the definition of progressing KOA [11]. Defining
progressors with more than 0.7 mm JSN per 2 years, Guan et al. obtained an AUC of 0.863
[32]. My results, for which I also considered the non-progressing patients, are below the
performance of previous work, which could result from the di�erent definitions of AKOA
between the studies. However, since the inclusion of non-progressing patients delivered
better results, I suggest the classification between slow and fast progressors to be a more
di�cult task compared to the classification between progressors and non-progressors.

To conclude, the classification between slow and fast progressors exhibits good perfor-
mance, when defining AKOA with 20% of JSN. Hence, although previous studies achieved
higher results when classifying between progressors and non-progressors, my research is
more relevant due to the low availability of knee radiographs of non-progressing patients,
which mostly do not exhibit any symptoms or pain. Also, the definition of AKOA by JSN
is simple and easy to measure. Besides, all input data, which are required for my models,
are easy to obtain. It is a big achievement to be able to predict AKOA among progressing
patients better than random guessing, since there is no prediction method available yet.
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My classification model, which is able to classify slow- and fast-progressing patients with
an AUC of 0.68, could definitely serve as a good and comfortable decision supporting tool
for physicians in diagnosis. A risk assessment of AKOA would happen earlier, faster and
more reliably. High-risk patients can be observed more specific, modifiable risk-factors
can be changed (like reduction of BMI) and more time can be used to find alternative
medical interventions to avoid a knee replacement surgery ending up in less pain and
costs.

7.2 Limitations and Future Work

Starting from the definition of the fast-progressing KOA patients, the percentage of JSN
per time seems to be in general a good choice regarding its simplicity. Other studies,
such as those from Guan et al. or Bartlett et al. also achieved good classification results
using this way of definition [30, 32]. The fraction of AKOA in this work (21% of the used
data) is significantly higher than the number of 3.4%, which can be found in literature
and describes the proportion of AKOA patients among KOA. Even after considering
that I did not include asymptomatic patients, my definition of AKOA could still be too
slight. Thus, it would also be interesting to compare the performance of my classification
models when using di�erent definitions of AKOA such as more extreme thresholds of
JSN or the change of the KL-grade, as in other previous work [6, 7, 15, 23]. Not only
new definitions of AKOA or progression, but future work could also test the same model
classifying first between progressors and non-progressors and subsequently predicting
AKOA among these progressing patients. The model can then be compared to previous
studies and could then be improved by small modifications.

All CNN models started to overfit at some point during the training, which could indicate
a bad regularisation of the model and a too high number of model parameters. To
counteract the overfitting of the models, image augmentation, which is random processing
of the image data, can be applied or noise can be added to the training data to result in
better-regularised models. Besides, for the CNN models, I handled the missing values
by removing these observations completely. To increase the amount of data, imputation
methods could be used in further experiments. Another prediction improvement method
could be to use instead of a single X-ray image a sequence of images, which would deliver
more information about the changes in bone structure and the current progression of
KOA, as suggested in previous work by Halilaj et al. [22]. Nevertheless, this would be
hard to realise for very fast-progressing KOA patients.

The most important limitation of training with the image data was the fact of training
from scratch. The pre-trained model, which was available to me, was trained with the
same images that I used as validation data. Since the task of this classifier should be
to work on completely new images, I could not rely on the outcomes of the transfer
learning method in this work. Although I obtained similar results for experiments with
and without the pre-trained model weights, I could not figure out the impact of the
pre-known images. Besides, the ResNetClassifier, which was trained on seven di�erent
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body parts, contains many weights without relevance to my classification task. Networks,
pre-trained on a high number of only knee radiographs, which are not used for subsequent
validation, could provide more useful information for the classification task of this work.

Nevertheless, the results of my work were a good contribution to the research of AKOA
prediction methods. To the best of my knowledge, there is no other study, which tested
one model involving once only slow and fast progressors and once adding non-progressing
patients. Hence, this work can serve as a good fundament for further research regarding
a prediction method of AKOA.
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APPENDIX A
Data Analysis

Number of images percentage

Total 21 139 100 %
Class 0 12 985 61.4 %

female 7 885 60.72 %
male 5 100 39.28 %

Class 1 8 154 38.6%
female 5 054 61.98 %
male 3 099 38.02 %

Table A.1: Summary of the data with class definition of 10 % JSN per 1 or 2 years, exclusion
criteria of remaining KL 0 or remaining KL 1 from OAI, MOST and CHECK

Number of images percentage

Total 16 988 100 %
Class 0 10 775 63.4 %

female 6 407 59.46 %
male 4 368 40.54 %

Class 1 6 213 36.6%
female 3 799 61.15 %
male 2 414 38.85 %

Table A.2: Summary of the data with class definition of 10 % JSN per 1 or 2 years, exclusion
criteria of remaining KL 0 or remaining KL 1 from OAI
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A. Data Analysis

Figure A.1: Class distribution (0 and 1) of all datasets. Blue: females, orange: males

(a) Female (b) Male

Figure A.2: Age distribution for OAI, MOST and CHECK dataset, JSN 10 %. Blue corresponds
to class 0, orange corresponds to 1.

Number of images percentage

Total 3 653 100 %
Class 0 1 930 52.83 %

female 1 252 64.87 %
male 678 35.13 %

Class 1 1 723 47.17%
female 1 084 62.91 %
male 639 37.09 %

Table A.3: Summary of the data with class definition of 10 % JSN per 1 or 2 years, exclusion
criteria of remaining KL 0 or remaining KL 1 from MOST
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(a) Female (b) Male

Figure A.3: Age and BMI distribution for OAI, MOST and CHECK dataset, JSN 10 %. Red
dots correspond to class 0, green dots correspond to class 1.

Figure A.4: Class distribution (0 and 1) of OAI datasets, JSN of 10 %. Blue: females, orange:
males
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A. Data Analysis

(a) Female (b) Male

Figure A.5: Age distribution for OAI, JSN 10%. Blue corresponds to class 0, orange corresponds
to 1.

(a) Female (b) Male

Figure A.6: Age and BMI distribution for OAI, JSN 10 %. Red dots correspond to class 0,
green dots correspond to class 1.

Number of images percentage

Total 498 100 %
Class 0 280 56.22 %

female 226 80.71 %
male 54 19.29 %

Class 1 218 43.78%
female 171 78.44 %
male 46 21.56 %

Table A.4: Summary of the data with class definition of 10 % JSN per 1 or 2 years, exclusion
criteria of remaining KL 0 or remaining KL 1 from CHECK
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Figure A.7: Class distribution (0 and 1) of MOST datasets, JSN of 10 %. Blue: females, orange:
males

(a) Female (b) Male

Figure A.8: Age distribution of MOST dataset, JSN 10%. Blue corresponds to class 0, orange
corresponds to 1.
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A. Data Analysis

(a) Female (b) Male

Figure A.9: Age and BMI distribution of MOST dataset, JSN 10 %. Red dots correspond to
class 0, green dots correspond to class 1.

Figure A.10: Class distribution (0 and 1) of CHECK datasets, JSN of 10 %. Blue: females,
orange: males
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(a) Female (b) Male

Figure A.11: Age distribution of CHECK dataset, JSN 10%. Blue corresponds to class 0,
orange corresponds to 1.

(a) Female (b) Male

Figure A.12: Age and BMI distribution of CHECK dataset, JSN 10 %. Red dots correspond to
class 0, green dots correspond to class 1.

Number of images percentage

Total 27 432 100 %
Class 0 21 658 78.95 %

female 13 234 61.10 %
male 8 423 38.90 %

Class 1 5 774 21.05 %
female 3 579 61.98 %
male 2 195 38.02 %

Table A.5: Summary of the data with class definition of 20 % JSN per 1 or 2 years, exclusion
criteria of remaining KL 0 or remaining KL 1 from OAI, MOST and CHECK
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A. Data Analysis

(a) Female

(b) Male

Figure A.13: (a) Age distribution of OAI, MOST and CHECK dataset, JSN 20 %. Blue
corresponds to class 0, orange corresponds to 1. (b) KL-grade distribution of OAI, MOST and
CHECK dataset, JSN 20 %. Blue corresponds to class 0, orange corresponds to 1.

(a) Female (b) Male

Figure A.14: Age distribution of OAI, MOST and CHECK dataset, JSN 20 %. Blue corresponds
to class 0, orange corresponds to 1.
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(a) Female (b) Male

Figure A.15: Age and BMI distribution of OAI, MOST and CHECK dataset, JSN 20 %. Red
dots correspond to class 0, green dots correspond to class 1.

Number of images percentage

Total 21 698 100 %
Class 0 17 196 79.25 %

female 10 387 60.40 %
male 6 809 39.60 %

Class 1 4 502 20.75 %
female 2 734 60.73 %
male 1 768 39.27 %

Table A.6: Summary of the data with class definition of 20 % JSN per 1 or 2 years, exclusion
criteria of remaining KL 0 or remaining KL 1 from OAI

Number of images percentage

Total 5 259 100 %
Class 0 4 091 77.79 %

female 2 539 62.06 %
male 1 552 37.94 %

Class 1 218 22.21%
female 761 65.15 %
male 407 34.85 %

Table A.7: Summary of the data with class definition of 20 % JSN per 1 or 2 years, exclusion
criteria of remaining KL 0 or remaining KL 1 from MOST
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A. Data Analysis

(a) Female

(b) Male

Figure A.16: (a) Age distribution of OAI dataset, JSN 20 %. Blue corresponds to class 0,
orange corresponds to 1. (b) KL-grade distribution of OAI dataset, JSN 20 %. Blue corresponds
to class 0, orange corresponds to 1.

(a) Female (b) Male

Figure A.17: Age distribution of OAI dataset, JSN 20 %. Blue corresponds to class 0, orange
corresponds to 1.
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(a) Female (b) Male

Figure A.18: Age and BMI distribution of OAI dataset, JSN 20 %. Red dots correspond to
class 0, green dots correspond to class 1.

(a) Female

(b) Male

Figure A.19: (a) Age distribution of MOST dataset, JSN 20 %. Blue corresponds to class 0,
orange corresponds to 1. (b) KL-grade distribution of MOST dataset, JSN 20 %. Blue corresponds
to class 0, orange corresponds to 1.

99



A. Data Analysis

(a) Female (b) Male

Figure A.20: Age distribution of MOST dataset, JSN 20 %. Blue corresponds to class 0, orange
corresponds to 1.

(a) Female (b) Male

Figure A.21: Age and BMI distribution of MOST dataset, JSN 20 %. Red dots correspond to
class 0, green dots correspond to class 1.

Number of images percentage

Total 475 100 %
Class 0 371 78.11 %

female 308 83.02 %
male 62 16.98 %

Class 1 104 21.89%
female 84 80.77 %
male 20 19.23 %

Table A.8: Summary of the data with class definition of 20 % JSN per 1 or 2 years, exclusion
criteria of remaining KL 0 or remaining KL 1 from CHECK
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(a) Female

(b) Male

Figure A.22: (a) Age distribution of CHECK dataset, JSN 20 %. Blue corresponds to class
0, orange corresponds to 1. (b) KL-grade distribution of CHECK dataset, JSN 20 %. Blue
corresponds to class 0, orange corresponds to 1.

(a) Female (b) Male

Figure A.23: Age distribution of CHECK dataset, JSN 20 %. Blue corresponds to class 0,
orange corresponds to 1.
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A. Data Analysis

(a) Female (b) Male

Figure A.24: Age and BMI distribution of CHECK dataset, JSN 20 %. Red dots correspond to
class 0, green dots correspond to class 1.

Number of images

right knee images 11 071
left knee images 10 068
medial slow progressors 13 313
lateral slow progressors 14 337
medial fast progressors 5 364
lateral fast progressors 3 846
whole knee slow progressors 12 985
whole knee fast progressors 8 153

Table A.9: Summary of the training data
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APPENDIX B
XGBoost Results

(a)
(b)

Figure B.1: (a) Most important features of Run A for the XGBoost model. (b) ROC curve
of Run A (blue curve). X-axis represents the FP rate, y-axis the TP rate. The orange curve
represents a random guess.

(a)
(b)

Figure B.2: (a) Most important features of Run B for the XGBoost model. (b) ROC curve
of Run B (blue curve). X-axis represents the FP rate, y-axis the TP rate. The orange curve
represents a random guess.
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B. XGBoost Results

(a)
(b)

Figure B.3: (a) Most important features of Run C for the XGBoost model. (b) ROC curve
of Run C (blue curve). X-axis represents the FP rate, y-axis the TP rate. The orange curve
represents a random guess.

(a)
(b)

Figure B.4: (a) Most important features of Run D for the XGBoost model. (b) ROC curve
of Run D (blue curve). X-axis represents the FP rate, y-axis the TP rate. The orange curve
represents a random guess.

(a)
(b)

Figure B.5: (a) Most important features of Run E for the XGBoost model. (b) ROC curve
of Run E (blue curve). X-axis represents the FP rate, y-axis the TP rate. The orange curve
represents a random guess.
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(a)
(b)

Figure B.6: (a) Most important features of Run F for the XGBoost model. (b) ROC curve
of Run F (blue curve). X-axis represents the FP rate, y-axis the TP rate. The orange curve
represents a random guess.

(a)
(b)

Figure B.7: (a) Most important features of Run J for the XGBoost model. (b) ROC curve
of Run J (blue curve). X-axis represents the FP rate, y-axis the TP rate. The orange curve
represents a random guess.

(a)
(b)

Figure B.8: (a) Most important features of Run K for the XGBoost model. (b) ROC curve
of Run K (blue curve). X-axis represents the FP rate, y-axis the TP rate. The orange curve
represents a random guess.
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B. XGBoost Results

(a)
(b)

Figure B.9: (a) Most important features of Run L for the XGBoost model. (b) ROC curve
of Run L (blue curve). X-axis represents the FP rate, y-axis the TP rate. The orange curve
represents a random guess.

(a)
(b)

Figure B.10: (a) Most important features of Run M for the XGBoost model. (b) ROC curve
of Run M (blue curve). X-axis represents the FP rate, y-axis the TP rate. The orange curve
represents a random guess.

(a)
(b)

Figure B.11: (a) Most important features of Run N for the XGBoost model. (b) ROC curve
of Run N (blue curve). X-axis represents the FP rate, y-axis the TP rate. The orange curve
represents a random guess.
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(a)
(b)

Figure B.12: (a) Most important features of Run O for the XGBoost model. (b) ROC curve
of Run O (blue curve). X-axis represents the FP rate, y-axis the TP rate. The orange curve
represents a random guess.

(a)
(b)

Figure B.13: (a) Most important features of Run P for the XGBoost model. (b) ROC curve
of Run P (blue curve). X-axis represents the FP rate, y-axis the TP rate. The orange curve
represents a random guess.

(a)
(b)

Figure B.14: (a) Most important features of Run Q for the XGBoost model. (b) ROC curve
of Run Q (blue curve). X-axis represents the FP rate, y-axis the TP rate. The orange curve
represents a random guess.
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B. XGBoost Results

(a)
(b)

Figure B.15: (a) Most important features of Run R for the XGBoost model. (b) ROC curve
of Run R (blue curve). X-axis represents the FP rate, y-axis the TP rate. The orange curve
represents a random guess.

(a)
(b)

Figure B.16: (a) Most important features of Run S for the XGBoost model. (b) ROC curve
of Run S (blue curve). X-axis represents the FP rate, y-axis the TP rate. The orange curve
represents a random guess.

(a)
(b)

Figure B.17: (a) Most important features of Run T for the XGBoost model. (b) ROC curve
of Run T (blue curve). X-axis represents the FP rate, y-axis the TP rate. The orange curve
represents a random guess.
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(a)
(b)

Figure B.18: (a) Most important features of Run U for the XGBoost model. (b) ROC curve
of Run U (blue curve). X-axis represents the FP rate, y-axis the TP rate. The orange curve
represents a random guess.

(a)
(b)

Figure B.19: (a) Most important features of Run V for the XGBoost model. (b) ROC curve
of Run V (blue curve). X-axis represents the FP rate, y-axis the TP rate. The orange curve
represents a random guess.

(a)
(b)

Figure B.20: (a) Most important features of Run W for the XGBoost model. (b) ROC curve
of Run W (blue curve). X-axis represents the FP rate, y-axis the TP rate. The orange curve
represents a random guess.
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C. CNN Results

Figure C.1: Model summary of Model 4.

(a) (b) (c)

Figure C.2: Results of the CNN model of Run 6. (a) AUC (b) loss-function (c) validation loss
function.
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(a) (b) (c)

Figure C.3: Results of the CNN model of Run 7. (a) AUC (b) loss-function (c) validation loss
function.

(a) (b) (c)

Figure C.4: Results of the CNN model of Run 9. (a) AUC (b) loss-function (c) validation loss
function.

(a) (b) (c)

Figure C.5: Results of the CNN model of Run 10. (a) AUC (b) loss-function (c) validation loss
function.
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C. CNN Results

(a) (b) (c)

Figure C.6: Results of the CNN model of Run 11. (a) AUC (b) loss-function (c) validation loss
function.

(a) (b) (c)

Figure C.7: Results of the CNN model of Run 12. (a) AUC (b) loss-function (c) validation loss
function.

(a) (b)

Figure C.8: Results of the CNN model of Run 16. (a) loss-function (b) validation loss function.
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