The Road to Vulkan
Teaching Modern Low-Level APIs in Introductory Graphics Courses

Johannes Unterguggenberger, Bernhard Kerbl, and Michael Wimmer

TU Wien, Institute of Visual Computing & Human-Centered Technology, Austria
Introductory Graphics Courses

1st contact with graphics APIs

2nd encounter with rasterization

\sim 3rd semester, 3 ECTS

\sim 150 students per year
Introductory Graphics Courses

1st contact with graphics APIs

2nd encounter with rasterization

~ 3rd semester, 3 ECTS

~ 150 students per year

Assignment 1: Basic setup, window creation

Assignment 2: Transformations, camera/view

Assignment 3: Geometry, buffer handling

Assignment 4: Shader programming, lighting

Assignment 5: Texturing
Introductory Graphics Courses

OpenGL • Vulkan
Introductory Graphics Courses

almost 30 years old
high-level, complex drivers
big huge state machine
close to ancient hardware
concepts of the past

The Khronos Group, Inc.

Age
Level
API Design
Abstraction
Insights
Maintainer

just turned 6
low-level, close to the metal
parallelism and flexibility first
close to modern hardware
actual hardware operations

The Khronos Group, Inc.
 Introductory Graphics Courses

almost 30 years old

high-level, complex drivers
big huge state machine
close to ancient hardware
concepts of the past

The Khronos Group, Inc.

Age
Level
API Design
Abstraction
Insights
Maintainer

just turned 6
low-level, close to the metal
parallelism and flexibility first
close to modern hardware
actual hardware operations

The Khronos Group, Inc.
An Application Implemented in OpenGL
The Same Application Implemented in Vulkan
The Same Application Implemented in Vulkan

Johannes Unterguggenberger et al.
Vulkan Application Configuration

DEVICE/QUEUE

HOST

Draw Call 1
Vulkan Application Configuration

DEVICE/QUEUE

HOST

Draw Call 1

Draw Call 2

Draw Call 3

Draw Call 4
Vulkan Application Configuration

DEVICE/QUEUE

- Draw Call 1
- Draw Call 2
- Draw Call 3

HOST

- Draw Call 4
Vulkan Application Configuration

DEVICE/QUEUE

Draw Call 2

Draw Call 3

HOST

Draw Call 4

Draw Call 5
Vulkan Application Configuration

DEVICE/QUEUE

- Draw Call 3
- Draw Call 4
- Draw Call 5
- Draw Call 6

HOST
Vulkan Application Configuration

Draw Call 4

Draw Call 5

Draw Call 6

Uniform Buffer

HOST

Draw Call 7
Vulkan Application Configuration

DEVICE/QUEUE

Uniform Buffer

HOST

Draw Call 5

Draw Call 6

Draw Call 7

Draw Call 8
Vulkan Application Configuration

DEVICE/QUEUE

Uniform Buffer

HOST

Draw Call 6

Draw Call 7

Draw Call 8

Draw Call 9
Vulkan Application Configuration

DEVICE/QUEUE

Uniform Buffer

HOST

Draw Call 8

Draw Call 9
Vulkan Application Configuration

Device/Queue

Draw Call 7

Uniform Buffer

Uniform Buffer

Uniform Buffer

Draw Call 8

Draw Call 9

Host
OpenGL Application Configuration

`glGenBuffers(...)`
bind a named buffer object

`glBindBuffer(GL_UNIFORM_BUFFER, ...)`
generate buffer object names

`glBufferSubData(GL_UNIFORM_BUFFER, ...)`
updates a subset of a buffer object's data store

When replacing the entire data store, consider using `glBufferSubData` rather than completely recreating the data store with `glBufferData`. This avoids the cost of reallocating the data store.
OpenGL Application Configuration

```c
glGenBuffers(...)  
bind a named buffer object

glBindBuffer(GL_UNIFORM_BUFFER, ...)  
generate buffer object names

glBufferSubData(GL_UNIFORM_BUFFER, ...)  
updates a subset of a buffer object's data store
```

When replacing the entire data store, consider using `glBufferSubData` rather than completely recreating the data store with `glBufferData`. This avoids the cost of reallocating the data store.
glBufferStorage(GL_UNIFORM_BUFFER, ...) creates and initializes a buffer object's immutable data store

- GL_DYNAMIC_STORAGE_BIT
- GL_MAP_READ_BIT
- GL_MAP_WRITE_BIT
- GL_MAP_PERSISTENT_BIT
- GL_MAP_COHERENT_BIT

The client's pointer to the data store remains valid so long as the data store is mapped, even during execution of drawing or dispatch commands.

glMapBufferRange(GL_UNIFORM_BUFFER, ...) map all or part of a buffer object's data store into the client's address space
glBufferStorage(GL_UNIFORM_BUFFER, ...) creates and initializes a buffer object's immutable data store

GL_DYNAMIC_STORAGE_BIT
GL_MAP_READ_BIT
GL_MAP_WRITE_BIT
GL_MAP_PERSISTENT_BIT
GL_MAP_COHERENT_BIT

The client's pointer to the data store remains valid so long as the data store is mapped, even during execution of drawing or dispatch commands.

glMapBufferRange(GL_UNIFORM_BUFFER, ...) map all or part of a buffer object's data store into the client's address space
OpenGL Application Configuration
Buffer update

To maintain the illusion, the driver must track resources that are referenced by pending render commands. The driver locks them to prevent modification until those rendering commands have been completed.

If the application attempts to modify a locked resource, then the driver must take some evasive action. Either draining the pipeline until the lock is released, or creating a new ghost copy of the resource to contain the modifications. Both choices incur an overhead that the application can avoid.

Buffer update

To maintain the **illusion**, the driver must track resources that are referenced by pending render commands. The driver locks them to prevent modification until those rendering commands have been completed.

If the application attempts to modify a locked resource, then the driver must take some **evasive action**. Either draining the pipeline until the lock is released, or creating a new ghost copy of the resource to contain the modifications. Both choices incur an overhead that the application can avoid.
[...] Either draining the pipeline until the lock is released, [...]

Uniform Buffer

Draw Call 1

Draw Call 2

Draw Call 3
[...] or creating a new ghost copy of the resource to contain the modifications. [...]
[...] or creating a new ghost copy of the resource to contain the modifications. [...]
[...] or creating a new ghost copy of the resource to contain the modifications. [...]
OpenGL Application Configuration
`glBufferStorage(GL_UNIFORM_BUFFER, ...)`
creates and initializes a buffer object's immutable data store.

`glMapBufferRange(GL_UNIFORM_BUFFER, ...)`
map all or part of a buffer object's data store into the client's address space.

Avoid using `glMapBufferRange()` with either `GL_MAP_INVALIDATE_RANGE_BIT`, or `GL_MAP_INVALIDATE_BUFFER`. Both of these flags can trigger the creation of a resource ghost on some Mali driver versions.
Different Roads To Be Taken

Different Approaches in Teaching and Learning
The Road to Vulkan

Transition in Introductory Graphics Courses

Framework code:
~ 2,100 LoC

API abstractions:
Very few

Main learning resources:
OpenGL lectures,
The internet

Framework code:
~ 3,600 LoC

API abstractions:
Several

Main learning resources:
Task description documents,
Vulkan Lecture Series,
The internet
Framework code:
~ 3,600 LoC

API abstractions:
Several

Main learning resources:
Task description documents,
Vulkan Lecture Series,
The internet
Framework code:
~ 3,600 LoC

API abstractions:
Several

Main learning resources:
Task description documents,
Vulkan Lecture Series,
The internet
Framework code: ~3,600 LoC

API abstractions: Several

Main learning resources:
Task description documents, Vulkan Lecture Series, The internet

Assignment 1: Abstract swap chain handling and its synchronization, abstract render pass creation, abstract framebuffer creation

Assignment 2: Abstract parts of graphics pipeline creation, abstract memory management, abstract command buffers

Assignment 3: Re-introduce command buffer recording

Assignment 5: Introduce synchronization, introduce image layout transitions, introduce device memory (usage)
Framework code: ~ 3,600 LoC
API abstractions: Several
Main learning resources: Task description documents, Vulkan Lecture Series, The internet

Assignment 1: Abstract swap chain handling and its synchronization, abstract render pass creation, abstract framebuffer creation
Assignment 2: Abstract parts of graphics pipeline creation, abstract memory management, abstract command buffers
Assignment 3: Re-introduce command buffer recording
Assignment 5: Introduce synchronization, introduce image layout transitions, introduce device memory (usage)
The Road to Vulkan

Framework code:
~ 3,600 LoC

API abstractions:
Several

Main learning resources:
Task description documents, Vulkan Lecture Series, The internet

Assignment 1: Abstract swap chain handling and its synchronization, abstract render pass creation, abstract framebuffer creation

Assignment 2: Abstract parts of graphics pipeline creation, abstract memory management, abstract command buffers

Assignment 3: Re-introduce command buffer recording

Assignment 5: Introduce synchronization, introduce image layout transitions, introduce device memory (usage)
Takeaway Messages

Different road for teaching/learning graphics programming

You are in the driver’s seat
(not your GPU’s driver)

Totally possible in introductory graphics courses.
See our paper for more details and student feedback:

The Road to Vulkan:
Teaching Modern Low-Level APIs in Introductory Graphics Courses
Transition in Introductory Graphics Courses

OpenGL. ↔ Vulkan.