
Tour of Life
Eine Game of Life Learning Experience

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Medieninformatik und Visual Computing

eingereicht von

Patrik Szabó
Matrikelnummer 11811341

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller
Mitwirkung: Univ.Ass. Dipl.-Ing. Daniel Pahr, BSc

Wien, 2. Februar 2022
Patrik Szabó Eduard Gröller

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Tour of Life
A Game of Life Learning Experience

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Media Informatics and Visual Computing

by

Patrik Szabó
Registration Number 11811341

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller
Assistance: Univ.Ass. Dipl.-Ing. Daniel Pahr, BSc

Vienna, 2nd February, 2022
Patrik Szabó Eduard Gröller

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Patrik Szabó

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 2. Februar 2022
Patrik Szabó

v

Kurzfassung

Obwohl das Konzept hinter dem zellulären Automaten Game of Life in der Vergangenheit
eingehend erforscht wurde, ist es immer noch schwierig, geeignete Ressourcen zu diesem
Thema zu finden, die es Personen mit wenig oder keiner Erfahrung im Bereich der IT
ermöglichen, es richtig zu verstehen. Es gibt keine einzige Lösung, die den Algorithmus
hinter dem Automaten erklärt, den Benutzer mit der Simulation interagieren lässt und
Erklärungen zu den gängigsten Bausteinen von Game of Life an einem Ort bereitstellt. Das
Ziel dieser Bachelorarbeit ist es, ein Online-Lernwerkzeug zu entwickeln, das Menschen
mit geringen Computerkenntnissen ermöglicht, sich mit dem Game of Life Automaten
zu beschäftigen. Dies wird erreicht durch eine Reihe interaktiver Lektionen, die zum
Game of Life angeboten werden, mit einem hohen Maß an Anpassbarkeit der Simulation
selbst. Ein weiteres Ziel dieses Projekts ist es, eine 3D-Interpretation des Game of Life
Automaten einzubeziehen, den Algorithmus entsprechend anzupassen und den Benutzern
zu ermöglichen, mit der zusätzlichen dritten Dimension zu experimentieren.

Da das Game of Life kein neues Thema ist, wurden verwandte Arbeiten recherchiert und
verglichen, und die Ergebnisse sind aufgeführt. Neben der entwickelten Webanwendung
geht diese Arbeit tiefer in die Erforschung der Konzepte einer Turing-Maschine und der
Touring-Vollständigen Systeme, wie dem Game of Life selbst, ein. Konkret werden Um-
setzungsdetails vorgestellt sowie Ideen für die zukünftige Entwicklung dieser sogenannten
Tour of Life und ihrer möglichen Merkmale.
Die Resultate dieser Arbeit sind öffentlich verfügbar, der Link zu der Tour of Life Webseite
befindet sich am Ende dieser Arbeit.

vii

Abstract

Although the concept behind the Game of Life cellular automaton has been explored
deeply in the past, it is still difficult to find proper resources on this topic that would
allow those with little to no experience in the field of IT to properly understand it. No
singular solution exists that explains the algorithm behind the automaton, lets the user
interact with the simulation, and provides explanations regarding the most common
building blocks of the Game of Life, all in one place. The goal of this bachelor thesis
is to create an online learning tool, that enables people with little computer knowledge
to engage with the automaton. This is done by offering a range of interactive lessons
on the Game of Life, together with a high degree of customizability of the simulation
itself. An additional goal of this project is to include a 3D interpretation of the Game
of Life cellular automaton, adjusting the algorithm accordingly, and allowing users to
experiment with the additional third dimension.

As the Game of Life is not a resent topic, related work has been researched and compared,
and the results are laid out. In addition to the developed web application, this thesis
goes deeper in exploring the concepts of a Turing machine and Turing complete systems,
such as the Game of Life itself. Implementation details are presented, as well as ideas for
the future development of this so-called Tour of Life, and its potential features.
The results of this work are publicly available, the link to the Tour of Life website can be
found at the end of this thesis

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2

2 Research & Related Work 5
2.1 Related Work . 5
2.2 Importance of Interactivity in Teaching/Learning 7

3 Cellular Automata, Game of Life & the Turing Machine 9
3.1 Game of Life . 9
3.2 Turing Machine & Turing Completeness 10
3.3 Recursivity of the Game of Life . 12

4 Designing the Tour of Life 15
4.1 2D Game of Life Simulator . 15
4.2 Tour of Life . 18
4.3 3D Game of Life Simulator . 22
4.4 Visualization & Accessibility . 22

5 Implementation 25
5.1 General Project Structure . 25
5.2 2D & 3D Rendering . 26
5.3 Cell Placement/Deletion . 27
5.4 2D Game of Life Algorithm . 28
5.5 Prediction Mode . 29
5.6 Image Files as Input for Starting Cell Configuration 29
5.7 Lesson Lexicon . 30
5.8 3D Game of Life interaction and visualization 31

xi

5.9 3D Cursor Movement and Position Calculation 31
5.10 3D Game of Life Algorithm . 32
5.11 Mesh Files as Input for Starting Cell Configuration 33

6 Website Components 35
6.1 Node.js & NPM . 35
6.2 TypeScript Programming Language 36
6.3 Angular Website Framework . 36
6.4 Three.js WebGL API . 36
6.5 GitHub Version Control . 37
6.6 GitHub Pages Deployment . 37

7 Results 39
7.1 Web App Performance . 39
7.2 Multi-platform Use . 40
7.3 Class Structure . 40
7.4 Achievements . 41

8 Conclusion 45
8.1 Original Vision . 45
8.2 Summary . 46
8.3 Future Development . 46

Bibliography 49

CHAPTER 1
Introduction

The first chapter of this thesis outlines the goals this project is trying to accomplish,
as well as the reasons for doing so. It also sets up some ground rules that the finished
project will have to follow, in order to be called a success once it is complete. These will
be looked back at, at a later point in the thesis.
The concept behind the Game of Life will be more deeply explored in Chapter 3 of this
thesis. In the meantime, a brief summary in order to understand the following segment
is provided. The Game of Life is a cellular automaton, meaning a collection of cells
on a mostly 2D grid, which evolve and change their state based on a set of predefined
rules and the states of cells around them. A cell inside the game of Life can have only 2
possible states that it switches between: dead or alive. Certain configurations of living
cells, which have been documented and tend to come up in the simulation are called
patterns. The Game of Life needs an initial cell configuration as an input. This starting
configuration then evolves based on the rules defined for the automaton.

1.1 Motivation
Interactivity in learning has been proven to help with information retention, especially
when dealing with complex topics. One such seemingly very complex topic is the
automaton known as the Game of Life, for which very few learning resources employing
interactivity techniques exist online. A book called "The Recursive Universe: Cosmic
Complexity and the Limits of Scientific Knowledge" by William Poundstone [37] covers
the simplistic complexity of the automaton, as well as its history in great detail. This
book was the main initial inspiration for this thesis, and it will be a major resource going
forward. When the research phase on the subject of cellular automata and the Game of
Life began, it turned out, that although the information exists online, it is often spread
out among multiple sources, which present it with varying complexity.

1

1. Introduction

Recent research referenced in Chapter 2 outlines the importance of interactivity in
teaching/learning, and a website on the Game of Life automaton could not be found,
that would offer it. This was an obvious gap, and addressing it provides a way to make
the learning experience for anyone interested in researching the automaton in the future
that much more pleasant.

1.2 Problem Statement
Research of existing solutions and learning resources regarding this topic shows a lack
of opportunities for complete beginners, to properly get introduced to the concept of
cellular automata, Turing machines, and the Game of Life. Most currently available tools
are mainly a combination of simulation windows, where users can play the Game of Life,
which however offer very little in the way of customization, or wiki-style information
repositories and text-based explanations. Detailed examples for these will be provided in
Chapter 2.
Very rarely has a web resource enabled the user to interact with the presented patterns or
ideas, and if it did, these were isolated experiences, lacking any kind of logical progression,
where users would be able to progress from the very basics to the more advanced concepts.

This is the gap this project fills, and in order to do so, the following criteria have been
defined, that a project would have to fulfill:

• Approachable to laypeople: The concept of a cellular automaton, more specifi-
cally the Game of Life, is, on its own, not a very difficult one. Some online resources
however describe it in a very confusing way, using terminology, not known to the
general population. The lessons within the learning experience should start out
simple, and increase their complexity and difficulty, as the user moves from lesson
to lesson.

• Interactivity: It is proven, that higher engagement of students in the lesson leads
to higher information retention rates [38]. By letting the user interact with the
lessons, it is more likely that users will remember them, and the more complicated
lessons will not feel overwhelming.

• Proper documentation: It is important that every major functionality, especially
in the learning section, is properly explained. Only when the user engages with
the full suite of the available features the website will offer can they have the best
learning experience. An option should be provided at every step for the user to
look into various topics by linking to external resources.

• Self-containment: The interactive platform will be developed as a web application,
so it can be much more easily accessed by a large number of people. This eliminates
the need to install potentially untrustworthy software on users’ computers, and
also makes it accessible from anywhere.

2

1.2. Problem Statement

• Customizability: In order to make the platform accessible to many people, the
learning tool should include a wide range of customization options. Especially the
color adjustments within the simulation are important, as many existing Game
of Life simulators alienate groups of people (e.g. with color-blindness) with their
choice of color palette.

• Proper visualization: Proper visualization is important in presentation. This is
especially true when working in three dimensions. It is crucial to find a coherent,
natural way to visualize and interact with the 3D simulation of the Game of Life
since existing solutions have arguably failed to do so.

A more detailed description of the criteria, especially how they have been implemented,
will follow in Chapter 3.

3

CHAPTER 2
Research & Related Work

Since the Game of Life is such an old and deeply explored topic, one would not be
hard-pressed to find countless simulators, papers, and blogs describing every little detail
about the automaton. The problem with this statement is, that none of the information
can be found, concisely and neatly in one place, wrapped inside a uniform UI with a
focus on teaching the Game of Life in a playful, interactive, and highly customized way.

2.1 Related Work
The first result returned on Google if searching for the term "Game of Life" at the time of
writing this thesis is a website by Edwin Martin, called "playgameoflife.com" [35]. This
website was also used as a reference during the development of the web application, to
check the proper functionality of the algorithm. It is a very simple rendition of the Game
of Life simulator, with a limited way to interact with the platform. The platform is used
as the basis for what will be this projects own learning experience, as when using the
"playgameoflife" website, the lack of features is obvious, as can be observed in Figure 2.1.
In addition to some very basic playback controls, a lexicon is also included, describing a lot
of the discovered patterns. Some even come with a short description. These descriptions,
however, mostly cover when and who discovered the displayed patterns, and not why
they are interesting, or how they work.

5

2. Research & Related Work

Figure 2.1: A screenshot of the playgameoflife website [35] by Edwin Martin.

The Game of Life also has its own wiki page, called "conwaylife.com/wiki" [33]. This
website is the closest analog to the interactive lesson part of this project. It is structured
like a generic Wikipedia page, with many of its basic explanations on the Game of Life,
cellular automata, etc. being just simplified versions of their own Wikipedia entries. The
"conwaylife.com" website will be referenced a lot within the actual lessons in this project,
as it serves as the primary external resource for many of the patterns presented in them.
Almost every pattern has a specific sub-page on the "conwaylife.com" wiki; most also
contain an interactive window to simulate a pattern evolution. This functionality is,
however, not embedded into the core of the page, and serves mostly as an additional way
to examine the pattern, instead of as a key part of the learning experience.

Even the 3D rendition of the Game of Life is not a new concept, although online renditions
of it are not as easily found compared to the 2D variant. The first result on Google
when searching for a "3D Game of Life" at the time of writing this thesis will lead a user
to the website called rbeaulieu.github.io/3DGameOfLife by Raphael Beaulieu & Elliot
Coy [30], a screenshot of which has been provided in Figure 2.2. It features a simplistic
interface with a render window and some options on the side. The rendered view cannot
be interacted with using the mouse; keyboard keys have to be used. To add a new cell, or
remove an existing one, its coordinates have to be entered. Playback options are equally
limited as they only allow the user to start, stop or reset the simulation. The website
leaves the impression of a mere proof of concept, instead of a finished 3D Game of Life
sandbox, which is a goal of this project.

6

2.2. Importance of Interactivity in Teaching/Learning

Figure 2.2: A screenshot of the 3DGameOfLife website [30] by Raphael Beaulieu & Elliot
Coy.

The projects introduced in this chapter are not the only iterations and renditions of the
Game of Life in its many forms (e.g. dcode GoL [8], cuug GoL [7], creetah 3DGoL [6],
Rithmschool 3DGoL [19], Chaos and Fractals [5], Wikipedia [27]), and describing them
all would arguably be redundant, yet there is a clear space for a product like the one
being developed here, that none of the existing solutions fill.

2.2 Importance of Interactivity in Teaching/Learning
As a slight detour before the Game of Life, the actual topic of this thesis, it was deemed
important to outline some of the research and consensus that has been reached, regarding
the significance of interactivity in teaching and learning. This is a relevant subject, since
this project and the learning experience part of the website use just such interactive
practices, to help the user better retain the information they will be presented with.
With this in mind, two papers focused on interactivity in learning/teaching have been
examined.

"The students want to understand natural phenomena, to know scientific truths and to
acquire knowledge to be applied in practice and for these reasons they are dissatisfied by
the traditional education" [38]. According to the paper quoted here, most traditional
methods employed in schools today are becoming less effective for the current generation
of students. It is important to encourage discovery in learning and to let children
experience things for themselves.
Traditional learning systems, that "put the focus on the teacher while students are the
passive participants of the educational process" [28] are outdated. An engaged student
is one that retains more information, and interactivity in the classroom keeps students
engaged.

7

2. Research & Related Work

It is stated, that in comparison to traditional teaching methods, interactive learning uses
ones own life experience. Students need to be able to tackle a specific problem in their
own individual way. Interactive teaching helps people do just that [28].
"Interactive teaching styles are designed around a simple principle: without practical
application, students often fail to comprehend the depths of the study material" [38].

Five guidelines have been designed by the ARMA International Center for Education
[14], to encourage interactive teaching. Among them is the importance of student
participation, using questions that stimulate a discussion, or the use of teaching aids, etc.
These guidelines have been followed when designing the learning experience part of this
platform.

8

CHAPTER 3
Cellular Automata, Game of Life

& the Turing Machine

What follows is a brief explanation of the key concepts this project focuses on. Together,
they form the core of the research, as well as the interactive lessons from the practical
part of this work. These interactive lessons that are at the center of the developed website
had to have a certain structure and progression. To show off the full potential behind an
automaton like the Game of Life, in the later chapters of the lessons, the recursivity of
the automaton is pointed out and explained. In order to understand why and how the
Game of Life can recursively simulate itself, the concept of a Turing machine has to be
introduced first. Throughout the rest of this paper, the terms "Game of Life", "Life" or
"GoL" are to be considered interchangeable.

3.1 Game of Life
The Game of Life is a so-called cellular automaton. This is a grid of cells, each having
a state. Cells inside this grid can only exist in a certain number of states, which they
switch between. The number and/or type of states a cell can take on depends on the
automaton. The cells in the Game of Life generally only have two states, dead or alive.
Each cell has a specific neighborhood, based on which it transitions between states. This
is the basic principle behind the evolution of a cellular automaton.

The Game of Life, as first imagined by the late English mathematician John Horton
Conway in 1970, is often described as a zero player game, because the only input from
the user happens at the very start, where they choose an initial cell configuration. After
that, the simulation is run and the player can only watch. Conway is said to have always
been intrigued by the unpredictability of similar imagined game universes devised by
mathematicians of his time.

9

3. Cellular Automata, Game of Life & the Turing Machine

It was this unpredictability, in spite of seemingly very simple rules, he had in mind when
he initially decided to create the automaton known today as the Game of Life. "Conway’s
name of life compares the growth of patterns to the growth of populations of living
organisms - say, bacteria in a culture" [37] (page 15, chapter "Game of Life").
He experimented with many different rule sets, driving down their complexity at every
iteration. What he came up with is, as he described it, a nongame. Everything except
the initial input of the player is determined by his carefully devised, static rules. The
situation at one moment directly determines the situation in the next one, therefore,
everything in the Game of Life is predetermined.

Life generally gets cited as having four basic rules that determine the next evolution of
the simulation. Rules determine, whether a living cell will die, or a dead cell is reborn.
The rules are, in no particular order:

• A dead cell with at least three living cells in its neighborhood will be reborn.

• A living cell with more than three living cells in its neighborhood will die from
overpopulation.

• A living cell with less than two living cells in its neighborhood will die from
underpopulation.

• Any other living cell will keep living, unaffected.

The Game of Life is played on a 2D grid of cells, and each cells neighborhood is made up
of the cells next to it, diagonally, vertically, and horizontally. This means that a cell in
the Game of Life has eight possible directly neighboring cells, which it needs to examine,
in order to determine its behavior in the next epoch.
The epoch refers to a state of the simulation at a particular point in time. Every time a
specific configuration of cells evolves according to the 4 defined rules, this signifies a new
epoch. Often, an epoch inside the Game of Life is called a period or generation.

3.2 Turing Machine & Turing Completeness

A Turing machine is an abstract model of a machine, that can simulate any given
algorithm, despite its apparent simplicity [31]. It is a theoretical machine defined as
having an infinitely long input tape, that binary values can be either read from or written
to. Using simple instructions and binary operations, it is thus possible, given enough
time, to simulate an algorithm of arbitrary complexity. The Turing machine is named
after the British mathematician, Alan Turing, famous for inventing what is regarded as
the first computer. Turing came up with the then called automatic machine in 1936, in
order to prove that no machine can exist, which could determine if another machine ever
prints out any given symbol, or if it freezes or stops computing.

10

3.2. Turing Machine & Turing Completeness

If a collection of instructions is deemed Turing complete, it simply means, that it is
capable of simulating a Turing machine. It is, therefore, possible for a Turing complete
system to simulate all tasks accomplishable by current computers [22].

A core idea that this thesis heavily relies on is, that the Game of Life is also Turing
complete. Or at least, that components like logic gates, the building blocks of a computer,
can be simulated within Life, that make it so. And consequently, by nature of its Turing
completeness, a Turing machine can and has indeed been built within the Game of Life.
A fully-fledged, 8-Bit programmable computer, complete with the Arithmetic and Logic
Unit (ALU, part of a CPU that carries out arithmetic and logic operations), memory,
and even a display [34] has been created in Life, as seen in Figure 3.1.

Figure 3.1: A basic programmable computer inside the Game of Life created by Nicolas
Loizeau [34].

If taken one step further, it can also be said that the Game of Life is not only a Turing
machine but a universal Turing machine. Whereas a standard Turing machine is capable
of simulating any arbitrary algorithm, one would have to create a specific machine for
each algorithm that is being simulated. The universal Turing machine, however, takes
the standard input tape that has already been explained, along with a description of a
machine that would solve a certain problem. With this, the universal Turing machine
can take the input machine and, using the content of the tape, simulate it, and with it
the algorithm itself. A universal Turing machine can simulate any other machine, and so
can the Game of Life. For clarification, the machines that are being talked referenced are
not actual physical machines. Rather, they are mathematical concepts similar to state
machines or the already familiar automata.

11

3. Cellular Automata, Game of Life & the Turing Machine

3.3 Recursivity of the Game of Life
The fact that a computer can be built inside the Game of Life might not seem very
interesting at first glance. After all, there are countless Turing complete systems, and
thousands of examples online, of people, building simple computers out of unexpected
things.

A rather surprising example of this is the trading card game "Magic: The Gathering" [15],
which is also considered Turing complete. Meaning, using a certain subset of the total
cards, the rules of the game allow for a Turing machine to be constructed. This means
that a "computer" could be constructed out of "Magic: The Gathering" cards, that would
itself be capable of playing "Magic: The Gathering". Another, more common example is
the game Minecraft [16], with hundreds of tutorials and videos of people online, building
computers inside the game.
These are examples of what is called unintentional Turing completeness. The creator of
"Magic: The Gathering", although he was a mathematician, or the developer of Minecraft
did not set out to create a Turing complete system within their games. It happened as a
byproduct of the games’ mechanics. The same goes for John Conway and the Game of
Life, who did not initially set out to create a Turing machine.

Stemming from the fact that Life is Turing complete, it is provably possible to build a
Turing machine, that can run Life itself. One can therefore simulate the Game of Life,
inside the actual Game of Life. Figure 3.2 shows a grid of nine cells, with three of the
cells lit up, representing the very common blinker pattern [4] documented in the Game
of Life. The miniature grid itself is made up of cells, within a Game of Life simulation.
This figure therefore shows Life being simulated inside Life.
Due to technical limitations of the browser platform, this was not included as an real-time
simulation among the interactive lessons. Rather, a recording serving as a proof of
concept was made, inside a program called Golly [39], which uses the so-called HashLife
algorithm (first described by Bill Gosper, who discovered many of the most famous
patterns in Life, like the Gosper Glider Gun [11], a very famous pattern, and also the
first documented pattern with infinite growth) for improved simulation speeds and scale.
The algorithm works by leveraging the considerable amount of repetitive behavior in
many large cell clusters and patterns, inside the automaton. This is done by recording
common patterns in a hash table so that the resulting evolution calculations do not need
to be re-done if they turn up again [32].

12

3.3. Recursivity of the Game of Life

Figure 3.2: Life being simulated inside Life itself, using the open-source software Golly
[39].

13

CHAPTER 4
Designing the Tour of Life

This chapter provides a description of the three major sections of the web application
named the Tour of Life, their basic and advanced functionalities, and also gives insight
into the major design decisions made during development. In a nutshell, this includes a 2D
simulator of the Game of Life itself, where users can experiment with the algorithm, the
Tour of Life learning experience, and also a 3D rendition of the Game of Life simulator.

4.1 2D Game of Life Simulator
Our proposed solution learning application for the Game of Life includes an interactive
Game of Life simulation environment, where users can experiment with their newly
gained knowledge about the automaton. To enable them to do this properly, users should
be able to customize certain parts of the experience, like simulation parameters, UI, or
even the algorithm itself. Most existing solutions present the user with a grid where they
can place cells for the starting configuration and run or rewind the simulation, without
many customization options. By looking at multiple online simulators for the Game of
Life, the following list of basic, necessary features for playback control has been compiled
for later implementation:

• A way to start and stop the simulation (Figure 4.1.a), once a starting
configuration has been selected. The user has the option to change the state of
cells on the grid at any time, even while the simulation is active. Depending on the
playback speed, this will have varying effects, as the added cells might not have
enough time to form into patterns, causing them to die immediately due to the
lack of other cells in their neighborhood.

15

4. Designing the Tour of Life

• A way to progress the simulation by one step (Figure 4.1.b), either forward
or backward. This option allows the user to step through the simulation in a
more controlled fashion compared to the playback introduced above, to properly
experience all the changes that are happening. The option to step backward
naturally only becomes available, after the simulation has already progressed. The
number of saved steps backward is not unlimited, so as to save resources, but can
be adjusted in the options menu which will be discussed later in this chapter.

• An option to clear the whole grid (Figure 4.1.c), changing the state of all
living cells in the simulation to being dead. This self-explanatory feature allows
the user to "kill" all cells at once, in case a pattern grows too big, and manual
single-cell state change would prove too tedious.

• If the user has the option to clear all living cells at once, one must also account for
the situation of accidental clearing. For such cases, an option needs to exist, to
restore the last cleared cell configuration (Figure 4.1.d).

• Most of the researched Life simulators contain no instructions of background
information, with no proper explanations for their features or working principles.
This is why a sort of guide is needed, which would include a basic description of
the platforms features, as well as the basic controls necessary to interact with
the website.

• The option to draw a cluster of cells, instead of having to place them one by
one is crucial to the user experience and ease of use. Similarly, a way to control
the view, preferably without having to use the keyboard, gives the user freedom to
easily explore the whole simulation.

Figure 4.1: A snippet from the website showing the playback controls setup.

The features listed above already form a basic Game of Life simulator and allow the
user to interact with the Game of Life in a restrictive manner. An important aspect of
visualization is to give the user freedom to adjust the view-port to their liking, as well
as change the parameters of the visualization. Not only does this help improve the user
experience [12], it also helps with understanding the algorithm itself, especially when
adjustments of the underlying simulation are possible.

16

4.1. 2D Game of Life Simulator

This is why, based on more competition research and the state of the art, a second list
of advanced features has been devised, included in a special options menu. The list of
features includes:

• An indicator for how many cells survived, died, or were born in the
current epoch. This feature gives the user a very important overview of the state
of the simulation.

• Options to adjust the underlying algorithm for cell birth/death/survival. In
order to let the users experiment and better understand the simulation and the
algorithm for cell state transition, they are allowed to change the number of cells
that are needed for a living cell to die, survive, or for a dead cell to be reborn.
These options exists in the form of simple input fields, where the maximum allowed
value is 8, and the minimum value is 0, since the neighborhood of a cell can have
at most eight cells and at least zero. Changes to the rules of the Game of Life can
be made even while the simulation is running.

• To help make the state of a specific pattern at the next iteration clear to a layman,
a visualization is necessary, which contains a preview of the changes that are
about to happen to the living cells, between the current epoch and the next one.
This feature is called the "prediction mode", and it exists in the form of a toggle
that enables such a view. This view gives cells a specific color-coding, based on
what is about to happen to them. This coding, and why it was chosen will come
up in more detail in Chapter 4, Section 4.

• Just as important as giving users freedom when exploring the simulation, is to limit
the inexperienced ones, in order not to overwhelm them. By default, there are
limits, set on the zoom and pan of the camera within the view-port. These limits
need to be toggle-able, to give users freedom, should they explicitly request it. The
"developer mode" toggle does just that.

• A way to control the speed of the simulation. Using a slider, users should
be allowed to adjust the speed of the playback. This changes the delay between
epochs and makes the evolution of the cells faster or slower. This feature obviously
affects performance, so different simulation speeds may work variously on different
systems.

• The option to change the background and/or cell color. An intuitive way
is needed, preferably using sliders, to adjust the color of the board and the cells
within it, on the fly. This helps especially color-blind users to better interact with
the simulation.

• The sandbox includes a helper grid in the background, as a visual aid to allow
for easier cell placement. An option should exist, to toggle this grid, in case users
want to examine the cells without the grid, as in cases when the camera is zoomed
out too much in developer mode, it can cause distracting flickering artifacts.

17

4. Designing the Tour of Life

This set of options and features gives the user full control over the simulation and makes
interacting with it very intuitive. By letting users change the look of the simulation,
and even the algorithm itself, it is ensured, that most easily solvable questions and
problems with the application can be solved by the users themselves (e.g. visibility,
understandability, visual clutter).

One additional feature will be added to the 2D simulator, as an way for users to personalize
their initially drawn cells, and also as an additional way to differentiate this platform
from competitor solutions. The very last feature in the options menu allows a user to
upload an image in the format jpg or png, which then gets automatically converted into
a starting cell pattern. The process will work by extracting the bright spots of an image
above a certain threshold and drawing a cell in this position in the simulation grid.

With customizability in mind and including the features described in this Section, the
simulator sections of the application have been designed to be as customizable as possible,
to prevent the feeling, the user is watching a pre-recorded evolution of a specific pattern,
but instead that they can directly interact with what is shown, and how it is shown.

4.2 Tour of Life
The Tour of Life section of the platform is the core premise of the whole project. It is a
series of interactive lessons, where users, less familiar with the concepts of automata and
computing can experience the complexity of Conway’s Game of Life, from its very basic
rules, all the way to the fact that it is Turing complete, and what that means.
We propose for the lessons to have the form of small, self-contained blocks of information,
that slowly increase in complexity as the user completes them. This segmentation
serves to make the amount of presented information the user is confronted with less
overwhelming. Originally, only theoretical lessons were planned, where users can interact
with the presented cell pattern, yet user interaction was not necessary to complete the
lesson. The exercises were later introduced to allow users to engage with the Game of
Life in a more thorough manner by having them complete a pattern by themselves, as it
provably helps with information retention. The Tour of Life is also intended for younger
audiences, around the high-school age, where interactivity is highly desired to keep the
users’ attention [28].

The Tour of Life is split up into individual chapters, each chapter consisting of two
lessons or exercises. These chapters have been designed to include thematically related
lessons, to prevent jumping from topic to topic at random. Once a chapter introduces a
theoretical topic or pattern from the Game of Life, there may later come up an exercise,
which tests the user on said topic. This means, that every exercise has a corresponding
theoretical lesson connected to it, and should therefore be easily solvable.

18

4.2. Tour of Life

Figure 4.2: Design and arrangement of the options listed in Chapter 4, Section 1, inside
the implemented options menu.

The content of the lessons is as follows. First, a brief introduction to the idea behind
and the functionality of the Tour of Life is presented. What follows are lessons on the
Game of Life itself, its basic rules, and the most important patterns, that help the user
understand the automaton more deeply. The lessons also gradually increase in complexity.
After that, the focus switches to computer logic, and logic gates inside the Game of Life.
This is a brief departure on the way to the final chapters of the lessons that have to do
with the Turing machine.

19

4. Designing the Tour of Life

The user will experience what a Turing machine is, and how it can be built inside the
Game of Life, using the presented logic gates as building blocks, as they can form a Turing
complete system. Finally, using this knowledge, it is presented to the user, that Life can
indeed simulate itself. This is done using a pre-recorded video taken from the software
"Golly" [39], as such a simulation would be too costly for most browser applications.
Each lesson usually consists of a simulation window, simulation controls, a lesson title,
and the lesson itself. A detailed description of the individual parts of a lesson is as
follows:

• Lesson title: (Figure 4.3.a) Generally describes the core idea of the lesson. This
can be related to the algorithm of the Game of Life, specific patterns that emerge
within the automaton, or even the basics of computer logic.

• Lesson description: (Figure 4.3.b) This part includes the actual lesson, specifically,
what the user should remember, and how to interact with the presented pattern
inside the simulation. It outlines why a pattern was chosen, categorizes it, and
describes how it behaves. The lesson description is intended to help users understand
the pattern presented to them before they actually start interacting with the
simulation window.

• Simulation window: (Figure 4.3.c) The simulation window within any given
lesson works analogously to the 2D sandbox described in Chapter 4, Section 1.
Users can draw and delete cells by drawing on it, as well as zoom and pan the
camera to a degree. For the initial exercises, the zoom on the camera is locked, to
force the user to focus on the pattern being introduced to them. Later lessons allow
the user to zoom/pan, as the patterns presented get bigger and more complex. The
zoom settings and restrictions are carefully chosen to not make the simulator inside
the lesson environment confusing, and also to direct attention to the important
parts of the lesson.

• Simulation controls: (Figure 4.3.d) In addition to the already examined basic
playback controls, the lesson simulator includes a button to reset the simulator.
With this, the user can reset the pattern that is being discussed in the lesson, as well
as any camera adjustments, back to its original state. A prediction mode button
has also been added directly to the controls bar, taking it out of the options side
menu in the 2D Game of Life simulator. Its functionality has also been described
in Chapter 4, Section 1. A button is added, which links to every lesson a related
online resource, allowing the user to more deeply research the topic at hand, should
they find something unclear. Lastly, the user has the option to transfer the pattern
of any given lesson into the 2D sandbox environment, where they can experiment
with it using the full suite of options discussed in Chapter 4, Section 1.

In addition to these basic features, some chapters may contain a hint at the bottom of the
screen (Figure 4.3.e). This short suggestion serves to give users additional information
regarding the chapter or help them during an exercise.

20

4.2. Tour of Life

Figure 4.3: Standard layout of a lesson chapter inside the Tour of Life.

Around 25% of the currently available lessons do not include a simulation grid, and
instead consist of simple text. These special lessons serve as introductions to certain
topics, especially when transitioning between lessons about the Game of Life, to the
introduction to computer logic. No fitting visual example has been found for these
isolated lessons, so the simulation window has been omitted entirely.

Another special case of lesson that has been mentioned already is the exercise. It has the
same format as the theoretical lesson, with the addition of a cell counter, displaying cells
available for placement. The user has to complete the exercise using only the number of
cells available to them for that exercise. It is still possible to delete existing cells, yet
this will in most cases not lead to the desired solution. No system exists to check if the
provided solution is correct, because usually, more than one acceptable solution to a
given exercise exists. The user has to have the ability to discern, whether the provided
solution depicts the required pattern, as outlined in the individual exercise description.
The user can continue on with the lessons even when an exercise has not been completed.

To navigate the lessons, there is a navigation carousel with lesson IDs at the very top
of the screen. The user can switch between lessons at will, later lessons are not locked
until the lessons before them are completed. This is so that experienced users do not
have to complete the whole course in order to get to the information they actually want
and to enable a fast and quick refresh of forgotten information without the need to first
complete the previous chapters.

21

4. Designing the Tour of Life

4.3 3D Game of Life Simulator
The last section of the Tour of Life website enables the curious user to explore how
Conway’s Game of Life would behave in a 3D environment. Regarding the UI, the
3D Game of Life simulator may look very similar to its 2D counterpart. This is true
when it comes to available features and options. The playback and options menus
were left virtually unchanged, as the additional dimension does not add much in terms
of functionality, and also to enable easier comparison between the 2D and 3D views.
The most challenging part of constructing the 3D interactive Life environment is the
interactivity with the cells themselves.

One additional problem the 3rd dimension introduced to the visualization of cell patterns
is with the clear visualization of the prediction mode, which finds a use in the 3D simulator
as well. The final implementation of this feature is further explored in Chapter 4, Section
4.

A feature that distinguishes the two kinds of simulators is the file upload. For the 3D
simulator, the user can upload an obj file of a 3D mesh, which in turn gets converted
into a cluster of cells inside the simulation. Just as with the 2D image upload, here too,
the bigger the input mesh, the longer the upload.

4.4 Visualization & Accessibility
There are multiple visualization problems that have to be tackled during the development
of the website, to make it accessible and usable for the majority of people. When analyzing
existing solutions, it was always interesting to see what colors were used to depict the
simulation grid as well as the cells themselves. In most cases, no option was provided to
change these colors, meaning if they did not fit for any reason, there was nothing the
user could do.

As the main color for the cells of the Tour of Life website, a dark yellow was chosen.
This is because it contrasts well with the black background, and also because yellow is
the brightest saturated color possible, and it is clearly distinguishable from the selected
background even for colorblind users.
For the issue of visualizing multiple types of cells in the prediction mode of both the
2D and 3D sandbox, specific colors were chosen, that would exhibit a clear distinction
from one another, even to people who suffer from colorblindness [36]. Specifically, users
with protanopia, deuteranopia, and tritanopia should have no problem distinguishing
between the chosen colors. The yellow used throughout this project is actually part of
the prediction mode color palette, to ensure that even with the prediction mode enabled,
there still is a clear distinction between all the visible colors. There was an attempt to
logically color-code the individual states of the predicted cells. Yellow cells would indicate
no change. Green means a new cell will be born. A blue cell dies of overpopulation and
a pink one dies of underpopulation.

22

4.4. Visualization & Accessibility

This encoding, although it might make sense to us (green means birth, red means death,
etc.), is not carried over into the colorblind-safe palette. Nonetheless, there are still clear
distinctions between the different types of cells.

A second major issue regarding visualization is figuring out a proper way to present a 3D
cluster of cells to the user, ensuring a high level of interactivity. Since the user is dealing
with a 3D shape, the basic camera pan from the 2D sandbox is not sufficient, as cells
would remain obscured along the depth axis. Therefore, camera controls are expanded
upon here with the addition of camera orbiting. More specifically, the camera always
orbits around a fixed point in the coordinate system, that being the absolute center,
unless the camera is moved via panning.

A final obstacle that will have to be overcome is the visualization of the prediction mode
in 3D space. This poses a problem since due to the opacity of the cells, the state of
cells inside any 3D shape would naturally be obstructed. Here as well, a few approaches
are possible. Having every cell fully opaque clearly is not sufficient, due to the issue
described. A test with all affected cells being made semi-transparent also has not worked
out well, since the transparency leads to great confusion, due to visibility issues, and
unintended color mixing. It was finally decided, that it makes sense for the cells that will
be born in the next epoch, to be made semi-transparent. This removes a lot of the visual
clutter, especially in small patterns, and allows for better viewing of the cells underneath.
The color scheme remains.

23

4. Designing the Tour of Life

Figure 4.4: A random cluster of cells, displayed with the prediction mode enabled. What
is visible is the colors used, as well as the way the mode has been realized in 3D space.

24

CHAPTER 5
Implementation

What follows is a detailed description of some of the development challenges and design
decisions that determined the overall structure of the project. Core ideas and functionality
of the main components of the website are outlined here, with a detailed explanation
regarding the algorithms used, and programming techniques employed.

5.1 General Project Structure

Figure 5.1: Tour of Life project structure inside the IntelliJ IDEA IDE [13].

The Angular framework mainly relies on reusable components for parts of the website
that are shown to the user. For this project, three basic components were needed.

25

5. Implementation

The Life2D component handles the 2D sandbox part of the website, the TourOfLife
component holds the code necessary for displaying the lessons, and Life3D is used for
the 3D sandbox. These three components are all saved inside individual folders, all
within a folder called components. Functionality not directly related to the displaying
of components is housed outside the components folder, inside the parent folder called
app.
Since the basic functionality of the 2D Game of Life gets reused twice, once for the sandbox,
and once for the lessons, it was extracted into a separate class called Life2DContainer.
This class holds the basic logic behind the 2D Game of Life, which can be reused at
multiple points in the project, and to which additional functionality can be added.
Additional classes that do not belong to any component are Cell2D & Cell3D, Grid2D
& Grid3D, and Renderer2D & Renderer3D for the respective simulators. It was
unclear in the beginning if the 3D rendition of the Game of Life was going to be included
in the final version of the project; that is why the two parts were developed independently,
and their logic is contained in separate files. Since there were only two instances of each
class, the use of an interface was also deemed unnecessary.

5.2 2D & 3D Rendering
In order for the 2D/3D graphics to be displayed, a component needs to have a Three.js
renderer object, together with a Three.js scene and a camera. The scene houses any
objects that should be displayed at any given render pass. So as to not make a component
class too cluttered, the renderer functionality has been extracted into its own class, called
Renderer2D & Renderer3D for their respective uses. These classes would house the
root scene object, as well as the camera and the renderer itself, in addition to any camera
settings and canvas dimensions. The renderer class would take care of any zoom and pan
restrictions.
When a new mesh object needs to be rendered, it simply gets added to the active
renderers scene. Within the next render pass using the animate method, the scene gets
drawn onto the canvas element inside the DOM. The canvas element needs a container
element, based on which the size of the actual canvas gets calculated. For this purpose, a
simple div container was used, with the ID "render_window". The container then acts
as a parent element to the renderer canvas.
The camera used for this project is a simple Three.js PerspectiveCamera. It is used
for both the 2D and 3D versions of the Game of Life simulation, as in reality, the 2D
Game of Life grid is also a projection on a 2D plane.

26

5.3. Cell Placement/Deletion

5.3 Cell Placement/Deletion
A set of three event listeners have been set up to check for mouse button presses, releases,
and general mouse movement using the addEventListener method on the render
window, with the types mousedown, mouseup & mousemove respectively. When a
mouse button press event is detected, first, a mouse_down flag is set to true. The release
of the button sets it back to false. Only if this flag is set, does the movement of the
mouse have any effect on the cell states. This approach allows the user to paint in the
cells by moving the pressed mouse, instead of having to individually place/delete each
cell via a button-press.

The actual cell creation/deletion is handled by their respective methods checkAddition()
& checkDeletion(). Both methods are based on the same principle. An invisible
plane the size of the whole grid is placed at a depth of zero onto the grid. This plane is
called the raycast_plane. When a click event is detected, left-click meaning a cell
is to be added, right-click meaning a cell is to be deleted, a raycast is performed, with
the ray pointing from the position of the camera, towards the x/y position of the mouse,
with the depth set to zero. The position of the collision with the raycast_plane is
then recorded, and a cell position is calculated from it. This is a necessary step, because
the origin of the displayed grid is the same as the world origin, meaning a cell cannot be
placed on either x=0 or y=0 (Figure 5.2). Therefore, if the x or y value of a ray collision
is negative, it gets further decreased by 1, whereas if the value is positive (or 0), it gets
increased by 1.

Figure 5.2: This graphic depicts the center of the coordinate system to demonstrate, that
no cell can be placed at the coordinates (0,0).

27

5. Implementation

The way a cell gets deleted works analogously to cell placement, the only change being
the target of the raycast. Instead of checking for collisions with the plane, the ray is
set to collide with any existing cell. Should such a collision be detected, its coordinates
get extracted, and using the same call position calculation as described above, the cell
corresponding to the newly calculated coordinates is deleted. What was described here
is the process of adding/removing cells from a 2D grid, although the process is almost
identical when working inside the 3D simulator. All the changes between these approaches
are outlined in Chapter 5, Section 8.

The way cells are saved and interacted with is all saved within the respective grid classes,
as outlined in Chapter 5, Section 1. There are two variables that store the existing cells.
The first one is a 2D array called coords, which holds a reference to an existing cell
at the coordinates of the cell itself. This approach was chosen to easily determine if a
cell has neighbors and to quickly edit a single specific cell. A second, simple 1D array
called active saves references to all the currently existing cells, in the order of their
creation. This variable is used for quick editing of all existing cells, and also to quickly
pass existing cells to the scene for rendering.

5.4 2D Game of Life Algorithm
In its very simplest form, the algorithm for the Game of Life consists of two steps.
Constructing a list of all the cells that need to be deleted before the next epoch, and
constructing a second list of all the cells that need to be created before then. Logically,
the addition/deletion of cells cannot happen as the algorithm is being executed, since
this would influence the outcome. All changes have to first be saved, and only as the last
step can the corresponding cells be added/deleted.
The way this project tackles the issue is by having two additional arrays called to_birth
& to_die, that hold the cells that are determined to be born/die in the next epoch. A
void method called advance(), which is triggered at the end of every epoch, first
resets these arrays to be empty. Next, all currently living cells are examined by
looping over the active array and checking their neighbors using the proprietary
checkNeighbors(x:number, y:number) method. This method examines the 3x3
neighborhood of a specified cell. If a dead cell is detected inside the neighborhood, the
method cellBirth(x:number, y:number) is called, to check if it should be reborn.
This is done by counting the living cells in the dead cells neighborhood. If this number
is equal to, or greater than three, a new cell object is created and saved inside the
to_birth array.
Finally, the cellDeath(cell:Cell) method determines, whether the currently ex-
amined cell itself should die or continue living, by again counting the neighboring cells.
If the number of neighbors is between two and three, the cell survives. Otherwise, it is
added to the to_die array.

28

5.5. Prediction Mode

As a final step, both the arrays are looped over, and the individual cells are either added
to the grid or deleted from it. The new state of the grid is examined by the parent class,
and the currently living cells are added to the rendered scene.

5.5 Prediction Mode

The prediction mode is one of the more important features of the Tour of Life experience,
as it helps visualize the differences between epochs and helps the user better understand
the algorithm. The core idea behind this mode is to split the existing set of living cells
into four groups; survivors, cells that will die of overpopulation, underpopulation, and
a fourth group of cells that will be born in the next epoch. To make this separation
obvious to the user, these cells have to be color-coded. The specific color-coding and its
meaning have already been previously discussed in Chapter 4, Section 4.
Because of this grouping of cells, additional arrays had to be introduced to store them.
Namely lonely & overcrowded, which would store the under- & overpopulated cells
respectively. To recolor the cells that are yet to be born, the to_birth array could
be repurposed, as it already stores cells that will be created in the next epoch. All the
remaining cells would stay unchanged.
Once the prediction mode was toggled by calling the method predictionMode(), it
itself would call another method, called predict() which holds the actual logic for
coloring the cells.

The method first clears the values for the necessary arrays described above, after which it
calls the checkNeighbors(x:number, y:number) function, described in Chapter
5, Section 4. The predict() method additionally also saves cells inside the respective
arrays based on the cause of their "death". After all the necessary arrays are filled, they
are looped over, and the cells stored in them are colored accordingly.
Once the prediction mode is turned off, all newly added cells are removed again, as they
are not really part of the active cells yet, and all cells saved in the to_die array are
simply re-colored with the default yellow. Users can even run the simulation with the
prediction mode enabled.

5.6 Image Files as Input for Starting Cell Configuration

The method called loadImage(e:event) is responsible for taking the input file of an
HTML input element, which only accepts png and jpg file types, and converting it into a
starting cell configuration, as can be seen in Figure 5.3. It does this, by first defining
an isolated canvas element with a context, onto which a downscaled version of the
input image is drawn. The downscaling is done to prevent a crashing of the website when
images with a too high resolution are uploaded. Once the image is fully loaded and drawn
inside the context, its image data is extracted. This is an array containing values from
0 to 255, in each of the R, G, B color channels, and the additional alpha channel. Inside
a loop, this data gets averaged for each pixel, as a simple brightness estimate. If the

29

5. Implementation

Figure 5.3: The input image (left), and its representation as a pattern of cells inside the
Game of Life (right).

average value exceeds 200, the x/y position of the pixel gets calculated, and in its place,
a cell is placed on the grid. The value of 200 has been determined through testing, as it
eliminated a lot of the brighter pixels, making the calculation faster, yet it still preserved
enough details for the input image to be recognizable.

5.7 Lesson Lexicon
The lesson_lexicon is a JSON file, holding the textual descriptions and configurations
for all the standardized lessons and exercises of the Tour of Life. Instead of hard-coding
the lessons directly in HTML, making the whole structure of the HTML part of the
component unreadable, a file holding custom JSON lesson objects was created, and
imported into the TourOfLife component. Thanks to Angular’s ability to use loops to
dynamically create HTML elements, the framework for each individual chapter is created
based on the number of elements inside the lesson lexicon. In order to save resources,
and due to the limitation of the Angular material tab component used, the content of a
tab is not loaded automatically on creation, and therefore cannot be referenced. This
means that the actual lesson resources are only loaded once the corresponding chapter is
opened. This happens by fetching the ID of the tab opened, and using the ID as the
index to search for the correct chapter in the lesson lexicon.
In addition to the lesson titles and descriptions, a lesson entry in the lesson lexicon
contains the starting cell configuration for the pattern that is being presented, in the form
of x/y coordinates saved in an array. This pattern is then displayed in a simplified grid,
based on the 2D Game of Life simulator. Zoom settings and the speed of the simulation
are also hard-coded here, as they have been individually determined for each lesson.

30

5.8. 3D Game of Life interaction and visualization

5.8 3D Game of Life interaction and visualization
The user has to be able to intuitively work with the existing cells and even more difficult,
they have to be able to delete existing cells and add new ones. This is very difficult to
achieve, using a 2D screen to depict a 3D environment. Several approaches have been
examined. One such attempt involves separate controls for the depth axis, with which
the user could determine at what depth a ray-cast would place the cell. This means that
two hands were necessary to perform the basic process of adding/removing cells, which is
highly unintuitive, especially compared to the 2D sandbox. The natural way to solve this
issue is to bind depth to the scroll wheel, which is, however, already bound to zoom here.
It has to be assumed, that the user does not have more than three mouse buttons to
work with, so a compromise had to be made. A so-called "edit mode" will be introduced,
bound to the E key on the keyboard, which switches between the depth at which cells
are being currently drawn and zoom on the mouse.

To indicate depth visually, a 3D spherical cursor is added. This opaque sphere reflects
the future position of the to-be-placed cell. Being a sphere, however, it could be unclear
where a cell would get placed, especially without any neighbors as reference. This led to
the addition of a semi-transparent cell that follows the spherical cursor and calculates
the corresponding cell position to display exactly where the next cell would be placed.
Additionally, being slightly larger than a normal cell, and having a different color from
the default yellow for cells, the preview cell highlights an existing cell red, when the
player hovers over it. This also simplifies cell deletion.

5.9 3D Cursor Movement and Position Calculation
To make the interaction with the 3D version of the Game of Life feel natural, and intuitive,
a 3D cursor was designed, which allowed for movement along all three of the existing axes
using just the mouse. It was, however, important, to preserve the users ability to zoom
and orbit the camera around the center of the coordinate system. The movement of the
camera would, without any changes to the way the position of the cursor is calculated,
simply leave the cursor in its place in world space. This would lead to incorrect movement
of the cursor, as it would solely depend on the mouse coordinates, and not take the
camera position and perspective into account.
To achieve depth movement of the cursor, a vector is calculated, by subtracting the
current position of the camera from the position of the cursor. The cursor is then moved
along this vector, using the scroll-wheel.
The difficult part was the movement of the cursor in the x/y direction, following the
movement of the mouse on the 2D computer monitor. This was solved by adding
an invisible plane to the scene, similar to the one in the 2D simulator, also called
raycast_plane. This plane was set up to always face in the direction of the camera
every time the mouse was moved. A raycast is then performed, and the position of the
collision becomes the new position of the 3D cursor.

31

5. Implementation

This way, as the mouse moves on the monitor, each time, a ray is cast onto the
raycast_plane, and the cursor position is updated accordingly.

5.10 3D Game of Life Algorithm
There is no difference between the algorithm for the 3D Game of Life, and the original
2D one, other than the added third dimension. Every function where the neighborhood
of a cell was examined had to be extended by one additional axis, and the coords array
was changed from a 2D array to a 3D one. Besides that, no changes were necessary, due
to the way the algorithm was set up in the 2D version so that an easy extension into the
third dimension was possible. The only notable change that was made, was to the basic
rules of Life themselves. Since the neighborhood grew by a factor of three, due to the
added dimension, the rules had to be adapted accordingly.
Multiple different configurations were experimented with, starting with the obvious analog
of the standard 2D rules, used in 3D. For a cell birth, the standard 2D algorithm requires
at least three out of the eight possible neighboring cells to be alive. For the 3D version
of the algorithm, this would mean that at least nine out of the possible 26 neighboring
cells are needed for a cell birth. Carrying on as in the original algorithm, a cell with
less than eight, or more than nine neighbors would consequently die of underpopulation
or overpopulation, respectively. The small gap between the two types of deaths meant
however, that very few cells would survive an epoch. A researched paper [29] focused on
the Game of Life in 3D and necessary changes to its rules explores exactly this problem.
According to the paper, the ideal rule-set for the three-dimensional Game of Life could
be achieved, by adding two, to the existing rule-set from the original algorithm. This
meant, that five cells would be needed to birth a cell, and for a cell to survive, it would
need at least four, and at most five neighbors. As cited in the paper, this configuration
meant, cells required more time to form stable patterns, resulting in a greater possibility
for interesting patterns to emerge. "Perhaps the most fascinating feature of [this adjusted
rule-set] is that there exist an abundance of small stable and oscillating forms that
usually exhibit symmetry of some sort" [29], the paper determined. After some amount
of experimentation with this rule-set, and accidentally finding a period-4 oscillator as
shown in Figure 5.4, the rules were kept. Just like in the 2D sandbox, however, the rules
can be adjusted at any time, using the options menu.

32

5.11. Mesh Files as Input for Starting Cell Configuration

Figure 5.4: Depicted here is an oscillator that repeats after every 4 evolutions, within
the 3D Game of Life, discovered by accident when testing various rule-sets.

5.11 Mesh Files as Input for Starting Cell Configuration
The method called loadMesh(e:event) handles the processing of an input obj file
and turns this data into the initial 3D cell configuration.
First, the actual mesh data gets extracted from the input file using the Three.js
OBJLoader(). Next, the bounding box of the mesh is calculated, using the method
computeBoundingBox(), also provided by Three.js, which can be used on a geometry
object. It is often the case, that the origin of a mesh, especially when extracted from
third-party 3D editing software, does not correspond to the world origin. For this reason,
once the bounding box was calculated, the whole mesh was moved based on a vector
derived from the position of the bounding box.

Two approaches have been examined over the course of the development process, for
extracting cell positions from the mesh file. The first approach involved testing every
position inside the bounding box with a very small step size, to preserve a lot of the
detail of the mesh, and subsequently casting a ray from this position straight up. If the
number of collisions of said ray with the mesh was odd, this meant, that the starting
position was inside the mesh, and a cell was to be placed in its spot.

33

5. Implementation

This approach worked, however, it treated every object as solid, meaning it also rendered
the inside of each mesh. This approach was ultimately discarded, as the calculation of
cell positions would grow uncontrollably with increasing size of the input meshes, and
also because it was ultimately useless to render the inside of any given mesh, as due to
the rules of the Game of Life, all the inner cells would die out within the next epoch due
to overpopulation.
The second approach, the one used in the final version of the project, involved casting a
ray from every position along all six faces of the bounding box, in the direction of the
inverted normal of the box. If the ray collided with the mesh, the position of the collision
was recorded and from it, a cell was generated. The result of this operation can be seen
in Figure 5.5.

Figure 5.5: The input mesh (left), and its representation as a cluster of cells in the 3D
Game of Life (right).

34

CHAPTER 6
Website Components

This chapter describes the actual building blocks of the Tour of Life platform, and how
it was set up, as well as what technologies were used to bring it all together.

6.1 Node.js & NPM
Node.js is an open-source, cross-platform runtime environment for the execution of
JavaScript code outside the browser. According to the Node.js website [17], it is built
on Chrome’s V8 JavaScript engine. It mostly finds use in building back-end services,
or APIs, for client-side applications. It was chosen for this project because of prior
knowledge and familiarity with the environment, in addition to its ease of use and
scalability. Additionally, it boasts one of the largest collections of available open-source
libraries [25].

Paired with Node.js is the package management system called NPM [18]. It was created
in 2009 as an open-source way to help JavaScript developers easily share packaged code
modules. It stands for Node Package Management, and it is the default package manager
for Node.js. It includes a command-line interface, with which a huge repository of mostly
free packages or modules can easily be accessed and adapted for any application. Instead
of the developer having to write everything themselves, NPM can be used to quickly
and easily implement existing code modules into a project [26]. NPM is automatically
installed with every installation of Node.js and it was used for dependency management
in this project.

35

6. Website Components

6.2 TypeScript Programming Language

TypeScript is a strict superset of the JavaScript programming language, developed by
Microsoft. According to the TypeScript website [24], it is a "strongly typed programming
language that builds on JavaScript, giving you better tooling at any scale". Whereas
JavaScript is a dynamic language, where some errors can go undetected all the way up
until run-time with a browser crashing, TypeScript prevents this from happening, by
extending JavaScript with types. In this case, TypeScript behaves like a compile language,
with JavaScript as the compilation target. This means that with the TypeScript compiler,
a TS file gets transformed into standard JavaScript [23].
The primary goal of TypeScript is to enable static typing, so variables can be annotated
directly with static types. Custom types and interfaces are also possible. Strongly typed
code means auto-complete is available everywhere in the project. This, along with a
familiarity with TypeScript from past university courses, led to its use in this project.

6.3 Angular Website Framework

The Angular [3] framework was mainly chosen for this project because of prior experience
with it. It is a TypeScript-based framework, developed by Google, for the building of user
interfaces. When first generated, the Angular project comes out of the box, preconfigured
with a testing framework, routing, etc. At its core, Angular is a component-based UI
library [1]. Components are reusable parts of a website, that have been, among other
things, used to display the simulation window within the Tour of Life lessons in this
project. Angular also offers conditional logic or the ability to loop over iterable values.
Common functionality and data can be shared between components using a service,
although this feature has not been used in this project. To design the user interface, the
Angular material [2] design components have been used.

6.4 Three.js WebGL API

In order to render the actual 2D and 3D graphics, a JavaScript library/API called Three.js
was used. It uses WebGL to render GPU-accelerated computer graphics and animations
without relying on third-party browser plugins [20]. It works by generating a canvas
element inside the document object model, in which it renders specific geometry or meshes.
In the case of this project, plane geometry was used to render the simple 2D cells, and
the so-called box geometry was used for 3D cubes. It is very easy to manage the camera
controls thanks to the provided TrackballControls object. This holds the configuration
and control scheme for the camera movement, which can be adjusted at will. A scene
object holds all the geometry or meshes that are to be rendered. The rendering itself
happens within an animate loop, which runs continuously, and is framerate-independent.

36

6.5. GitHub Version Control

6.5 GitHub Version Control
GitHub is arguably the most popular provider of internet hosting for software development
and version control [10]. It is based on Git, which is a software for tracking changes in a
set of files, mainly used by programmers for collaborative development. Git & GitHub
were used for this project as it is an industry-standard, and it has been used with many
previous projects. As no collaborative development was done in this project, changes
have simply been committed to the main branch of the repository every time, and no
branching architecture was needed. If any feature has not been fully implemented, the
necessary additions were marked with a "TODO" comment inside the commit message.
No versioning or branch structure was used.

6.6 GitHub Pages Deployment
GitHub Pages allows every owner of a GitHub account to publish a website, built from a
select repository [9]. This option is available to free users of GitHub only if the repository
in question is public. GitHub Pages generally requires no additional setup, and since the
project was already using GitHub for version control, using Pages was the easiest path to
publishing the website, without having to rent server resources and buy a domain. The
website is served from a personal URL, tied to the user account.

37

CHAPTER 7
Results

This chapter serves as a look back at the development process, in order to outline some
of the aspects of the project that might require more work, and/or could be changed
or improved in the future. The goal, to create an interactive learning experience for
Conway’s Life, together with two separate sandboxes to allow for user experimentation,
has been reached. The ground rules set up at the beginning of the thesis were all kept
in mind when designing the platform. The lessons are designed to help even laypeople
to understand the core concept of the website, the sandboxes are highly interactive,
with many options to customize, and website features are explained either directly or
inside the guide. The website is live and fully web-based, so no third-party add-ons or
software is needed, and an intuitive way to visualize both the 2D and 3D sandbox has
been implemented. The platform in its current form is a solid foundation, upon which
improvements can be made, and future features added.

7.1 Web App Performance
The bulk of the web app has been developed and tested on a locally hosted, Angular dev
server, which was run on a computer with the following relevant specifications:

• CPU: Intel i7-6700K, 4 GHz, quad-core

• GPU: Nvidia GTX 1070, 8 GB GDDR5 VRAM

• RAM: 16 GB 2133 MHz

39

7. Results

To evaluate performance in highly populated scenarios, a test was performed, using a
modified version of the algorithm, where the number of cells necessary for a cell birth
was set to one, and the remaining rules had been adjusted so that no cell would ever
die. This setup results in the continuous growth of a pattern with 4 living cells in a 2 ∗ 2
neighborhood.
It was observed, that on the machine described above, the simulation with its default
speed settings and outside of prediction mode, would start slowing down slightly once
around 10,000 living cells were observed. At around the 25,000 mark, the simulation
would need one second to complete a step in the evolution, which is an over three-times
increase in time needed, compared to the initial 0.3 seconds. At 30,000 cells, the web-page
starts becoming unresponsive, and a refresh is needed.
An idea for speeding up the simulation has been developed, which could be implemented
in a future iteration of the application. It will be discussed further in Chapter 8, Section
2.

7.2 Multi-platform Use
The web application was primarily developed for use on a standard computer/laptop,
controlled via an external mouse, instead of a trackpad. Especially as a learning tool,
with the potential to be presented in schools, a computer was the obvious target platform
of choice. The advanced features and functionalities, like the painting of the cells and
special camera controls, are lost if accessing the website using a smartphone or tablet,
without an external pointer device and keyboard. The Tour of Life portion of the website,
containing the actual lessons was also designed to display multiple lessons per chapter,
rendering it unusable on mobile devices in its current form. The options menu in its
current configuration also is not compatible with a mobile view, as it was designed to
work alongside the render window, not on top of it.

7.3 Class Structure
From the very start of the project, it was questionable whether the 3D simulator would be
included in the final version of the web-app. The main focus was proper implementation
of the original Game of Life, with a high degree of interactivity and customizability.
Because this function was, thanks to good time management and task division, completed
rather on pace, and the lessons, due to the good foundation of the 2D simulator, were
not too difficult to implement either, it was decided that the 3D Game of Life will indeed
be part of the Tour of Life suite.
Because an existing foundation was already in place, which was being used in the lessons
as well, it has been decided, that instead of reworking the 2D code-base to support an
expansion into 3D, its functionality would simply be copied, with the necessary reworks
to support the extra dimension added later. This is ultimately not a state-of-the-art
approach, and should the application grow in the future, the class structure would
inevitably need to be reworked to use interfaces and prevent duplicate code.

40

7.4. Achievements

7.4 Achievements
This final section of the reflection chapter serves as a way to determine, if the goals/criteria
laid out for this project in Chapter 1, Section 2 have actually been reached, and if so,
how. What follows is a repeat of the list of goals, as well as a description on how they
have been integrated into the project:

• Approachable to laypeople: Thanks to the interactive learning section of the
website, called the Tour of Life, users have the opportunity to get acquainted with
the concept of a cellular automaton, the Game of Life, and later even interact with
concepts of computer logic and Turing machines. This is done via lessons which
start out very simple, but increase in complexity as the user works through them.
Every new concept is thoroughly explained and the user has freedom to experiment
with the presented lesson at will.

• Interactivity: Every lesson that contains a pattern also allows the user to either
interact with the lesson directly, or copy the pattern in the general Game of
Life sandbox section, where it can be properly experimented with. Additionally,
exercises have been added, which task the user with completing a pattern based on
a description, to keep them engaged.

• Proper documentation: In addition to the annotated playback controls, both
sandboxes contain a guide, which explains the less intuitive features and options
available to the users. The Tour of Life learning experience contains an explanation
page, meant to prepare the users for the lesson format, as well as teaching them how
to interact with the page. Some chapters contain hints and useful tips regarding
the lessons. Every lesson also provides a link to an external resource specific to the
lesson, where the user can find out more about the presented concept/pattern.

• Self-containment: The Tour of Life has been developed as a web application.
This means, that it is accessible by anyone with an internet connection and a
browser. It has not been properly adapted to a mobile view (yet), but any computer
will be able to run the application without any third-party software or add-ons.
The website is also publicly available, without any need for a private web server
setup.

• Customizability: The look and feel of the sandboxes is highly customizable. Users
can edit the underlying algorithm, speed of execution, and even the colors and
presentation of the simulation. For pre-designed parts of the experience, accessibility
was kept in mind by creating a base color palette easily usable even by people with
different kinds of color-blindnesses.

41

7. Results

• Visualization: An intuitive and simple way of interacting with the 3D rendition
of the Game of Life has been implemented, which relies almost solely on the
computer mouse. This helps with navigation in the 3D space, as well as with the
creation/editing of patterns. The additional dimension has been kept in mind when
designing the prediction mode, to make it as clear as possible.

The Tour of Life fulfills the goals set in the beginning of this thesis. Users can learn about
the potential of the Game of Life, and what it means to be Turing complete, through
the use of interactive elements and theoretical lessons, as well es experiment freely with
the algorithm of Life inside multiple sandboxes. We propose that this makes it a worthy
addition to the existing online resources on Conway’s Game of Life.

What follows are screenshots from the actual Tour of Life website. These depict the 3
main sections of the website, namely the 2D Game of Life sandbox (Fig. 7.1), the Tour
of Life learning experience (Fig. 7.2) and the 3D Game of Life sandbox (Fig. 7.3).

Figure 7.1: A screenshot of the 2D Game of Life simulator with an expanded options
menu on the right, playback controls at the bottom and a guide button in the top left
corner of the screen.

42

7.4. Achievements

Figure 7.2: A screenshot of the Tour of Life chapter layout. It shows the first chapter
after the introduction, that’s supposed to teach the user the basics of the Game of Life
algorithm.

Figure 7.3: A screenshot of the 3D Game of Life simulator, including painted cells (yellow)
and the 3D cursor (red).

43

CHAPTER 8
Conclusion

This last chapter serves to conclude the thesis with a brief summary of the services the
platform provides, and also to present potential future developments of the project, based
on experiences collected during development, and feedback from actual users.

8.1 Original Vision

Originally, this bachelors thesis was supposed to be a mostly theoretical study on the
Game of Life cellular automaton, the idea of how simple rules can give rise to very
complex results, and the algorithms unintentional Turing-completeness. Before even
entering the research phase of the project, when brainstorming initial ideas for this thesis,
the original vision of this project was to explore the potential of the Turing-completeness
of Life. Experiment with cell configurations for making simple calculations and even
exploring how the actual computer as we know it, would work inside of Life. During the
initial research, however, no convenient and reliable resources were found online, which
would understandably and interactively teach the very basic concepts behind the Game
of Life. This was seen as an opportunity to contribute, and potentially even help others
with their own research in the future. The concepts and ideas listed here have in some
capacity still found their way into the lesson section of the web-page, as well as the thesis
itself; yet this content is less detailed, as the focus of this project has shifted slightly,
towards the broad basics of the Game of Life.
This type of research focused thesis as originally envisioned would be a better fit for a
separate, maybe even a follow-up paper, including an add-on to the Tour of Life, focusing
more on the Turing-completeness of Life, instead of the very basics as is currently the
case.

45

8. Conclusion

8.2 Summary
Even though the project has slightly changed direction in its initial planning stage,
its evolution is arguably even more interesting and useful to the average user. It will
ideally help with further research and studies of the Game of Life algorithm and its
potential since the Tour of Life enables even the more inexperienced users to get into the
complexities of the Game of Life more easily.

As a first step, and to properly understand the underlying topic of this project, the
original Game of Life has been reproduced. To fit with the theme of customizability,
multiple customization and interactivity options have been added.
The core idea of this project has been realized in the form of a learning section, called
the Tour of Life. Using a number of interactive lessons and exercises, this part of the
experience is supposed to help the user understand the very basics of the Game of Life, as
well as the more advanced concepts of computer logic, Turing machines, and recursivity.
Lastly, a 3D version of the Game of Life has been developed. This section required
an in-depth analysis of the concepts of visualization in 3D space, as well as intuitive
interaction with objects inside it.

Hopefully, after presenting this project to a wider audience after its submission, it can
help people willing to learn more about John H. Conway and his Game of Life. There
are still undiscovered patterns and potential usages for the automaton, and if this project
helps introduce more people to the exciting world of Life, then it has served its purpose.

My prototype, described throughout this thesis can be accessed via the following link:
https://11811341.github.io/tour-of-life/ [21].

8.3 Future Development
All planned features have been successfully implemented. The most important next step
in the development of the website is collecting feedback from users. This would be done
in the form of a simple user study, where users would be given a questionnaire, and would
consequently be asked to rate their experience with the website. The questions would
range from usability and understandability of the presented content to the website design.
A section for suggestions would also be included. Based on this feedback, features can
be added, and changes made to the application, to make it even more user-friendly and
turn it into a more complete experience.
The two aspects of the application that arguably need further development are the
performance of the simulators, and the class structure, as has already been outlined in
the reflection Chapter 7.

46

https://11811341.github.io/tour-of-life/

8.3. Future Development

An idea to speed-up the calculation of cell/pattern evolution is to recursively examine
only the most recently added cells and their potential neighbors, instead of looking at
every living cell at every step of the simulation. The existing approach is more than
usable at the scope at which the lessons operate, or a user would logically work at, where
not many cells are alive at any given time. However, especially since the algorithm can
be altered, patterns can grow unpredictably large, and the website needs to be able to
support this growth, to ensure proper usability.

The solution to the class structure has already been hinted at. It would involve refactoring
the existing classes, and creating an interface that could be implemented for both the
2D and 3D versions of the simulator, where the 3D version would expand upon the
functionality of the 2D version. The way classes exist now, a lot of duplicate code is
present, which is not ideal for a publicly available service.

An interesting addition might be the option for users to create their own lessons for the
Tour of Life. This would include a simple input form, with a small simulator window,
where a user could input a custom pattern, and a description of the lesson. This would
then be automatically added to the users locally stored version of the lesson lexicon.
Additionally, instead of uploading the custom lesson to a shared database of user-created
lessons, a special string code could be generated, which when shared with others, would
reproduce the lesson on a different instance of the website and add it to any other users
lesson lexicon.

Hopefully, this project will serve as a step towards a better understanding of the Game
of Life, and help more people get properly acquainted with this topic. At the same time,
it can be seen as a push towards more interactive learning experiences, that use the web
medium to educate and to clarify complex topics using modern teaching methods.

47

Bibliography

[1] Angular in 100 seconds. https://www.youtube.com/watch?v=
Ata9cSC2WpM&ab_channel=Fireship. Last accessed: 11.01.2022.

[2] Angular material ui component library. https://material.angular.io/. Last
accessed: 11.01.2022.

[3] Angular website. https://angular.io/. Last accessed: 11.01.2022.

[4] Blinker pattern. https://conwaylife.com/wiki/Blinker. Last accessed:
06.02.2022.

[5] Chaos and fractals, conway’s game of life. http://pi.math.cornell.edu/
~lipa/mec/lesson6.html. Last accessed: 06.02.2022.

[6] Creetah game of life 3d app. http://www.creetah.com/game-of-life/. Last
accessed: 06.02.2022.

[7] cuug game of life. http://www.cuug.ab.ca/dewara/life/life.html. Last
accessed: 06.02.2022.

[8] decode game of life. https://www.dcode.fr/game-of-life. Last accessed:
06.02.2022.

[9] Github pages website. https://pages.github.com/. Last accessed: 12.01.2022.

[10] Github website. https://github.com/. Last accessed: 11.01.2022.

[11] Gosper glider gun. https://www.conwaylife.com/wiki/Gosper_glider_
gun. Last accessed: 17.01.2022.

[12] Importance of web interactivity. https://www.nexuswebsites.co.uk/
importance-of-web-interactivity/. Last accessed: 18.01.2022.

[13] Intellij idea website. https://www.jetbrains.com/idea/. Last accessed:
17.02.2022.

49

https://www.youtube.com/watch?v=Ata9cSC2WpM&ab_channel=Fireship
https://www.youtube.com/watch?v=Ata9cSC2WpM&ab_channel=Fireship
https://material.angular.io/
https://angular.io/
https://conwaylife.com/wiki/Blinker
http://pi.math.cornell.edu/~lipa/mec/lesson6.html
http://pi.math.cornell.edu/~lipa/mec/lesson6.html
http://www.creetah.com/game-of-life/
http://www.cuug.ab.ca/dewara/life/life.html
https://www.dcode.fr/game-of-life
https://pages.github.com/
https://github.com/
https://www.conwaylife.com/wiki/Gosper_glider_gun
https://www.conwaylife.com/wiki/Gosper_glider_gun
https://www.nexuswebsites.co.uk/importance-of-web-interactivity/
https://www.nexuswebsites.co.uk/importance-of-web-interactivity/
https://www.jetbrains.com/idea/

[14] Interactive teaching styles used in the classroom. https://resilienteducator.
com/classroom-resources/5-interactive-teaching-styles-2/.
Last accessed: 06.02.2022.

[15] Magic: The gathering website. https://magic.wizards.com/en. Last ac-
cessed: 06.02.2022.

[16] Minecraft website. https://www.minecraft.net/de-de. Last accessed:
06.02.2022.

[17] Node.js website. https://nodejs.org/en. Last accessed: 11.01.2022.

[18] Npm website. https://www.npmjs.com/. Last accessed: 11.01.2022.

[19] Rithmschool game of life 3d. https://rithmschool.github.io/
game-of-life-3d/. Last accessed: 06.02.2022.

[20] Three.js website. https://threejs.org/. Last accessed: 11.01.2022.

[21] Tour of life website. https://11811341.github.io/tour-of-life/. Last
accessed: 17.02.2022.

[22] Turing completeness, cs390, spring 2022. https://www.cs.odu.edu/~zeil/
cs390/latest/Public/turing-complete/index.html. Last accessed:
17.01.2022.

[23] Typescript in 100 seconds. https://www.youtube.com/watch?v=
zQnBQ4tB3ZA&ab_channel=Fireship. Last accessed: 11.01.2022.

[24] Typescript website. https://www.typescriptlang.org/. Last accessed:
11.01.2022.

[25] What is node.js? https://www.youtube.com/watch?v=uVwtVBpw7RQ&ab_
channel=ProgrammingwithMosh. Last accessed: 11.01.2022.

[26] What is npm, and why do we need it? | tutorial for begin-
ners. https://www.youtube.com/watch?v=P3aKRdUyr0s&t=137s&ab_
channel=CoderCoder. Last accessed: 11.01.2022.

[27] Wikipedia, conway’s game of life. https://en.wikipedia.org/wiki/
Conway%27s_Game_of_Life. Last accessed: 06.02.2022.

[28] B. Abykanova, D. Sadirbekova, Z. Sardarova, A. K. Khairzhanova, G. S. Musta-
galiyeva, O. D. Tabyldieva, E. D. Abdol, and T. Bainazarova. Interactive teaching
methods as pedagogical innovation. Technical report, BBRC, 2021.

[29] C. Bays. Candidates for the game of life in three dimensions. Technical report,
Department of Computer Science, University of South Carolina, 1987.

50

https://resilienteducator.com/classroom-resources/5-interactive-teaching-styles-2/
https://resilienteducator.com/classroom-resources/5-interactive-teaching-styles-2/
https://magic.wizards.com/en
https://www.minecraft.net/de-de
https://nodejs.org/en
https://www.npmjs.com/
https://rithmschool.github.io/game-of-life-3d/
https://rithmschool.github.io/game-of-life-3d/
https://threejs.org/
https://11811341.github.io/tour-of-life/
https://www.cs.odu.edu/~zeil/cs390/latest/Public/turing-complete/index.html
https://www.cs.odu.edu/~zeil/cs390/latest/Public/turing-complete/index.html
https://www.youtube.com/watch?v=zQnBQ4tB3ZA&ab_channel=Fireship
https://www.youtube.com/watch?v=zQnBQ4tB3ZA&ab_channel=Fireship
https://www.typescriptlang.org/
https://www.youtube.com/watch?v=uVwtVBpw7RQ&ab_channel=ProgrammingwithMosh
https://www.youtube.com/watch?v=uVwtVBpw7RQ&ab_channel=ProgrammingwithMosh
https://www.youtube.com/watch?v=P3aKRdUyr0s&t=137s&ab_channel=CoderCoder
https://www.youtube.com/watch?v=P3aKRdUyr0s&t=137s&ab_channel=CoderCoder
https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life
https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

[30] R. Beaulieu and E. Coy. 3d game of life. https://rbeaulieu.github.io/
3DGameOfLife. Last accessed: 11.01.2022.

[31] J. Etchemendy and J. Barwise. Turing’s World. CSLI Publications, 1993.

[32] R. W. Gosper. Exploiting regularities in large cellular spaces. Technical report,
Symbolics Inc., 1984.

[33] N. Johnston. Lifewiki. https://www.conwaylife.com/wiki. Last accessed:
11.01.2022.

[34] N. Loizeau. Building a computer in conway’s game of life. https://www.
nicolasloizeau.com/gol-computer. Last accessed: 11.01.2022.

[35] E. Martin. Game of life. https://playgameoflife.com/. Last accessed:
11.01.2022.

[36] D. Nichols. Coloring for colorblindness. https://davidmathlogic.com/
colorblind/#%23D81B60-%231E88E5-%23FFC107-%23004D40. Last ac-
cessed: 11.01.2022.

[37] W. Poundstone. The Recursive Universe: Cosmic Complexity and the Limits of
Scientific Knowledge. Contemporary Books, 1985.

[38] S. Senthamarai. Interactive teaching strategies. Technical report, Department of
Education, CK College of Education, 2018.

[39] A. Trevorrow and T. Rokicki. Golly. http://golly.sourceforge.net/. Last
accessed: 11.01.2022.

51

https://rbeaulieu.github.io/3DGameOfLife
https://rbeaulieu.github.io/3DGameOfLife
https://www.conwaylife.com/wiki
https://www.nicolasloizeau.com/gol-computer
https://www.nicolasloizeau.com/gol-computer
https://playgameoflife.com/
https://davidmathlogic.com/colorblind/#%23D81B60-%231E88E5-%23FFC107-%23004D40
https://davidmathlogic.com/colorblind/#%23D81B60-%231E88E5-%23FFC107-%23004D40
http://golly.sourceforge.net/

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement

	Research & Related Work
	Related Work
	Importance of Interactivity in Teaching/Learning

	Cellular Automata, Game of Life & the Turing Machine
	Game of Life
	Turing Machine & Turing Completeness
	Recursivity of the Game of Life

	Designing the Tour of Life
	2D Game of Life Simulator
	Tour of Life
	3D Game of Life Simulator
	Visualization & Accessibility

	Implementation
	General Project Structure
	2D & 3D Rendering
	Cell Placement/Deletion
	2D Game of Life Algorithm
	Prediction Mode
	Image Files as Input for Starting Cell Configuration
	Lesson Lexicon
	3D Game of Life interaction and visualization
	3D Cursor Movement and Position Calculation
	3D Game of Life Algorithm
	Mesh Files as Input for Starting Cell Configuration

	Website Components
	Node.js & NPM
	TypeScript Programming Language
	Angular Website Framework
	Three.js WebGL API
	GitHub Version Control
	GitHub Pages Deployment

	Results
	Web App Performance
	Multi-platform Use
	Class Structure
	Achievements

	Conclusion
	Original Vision
	Summary
	Future Development

	Bibliography

