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SIGDT: 2D Curve Reconstruction
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Figure 1: Starting from unstructured points (left), our proximity graph SIGDT (centre) already contains the reconstructed boundary (right).

Abstract
Determining connectivity between points and reconstructing their shape boundaries are long-standing problems in computer
graphics. One possible approach to solve these problems is to use a proximity graph. We propose a new proximity graph com-
puted by intersecting the to-date rarely used proximity-based graph called spheres-of-influence graph (SIG) with the Delaunay
triangulation (DT ). We prove that the resulting graph, which we name SIGDT , contains the piece-wise linear reconstruction
for a set of unstructured points in the plane for a sampling condition superseding current bounds and capturing well practical
point sets’ properties. As an application, we apply a dual of boundary adjustment steps from the CONNECT2D algorithm to
remove the redundant edges. We show that the resulting algorithm SIG-CONNECT2D yields the best reconstruction accuracy
compared to state-of-the-art algorithms from a recent comprehensive benchmark, and the method offers the potential for further
improvements, e.g., for surface reconstruction.

CCS Concepts
• Computing methodologies → Point-based models;

1. Introduction

Reconstructing a curve based on given samples with no additional
information other than their position is a difficult task, considering
that no connectivity information is present. As a fundamental prob-
lem, with extension to surface reconstruction, it has received a lot

of attention in the field during the last decades. The reconstruction
usually implies generating a graph on the input points and filter-
ing/adding edges to recover the connectivity. The resulting shape
should interpolate all of the input points, and approximate best the
boundary of the shape that the points were sampled from. Ideally,
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the reconstruction should be agnostic of the distance between sam-
ples and preferably not depend on parameters. However, in prac-
tice, this proves to be difficult, especially when multiple types of
shapes are considered, such as open curves or multiply connected
curves, since a larger distance between samples could mean either
a hole in the boundary or unevenly spaced sampling. Hence, we re-
strict our main method to manifolds and curves with sharp corners.

We introduce a new proximity graph, based on the intersection of
the Spheres-of-influence graph (SIG) and the Delaunay triangula-
tion (DT ), which we name SIGDT and present below. We show its
good connectivity property and prove that it contains the piece-wise
linear reconstruction of the samples for an enhanced bound of a
sampling condition. In order to filter the reconstruction edges from
the SIGDT , we apply the inflating and sculpting operations from
the CONNECT2D algorithm [OM13], yielding a manifold bound-
ary for the input point set.

We present the following three contributions:

• We introduce the graph SIGDT by intersecting the SIG with the
DT . SIGDT represents connectivity well and is parameter-free.

• We show its good connectivity by proving that it contains the
reconstruction edges for an enhanced sampling condition bound
that conforms very nicely to point sets in practice.

• As an application, we show manifold curve reconstruction by
filtering edges from SIGDT , surpassing the state-of-the-art.

The full source-code is publicly available at
https://gitlab.cg.tuwien.ac.at/dmarin/sigconnect2d.

2. Related work

This section will provide an overview of existing curve reconstruc-
tion methods and how they relate to our contribution.

An important category of curve reconstruction methods are ex-
plicit methods, where the reconstruction represents an interpolation
of the input points. The Delaunay triangulation represents a build-
ing block for multiple methods in this category due to its theoreti-
cal guarantees that are subject to sampling criteria. One of the first
methods to use the Delaunay triangulation was CRUST [ABE98],
where the ε-sampling (based on the local feature size, which in-
corporates the distance to the medial axis and the distance between
samples and is defined below in Subsection 3.1) was also intro-
duced. By choosing a subset of Delaunay edges, the reconstruction
is guaranteed to be correct for ε < 0.252. Our method similarly
starts from the Delaunay triangulation but uses a different set of
filters to obtain the final reconstruction of the curve.

Another method to reconstruct a curve was introduced by Dey
and Kumar [DK99] – NN-CRUST, and it is a proximity-based
method, similarly to ours. It uses the edges between nearest neigh-
bours as a starting crust, and for every leaf vertex, adds the shortest
edge situated in the half-plane defined by the normal on the edge
placed at the leaf vertex. Their results show that proximity-based
methods capture the boundary shape, but the sampling limitations
of this method (reconstruction is guaranteed for ε < 1/3) suggest
the possibility of further improvements.

The NN-CRUST has been further improved in HNN-
CRUST [OMW16] to guarantee reconstruction up to ε < 0.47. This

method uses a similar idea to the half-plane but places the half-
plane’s normal as the bisector of the chosen edge.

In CONNECT2D [OM13], they use an initial graph BC0, rep-
resenting an approximation of the boundary, which they augment
by inflating and sculpting to reconstruct the boundary. The initial
boundary graph is a subset of the Delaunay triangulation computed
such that minimum boundary length is approximated, all of the ver-
tices are interpolated with a degree of at least 2, and are part of a
single connected component. This graph is then processed by in-
flating, in order to aim to make the curve manifold and contain
all vertices on the boundary or inside of it. Candidate triangles are
considered for non-manifold vertices and sorted by the increase in
total boundary length. Candidate triangles are added to the graph in
order to make vertices manifold (i.e. degree 0 or 2) until all of the
vertices have become manifold. The resulting graph is processed
by sculpting next. Sculpting tries to make the boundary interpolate
any vertex that is currently isolated and inside of the boundary. This
is done by sorting candidate triangles that are incident to isolated
vertices and adding their edges to the graph in order to include the
vertices to the boundary. They guarantee reconstruction for ε < 0.5
but require a non-uniformity ratio between distances of consecutive
samples of u < 1.609. We use the inflating and sculpting operations
from their algorithm to filter redundant edges from the SIGDT .

GATHANG [DW02] introduced a method specialised in recon-
structing data sets with sharp corners. They use the angle and the
ratio between edge lengths to filter Delaunay edges for the bound-
ary and their performance is best for this sub-category of curves.

Another category of curve reconstruction methods are implicit
methods, where a function is computed over the entire domain of
the input and the curve is usually approximated as the zero-set of
that function. Important mentions in this type of reconstruction are
Signed Distance Functions (SDFs) [HDD∗92], Poisson-based re-
constructions [KBH06] and radial basis functions [CBC∗01]. The
signed distance functions compute the signed distance between the
points in the plane and the curve and reconstruct the curve as the
zero-set of the function. Poisson methods formulate the curve re-
construction as computing the curve whose gradient field of an in-
dicator function is the most similar to the normals of the curve. Ra-
dial basis functions try to fit a radial basis function to a signed dis-
tance field computed over the input and compute the isoline of this
smooth function. Our method rather fits in the explicit category, as
the input points are interpolated and no function is computed over
the domain.

The spheres-of-influence graph - SIG [Tou88] has been intro-
duced as a clustering method since it encodes proximity without
the need for any parameters. The SIG has been used in implicit sur-
face reconstruction methods [KZ04] to approximate local geodesic
distances, as well as a density function over the input points to adapt
the algorithm. This is an implicit method that uses the local kernels
based on SIG to reconstruct the surface. The same approach to use
the SIG for locally defining an implicit function has been applied to
the collision between point clouds [KZ05]. However, we are using
SIG as the main indicator of proximity over the entire input set and
we combine it with additional steps to obtain the reconstruction.

An outlier for the explicit/implicit taxonomy is represented by
transport methods. Optimal transport [GCSAD11] reconstructs a
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curve starting from the Delaunay triangulation and removing ver-
tices and their incident edges by minimising a global cost. This
method is efficient for the reconstruction of noisy curves, a group
of input that explicit methods cannot usually correctly reconstruct.
Another recent method [CSLV20] tries to solve the curve recon-
struction problem as an optimal homologous chain problem. They
construct a lexicographic ordering on the simplices of the input to
find a minimal chain that bounds the input.

A comprehensive collection of results on multiple types of data
sets and different curve reconstructions can be found in the 2D
Points Curve Reconstruction Survey and Benchmark [OPP∗21].
Results show that most algorithms tend to perform better than
their theoretical ε-sampling guarantee, but using a graph-based ε-
sampling measurement (defined in Subsection 3.1) for ε < 1, we
show that our method performs best for manifold reconstruction in
practice.

3. Definitions and Background

This section provides an overview of the main concepts related to
curve reconstruction and sampling conditions, most of these having
been introduced in the seminal paper [ABE98]. We then describe
the spheres-of-influence graph used in our method.

3.1. Sampling of the Curve

We define a set of n points P sampled from a smooth planar curve
C. The medial axis is defined as the closure of points in R2 that are
closest to at least two points on the curve C. The local feature size
of a point on the curve is defined as the shortest distance from the
point to the medial axis. The local feature size is used in combina-
tion with the distance between the samples on the curve to define
ε-sampling as follows: a curve is ε-sampled by the point set P if
for each point c ∈ C, the ratio between the distance to the closest
sample in P and its local feature size is less than ε.

For ε < 1, the Delaunay triangulation of P is proven to
include the reconstruction that best approximates the original
shape [ABE98]. However, for sharp angles, where the medial axis
touches the curve, such an ε-sampling would require infinitely
many closely spaced points. Since ε-sampling is also used as a
measurement for how densely a curve is sampled, in the case of
a ground truth in the form of a planar graph, this type of sampling
would not result in a meaningful evaluation. Hence, we use an alter-
nate definition of local feature size, particularly defined for planar
graphs [lfs95]: the radius of the smallest ball touching two disjoint
features (i.e., vertices or edges) of the graph. In order to use this as
a base for ε-sampling, we divide the distance to the closest sample
by this planar local feature size, similarly to above.

3.2. Sphere-of-Influence Graph

The sphere-of-influence graph (SIG) was introduced as a clustering
method [Tou88]. In the SIG, two vertices are connected if the dis-
tance between them is less than or equal to the sum of the distance
to their respective nearest neighbours.

Visually, the SIG can be interpreted as centring a circle at each

Figure 2: Visual representation of the SIG connectivity.

vertex whose radius is equal to the distance to its nearest neigh-
bour, i.e., just touching this closest vertex, as can be observed in
Figure 2. We connect with an edge all vertices whose circles in-
tersect. This relation encodes spatial proximity without requiring a
fixed number of neighbours that the user has to specify, such as the
k-neighbourhood. Unlike many other proximity graphs, the SIG is
not a subset of the DT and does not include a triangulation of the
input. This motivates the choice of using edges that are part of both
graphs as the initial graph.

4. Method

Here we first present the SIGDT , show its superior connectivity
as a proximity graph, and prove its property of containing the re-
construction. Then, we propose a curve reconstruction algorithm
as an application that filters edges of the SIGDT with operations
from the CONNECT2D [OM13] algorithm (described in Section 2)
for which pseudo-code is listed as Algorithm 1 and a step-by-step
illustration is presented in Figure 4.

We will next provide the definition of the terms used in the algo-
rithm. The boundary is the connected set of edges that includes all
edges of the graph G in its interior, e.g., the non-dashed edges in
Figure 4f. A non-manifold vertex has more than two incident edges
on that boundary, i.e., there the boundary is pinched together, or the
spaces defined by its incident edges are exterior, see Figure 4e. An
isolated vertex is not included in the boundary, see Figure 4f.

4.1. Boundary-containing Proximity Graph SIGDT

Since the SIG is not contained in the DT but the latter has nice prop-
erties such as representing a decomposition of the plane into trian-
gles (which is useful for applications such as curve reconstruction),
we design a new proximity graph as the intersection of SIG and
DT , which we name SIGDT . This graph combines the advantage
of the local proximity offered by the SIG with the maximisation
of minimum angle triangles provided by the DT . Figure 3 shows a
visual comparison with the BC0 proximity graph, which is a super-
set of the EMST constraining vertex degree to ≥ 2 instead of ≥ 1
and is used for CONNECT2D curve reconstruction. While SIGDT
contains all the edges of the reconstruction, BC0 misses many of
them. We show further quantitative comparisons of SIGDT with
other proximity graphs in the results in Section 5.
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Figure 3: Comparison of BC0 (left) and SIGDT (right) in terms of
encoding proximity. SIGDT manages to include all of the required
edges of the reconstruction while BC0 misses many edges.

Algorithm 1 SIG-Connect2D

Require: Input point set P, Output edge set R
1: G = {}
2: Compute Delaunay triangulation DT (P)
3: for p ∈ P do
4: Compute NN as shortest edge incident to p
5: end for
6: for p ∈ P do
7: for q ∈ 1− ring−neighbourhood(p) do
8: Add edge pq to G if pq ≤ NN(p)+NN(q)
9: end for

10: end for
11: while ∃ non-manifold vertices in boundary(G) do
12: T =triangles ∈ DT exterior to and incident to boundary(G)
13: Add t ∈ T that least increases the length of boundary (G)
14: end while
15: G=boundary(G)
16: while ∃ isolated vertices ∈ DT interior to boundary(G) do
17: T =triangles ∈ DT interior and incident to boundary(G)
18: Add t ∈ T that least increases the length of boundary(G)
19: end while
20: R=boundary(G)

We compute SIGDT as follows: In order to determine whether a
Delaunay edge is in the SIG, we need to check whether its length is
smaller than the sum of the nearest neighbour distance of both its
vertices. For that, we first determine the shortest incident edge per
vertex in the DT and store its length as its nearest neighbour dis-
tance. Then, we process all Delaunay edges in the DT and add con-
forming edges to the SIG definition in order to create the SIGDT .
This results in O(n logn) time complexity.

The SIGDT graph guarantees containing the reconstruction un-
der some sampling condition. In order to prove this, we first have
to repeat some definitions.

The reach is defined as the minimum local feature size along an
interval between two consecutive samples:

Definition 1 The reach of interval I is infp∈I lfs(p) [Fed59].

Definition 2 A smooth curve C is ρ-sampled by point set P if every
point p ∈ C is closer to a sample than a ρ-fraction of the reach of
the interval I(s0,s1) of consecutive samples containing it. That is,
∀p ∈ I = [s0,s1] with s0,s1 ∈ P : ∥p,s[0,1]∥< ρreach(I) [OMW16].

Definition 3 The local non-uniformity ratio u is the ratio between
the longer and the shorter distance of a sample to its neighbours on
the curve: u = dl

ds
[OM13].

Proof for ρ < 1,u < 2: We will now show that SIGDT guar-
antees to contain the reconstruction of C if it is sampled with
ρ < 1 and a local non-uniformity ratio of u < 2 between dis-
tances to samples adjacent on C. A ρ < 1-sampling is equiva-
lent to an ε < 0.5-sampling [OMW16]. This improves on CON-
NECT2D [OM13], which proves reconstruction for ε < 0.5 as well
but requires u < 1.609, and handles a more relaxed ε-sampling than
the ε < 0.47 for HNN-CRUST [OMW16], although the latter does
not require any uniformity. We construct the proof by showing that
each edge between consecutive samples is contained in the SIG as
well as in the DT .

We need to repeat two statements [ABE98] for our proof:

Corollary 1 A disk centred at a point p ∈ C with radius at most
lfs(p) intersects C in a topological disk (Corollary 4).

Lemma 1 Any Euclidean disk containing at least two points of a
smooth curve in the plane either intersects the curve in a topological
disk or contains a point of the medial axis (or both) (Lemma 1).

Now we can prove the following theorem for the SIGDT graph:

Theorem 1 SIGDT contains the reconstruction R of a smooth pla-
nar curve C from a set of points P that is sampled with ρ < 1,u < 2.

Proof See Figure 5 for illustration. Let s0,s1,s2,s3 be consecutive
samples on C and we want to show that the edge e(s1,s2) ∈ R. For
this, we need to prove both e ∈ SIG and e ∈ DT .

1. Prove that e ∈ SIG: The non-uniformity ratio u < 2 re-
quires that ∥s0,s1∥,∥s2,s3∥ >

∥s1,s2∥
2 , yielding ∥s0,s1∥ +

∥s2,s3∥ > ∥s1,s2∥. Thus, the disks centred at s1,s2, with radii
∥s0,s1∥,∥s2,s3∥ respectively, overlap. Hence, e is part of SIG,
provided that s0,s3 are the nearest neighbour samples on C to
s1,s2, respectively. This is the case since the disk centred at s1
with radius ∥s0,s1∥ intersects C in the interval J[s0, t], with t in
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(a) SIG: We first compute the
Spheres-of-Influence graph on the
input points (the highlight is for
comparison with the next steps).

(b) DT : We then compute the Delau-
nay triangulation.

(c) SIGDT : We compute the inter-
section between SIG and DT as
SIGDT - the highlight showing the
difference.

(d) Find isolated vertices: We deter-
mine vertices with degree 1 (blue)
and add their shortest additional in-
cident Delaunay edge (dashed).

(e) Inflate: We sort all triangles
(grey) incident to non-manifold ver-
tices by the increase in the total
boundary length. We add the one
that least increases the total bound-
ary length (striped), and repeat this
process until all vertices become
manifold.

(f) Remove interior edges: We re-
move the edges (dashed) that are not
part of the boundary. This process
can create interior vertices (blue).

(g) Sculpt: We XOR candidate trian-
gles (we keep the interior edges and
remove the boundary one) incident
to isolated vertices (blue) to expose
them to the boundary.

(h) Final result: We have obtained
the reconstructed curve that cor-
rectly interpolates all the input
points as a polygon.

Figure 4: Overview of SIG-CONNECT2D algorithm.

the interval I[s1,s2] ∈ C. Thus that disk does not contain any
other samples according to Corollary 1. This is proven similarly
for s2,s3.

2. Prove that e ∈ DT : For the point x ∈ I farthest from s1,s2,
∥x,s[1|2]∥ ≥ ∥e∥

2 . Since the curve is ρ-sampled with ρ < 1,

reach(I)>∥e∥
2 and thus lfs(p)> ∥e∥

2 for any p ∈ I. If the smallest
disk D including e is empty of other samples, e is a Gabriel edge.
Since the Gabriel graph ⊆ DT , this would mean that e ∈ DT .
We prove D to contain only I by contradiction: Assume a point
q ∈C\ I to exist in D. Then, C∩D is not a topological disk, and
therefore D contains a medial point of C (Lemma 1). Since D has

radius ∥s1,s2∥
2 and contains a medial point, there exists a point

q ∈C∩D with lfs < ∥e∥
2 which contradicts above lfs > ∥e∥

2 .

Having shown that an edge e between consecutive samples along
C under ρ < 1 and u < 2 is part of both SIG and DT , we have
proven that the SIGDT contains the reconstruction under the given
sampling conditions.

Corollary 2 Since Theorem 1 [OMW16] proves that any ε < r-
sampling is also a ρ < r/(1− r)-sampling, an ε < 0.5-sampling is
also a ρ < 1-sampling and contains the reconstruction of C if u < 2.

The above theorem only guarantees the SIGDT to contain the
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Figure 5: The red curve C passes through consecutive samples
s0,s1,s2,s3 and contains the intervals J[s0, t] for t ∈ I[s1,s2] and
I[s1,s2]. x ∈ I is the point farthest from the end points of I. The
edge e is in SIG because the white disks centred at its end points
s1,s2 with radii as nearest neighbor distances overlap. The shaded
disk D centred at edge e must be empty of samples other than s1,s2
to be in DT (by being in the Gabriel graph).

reconstruction edges but may contain additional edges in both its
interior and exterior.

4.2. Using SIGDT with CONNECT2D’s Dual Operations

We apply two steps from the CONNECT2D algorithm [OM13] to
the SIGDT : inflating and sculpting, in order to improve our recon-
struction. These additional steps are summarised below, and they
greedily minimise the total edge length of the boundary.

4.2.1. Inflating SIGDT to a Manifold

The boundary subset of SIGDT , named B, contains all vertices ei-
ther on B or its interior. B may thus not be a manifold as it can be
pinched at vertices that have > 2 incident boundary edges. Inflating
transforms such non-conforming vertices into manifold ones by se-
lecting incident triangles exterior to the boundary and adding their
edges to B so that the triangle becomes interior to the boundary.
Candidate triangles for all non-conforming vertices are sorted in a
priority queue in ascending order by the increase in total boundary
length, which is computed by adding the length of new edges and
subtracting the length of edges to be removed. We add candidate
triangles to non-conforming vertices until they become manifold.
However, by adding the edges of new triangles to the graph, some
of the edges can become interior to the boundary. Hence, we re-
move any edge that is not incident to a triangle marked as outside
(i.e. we remove all edges that are not on the boundary). This pro-
cedure is performed in O(n logn) time complexity and guarantees
a manifold boundary B′ as its result. More details on the exact im-
plementation and proofs of the theoretical guarantee can be found
here [OM13]. The inflating procedure is illustrated in Figure 6.

4.2.2. Sculpting the Manifold to Interpolate Interior Vertices

The manifold boundary B′ resulting from inflating contains all ver-
tices either on B′ or interior to it. These isolated interior vertices

(a) We identify the
incident exterior
triangle to a degree
≥ 2 vertex with the
least boundary length
change.

(b) Adding its edges to
the boundary creates a
new degree ≥ 2 ver-
tex, so we add another
such triangle.

(c) Removing the inte-
rior edges results in a
manifold boundary.

Figure 6: Step-by-step inflating procedure on a close-up to make
the curve manifold.

(a) We first locate iso-
lated points such as in
this example.

(b) We identify its inci-
dent interior triangle
with the least bound-
ary length change.

(c) We XOR the tri-
angle’s edges to the
boundary, interpolat-
ing that interior point.

Figure 7: Step-by-step sculpting procedure on a close-up of a man-
ifold curve to interpolate interior points.

have to be connected to the boundary so that the reconstruction can
interpolate all the points. Triangles incident to vertices interior to
B′ are sorted by the same boundary length increase criterion as for
inflating. When a candidate triangle is added to B′, we XOR that
triangle’s edges with B′ (i.e. remove the triangle edge that is al-
ready part of the graph and add the other edges that are not yet
part of the graph). This step does not increase the overall complex-
ity of the algorithm, being performed in O(n logn) time. This step
exposes the interior vertices to the boundary. This fails if the DT
does not contain a Hamiltonian cycle. The details on the procedure
and guarantees can be found here [OM13]. The sculpting process
is illustrated in Figure 7.

4.2.3. Eliminate Leaf Vertices (optional)

In the cases where C is not sampled as densely as required, artefacts
such as leaf vertices may appear. In our experiments, we found that
this does not affect results in general but eliminating these further
improves reconstruction quality for point sets with sharp corners.
We apply this optional step to the SIGDT before inflating:

We increase the degree of the leaf nodes to two by adding
their shortest incident Delaunay edge to SIGDT , forming SIGDT 2,
which has vertex degree ≥ 2 everywhere. This step loops over all
the vertices and finds the shortest incident edge to each leaf vertex
that is not part of the graph yet. This takes O(kn) operations, as-
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suming a constant degree k of vertices, for the average DT , ignoring
contrived cases which do not arise often in practice.

As an overview, we have described SIG-CONNECT2D as a SIG-
based curve reconstruction method that uses an unstructured point
set as input and reconstructs the boundary of the shape that the
points have been sampled from. SIG-CONNECT2D starts with the
SIGDT graph, and then applies inflating and sculpting on it as in
the CONNECT2D algorithm - an overview of this algorithm is pre-
sented in Figure 4. The next section presents our results compared
to state-of-the-art curve reconstruction algorithms.

5. Results

We have tested our proposed method, SIG-CONNECT2D, against
15 state-of-the-art curve reconstruction algorithms (see names in
Figure 8) using the 2D Points Curve Reconstruction Survey and
Benchmark [OPP∗21], where these are referenced together with
source code and the data sets used for our evaluations below. Note
that OPTIMALTRANSPORT has been eliminated from their evalua-
tion since the input it aims to reconstruct is dense, with a high per-
centage of outliers and noise, and cannot exactly reconstruct clean,
sparse inputs (an example of how it fails can be seen in Table 1), be-
ing also highly dependent on the number of iterations. We have then
analysed results for the reconstruction of manifold curves, curves
with sharp corners, and a subset of well-sampled manifold curves in
terms of exact reconstruction, and examples can be seen in Figure
20. Furthermore, we analysed our method in terms of the root mean
square error (RMSE) to the ground-truth curve for noise-free data
sets, noisy data sets, and data sets with outliers to form a thorough
evaluation. Also, we compute the overlap of sets of edges of the
proximity graphs SIG, DT , SIGDT and reconstruction for a large
data set.

Manifold Curves: We have compared our results against the
above-mentioned reconstruction algorithms on 1257 noise-free
point sets. These data sets represent a subset of the original
benchmark data set since we have chosen to only use ground-
truth data sets that interpolate all input points. Our algorithm
SIG-CONNECT2D shows the best accuracy (91.5% compared to
second-best CONNECT2D with 90.3%). Figure 8 shows the im-
proved reconstruction as a visual comparison on manifold data sets,
numbers are given in Table 2. An example of a point set fed to all
algorithms is shown in Table 1 where only our SIG-CONNECT2D
reconstructs it correctly.

Proximity Graphs Overlap: Using the same data sets, we have
computed the average percentage of SIG edges that are also in the
DT and vice-versa, as well as the average percentage of SIGDT
edges that are part of the reconstruction and vice versa. The results
show that SIG is usually mostly contained in the DT - 90.9%, es-
pecially considering that the nearest neighbour graph is contained
in both. However, as expected, DT contains more edges that are
not part of SIG - only 47.2% of DT edges are in SIG. Further-
more, in practice, even without imposing the sampling and non-
uniformity criteria, the reconstruction is contained in SIGDT in
almost all cases (99.9%), indicating that our sampling condition
covers practical point sets extremely well. This represents the best
overlap among tested proximity graphs - BC0 achieves to contain,

on average, 99.6% of the ground-truth edges, while kNN graphs,
for k ∈ {2,3,4}, achieve at most 98.6% (2NN - 98.4%, 2NN -
98.5% and 4NN - 98.6%). However, SIGDT usually has more
edges than the reconstruction - only 76.8% of SIGDT edges are part
of the correct reconstruction. These results show that the SIGDT is
a good indicator of the proximity of the graph, as it misses almost
no edges.

 0

 20

 40

 60

 80

 100

sig
-c

on
ne

ct
2d

co
nn

ec
t2

d

hn
nc

ru
st

fit
co

nn
ec

t

st
re

tc
hd

en
oi
se

di
sc

ur
vi
cu

r

cr
aw

l
pe

el

cr
us

t

nn
cr

us
t

cc
ru

st

ga
th

an
1

ga
th

an
g

le
nz

op
tim

al
tra

ns
po

rt

Pe
rc

e
n
ta

g
e
 o

f 
e
x
a
ct

ly
 r

e
co

n
st

ru
ct

e
d
 c

u
rv

e
s

Algorithm

Exact reconstruction

Figure 8: Reconstruction of manifold curves.

Sharp Corner Curves: We have tested our method on a data
set consisting of 47 input sets, comparing it against the same
other curve reconstruction methods as above. The best results are
achieved by GATHANG [DW02], at 80.9% accuracy of the exact
reconstruction, followed by our method at 70.2% - the complete
results are presented in Figure 9 and Table 2. However, these re-
sults are expected since GATHANG is specialised for sharp-corner
reconstruction, but performs worse in the general case of manifold
curves as seen above.
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Figure 9: Reconstruction of curves with sharp corners.

Open and Multiple Curves: Our method is guaranteed to
output a manifold reconstruction of the output through the us-
age of inflating and sculpting [OM13]. For this reason, SIG-
CONNECT2D is not suitable for such types of input. However, we
provide the symmetric difference in area (computed using BOOST’s
boost_sym_difference) between the output of different al-
gorithms and the correct output. Our method interpolates the input
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Table 1: The resulting reconstructions for our algorithm compared to the other 15 state-of-the-art algorithms [OPP∗21] on manifold curve
input. Our SIG-CONNECT2D is the only one to correctly reconstruct this point set.
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points and does not achieve exact open curves or multiple curves as
expected, but the results are still similar to the expected output, as
visible in the symmetric difference results in Figure 10 and Figure
11, and examples are presented in Figure 21.
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Figure 10: Symmetric area difference for open curves.
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Figure 11: Symmetric difference of area for multiple curves.
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Figure 12: Reconstruction accuracy for graph-based ε < 1.

Well-Sampled Manifold Curves: Since some of the ground-
truth curves in the data set are sparsely sampled, and therefore
cannot be reconstructed well by any algorithm, we have selected
a subset of the 1257 data sets from the manifold curve test set. We

filter 1183 data sets ε-sampled with ε < 1 based on local feature
size computed on graphs as explained in Section 3 and repeat the
above comparison on manifold curves. Our algorithm performs best
at 95.8%, followed by the original CONNECT2D at 95.0%, show-
ing that the SIG captures the connectivity better for well-sampled
curves, and comes quite close to reconstructing all curves sampled
with graph-based ε < 1 in practice. Results are presented in Fig-
ure 12 and in Table 2.

 0.0001

 0.001

 0.01

 0.1

 1

sig
-c

on
ne

ct
2d

sig
-d

el
au

na
y

co
nn

ec
t2

d

hn
nc

ru
st

fit
co

nn
ec

t

st
re

tc
hd

en
oi
se

di
sc

ur
vi
cu

r

cr
aw

l
pe

el

cr
us

t

nn
cr

us
t

cc
ru

st

ga
th

an
1

ga
th

an
g

le
nzA

v
e
ra

g
e
 r

u
n
ti

m
e
 i
n
 s

e
c 

(l
o
g

sc
a
le

).

Algorithm

Algorithm Runtime

Figure 13: Average runtime of manifold curve reconstruction.

Runtime: We have specified the time complexity of all steps of
our method in the respective descriptions, and their upper bound is
O(n logn) in terms of the n input points - typical for the Delaunay-
based curve reconstruction algorithms. The average runtime of each
algorithm run on the complete data set of 1257 point sets on an Intel
Core i7-7700HQ processor is presented in Figure 13 and in Table 2.
The empirical results (≈ 1 ms per point set, with an average of 260
points) confirm the theoretical bounds on the time complexity and
are in line with the other methods except fastest NN-CRUST. We
have also tested on a large point set with 9991 points, which takes
75ms (Table 2), indicating runtime is almost linear.

RMS error: We have tested how closely our reconstruction
approximates a cubic Bézier curve by sampling it with differ-
ent ε values and computing the RMS error between the recon-
structed curve and the original (see Figure 14). Our algorithm per-
forms similarly to the majority of evaluated algorithms. Further-
more, for the same setup of ε-sampling a cubic Bézier curve with
ε = 0.1,0.2,0.3,0.4,0.5, we have tested our algorithm on 20 differ-
ently generated point sets for each ε value by varying the starting
sample on the curve. This shows that the theoretical guarantee of
the SIGDT includes the accurate reconstruction in all cases, even
without constraining u.

Noise: Even if our method is designed for non-noisy input, we
have tested its reliability against noise by computing the RMS error
against the ground truth. We have added uniform noise to some of
the input curves and run the reconstruction algorithms. These re-
sults are visible in Figure 16 and indicate that our method performs
similarly to CONNECT2D, as expected. Another way of testing the
resilience to noise was by adding lfs noise on samples along a cubic
Bézier curve. The results are competitive, as shown in Figure 17.
We also present the output of running the algorithm on noisy curves
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Algorithm Manifold Sharp Open Multiple ε < 1 Manifold Large data set
runtime (ms) runtime (ms)

SIG-CONNECT2D 91.5% 70.2% 0.0% 3.7% 95.8% 0.9 75
CONNECT2D 90.3% 65.9% 0.0% 0.0% 95.0% 0.5 99
HNNCRUST 64.5% 14.8% 43.4% 53.7% 67.2% 0.6 49
FITCONNECT 67.7% 10.6% 8.6% 22.2% 71.0% 237.1 -
STRETCHDENOISE 64.7% 11.1% 9.5% 24.0% 68.0% 207.4 -
DISCUR 49.0% 17.0% 39.1% 46.2% 50.7% 279.7 -
VICUR 46.2% 21.2% 52.1% 46.2% 47.6% 357.5 -
CRAWL 75.3% 10.6% 21.7% 40.7% 78.2% 0.4 182
PEEL 64.7% 14.8% 43.4% 57.4% 67.3% 2.8 2455
CRUST 71.3% 23.4% 43.4% 38.8% 74.3% 0.6 39
NNCRUST 39.3% 10.6% 8.6% 12.9% 41.3% 0.1 11
CCRUST 53.1% 0.0% 30.4% 22.2% 55.7% 0.8 796
GATHAN1 62.4% 44.6% 13.0% 24.0% 65.3% 0.3 18
GATHANG 63.2% 80.8% 21.7% 35.1% 65.7% 1.9 293
LENZ 2.8% 8.8% 0.0% 0.0% 3.0% 8.2 12672
OPTIMALTRANSPORT 0.0% 0.0% 0.0% 0.0% 0.0% 71.2 542

Table 2: Results for precision of exact reconstruction of curves with different characteristics and average runtime in milliseconds, as well as
the runtime for a large point set with 9991 points, for which not all algorithms managed to produce an output.

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

sig
-c

on
ne

ct
2d

co
nn

ec
t2

d

hn
nc

ru
st

fit
co

nn
ec

t

st
re

tc
hd

en
oi
se

di
sc

ur
vi
cu

r

cr
aw

l
pe

el

cr
us

t

nn
cr

us
t

cc
ru

st

ga
th

an
1

ga
th

an
g

le
nz

R
M

S
 E

rr
o
r 

in
 t

e
rm

s 
o
f 

b
o
u
n
d

in
g

 b
ox

 d
ia

g
o
n
a
l

Algorithm

LFS-varying sampling density

0.1 0.2 0.3 0.4 0.5

Figure 14: RMSE of reconstructions for varying ε-sampling.

in Figure 15, which achieves, as expected, an interpolation of the
input points.

Outliers: We have tested our algorithm’s reliability when out-
liers are present by adding a percentage of outliers to some of our
input curves. The results are in line with the majority of algorithms
and are displayed in Figure 18.

Limitations: We present in Figure 22 some of the cases where
our algorithm fails to produce the exact reconstruction of the in-
put data. However, most of the points of failure are represented by
multiple components and non-uniform sampling that go beyond the
theoretical limits of our method. These cause the algorithm to try
to create a boundary interpolating all components together or to
fall into local minima when geodesically far samples become geo-
metrically close. However, for non-manifold curves, we provide an
analysis of the symmetric difference of area between the results of
various algorithms and the ground truth in Figure 19. Our method

Figure 15: Reconstruction of data sets perturbed with uniform
noise as a percentage of the bounding box diagonal. The left data
set uses 0.01% uniform noise, and the original shape is correctly
reconstructed, while the right one uses 0.03%, thus failing to recre-
ate the ground truth as the sampling becomes too sparse.

fails to produce exact reconstruction of such curves, but the results
are close to the original curve, as illustrated in Figure 21.

6. Conclusion and Future Work

We propose a new proximity graph in 2D, SIGDT = SIG∩DT , and
show that it better captures connectivity between points than other
proximity graphs, and does so without requiring a specific number
of neighbours as a parameter, as kNN would. We prove that SIGDT
contains the reconstruction for planar curves for some enhanced
sampling condition. Together with filtering steps for redundant
edges from an existing method, our method SIG-CONNECT2D
correctly reconstructs the manifold boundary of the input set in
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Figure 16: RMSE of reconstructed curves from inputs contami-
nated with uniform noise.
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Figure 17: RMSE of curves from inputs with lfs-based noise.

more cases than the state-of-the-art, and reconstructs almost all
well-sampled point sets. As current results are promising, they en-
courage further improvements in this approach. Hence, our future
work includes:

• Extending SIG-CONNECT2D to robustly reconstruct multiple
curves, open curves, and non-manifold inputs;

• Extending SIGDT to 3D and SIG-CONNECT2D to surface re-
construction.
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(a) Reconstruction of dense
curves - 1712 input points.

(b) Reconstruction of
sharp corner curves.

(c) Reconstruction of curves
from silhouette images ex-
tracted from image databases.

Figure 20: Reconstruction of different types of curves.

(a) Desired open curve. (b) Our reconstruction.

(c) Multiple curves. (d) Our reconstruction.

(e) Non-manifold curves. (f) Our reconstruction.

Figure 21: Reconstruction of open, multiple and non-manifold
curves. Our method is not designed for these categories since we
expect the output to be a manifold curve that interpolates all the in-
put points. However, the results are similar to the expected output.

(a) Too sparse sampling for close
curves causes the algorithm to
fall into local minima.

(b) Nested components fail since
Inflate and Sculpt assume a single
boundary interpolating all points
if they are spaced closely enough.

(c) The non-uniform sampling
prevents SIGDT from containing
all the required edges and the
multiple disconnected elements
fail.

(d) Some of the input points
are not interpolated at all, since
Sculpt cannot handle nested com-
ponents.

Figure 22: Failure cases for SIG-CONNECT2D.
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