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Abstract
Accurate delineations of anatomically relevant structures are required for cancer treatment planning. Despite its accuracy,
manual labeling is time-consuming and tedious—hence, the potential of automatic approaches, such as deep learning models,
is being investigated. A promising trend in deep learning tumor segmentation is cross-modal domain adaptation, where knowl-
edge learned on one source distribution (e.g., one modality) is transferred to another distribution. Yet, artificial intelligence
(AI) engineers developing such models, need to thoroughly assess the robustness of their approaches, which demands a deep
understanding of the model(s) behavior. In this paper, we propose a web-based visual analytics application that supports the
visual assessment of the predictive performance of deep learning-based models built for cross-modal brain tumor segmentation.
Our application supports the multi-level comparison of multiple models drilling from entire cohorts of patients down to individ-
ual slices, facilitates the analysis of the relationship between image-derived features and model performance, and enables the
comparative exploration of the predictive outcomes of the models. All this is realized in an interactive interface with multiple
linked views. We present three use cases, analyzing differences in deep learning segmentation approaches, the influence of the
tumor size, and the relationship of other data set characteristics to the performance. From these scenarios, we discovered that
the tumor size, i.e., both volumetric in 3D data and pixel count in 2D data, highly affects the model performance, as samples
with small tumors often yield poorer results. Our approach is able to reveal the best algorithms and their optimal configurations
to support AI engineers in obtaining more insights for the development of their segmentation models.

CCS Concepts
• Human-centered computing → Visual Analytics; • Applied computing → Life and medical sciences;

1. Introduction

Cancer treatment planning requires the accurate segmentation of
tumor(s) and of the surrounding structures. In clinical practice, this
is often done manually and is used as input to, e.g., treatment plan-
ning systems for radiation therapy (RT). Yet, the manual delin-
eation of anatomically relevant structures is very time-consuming
and cumbersome. At the same time, missing, biased or inaccu-
rate annotations—especially if treatment protocols involve multi-
modal images with visually preferred modalities based on con-
trast and resolution—are further burdening the segmentation pro-
cess [ZD21]. As a solution to this, deep learning (DL) models, such
as neural networks, have emerged and their applicability is being
investigated for the automatic segmentation of tumors [NBM∗18].
However, DL models are currently far from being integrated to clin-
ical practice, mainly due to robustness reasons and lack of trust on
behalf of the clinical experts [GSG∗21].

To overcome this, artificial intelligence (AI) engineers, who de-
velop DL models, need to provide an assessment of the robustness
of their approaches upon development. Currently, standard evalu-
ation, i.e., with performance measures such as the Dice Similar-

ity Coefficient (DSC) and Averaged Symmetric Surface Distance
(ASSD), reduces the complex behavior of an entire approach to a
numerical value [WSL∗19]. Although this provides a good high-
level indication of the performance of the designed approach, it
does not provide any further insights into, e.g., indications of con-
sistent errors, correlations to the underlying data, model behavior
with regard to special cases, or model trends and limitations. Pat-
terns at a patient-, slice-, or feature-level cannot be detected and
analyzed. Furthermore, the prediction results of the models cannot
be cross-investigated or correlated with image-derived features to
provide additional understanding of the model behavior with regard
to the underlying imaging information. All this can help AI engi-
neers to design networks that are more robust, trustable, and gener-
alizable. Visualization and visual analytics are playing a significant
role in establishing methods for explainable AI (XAI) [AS22].

In this work, we particularly focus on the visual assessment of
DL models for tumor segmentation, stemming from the field of
cross-modal domain adaptation [WSL∗19]. Domain adaptation is a
sub-field of transfer learning, which can be particularly useful in the
clinical domain, as modalities and scanning protocols often change.
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It allows knowledge learned on one source distribution (e.g., one
modality) to be transferred to another distribution. However, as in
many DL methodologies, the underlying working mechanisms are
not entirely understood, while the performance and the predictive
outcomes need to be assessed using a multi-level approach that pro-
vides insights at a patient-level, slice-level, or feature-level.

The contribution of this work is the design and development of
a visual analytics approach—called crossMoVA—that supports AI
engineers in the visual exploration of the predictions of their cross-
modal model(s) and the respective performances, as well as in the
investigation of the model(s) behavior with regard to image-derived
features. Our framework supports: (1) the comparative visualiza-
tion of multiple cross-modal domain adaptation models at different
levels of detail; and (2) the correlation of performance measures or
model behaviors with radiomic features, at varying definitions of a
tumor’s Region of Interest (ROI).

2. Related Work

Several solutions have been proposed in the past for the visual
analysis of automatic segmentation outcomes. Landesberger et
al. [LBB16] propose visual analytics solutions for the visualization
of statistical shape model results. Their approaches cover the analy-
sis of the entire segmentation workflow and the analysis of system-
atically occurring error for single models. Raidou et al. [RMB∗16]
published a method to explore and visually assess segmentation
errors of single shape models. The tool was extended by Reiter
et al. [RBGR18] to incorporate the influence of tumor shape and
size variability on the segmentation results. Although all these ap-
proaches deal with understanding segmentation outcomes and the
impact of the algorithm configuration, they do not deal particu-
larly with DL algorithms. Understanding the complex behavior of
DL methods for (tumor) segmentation is a significant topic in the
field of XAI [AS22], but the assessment of cross-modal approaches
through visual analytics has not been yet investigated.

Another important aspect in assessing cross-modal domain adap-
tation solution is the investigation of potential relationships or pat-
terns between radiomic features and model performance. Although
visual analytics approaches for radiomics is a well-trodden topic
(e.g., [MWLH∗20]), none of the previous works has established a
link to model performances. At the same time, the goal of our work
is to not only understand the model performance, but also to support
a multi-level analysis drilling down from cohort data to patient data,
and further down to slice data, by employing flexible comparative
techniques. The correlation between performance measures and ra-
diomics features is supported for various ROIs, which is anticipated
to reveal information for the robust design of DL solutions.

3. Data and Task Analysis

Data: The data set used for this work contains brain MRI scans
from 250 patients diagnosed with Vestibular Schwannoma and
is publicly available at The Cancer Imaging Archive (TCIA)
[SKD∗21]. The data set contains two types of scans, namely high-
resolution T2-weighted (hrT2) and contrast-enhanced T1-weighted
(ceT1), and ground truth (GT) labels for the tumor structure (see
TCIA repository for data set details [SKD∗21]). Eight patients were

Figure 1: The workflow employed for crossMoVA, including link-
ing to the tasks (T1–3) that the application fulfills.

incomplete and, therefore, excluded. From the remaining, we used
194 for training the deep learning algorithms and 48 for testing.

Task Analysis: Given the specific requirements of AI engineers
developing cross-modal domain adaptation models for the segmen-
tation of brain tumors, we target the following tasks:

T1: Multi-level model performance comparison, i.e., cohort-
based, per-patient and per-slice comparison of multiple segmen-
tation models. This is required for the visual assessment of the
model(s) robustness.

T2: Discovery of relationship between model performance and
image-derived features. This is anticipated to provide insights
about the behavior of cross-modal models with regard to under-
lying imaging features, and comprises two sub-tasks:

T2A: Correlation of error metrics with image-derived features
of the GT tumor mask.

T2B: Correlation of model clusters with image-derived features
of the tumor masks, as predicted by the models.

T3: Linking back to the anatomical space and the initial imag-
ing information, to identify if the model predictions have spe-
cific behaviors with regard to the tumor characteristics and/or
patient anatomy.

T1 represents the three different levels of detail of 3D cohort im-
age data, i.e., entire cohort, individual patient, and single 2D image
scan. The connection between performance metrics or model clus-
ters and radiomic features is drawn by T2. T3 represents the visual
representation of model comparison in the anatomical space. To
address the tasks discussed above, we design and develop a web-
based application called crossMoVA. The implementation uses Ten-
sorFlow, Dash and plotly, and is publicly available on GitHub.

4. Design and Development of crossMoVA

The workflow followed for the design and development of cross-
MoVA is depicted schematically in Figure 1. A detailed description
can be found in the thesis, from which this paper stems [Mag21].

Pre-processing: The image values are clipped to the 1st and 99th
percentile to remove extreme outliers. After a volume-based z-score
normalization and min–max normalization to the range [0,1] for
the entire volume, each 2D slice is normalized to have a pixel value
range of [0,1] and resized to the shape 256×256 (height×width).
The former three processing steps are volume-based to preserve the
volume statistics. The latter two are needed to apply in-house devel-
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(a) Cohort performance heatmap with individual patients. (b) Patient performance heatmap with individual slices.

Figure 2: A heatmap encodes performance measures at three levels of detail, i.e., overall in the cohort, per-patient, and per-slice, to support
T1 for comparing 12 models (one per column). The first row (mean) provides a summary with averaged performance values per model.

oped 2D segmentation methods to predict the tumor segmentation
mask (T3). All these steps are performed offline.

Development of segmentation models: 20 DL-based segmenta-
tion pipelines are developed and compared. Baseline networks and
domain adaptation segmentation approaches using image synthe-
sis with CycleGAN [ZPIE17] and an additional UNet-based seg-
mentation network [RFB15] are implemented using two different
strategies. Either we generate synthetic ceT1 images from real
hrT2 scans and apply a T1-specific segmentation network (i.e.,
GAN_X+XNet_T1, with X describing at which steps the Cycle-
GAN discriminator is updated), or we generate synthetic hrT2 im-
ages and use T1-transferred labels for a supervised training of a
T2-dedicated segmentation network (i.e., SegmS2T). Both strate-
gies have a standard and an enhanced version (i.e., naming in the
upcoming sections contains CG). The standard version uses only
semantic segmentation for training, whereas the enhanced version
employs a classification-guided module to include classification of
tumor presence into the training. For more details about the net-
work architectures, we refer the reader to our GitHub repository.
We would like to note here that the algorithms mentioned are only
examples and could theoretically be exchanged for others.

Model clustering based on performance measures: Performance
measures, i.e., Dice Similarity Coefficient (DSC), Averaged Sym-
metric Surface Distance (ASSD), Accuracy (ACC), True Positive
Rate (TPR), and True Negative Rate (TNR) [TH15] are calculated
by comparing the predictions of the previously developed models
to the GT tumor mask. The metrics are computed in three ways:
they are either averaged over the entire data set, computed per 3D
patient sample, or per image slice. This is done to support the multi-
level comparison of the model robustness (T1), but also generates
feature vectors for the subsequent clustering of the models accord-
ing to their performance. This will be further employed for T2. The
models are, to this end, grouped into 2 to 5 clusters based on the
linkage distance of the performance vectors, using the agglomera-

tive clustering algorithm with Ward linkage [War63]. This approach
is preferred, as it minimizes the variance of the merged groups in a
bottom-up approach. The resulting clusters are ranked in descend-
ing order based on their averaged cluster performance, i.e., cluster
1 has the highest averaged performance metric.

Radiomic features extraction and grouping: For discovering po-
tential relationships of the model performance to imaging-derived
features (T2), radiomic features of shape and first order are ex-
tracted using the image data and a pre-defined ROI [LRVL∗12].
This ROI is either the binary GT mask data (for T2A) or the binary
predicted segmentation mask (for T2B). The features are supple-
mented by task-specific features, i.e., total number of slices, tu-
mor presence, and tumor size. Subsequently, the values of a feature
are grouped into classes. Most are divided into three equal classes
(i.e., low–mid–high values), but exceptions for divisions are fea-
tures with statistically meaningful value limits, such as skewness
(positive vs. negative) and kurtosis (below vs. above 3).

Creation of feature and model signatures: The combination of all
features, i.e., performance measures, radiomic features, and task-
specific characteristics, creates an n-dimensional vector per data
sample, i.e., per patient or per slice. We call this vector a feature
signature and this will be used in T2A. The combination of model
cluster membership (as resulting from the clustering above) and
radiomic feature extraction generates a vector per slice and is called
a model signature, which will be further employed in T2B.

Multi-level model performance comparison (T1): For each seg-
mentation approach, the performance measures need to be investi-
gated at three different levels of detail, i.e., for the entire data set,
per patient and per image slice. To this end, we employ a so-called
performance heatmap, as shown in Figure 2. The performance met-
rics of each segmentation approach are represented within a two-
dimensional matrix, where the columns indicate individual models
and the rows individual patients or slices, depending on whether the
performance is assessed at a cohort level (Figure 2a) or at a patient
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(a) Feature signature per data sample. (b) Model signature per model prediction.

Figure 3: Parallel set diagram to encode (a) radiomic shape feature signatures per data sample, i.e., patient or slice data (T2A), or (b) model
signatures for slice-wise model prediction (T2B). Good performance is shown with yellow, intermediate with purple, and bad with blue.

(a) Total sum encoding (b) Subtraction encoding

Figure 4: The predicted segmentation masks are visualized with
two explicit encoding rules to support T3: (a) The total sum visual-
izes the agreement among N algorithms (N = 12); (b) The subtrac-
tion compares these segmentation masks to the GT. The red arrow
marks a prediction component mirrored around the x-axis.

level (Figure 2b). The numerical values of the metrics are then col-
orcoded with a perceptually uniform sequential plasma color map,
where yellow indicates good and blue bad performance values. An
additional slider scales the color map, i.e., compresses the color
map to a range of values. The performance summary per model
(i.e., averaged over all patients or over all slices) is given as an an-
notated heatmap above the first row of the matrix. Here, the numer-
ical values are used as an additional annotation to the colored cells.
This representation allows an n-by-n comparison of all models.

Relationship between model performance and image-derived
features (T2): To unveil potential relationships between perfor-
mance and underlying imaging features, we need to visualize the
feature signature for T2A or the model signature for T2B. We em-
ploy parallel set diagrams (PSD) [KBH06] to visualize the multi-
variate, categorical space of feature and model signatures, as shown
in Figures 3a and 3b, respectively. The classes of a feature, as re-
sulting from the feature grouping discussed above, are visualized as
blocks on the respective parallel vertical axis. The polylines of data
samples with similar signatures are merged to a band that spans
along the parallel vertical axes. These bands are colorcoded with a
binned plasma color map to indicate bad, medium and good perfor-
mance with blue, purple, and yellow, respectively.

Linking back to the anatomical and imaging space (T3): To vi-
sually compare multiple predictions, the predicted segmentation

masks need to be compared to each other and to the GT on the
anatomical and imaging space. We employ a scalable visualiza-
tion technique that requires an explicit encoding with two encoding
rules. First, we use the total sum of all masks, as shown in Fig-
ure 4a. It is the equivalent of plotting the cumulative segmentation
mask for a single algorithm. A pixel value of 0 means that no algo-
rithm produced a positive prediction for this pixel. Second, we use
a subtraction rule, as shown in Figure 4b. The total sum subtracted
from the GT mask, where the tumor pixel value is the number of
algorithms to compare, results in a map with positive and negative
pixel values. To encode this, we use a divergent colormap with 0
being white and transparent. On the positive side of the scale, we
indicate under-segmentation in red, and on the negative side over-
segmentation in blue. A value of 0 corresponds to perfect predic-
tion i.e., background or tumor has been predicted correctly by all
algorithms. For both rules, the order of the masks does not matter.

5. Use Cases

We present three use cases to demonstrate the usability of our ap-
proach. The cases were conducted by the first author, who is also a
trained AI developer with 3 years of experience.

Case 1: What is the difference between a number of segmentation
approaches? Four different segmentation approaches with three
different settings each (i.e., in total 12 approaches) are compared.
The cohort performance heatmap in Figure 2a reflects the four ap-
proaches in the performance analysis. We can identify the overall
best pipeline (i.e., CG_SegmS2T_GAN2_relu with an average
DSC of 0.93 in the first row of the heatmap). The extended versions
(i.e., marked with CG) show a similar performance for slices with
tumor information, but are superior to the standard counterparts
when considering the entire data set, as indicated by the higher val-
ues of the performance heatmap. The reason is shown in the slice
performance and prediction heatmaps, as less false positive predic-
tions (i.e., over-segmentation) occurs. This reduces the error aver-
aged over a 3D volume. Looking at individual slices in Figure 2b,
we observe the trend that bad clusters often have extreme values
for mesh surface, i.e., either high or low values, reflecting the over-
or under-segmentation (see also blue band in Figure 3b). Since the
model signature does not show any correlation to the GT, no con-
clusion about the quality of high or low values can be made without
visual inspection. The clusters do not show any trend with regard
to a grouping of specific settings or variants.
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Figure 5: Example of (a) a homogeneous vs. (b) a heterogeneous
ROI indicated with a black contour for the GT.

Case 2: How does the tumor size influence the segmentation per-
formance? Subjects with small tumor volumes and slices with
a low tumor pixel count show poor results. This can be ob-
served when highlighting the correlation between features for tu-
mor size (MeshVolume, SurfaceArea and Max3DDiam) and
performance (DSC tumor) in Figure 3a. In the slice performance
heatmap of Figure 2b, edge slices at the top and bottom of the tu-
mor volume show worse performance (blue top and bottom rows).
Larger tumor structures are more likely to be accurately predicted
(yellow middle rows), and this behavior is consistent for all models.

Case 3: Are there other data set characteristics related to the
model performance? During the visual inspection of samples with
poor performance, we observed that low DSC and high ASSD val-
ues sometimes correspond to predictions mirrored around the x-
axis, i.e., where the mirror axis runs through the image center par-
allel to the x-axis. An example is shown in Figure 4, which depicts
a prediction with a correct (zoomed in) and a mirrored component
(red arrow). This behavior can not be assigned to a particular ap-
proach and is a recurring error. As Figure 4b shows, the tumor cen-
ter is predicted with high accuracy and reliability, while the tumor
margin shows variability and inconsistency (indicated with red or
purple). Using the link between performance measures and feature
signatures, the visual inspection of prediction heatmaps shows a
weak link between homogeneous ROIs with distinct borders and a
good performance (Figure 5a), and heterogenous ROIs with more
fuzzy borders and a bad performance (Figure 5b).

6. Conclusions and Future Work

In this work, we designed and developed crossMoVA, a visual an-
alytics tool to support the comparison of the behavior of multiple
cross-modal brain tumor segmentation algorithms at different lev-
els of detail. Future research in radiomics may reveal new defini-
tions that require visual investigation and may yield relationships
to performance measures. This topic opens interesting directions
with regard to the scalability of our design. Finally, a thorough user
study to provide valuable feedback about current limitations and
potential extensions is required. crossMoVA is an initial step to-
wards gaining a deeper insight into the performance and results of
deep neural segmentation networks and the correlation to image-
derived features of medical structures.
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