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Kurzfassung

Das Ändern der Vertex-Anzahl einer gegebenen Geometrie durch Hardware-Tessellation
auf der GPU ist durch heutige Standards begrenzt. Die begrenzten Edge-Splits (64
Unterteilungen pro Kante) sowie die schlechter werdende Performance mit tieferen
Unterteilungsebenen lassen Raum für Verbesserungen. Heutzutage bieten experimentelle
softwarebasierte Lösungen, welche GPU-Shader verwenden, viel mehr Flexibilität und
Funktionen. Eine mögliche Lösung, auf die wir uns konzentrieren werden, wurde 2018 von
Jad Khoury [KDR18] vorgestellt, die einen Tessellation-Cache auf der GPU implementiert.
Dies ermöglicht es während des Tessellationsschrittes, nicht nur die Daten des vorherigen
Frames wiederzuverwenden, sondern ihn auch adaptiv zu machen, indem ausschließlich
die Änderungen seit dem letzten Frame berechnet werden müssen. Der adaptive Cache
verbessert die Performance auf Kosten des Speichers auf der GPU, aber die spezielle
Funktionsweise verlangsamt den Ablauf in tieferen Unterteilungsebenen aufgrund der
rekursiven Natur des Algorithmus. Unsere Arbeit ersetzt den rekursiven Algorithmus
durch eine zeitkonstante Lösung, indem wir die Gitterstruktur der tessellierten Geometrie
ausnutzen.
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Abstract

Changing the vertex count of a given geometry through hardware tessellation on the GPU
is limited by today’s standards. The capped edge splits (64 splits per edge) as well as
increasingly worse performance with deeper levels certainly leaves room for improvement.
So in the meantime, software-based solutions using GPU shaders provide much more
flexibility as well as features. One possible solution, which we will be focusing on, was
presented by Jad Khoury [KDR18] in 2018 which implements a tessellation cache on the
GPU. This enables the tessellation step to not only reuse the data of the previous frame
but also makes it adaptive by only having to calculate the changes since the last frame.
The adaptive cache improves tessellation performance at the cost of memory on the GPU
but their particular implementation still slows down on deeper tessellation levels because
of the recursive nature of their algorithm. Our work replaces their recursive algorithm
with a constant-time solution by exploiting the grid structure of their tessellated geometry.
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CHAPTER 1
Introduction

Triangles play an important role in computer graphics as they are widely used to visualize
objects digitally. By connecting many triangles to form some shape, a so called mesh
(in this case a triangle mesh) is built, often also referred to as topology. The more
triangles a mesh contains, the more fine grained the control over its shape resulting in
more detail and thus higher quality. Having too many triangles to render (to display)
slows down performance which often results in choppy visuals or long wait times for
still images. Avoiding these problems by reducing the number of triangles beforehand
is a common solution but if low-poly meshes (objects with only a few triangles) aren’t
acceptable it becomes necessary to artificially increase the triangle count again later on.
That generally describes a technique known as tessellation. Many tessellation algorithms
exist which can be loosely grouped into ones that use hardware-based tessellation, a
specific program (called shader) provided by all modern GPUs (graphics cards), and
software-based tessellation which uses manually implemented general purpose shaders.

In this paper we provide a drop-in replacement for a paper by Jad Khoury et al.
[KDR18] to increase their algorithm’s performance and correct the false claim that their
solution’s performance doesn’t slow down with deeper subdivision levels. We start with
an explanation of what tessellation is and provide an outline on the state of tessellation
in recent years with a focus on terrain rendering.

1.1 Motivation
The gaming industry and others push the upper limits of what is considered high quality
each year and a key factor for that, next to cutting-edge GPUs, is handling huge amounts
of data in a smart way to improve performance. A large part of that is handling geometry
using tessellation as it can be used to increase the level of detail, reduce video memory
usage and speed up mesh data transfers to the GPU thanks to manipulating geometry
on-the-fly inside shaders.
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1. Introduction

Tessellation has become a hot topic in computer graphics over the years with new research
pushing the limits every year. Fast progress in recent years and the resulting versatility
of software-based solutions is putting the widespread use of hardware tessellation into
question. Currently, hardware-based tessellation, meaning subdividing geometry on the
GPU using dedicated shader pipeline stages, is limiting. Due to that the alternative,
software-based tessellation, meaning subdividing geometry on the GPU using shader
pipeline stages for general purpose computations, has received a lot of attention. With
the introduction of the task/mesh shader pipeline, a replacement for the restrictive
tessellation shader pipeline, developers gained a lot more needed flexibility. This new
shader pipeline brings even more possibilities to software-based tessellation techniques.

With recent developments to overcome the limitations of hardware-based tessellation,
much higher levels of detail can be accomplished using software-based tessellation. Figure
1.1 shows a terrain that uses only a square (composed of two right triangles) as its base
geometry and is then tessellated to very high subdivision levels, resulting in 8,625,195
triangles, using a software-based tessellation technique.

Figure 1.1: The input geometry for this mountain range consists only of two right triangles
that build a flat square which is then tessellated into 8,625,195 sub-triangles.

1.2 Tessellation

Tessellation in computer graphics describes the process of automatically subdividing
the triangles that comprise the geometry of an object, usually into smaller triangles, to
increase its detail. This is desirable since in most cases the input geometry is simplified
to reduce storage and bandwidth requirements. Tessellation is then used during run-time
each frame, for each mesh that requires it, to increase the number of triangles again
which are then used to restore the original quality as best as possible. The data required
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1.3. Use cases

to restore the original quality, by manipulating the generated sub-triangles, comes from
other, cheaper resources like height maps or displacement maps, often in the form of a
texture. This can be seen in Figure 1.2, the left side showing the simplified geometry
and the generated high detail geometry, manipulated by a height map, on the right. It
is also possible to define criteria that indicate how detailed the tessellation should be,
for example the distance between geometry and camera. The result is a scene that uses
little geometric detail in the far distance as it would not be visible anyway and feature
very high detail on objects close to the camera.

Figure 1.2: Tessellation increases the number of triangles from the geometry on the left
to improve the level of detail as can be seen on the right.

1.3 Use cases
Tessellation is useful in many scenarios that contain geometry for example to improve
visual quality through dynamic fine-granular levels of detail that are part of the rendering
pipeline. These LODs (levels of detail) are generated directly on the GPU which
saves otherwise required CPU-GPU transfer bandwidth resulting in better performance.
Another benefit of on-chip LOD generation is that less geometry has to be stored on the
GPU reducing the required GPU memory. Basically, the more geometry is present in a
scene, the more an application can benefit from using tessellation. Use cases range from
artistic workflows to high quality offline rendering to real-time applications like games
but also any other interactive tool. An artistic workflow could be greatly improved by
being able to work on low-poly geometry and not having to wait long to see changes in
the high-quality tessellated object which makes it easier to stay in the flow. Additionally,
some tessellation techniques allow changing an input mesh according to parameters that
influence the style of the output. One major use case we want to focus on is terrain
rendering, concerning any application that tries to display some kind of landscape, usually
large ones like mountain ranges or even entire planets. While we put focus on terrain
rendering in our work, the techniques presented in Chapter 3 are applicable to any
triangle-based geometry.
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1. Introduction

1.4 Hardware tessellation
Hardware tessellation is supported by all major graphics card vendors by default nowadays.
To utilise it, two dedicated stages are available in the shader pipeline that can be
programmed to some extent. The benefit of having hardware support for subdividing
triangles can be summed up to being reasonably fast as well as easy to use. By today’s
standards, hardware tessellation on its own is limited. For one, there is a hard limit on
the maximum subdivision depth of 64 splits per edge. This may seem a lot at first glance
though it may be limiting when large geometry is required, for example in application
like Google Maps or open-world games with vast landscapes. This may be circumvented
by dividing the large geometry into separate pieces in advance and applying tessellation
separately on each piece but that opens the door for problems like alignment issues
where the pieces touch each other. A common approach to circumvent the maximum
subdivision depth is to additionally subdivide the separate pieces before passing them to
the tessellation stage as shown by Yusov et al. [YS11]. Another drawback is the increased
time it takes to compute subdivided triangles at higher tessellation levels.

1.5 Software tessellation
Besides hardware tessellation it is of course possible to implement tessellation only in
software using more generalized graphics cards features like compute shaders. Alterna-
tively, the geometry shader as well as the task/mesh shader pipeline are also suitable to
implement software-based tessellation manually. The benefit over not using the tessella-
tion shader (the hardware way) is increased flexibility at the cost of more implementation
complexity and depends drastically on the available graphics card. This allows for
techniques that far exceed 64 edge splits and also enables the use of caching techniques
that prevent the need to do the whole tessellation procedure from scratch each frame.

Figure 1.3: Comparison of a low-poly (left) and high-poly (right) tessellated landscape.

An example of this can be seen in Figure 1.3 where the landscape on the left, set to
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subdivision level 6 (that’s 64 edge splits), is much less detailed than the one on the right
which is set to level 20 (that’s 1,048,576 edge splits). The landscape on the left is at
the limit of what hardware tessellation on its own can do. In both figures the landscape
uses only a flat square consisting of two right triangles as input geometry. A wire-frame
version can be seen in Figure 1.2.
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CHAPTER 2
Related Work

Real-time terrain rendering has been a hot topic for many years and lots of its optimiza-
tions can be applied outside the field of terrain meshes. In its basic form, it’s about
taking a small part out of a larger mesh and blowing up its triangle count at the right
pipeline step. Or in other words, it’s about processing as little initial data as possible
while maintaining high visual quality. Many topics play a part in this, for instance
intelligently picking which portion of a mesh needs to be considered, or reducing storage
and bandwidth requirements by bringing down the vertex count beforehand. Further
examples encompass dynamically increasing the vertex count for selected steps as well as
storing previously computed data where its needed later. We will take a look at papers
about these fields released in the last few years and discuss their applicability in real-time
terrain rendering focusing on tessellation techniques as well as subdivision.

2.1 Subdivision & Simplification
Subdivision is the process of splitting mesh faces like triangles into smaller mesh faces to
provide more vertices to represent or manipulate the shape of a mesh. How and where to
place these new vertices, and maybe re-position or delete the existing ones, is one of the
key elements of a subdivision algorithm. Two popular and established approaches to do
this are the Catmull-Clark subdivision method [Sta98] originally conceived in 1978 and
the Loop subdivision method [Loo87] from 1987. Those two became the basis of many
more advanced methods over the years.

A more recent approach uses standard linear methods adapted to Möbius transformations
to subdivide meshes [VMW18]. In principle, the algorithm looks at each vertex separately,
applies a linear subdivision method on it and it’s surrounding connected vertices and
then blends the result onto the original mesh using Möbius transformations. This
approach makes it possible to use any linear subdivision method which in turn changes
the subdivision pattern. As mentioned in their paper, turning every mesh more and
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more into a sphere is not always desirable, like in the case of terrain tessellation where
mountains would lose all their detail and be smoothed out into hills.

The shape subdivided faces take is often influenced by simple criteria like splitting
edges into a fixed number of parts. But these shapes are at best loosely correlated to
what the mesh is trying to mimic. That is favorable when modelling artificial objects
but not for most natural objects. In cases like these, voronoi cells can be used to
generate natural looking patterns as has been done many times when dealing only with
2-dimensional spaces like textures. Zayer et al. [ZMSS18] managed to apply the concept
to 3D meshes. By regarding the cell separating lines as areas instead and allowing them
to have some thickness even in the underlying calculations the complexity can be reduced
significantly and parallelization on the GPU becomes efficient. Their optimizations result
in computation times within a few milliseconds making the whole process useful for
real-time applications. While this paper is not specifically on subdivision, their method
produces realistic looking cell structures that could be applied on top of a coarse terrain
mesh, for instance to render a dry desert floor.

As the above example might suggest, having more control over the shape and alignment
of the subdivided faces of a mesh is favorable in some cases, mostly artistic ones. So
having more knobs and dials, like being able to adjust the covariance mesh of a model
[PBW19], to tune the shape of the resulting mesh opens up many possibilities as can be
seen in Figure 2.1. The downside of this solution is having to compute the covariance
mesh of a base mesh which takes much time and requires a lot of memory depending
on the number of vertices in the base mesh. Of course, this covariance mesh has to be
rebuilt each time the base mesh changes which, considering the processing time requires
multiple seconds, may interrupt the creative process of the artist.

Figure 2.1: Different shapes generated from the same base mesh using only different
parameters for the covariance mesh [PBW19]
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Traditionally, subdivision operations are carried out on the CPU but utilizing the much
faster GPU for such tasks yields more performance and/or higher quality results as a
new formulation of the Catmull-Clark subdivision in linear algebra shows [MWS+20].
Basically, the whole mesh is represented as various matrices that contain all of the
vertices, edges and faces including their adjacency information which are then processed
using linear algebra kernels and can therefore be run in parallel on the GPU. The main
drawback is the huge memory consumption which increases further the more detailed a
mesh is.

Neural networks are everywhere nowadays which means they are also used in subdivision
[LKC+20]. The specific task the neural network takes on in this algorithm is deciding
where to place the new vertices, everything else is basically handled by a normal loop
subdivision. Depending on the mesh(es) the network is trained on the style of the
resulting subdivided mesh is influenced as the network learns and then reproduces it.
For example, to emphasize or keep sharp edges it is best to train the neural network
using meshes with lots of sharp edges. This could be particularly interesting for artists
to quickly iterate over various styles for inspiration. Important to know is the fact that
the network can be trained unsupervised which means no manual interaction is required
so using it is less complicated.

The inverse operation of subdivision is called simplification and is designed to reduce the
number of vertices of a mesh in a way that still preserves the general shape. Simplification
is relevant for tessellation because it is usually applied to relatively coarse geometry that
is later subdivided to a desired level of detail. Being able to automatically generate
a decent coarse mesh from its detailed base is key to a fast and convenient workflow
that doesn’t inhibit artists. One such simplification algorithm is a combination of two
conventional operations that are reversed [SAX+17]. On one hand, the method requires
multiple seconds for objects with a lot of detail and is therefore not usable for real-time
application but on the other hand that is usually not necessary as simplification is purely
used as a pre-processing step.

Simplification can pursue various goals and while we focus mostly on rendering related
topics we also include an example that prioritizes not visual quality but property retaine-
ment. The technique [LLT+20] combines an edge-collapse algorithm with a cost metric
that minimizes the difference of the Laplacian of the original and the simplified mesh.
This iterative process utilizes a priority queue with the cost metric as it’s weight and
stops when the mesh reaches the intended resolution.

2.2 Smoothing
Improving the quality of an original mesh and making sure that a simplified mesh has
the best possible quality is important as the resulting tessellated mesh’s quality depends
on the quality of all earlier stages. In general, the higher the quality of the base mesh
and the better the simplified mesh represents the base mesh, the higher the quality of
the tessellated mesh.
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One method to improve the quality of a mesh is smoothing it, or in other words, making
it appear less pointy. A way to do this is to re-position all the vertices in a way that
minimizes the aspect ratio of each vertex [HX17]. The aspect ratio of a vertex can be
calculated by dividing the length of the longest edge connected to the vertex through the
length of the shortest edge. The result is a clean-looking mesh that closely resembles the
original shape and still has the same number of vertices, as can be seen in their paper.
Even though this method only works on local criteria and is fast to compute, it is not
considerably useful in real-time applications as it is best used as a pre-processing step
where required time is usually not a limiting factor.

The following method uses the inner and outer angles between the connecting edges of a
mesh to reduce the amount of small angles [HCGL20]. This results in a smoother mesh
that still retains corners where they should be but most importantly, the topological
mesh looks much more clean. Particularly interesting is the fact that the algorithm works
on each element separately even though that is usually avoided because it introduces
visual artifacts in most cases, though not here. Figure 2.2 shows a single triangle (left)
being transformed into a more regular shape (right) with reduced small angles. Since
it processes each element separately, the whole smoothing process could possibly be
executed in parallel. As with most smoothing algorithms, this one is also intended as a
pre-processing step so time measurements are not provided. That said, the nature of the
algorithm working on each element separately infers its linear time complexity.

Figure 2.2: A triangle in different stages of transformation, reducing small angles each
stage going from left to right [HCGL20]

Reducing the irregularity of a mesh’s topology is important for making it look smoother
and improve its quality. To do this, one could look at each vertex and its connected
triangles and improve the quality of each connected triangle separately. As a consequence,
there are now multiple possible positions for each vertex that need to be merged to
result in a coherent mesh. Weighting the possible positions by the size and quality of
the improved connected triangles and also taking the original into account increases the
average mesh quality while also being very adaptable as this paper shows [HGCH21].
The result is a cleaner and smoother-looking topology that still has the same number of
vertices and edges as can be seen in Figure 2.3. It should also be quite fast as it runs in
linear time O(n) since it processes each vertex once though the paper does not provide
time measurements.
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2.3. Tessellation techniques

Figure 2.3: A mesh before (b1) and after (b2) smoothing it by moving only the existing
vertices [HGCH21]

2.3 Tessellation techniques
Tessellation is a culmination of the previous techniques and usually also includes a dynamic
component that decides the level of detail for each mesh that should be tessellated. The
smoothing and simplification can be used to reduce the high quality objects that artists
create into coarse, meaning low-quality, objects. These require a lot less space to store
and will later be processed using subdivision techniques to restore them to their original
quality (or better) as close as possible.

One method that builds upon Catmull-Clark subdivision is this work from Nießner et
al. [NLMD12] about adaptively subdividing a mesh specifically near its features. This
technique not only works with triangle meshes but also quadrilateral meshes. A feature
can be any part of a mesh that significantly contributes to its defining looks, often called
creases. They can be imagined as intentionally sharp edges, for example pointy animal
ears or the structural support beams of a bridge. Basically anything that should not be
smoothed out during subdivision. The general idea of this technique is to only subdivide
the parts of a mesh that contain a significant amount of detail as can be seen in Figure
2.4. This results in fast, real-time capable tessellation.

Using Catmull-Clark subdivision in combination with hardware tessellation and displace-
ment mapping has been proven to be efficient thanks to another paper by Nießner et al.
[NL13]. A problem with displacement maps, which enhance the surface detail of meshes
during rendering, is that the displaced geometry has no normals on its own. A common
solution is to use normal maps that provide the missing normal information but these
usually need to be pregenerated and introduce issues of their own. Nießner et al. use
an analytic displacement function based on bi-quadratic B-splines to directly infer the
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Figure 2.4: Fast subdivision using feature adaptive rendering. The left side shows the
input mesh while the right side shows the subdivided areas with increasing subdivision
levels near sharp edges (green and blue) [NLMD12]

normal information without the need for normal maps. Hardware tessellation comes into
play to generate renderable primitives out of the bi-quadratic B-splines. Additionally,
dynamic level of detail is possible thanks to per vertex tessellation factors calculated
based on classic criteria like camera distance or screen space edge length. Their solution
also enables artists to directly change the displacement data, which means being able to
work on the visual end-result, instead of working on the base mesh and having to wait
for subdivision to see the actual results.

When handling terrain meshes, which are usually gigantic, it is vital to use some kind of
tessellation. One older approach is to prepare levels of detail for the height map [YS11].
Terrain rendering usually makes use of a height map to store the vertical component
while the x and y coordinates can be computed as needed. Exploiting this fact, the
method prepares LODs for the height map to reduce the needed GPU memory and
bandwidth. Adaptive rendering is then supported by storing the currently used LOD
blocks, which are further broken down into patches, and storing them as a quad tree
in GPU memory. For every block an error is computed that represents the divergence
of its simplified points from the height map’s values. Each frame, the cached patches
errors are checked to see if a different LOD needs to be used for any part of the displayed
terrain. When rendering a patch, the triangulation resolution can be further decreased
by choosing triangulation patterns with larger triangles that consider less height values
accordingly. To not introduce visual artifacts, the relevant patches’ errors are compared
to the targeted edge length during rendering. Targeted edge length refers to how many
pixels any single edge is allowed to occupy on the finished image. The edges neighbouring
each patch are also considered to calculate the correct tessellation factors. Tessellation
itself is then done via the standard GPU-based tessellation pipeline.

Another approach is shown in this paper from 2015 [KJCH15] which uses an approach
that does some pre-processing on the CPU and then passes only the relevant data to the
GPU for refinement. On the CPU the large terrain mesh is processed into a quadtree
which is then used to pass only the required quadtree tiles with varying tessellation
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factors to the GPU. This means that each tile can have a different level of detail to save
performance. While the classic approach for terrain data uses a height map to store the
vertical displacement information here geometry images are used instead to improve the
triangle-count distribution further.

Varying the level of detail of a mesh according to common metrics like camera distance
reduces the processed vertex count considerably. Metrics like these only take parameters
of the digital world into account so Tiwary et al. [TRK20] proposed to take the way
human perception works into account. In their method the process of tessellating a mesh
is simplified by exploiting the sporadic movement when the point focused on changes
and the small area where we perceive the most detail. Concentrating the highest level
of detail on that small area and only updating it in the interval of the sporadic eye
movements while reducing the LOD the further away a vertex is from the target area
results in a great reduction of rendered triangles and therefore yields better performance.
This method might be useful in more cases than stated in their paper, for example not
only when the gaze location is known but in all cases where the camera is controlled
by a user. Specifically, by applying the mentioned tessellation criteria during camera
movement that exceeds a certain threshold and choosing the center of the screen as the
target area. Being able to reduce the area where high level of detail is required through
a scene-independent criteria is perfect for terrain rendering where wide landscapes span
further than the horizon. Since this is basically only a LOD selection criteria it can be
implemented anywhere regardless of whether hardware or software tessellation is used.

Incorporating information gained during the simplification step into the subdivision
procedure allows for even more control during the tessellation phase. This was achieved
by Yuan et al. in 2016 [YWH+16]. The technique establishes a two-step procedure to
first generate a coarse mesh from the original using an inverse subdivision approach, send
the coarse mesh to the GPU and then have the tessellation stage of the pipeline generate
a detailed mesh with only little differences to the original. The interesting part is the
generation of the coarse mesh where they focus on only simplifying triangles with low
impact on shape and detail. In addition, the vertices of the simplified mesh are then
re-positioned in a way that supports better re-construction by the tessellation stage by
simulating it during the error calculation of the simplification step. The subdivision step
is then implemented via the standard hardware tessellation stage.

Another method that incorporates both the simplification and subdivision steps in one
technique was presented by Thibaud Lambert et al. [LBG18]. To increase the accuracy of
the reconstructed mesh, they modified the edge collapse step to consider the deviations
from the original mesh of both the vertex positions and texture coordinates for their
approximate error metric. This metric is used to simplify a complex mesh and dynamically
select the most fitting level of detail for each patch depending on the camera view. Their
approximate error metric expresses the highest difference of all vertex positions on the
simplified mesh to the original mesh for a given view distance and direction. During the
tessellation control shader stage on the GPU the LOD with the smallest error for a patch
is dynamically chosen for the given view direction.
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Although the last two methods are working as intended for most meshes, terrain meshes
usually don’t start off as high-detail 3d models except maybe some real-life height maps
or scans. On one hand, having no high quality base mesh to calculate the error metric
renders the solutions impractical for most terrain rendering applications. On the other
hand, this would make it possible to pre-generate terrain meshes with extreme detail to
use as the base for the pre-computation of the coarse meshes.

2.4 Caching & more

When tessellating geometry on the GPU, the whole process is started from scratch each
frame which wastes a lot of performance. Caching can be implemented to make use of the
tessellated geometry calculated in the previous frames, trading performance for memory
consumption. The memory required to temporarily store the tessellated geometry can be
very high since tessellation turns a few triangles into orders of magnitude more. This
makes it necessary to use some kind of compression or packing algorithm to make the
whole trade-off actually worth it. Additionally, a data structure that is fast to read and
write is required to manipulate the compressed data efficiently.

In the context of terrain data it is possible to get rid of some of the mesh information
when storing it and add it later during rendering because it is inherent to the nature of
height maps. One approach that makes use of this fact is to pack all the data to render a
triangle into a single vertex and then storing these new vertices in a quad-tree as shown
by Lee et al. [LS19]. The compressed vertex only contains 6 float values (x, y, z, r, g,
b) so the uv coordinates and height value have to be calculated for each decompressed
vertex accordingly. The quad-tree is re-used each frame to refine it to the desired level of
detail, subdividing or simplifying one step up or down as required by the LOD metric.
As is the nature of a quad-tree, subdividing once turns one triangle into 4 triangles
and simplifying turns 4 triangles into one triangle. During rendering, the quad-tree is
read in the geometry shader to decompress the data into a triangle strip. If the level of
detail does not match the required LOD, the compressed vertices are split/merged once
and then decompressed. The quad-tree is implemented as a double buffer to minimize
popping and artifacts but during complete view changes the buffer is rebuilt from scratch.
To prevent cracks, they recursively split the adjacent triangle of a neighbouring patch
that has a lower level of detail into smaller triangles selectively.

While not specifically the topic of this paper, we want to quickly mention this work
from Matthias Englert about using mesh shaders for terrain rendering [Eng20]. A lot of
performance can be gained by using mesh shaders to handle processing heavy tasks on the
GPU instead of the CPU. This is accomplished by generating render batches only for parts
of the terrain that are relevant for the current camera position and view-angle. These
render batches each contain a part of the relevant terrain data in a compressed format
and are then processed on the GPU in parallel. The GPU is then able to triangulate the
compressed terrain data, also in parallel, which is often done on the CPU. The difference
is that a lot less data has to be transferred to the GPU if the GPU itself handles the
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triangulation. Additionally, the generated triangles are further tessellated using a mesh
shader implementation of a simplistic subdivision scheme.

2.5 Reference approach paper

Continuing the topic of caching we are going to take a detailed look at Adaptive GPU
Tessellation with Compute Shaders by Khoury et al. [KDR18] which our work is based on.
Their goal is to improve upon the drawbacks of the standardized hardware tessellation
by allowing more levels of subdivision and removing the increasing performance cost of
deeper subdivision levels. The concept makes use of a very simple subdivision scheme that
halves a triangle into two equally sized sub-triangles. Each triangle in any subdivision
level is then uniquely represented by a single integer they call a key. These keys are stored
in a buffer on the GPU and form the tessellation cache that gets to be re-used each frame.
As the keyword "adaptive" suggests, this cache allows to continue the tessellation progress
where it was left last frame and subdivide or simplify the topology from there. Their
implementation actually only carries out one subdivision or simplification per frame,
depending on whether the desired level of detail is reached or not which implies slight
visual artifacts when the buffer is built from scratch.

2.5.1 Basic concept

The backbone of the concept is the cache which has to allow fast read and writes in
a parallel fashion. To allow reading and writing the cache at the same time without
interference it is implemented as a double buffer, reading from the first, writing into
the second and swapping the two afterwards. This does double memory consumption
but since the buffer only stores integers it is quite compact anyway. The buffer itself is
implemented as a simple array as reads and writes are fast and the whole array has to
be iterated over each time to reconstruct the actual triangles. The fact that the array
is implemented as a double buffer including that every key has to be processed allows
for an implicit clean-up mechanic, by just emptying the second (write) buffer before
writing into it, so there are no unused or duplicate keys cached. Reconstructing the
actual triangle data from the keys is possible because they encode barycentric coordinates.
This also means that the last step to actually generate a triangle that can be rendered is
a barycentric interpolation that uses the decoded barycentric coordinates and the real
coordinates of the coarse base triangle.

2.5.2 Barycentric transformation matrix

The transformation matrix used by Khoury et al. [KDR18] is defined as

M =

 s −0.5 0
−0.5 −s 0
+0.5 +0.5 s

 (2.1)
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It describes how to move the vertices of any triangle to create a new triangle that is
exactly half the size of the original one. It works for any triangle because it transforms
the barycentric coordinates instead of actual position data. There is exactly one input
parameter s to tell the transformation matrix to create one or the other half-sized
triangle as can be seen in Figure 2.5. This transformation can be applied multiple times
to subdivide the triangle into smaller and smaller sub-triangles, or in other words to
increase the level of detail. This effectively implements a subdivision technique known as
longest edge bisection (LEB). LEB, as the name implies, splits a triangle exactly in half
by injecting a new edge between the midpoint of its longest edge and the opposite corner.

v1 v2

v3

v1 v2

v3

v1 v2

v3

v1

v2

v3

v3

v1

v2

s = +0.5

s = -0.5

x

y

Figure 2.5: The barycentric transformation matrix M shown in Section 2.5.2 moves the
vertices to create either one of the subdivided triangles. The parameter s determines
which half is created.

2.5.3 Cache key encoding and decoding

Cache keys are represented by 32-bit integers that, when viewed in binary form, consist
of a series of zeroes and ones. These digits represent the decision to subdivide into one
or the other triangle-half and when used in series as input parameters to the barycentric
transformation matrix result in the exact barycentric coordinates that create the desired
sub-triangle when resolved. Encoding a triangle is just a matter of remembering the
exact series of subdivisions to get to the desired sub-triangle as is shown in Figure 2.6. A
simple bit-shift operation during each subdivision does the trick as the process initially
always begins at the coarse base triangle. To keep track of the level of detail of an
encoded triangle, the most significant bit is set to one and is automatically moved due
to the bit-shift operation. Considering the implementation shown in Listing 1.2 of their
paper, it is obvious that longer keys, in other words deeper subdivision levels, require
more matrix multiplications when they are being decoded and thus slightly more time to
compute than shorter keys due to the algorithms recursive nature.
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shift 0 shift 1

shift 1

Key: 1

Key: 10

Key: 101

Key: 1011

Figure 2.6: Leftmost is the coarse base triangle with its key consisting only of the most
significant bit. Then either one or zero is shifted into the key to go down the subdivision
levels.

2.5.4 Finding the parent and child of a triangle

Going up and down the subdivision levels is a simple process considering how the triangles
are encoded. There are some noteworthy precautions shown that prevent duplicates and
other unwanted side effects that we are going to cover. To go down a subdivision level,
one triangle is split into two sub-triangles that replace the parent triangle. The keys
for both sub-triangles can easily be generated by shifting a zero to the parents key to
get one half and a one for the other half. Both keys are then stored in the cache while
the parents key is removed, or in case of the double buffer implementation it is just
not stored again. See Figures 2.5 and 2.6 to get a better understanding of the process.
Going up a subdivision level is a little trickier as to not produce multiple identical parent
triangles. To circumvent this problem, only one of the child triangles actually generates
the parent, in their implementation the child with the zero digit. Getting the actual key
is as simple as unshifting the last bit. Due to the double buffer implementation only the
new parent key (triangle) is stored which automatically removes the child keys (triangles)
from the cache.

2.5.5 Claims and reality

According to their paper, this tessellation strategy solves two major limitations of standard
hardware tessellation. For one, having only 6 subdivision levels available and for another
requiring increasingly more time with deeper subdivision levels. The first limitation is
easily lifted by their encoding scheme which is in principle capable of unlimited subdivision
levels and only limited by implementation details and hardware support for integers with
more bits. They also mention this in Section 1.2.2 of their paper. The second limitation is
where their algorithm is flawed. That’s because the simplicity of manipulating a key solely
through single bit-shifts is also a major disadvantage to the algorithm: The subdivision
depth dictates the number of barycentric transformation matrix multiplications which
shows the recursive nature and therefore linear time complexity of the decoding step.
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CHAPTER 3
Improved triangle encoding

The shortcoming of Khoury et al.’s solution with regards to the recursive nature of the
algorithm somewhat dulls its potential. We propose a solution that improves upon their
algorithm by replacing the scheme used to encode and decode the keys with one that runs
in constant time. In theory, this should increase performance for scenes with higher levels
of detail when compared to the original implementation. In other words, decoding a key
should be much faster considering the context of terrain rendering where many different
levels of detail come into play. The likely drawback of a constant-time implementation is
that it requires more time to generate a sub- or parent-triangle than it did in the original.
However, this downside can be safely ignored if reading (decoding a key) happens more
often than writing (encoding a triangle) in most scenarios. That is because every key in
the cache has to be decoded once every frame but encoding only happens if the target
level of detail for the triangle changed, otherwise the key is just stored as is again. So
in scenes where the tessellated object doesn’t move, which is most likely all of them in
the context of terrain rendering, the only other option that influences the criteria is the
camera. There are two relevant states for a camera in this context, moving and not
moving. A camera that doesn’t move doesn’t trigger a change in the target level of detail
so there is no problem in that case. A camera that does move will cause the target level
of detail to change so triangles will be encoded but the amount depends on the speed of
the camera’s movement.

3.1 The grid

Due to the longest edge bisection used by the reference approach paper, the subdivision
gradually generates a repeating grid pattern as can easily be seen in Figure 3.1. The
grid’s cell size decreases with every second subdivision level as the odd levels only
add diagonal lines. We are working with the triangles in barycentric space, which is
3-dimensional, but the grid represents a 2-dimensional space. So in order to get to
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2-dimensional space we drop the 3rd coordinate of barycentric space since we don’t need
it. Having a coordinate system at hand means that we are able to represent each point
inside it with a two-dimensional location. This allows us to ditch the whole recursive
transformation matrix approach that relied on the preceding transformations to find the
correct coordinates. If we have the x and y coordinates of a triangle available, it should
be possible to directly calculate (without preceding transformations) the barycentric
coordinates of the sub-triangle.

Level 0 Level 4 Level 6Level 2

Figure 3.1: Subdivision levels viewed in barycentric space. Notice the emerging grid
pattern when going down the subdivision levels. The grid’s size decreases with every
second subdivision level which is why the odd ones aren’t shown.

There is an issue that comes with the differing levels of detail though and it has to do
with the various grid resolutions. Even if we can describe a location inside the grid using
x and y, we wouldn’t know which grid size these coordinates are related to. This means,
we need another coordinate z that specifies the subdivision level and in effect the related
grid size. The grid divides the barycentric space, which is a range from 0 to 1, into
equally sized squares. While z increases by one every subdivision level, the grid’s cell
size only decreases with every second subdivision level, increasing it’s resolution by an
order of 2 each time because of the subdivision rule. This makes the biggest possible
coordinate value of each grid size always a member of order 2. Refer to Figure 3.2 for
visual aid on this.
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Figure 3.2: z denotes the subdivision level. The grid resolution is doubled every second
subdivision level which is shown by the axes labels.

Now that we have all the necessary coordinates to properly navigate the grid system and
point to any grid cell uniquely, another problem stands out. As each cell is a square,
there is never only a single triangle inside it. So in order to know which triangle we
are supposed to generate from a key we need another value, let’s call it i, to identify
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it uniquely. Having the grid change resolution every second subdivision level results in
the triangle count per square to alternate between two and four each level. Additionally,
there are two different possibilities how the triangles are orientated if there are only two
inside a grid cell. Their orientation conveniently follows a simple rule as can be seen
in Figure 3.2. Every second column, and shifted by one cell every second row, has the
diagonal going from the bottom left to the upper right while every other column, also
shifted by one cell every other row, has the diagonal going from the upper left to the
bottom right. Take a look at Figure 3.3 for all possible triangle constellations.

0

1

2
30

1

1

0

Figure 3.3: All the possible triangle orientations inside a grid’s cell. The light blue
numbers denote each triangle’s identifier i.

The problem now becomes how to store the coordinates x, y and z and the identifier i
inside a single integer efficiently and preferably without requiring more space than the
original solution.

3.2 Key, encoding, decoding

Packing multiple values inside a single integer necessitates clever use of their binary
representations, the number of required bits as well as which information we are able
to imply into the schema. For example, in the original algorithm, the first bit of any
key in binary representation is set to 1, generally called the most significant bit, and
signifies the subdivision level through it’s index. We keep this behaviour to encode z (the
subdivision level) inside a single bit. While every shift/unshift operation in the original
schema results in going one subdivision level up or down, conveniently moving the most
significant bit exactly one place, we have to make sure our key’s length changes by only
one by going up or down one subdivision level too or we would be wasting precious bits.

Next there are the various possible triangle constellations inside a grid cell represented
by i. i has to be able to discriminate between eight different triangle orientations which
would require 3 bits in binary. We can do better though because the grid behaviour
explained above implies that subdivision levels with even numbers always have two
triangles in a cell and levels with odd numbers always have four triangles in a cell (refer
to Figure 3.2). So, in keys for even levels i only needs one bit to represent two states, and
two bits for odd levels to represent four states since we know if the current subdivision
level is even or odd through z.

Lastly, we have the x and y coordinates left. There are two mechanics at play here that
help us minimize the necessary number of bits. First, both require the same number of
bits on a given subdivision level thanks to the square grid. Second, because the grid’s
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cell size is quartered every second subdivision level, the highest possible value x and y
have to be able to represent doubles also only every second level. So at levels two and
three x and y require one bit to represent 0, 1, at levels four and five they require two
bits to represent 0, 1, 2, 3, and so on. This means both x and y, when looked at in
binary representation, change in length only every second subdivision level.

We put our key together in the same order that we mentioned the variables in: z i x
y. It is important to note, that we manage to keep the behaviour of the most significant
bit as indicator for the subdivision level thanks to the specific way our variables change
in length. At level two, both x and y need one bit each and i also needs one bit, that’s
a total of three bits. At level three, x and y still need only one bit each but i now needs
two bits to correctly describe the four possible triangle orientations in a cell, that’s four
in total. At level four, the grid’s resolution increases so x and y now need two bits each
but i only has to describe two possible triangle orientations now so it only needs one bit,
that’s a total of five bits. As one can see, our key requires one additional bit for every
additional subdivision level, just as the original. Take a look at Figure 3.4 to verify this,
the keys shown are each a child of the one below. They also match the grid in Figure 3.2
so you can trace them manually.

Figure 3.4: The structure of our keys in binary (left) and decimal (right). Both x and y
always have the same number of bits and no upper limit. i is always either one or two
bits long. z forms the most significant bit, it’s index in the binary representation of the
integer encodes the subdivision level.

Encoding our key is then just a matter of putting each variable at it’s correct position in
the binary representation of an integer. Doing so requires a series of bit-shifts, bitwise
OR operations and additions, 9 in total. Our GLSL implementation of that is shown in
Listing 3.1. Notice that z is not passed as a parameter because its value is determined
by its index as the most significant bit automatically.

Decoding our key is also mostly a series of bitwise operations as can be seen in Listing 3.2.
As mentioned before, we have to calculate whether i is one or two bits long according
to the subdivision level z (Line 6). We also calculate, based on z, how many bits x
and y are taking up to extract their correct values (Line 7). Notice again that z is not
returned since the relevant information has already been extracted into numBitsI and
numBitsXY which are returned instead. It is important that decoding the key can be
done fast since most of the other functions have to work on the separate variables instead
of the whole key.
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Listing 3.1: Encoding our key requires only a series of bit operations.
Input: i is the triangle orientation. x, y are the barycentric grid coordinates.

numBitsI, numBitsXY specify how many bits i, x, y actually occupy.
Output: The finished key as an unsigned integer.

1 uint encodeKey (
2 in uint i , in uint numBitsI ,
3 in uint x , in uint y , in uint numBitsXY
4 ) {
5 uint numBitsXY2 = numBitsXY + numBitsXY ;
6 return (1u << ( numBitsI + numBitsXY2 ) ) |
7 ( i << numBitsXY2) |
8 ( x << numBitsXY) |
9 y ;
10 }

Listing 3.2: Decoding our key is also just a matter of bit operations.
Input: key is an unsigned integer using our key encoding scheme.
Output: i is the triangle orientation. x, y are the barycentric grid coordinates.

numBitsI, numBitsXY specify how many bits i, x, y actually occupy.
1 void decodeKey ( in uint key ,
2 out uint i , out uint numBitsI ,
3 out uint x , out uint y , out uint numBitsXY
4 ) {
5 uint z = findMSB( key ) ;
6 numBitsI = ( ( z + 1u) & 1u) + 1u ;
7 numBitsXY = ( z − 1u) >> 1u ;
8 uint numBitsXY2 = numBitsXY + numBitsXY ;
9 uint iMask = ((1u << numBitsI ) − 1u) << numBitsXY2 ;
10 uint yMask = (1u << numBitsXY) − 1u ;
11 uint xMask = yMask << numBitsXY ;
12 i = ( key & iMask ) >> numBitsXY2 ;
13 x = ( key & xMask) >> numBitsXY ;
14 y = key & yMask ;
15 }

3.3 Finding the children of a triangle
Encoding and decoding the key is just one part of the whole procedure, the other
parts being how to calculate keys for child triangles and the parent triangle of a key.
Additionally, we have to re-implement some helper functions that are required to correctly
go up and down the subdivision levels. We will start with the process of descending a
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subdivision level from a given key as it is a lot simpler than ascending. Take a look at
Listing 3.3 for implementation details. As mentioned in Section 2.5.4, going down a level
always splits the current triangle into two sub-triangles, generating two new keys in the
process. To work with our keys it is always necessary to decode them first in order to
have access to the separate variables.

Listing 3.3: Function to calculate the children keys of a given key.
Input: The parent key for which to generate children keys.
Output: An array containing the two finished children keys.

1 void ch i ldrenKeys ( in uint key , out uint ch i l d r en [ 2 ] )
2 {
3 uint i , numBitsI , x , y , numBitsXY ;
4 decodeKey ( key , i , numBitsI , x , y , numBitsXY ) ;
5 uint newX = x ∗ numBitsI ;
6 uint newY = y ∗ numBitsI ;
7 numBitsI = numBitsI − 1u ;
8 uint numBitsIFlipped = numBitsI ^ 1u ;
9 uint k1X = newX + ( numBitsI ∗ ch i ldTab le [ 0 ] [ i ] ) ;

10 uint k1Y = newY + ( numBitsI ∗ ch i ldTab le [ 1 ] [ i ] ) ;
11 uint k2X = newX + ( numBitsI ∗ ch i ldTab le [ 2 ] [ i ] ) ;
12 uint k2Y = newY + ( numBitsI ∗ ch i ldTab le [ 3 ] [ i ] ) ;
13 uint iTableIndex = ( numBitsI << 3u) | ( i << 1u) |
14 ( ( x + y) & 1u ) ;
15 uint k1I = chi ldrenKeysTable I [ iTableIndex ] [ 0 ] ;
16 uint k2I = chi ldrenKeysTable I [ iTableIndex ] [ 1 ] ;
17 numBitsXY = numBitsXY + numBitsI ;
18 numBitsI = numBitsIFlipped + 1u ;
19 ch i l d r en [ 0 ] = encodeKey ( k1I , numBitsI , k1X , k1Y , numBitsXY ) ;
20 ch i l d r en [ 1 ] = encodeKey ( k2I , numBitsI , k2X , k2Y , numBitsXY ) ;
21 }

Starting with i there are two rules that we have to keep in mind. First, i alternates
between one and two bits each level. And second, every other subdivision level the grid’s
resolution is doubled. Both rules are explained in detail in Section 3.1. Calculating the
new number of bits for i is therefore simple. We know its value is always either 1 or
2 so considering the current value we subtract 1 to bring it into the 0,1 range (Line
7), flip the bit using a bitwise xor operation (Line 8) and finally add 1 again (Line 18)
so 1 becomes 2 and 2 becomes 1. The new actual value of i is trickier as it entirely
depends on the current values of i, x and y. Conveniently, there is a repeating pattern
for generating the values of i thanks to the grid. We are able to take advantage of that
by setting up a lookup table (childrenKeysTableI) to avoid code branches. As a
result, we need to create unique identifiers out of the current values of i, x and y to
properly navigate the lookup table. This is in addition to mapping out all the possible
results.
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Let’s first consider going from an even subdivision level to an odd one or in other words,
from one bit to two bits for i. Refer to Figures 3.2 and 3.3 for visual support on this.
There are two possible triangle orientations for one bit i values. The first one (with 0 at
the upper left) appears in all grid cells that satisfy the condition (x + y) % 2 == 0.
In these cases, 0 becomes 0 or 2 while 1 becomes 1 or 3. This takes care of half the cells,
the other half (with 0 at the lower left) satisfies the condition (x + y) % 2 == 1 and
in those cases, 0 becomes 0 or 1 while 1 becomes 2 or 3. Going from an odd subdivision
level to an even one, so from two bits to one bit, is simpler as there is just one possible
triangle orientation for all cells. We are looking exclusively at the new i values at this
point so positional cell changes are of no concern for now. So 0 becomes 0 and 0 (upper
left and lower left cells), 1 becomes 1 and 0 (lower left and lower right cells), 2 becomes
1 and 0 (upper left and upper right cells) and 3 becomes 1 and 1 (upper right and lower
right cells). Take a look at the full lookup table in the appendix in Listing 6.1. Due to
the way the lookup table index is created (Lines 13 and 14), the values for new one bit i
values have to occur twice.

Calculating the new x and y values is much simpler in comparison. Going from an even
subdivison level to an odd one doesn’t change the original values so we just keep them.
Going from an odd level to an even one always doubles the grid resolution so we multiply
the original x and y values by two (Lines 5 and 6). Then we need to push either x or y or
both one cell further to take the previously mentioned positional cell change into account
(Lines 9, 10, 11 and 12). For this we implemented another lookup table (childTable)
that you can also find in Listing 6.1. No specially created index is required for this
lookup table, only the original i value is used to cover all cases on even subdivision
levels. On odd levels, numBitsI is zero at that point so the influence of childTable
is negated. Finally, it is necessary to adjust the number of bits (numBitsXY) for the x
and y values (Line 17). Just as with the new x and y values, no change is required when
going from an even subdivision level to an odd one. Going from an odd level to an even
one doubles the grid resolution so we have to add 1 to the number of bits for x and y
since one additional bit doubles the representable numbers.

As we are working with a finite number of bits of an integer in the actual implementation,
we need a mechanism to decide when to stop subdividing. In the original code from
Khoury et al. exists a method for exactly that purpose called isLeafKey, shown in
Listing 3.4, which we have to adjust slightly. The deepest possible subdivision level for
32bit integers using our concept is 31, one level less than the original concept allowed.
More on this in Section 5.

Listing 3.4: Helper method to know when to stop subdividing.
Input: The key for which to check if it can be subdivided.
Output: True if the input key can be subdivided, false otherwise.

1 bool i sLeafKey ( in uint key )
2 {
3 return findMSB( key ) == 31u ;
4 }

25



3. Improved triangle encoding

3.4 Finding the parent of a triangle
Next we will explain in detail how to go up the subdivision levels, or in other words, how
to merge children keys into their parent key. Just like in Section 3.3 it is important to
keep in mind that the number of bits for the values change as well as that the grid’s
resolution changes every second subdivision level but this time it is halved instead of
doubled. The complete function is shown in Listing 3.5.
Starting with the number of bits for i again, we use the same procedure as in Section
3.3 since it alternates on every level change (Lines 5, 6 and 10). So 1 becomes 2 and 2
becomes 1 as required. The actual value for i is again resolved using a lookup table (Line
9) called parentKeyTableI which is shown in Listing 6.2. Even and odd subdivision
levels also require a different approach when calculating the parent key so we will explain
the cases in detail. Refer to Figures 3.2 and 3.3 for visual support on this.

Listing 3.5: Calculating the parent key of a given key.
Input: A child key for which to generate a parent key.
Output: The finished parent key.

1 uint parentKey ( in uint key )
2 {
3 uint i , numBitsI , x , y , numBitsXY ;
4 decodeKey ( key , i , numBitsI , x , y , numBitsXY ) ;
5 numBitsI = numBitsI − 1u ;
6 uint numBitsIFlipped = numBitsI ^ 1u ;
7 uint iTableIndex = ( numBitsI << 4u) | ( i << 2u) |
8 ( ( x & 1u) << 1u) | ( y & 1u ) ;
9 i = parentKeyTableI [ iTableIndex ] ;

10 numBitsI = numBitsIFlipped + 1u ;
11 x = x >> numBitsIFlipped ;
12 y = y >> numBitsIFlipped ;
13 numBitsXY = numBitsXY − numBitsIFlipped ;
14 return encodeKey ( i , numBitsI , x , y , numBitsXY ) ;
15 }

Going from an even subdivision level to an odd one, we can ignore the various triangle
orientations since odd levels use the two bit i values. For a cell on even x and y
coordinates (like (0,0)) an i value of 0 becomes 0 and 1 becomes 1. A cell on odd x
and even y coordinates (like (1,0)) results in 0 becoming 1 and 1 becoming 3. A cell
on even x and odd y coordinates (like (0,1)) results in 0 becoming 0 and 1 becoming
2. And a cell on odd x and y coordinates (like (1,1)) results in 0 becoming 2 and 1
becoming 3. Going from an odd subdivision level to an even one, requires taking into
account the position of the cell to produce the correct triangle orientation. So a cell
where x + y is even (like (0,0) or (1,1)) results in 0 and 2 becoming 0 and 1 and
3 becoming 1. And a cell where x + y is odd (like (0,1) or (1,0)) results in 0 and
1 becoming 0 and 2 and 3 becoming 1.
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Since the number of bits for x and y only changes every second subdivision level (when
going from an even level to an odd one), we just have to subtract 1 when the original
numBitsI equals 1 (Line 13). For the new actual values of x and y we just have to do
the opposite of what happens during children key generation so we have to half their
original values when the grid’s resolution changes (Lines 11 and 12). Remember that we
are working with integers so when dividing odd values fractions are just discarded which
is the reason why just halving their values actually works (e.g. 5 / 2 equals 2). Thanks
to integers and always dividing by 2 we replace the division with a bitwise right shift of
either 0 or 1 depending on the current subdivision level.

When trying to generate a key for the parent of a triangle, it is important to know which
of the two child triangles to use so that only a single parent key is created as mentioned
in Section 2.5.4. In the original implementation by Khoury et al. this was a simple check
that only had to consider the first bit of a key: (key & 1u) == 0u.

Listing 3.6: Helper method to know which child triangle to use for generating a parent
key.
Input: The key for which to check if it is allowed to generate a parent key.
Output: True if the input key is allowed to generate a parent, false otherwise.

1 bool i sChi ldZeroKey ( in uint key )
2 {
3 uint i , numBitsI , x , y , numBitsXY ;
4 decodeKey ( key , i , numBitsI , x , y , numBitsXY ) ;
5 uint xyEven = (x + y) & 1u ;
6 i f ( numBitsI == 1u) {
7 return xyEven == 0u ;
8 } else {
9 return ( ( i >> (xyEven ^ 1u ) ) & 1u) == 0u ;
10 }
11 }

For our new procedure, shown in Listing 3.6, we have to consider the different triangle
orientations to decide correctly. In principle, it does not matter which child triangle
produces the parent as long as it is always exactly one. First we decode the key and check
if the current subdivision level is even or odd based on the number of bits for i (Line
6). If it is even (Line 7), we know that there are 8 triangles to consider because on the
parent level the grid’s resolution will be halved and each cell will have 4 different triangle
orientations. For simplicity’s sake, we only look at the x and y coordinates leaving out
the current i value. So as long as the key is located in a cell where the diagonal is going
from the bottom left to the top right we accept it as the "zero key" that should produce a
parent. If it is an odd subdivision level (Line 9), the grid’s resolution stays the same but
we have to take into account the alternating triangle orientations on the parent level. For
cells where the parent has the diagonal going from the bottom left to the top right, we
let the triangles on the left and bottom (in the context of a cell with 4 triangles inside)
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produce a parent key. For the other cells with the diagonal going from the top left to the
bottom right, we let the left and top triangle produce a parent.

Additionally, it is important to know when to stop merging triangles. In the original
implementation by Khoury et al. exists another helper function for checking exactly that
called isRootKey. The original checked if key == 1u while our concept requires a
small change as can be seen in Listing 3.7. The reason being that a key with value 3
(11 in binary) contains only z and i with x and y having zero bits available and thus
having a value of 0 each. Since there cannot be a key with zero i bits, both 2 (10) and
3 (11), with the respective i values 0 and 1, are the root keys.

Listing 3.7: Helper method to know when to stop looking for a parent triangle.
Input: The key for which to check if it can be merged into a parent key.
Output: True if the input key can be merged, false otherwise.

1 bool isRootKey ( in uint key )
2 {
3 return key <= 3u ;
4 }

The whole process of creating a parent key could possibly be further improved by only
covering the triangles that return true for isChildZeroKey since those that return
false won’t produce a parent key anyway.

3.5 Key to triangle
Now that we know how the new keys are structured and how to generate children and
parent keys, the last piece of the puzzle is how to calculate the barycentric coordinates for
a triangle encoded in our keys. In the original solution by Khoury et al. this consists of n
recursive matrix multiplications where n is the subdivision level of a key. As mentioned
in Section 2.5.3, this is why performance drops with deeper subdivision levels. Our
implementation of this procedure can be seen in Listing 3.8.

Our new procedure requires first decoding the keys in order to have access to the encoded
parameters. Thanks to the grid, the triangle coordinates are fixed points and we just
have to select the correct ones. This means it is necessary to first calculate the size of
the cells cellSize at the current subdivision level z (Line 6). Remember that z is
not returned by the decodeKey() function because the information is already encoded
in numBitsI and numBitsXY. The cell size is calculated with 1 / numCells due to
barycentric coordinates being expressed in percent. numCells is defined as the number
of cells in either one of the two dimensions of the grid and is calculated as 2numBitsXY .
Due to working with integers, we can circumvent a pow() call by using a bitwise shift
1u « numBitsXY instead.

Next we calculate all the fixed points that are relevant for the cell a given key’s triangle
resides in (Lines 8 to 18). Taking all possible triangle orientations over all subdivision
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levels into account results in only five points. These are the four corner points of the cell
as well as its center point that becomes relevant on odd subdivision levels. All that’s left
is picking the correct points for the triangle orientation of the given key. Since there are
only eight possible triangle orientations in total, we implemented the point picking using
another lookup table 6.3 that holds the five fixed points and an index into the lookup
table (Lines 19 and 20). All of this results in a constant time procedure to turn a key
into the barycentric coordinates of a sub-triangle.

Listing 3.8: Calculating the barycentric coordinates of the given key.
Input: The key for which to calculate the barycentric coordinates.
Output: Array containing the barycentric coordinates of all 3 triangle vertices.

1 void ca l cBarycen t r i cCoord ina t e s (
2 in uint key , out vec2 u_out [ 3 ]
3 ) {
4 uint i , numBitsI , x , y , numBitsXY ;
5 decodeKey ( key , i , numBitsI , x , y , numBitsXY ) ;
6 f loat c e l l S i z e = 1 .0 f / f loat (1u << numBitsXY ) ;
7 f loat c e l l S i z eH a l f = c e l l S i z e ∗ 0 .5 f ;
8 f loat lowerX = f loat ( x ) ∗ c e l l S i z e ;
9 f loat lowerY = f loat ( y ) ∗ c e l l S i z e ;
10 f loat upperX = lowerX + c e l l S i z e ;
11 f loat upperY = lowerY + c e l l S i z e ;
12 vec2 pointTable [ 5 ] = {
13 vec2 ( lowerX , lowerY ) ,
14 vec2 ( upperX , lowerY ) ,
15 vec2 ( lowerX , upperY ) ,
16 vec2 ( upperX , upperY ) ,
17 vec2 ( lowerX + c e l l S i z eHa l f , lowerY + c e l l S i z eH a l f )
18 } ;
19 uint pointMapIndex = ( ( numBitsI − 1u) << 3u) |
20 ( i << 1u) | ( ( x + y) & 1u ) ;
21 u_out [ 0 ] = pointTable [ pointMap [ pointMapIndex ] [ 0 ] ] ;
22 u_out [ 1 ] = pointTable [ pointMap [ pointMapIndex ] [ 1 ] ] ;
23 u_out [ 2 ] = pointTable [ pointMap [ pointMapIndex ] [ 2 ] ] ;
24 }
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CHAPTER 4
Results

To properly verify the results of our solution, it is necessary to look at them both visually
as well as in terms of performance. Starting with the visual comparison, we have to make
sure that our new method produces the exact same results for all subdivision levels. In
other words, the generated topological grid has to be identical to the one generated by
the original. To verify this, we exported frames at different subdivision levels for both
methods. Figure 4.1 shows the same portion of a terrain mesh at increasing subdivision
levels, starting with level 4.

Figure 4.1: Visual comparison of the generated grid between the original (top row) and
our new method (bottom row).

4.1 Test scene
We setup a test scene to be able to better compare our new procedure to the original.
Conveniently, the original demo by Khoury et al. already contains a terrain example
featuring a mountain range landscape. To be able to use this as a test scene more easily,
we set it up so that the camera always starts in a position that triggers the deepest
subdivision level.

Additionally, we implemented a short animation for the camera to follow along a fixed
path including rotation of the camera. This is important because we can only make sure
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everything works correctly when going down as well as up the subdivision levels in a
natural way. Switching between the original procedure and ours is done through a simple
checkbox and dedicated buttons make it easy to stop and reset the animation to the
beginning.

The terrain as well as the animation path are shown in Figure 4.2. The animation starts
at the left end of the red line with the camera looking towards the center of the terrain.
This makes sure, that as much terrain as possible is visible and also a wide range of
subdivision levels is covered by a portion of the animation. Later on, the camera passes
closely by the rock face a few times to also cover deep subdivision levels.

Figure 4.2: The terrain used in the test scene. The red line shows the camera animation
path.

4.2 Performance comparison

In theory, our procedure should be faster than the original as it runs in constant
time instead of linear. It is also likely, that our new method takes longer for some of
the shallowest subdivision levels and overtakes the original only at deeper levels. To
compare the two methods effectively, we recorded the frametimes while playing the
camera animation for both solutions at a resolution of 1920x1080. We used the demo
application by Khoury et al. and replaced their compute shader implementation with
our implementation. To thoroughly test our solution we ran it on multiple machines
and recorded multiple animation-runs for both solutions. In order to reach very deep
subdivision levels we set the targeted edge length to 1 pixel. We left the compute shader’s
work group size at 32.
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As can be seen in Figure 4.3, our solution manages to not only perform better at deep
subdivision levels but is also faster at shallow levels. We managed to bring the average
frametime of 19 ms down to 11 ms in our test scene. Comparing the average frametimes
of both methods reveals an average performance improvement of 40%. Thanks to the
nature of constant time algorithms, this difference will increase when using even deeper
subdivision levels. Considering the variance of the frametimes, it is already obvious when
looking at the graph that we managed to bring it down significantly, an average of 70%
to be exact.
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Figure 4.3: Frametime comparison (in seconds) between Khoury et al.’s solution (blue)
and ours (red). The timings shown were recorded at a resolution of 1920x1080 and using
an NVIDIA RTX 2070 Super GPU.

4.3 Drawbacks
There is currently a minor drawback to our new method that concerns the maximum
number of subdivision levels. The base shape that the subdivision is applied to is always
a triangle but the underlying representation we chose for our new method is a grid of
squares. Since a right triangle is only half of a square, we are actually not using half of all
possible keys. This comes down to our keys always requiring the orientation identifier i
which makes our keys exactly one bit longer than Khoury et al.’s. The results is that our
method allows one less maximum subdivision level compared to the original by Khoury
et al., meaning our solution can only handle 31 subdivision levels instead of 32 when
using 32bit integers. There is a way to fix this and reclaim the lost bit which we briefly
discuss in Chapter 5.
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CHAPTER 5
Conclusion and future work

The goal of this paper was to give an overview of current tessellation techniques with a
focus on terrain rendering as well as to take a solution to a common problem and improve
it by developing a drop-in replacement for its key component. As we have shown in
Section 2, the topic of tessellation has many facets and is applicable in many areas from
artistic creation to offline rendering to real-time applications. The latter has become
more and more popular over the last few years and invites change regarding common
hardware-based tessellation. With the introduction of the task/mesh shader pipeline,
solutions like the one from Khoury et al. became even more relevant as they allow for
much needed flexibility.
As mentioned in Section 2.5.5, Khoury et al. claimed that their solution solves two major
problems of hardware-based tessellation while only the limit of at most 6 subdivision
levels is solved. Their solution doesn’t solve the second problem of longer computation
times with deeper subdivision levels since their procedure is of linear time complexity. We
managed to correct that mistake with our solution which runs in constant time, meaning
subdivision levels don’t impact the performance of sub-triangle generation. The results
shown in Section 4 speak for themselves and show how software-based tessellation easily
outperforms hardware-based solutions with it’s two major flaws circumvented.
As mentioned before, our solution still has a minor flaw that brings the maximum
subdivision level down by one compared to the original solution. We left this flaw for
future work since we achieved our goal of finding a constant time solution. Also, if even
deeper subdivision levels are required one can just use 64bit keys or even bigger ones
through slight adjustments to the way our keys are encoded and decoded. Though this
problem is fixable when considering that the number of triangles doubles with every
subdivision level. We mentioned before in Section 4.3 that half of our keys are not used
due to their represented triangles lying outside the input triangle. So on subdivision level
zero there is 1 key unused, level one has 2 unused keys, level two has 4 unused keys and
so on. That means that the number of unused keys on any level make up half of the
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number of keys on the next level. For example, if we could only have 3 subdivision levels
and want to regain the lost bit to build level 4, we can take 1 unused key from level zero,
2 unused keys from level one, 4 unused keys from level two and 8 unused keys from level
three. This makes 15 unused keys out of 16 needed. The one missing key can then be
inherently defined as the zero key. So it is theoretically possible to take all leftover keys
on all subdivision levels to build the 32nd level, in effect regaining the lost bit.
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CHAPTER 6
Appendix

Shown here are our implementations of the lookup tables required for calculating children
keys, parent keys and barycentric points.

Listing 6.1: Lookup tables for the x, y and i values during children key generation.
1 uniform uint ch i ldTab le [ 4 ] [ 4 ] = {
2 { 0u , 0u , 0u , 1u } , { 1u , 0u , 1u , 1u } ,
3 { 0u , 1u , 1u , 1u } , { 0u , 0u , 1u , 0u }
4 } ;
5
6 uniform uint ch i ldrenKeysTable I [ 1 6 ] [ 2 ] = {
7 { 0u , 2u } , { 0u , 1u } , { 1u , 3u } , { 2u , 3u } ,
8 { 0u , 0u } , { 0u , 0u } , { 0u , 0u } , { 0u , 0u } ,
9 { 0u , 0u } , { 0u , 0u } , { 1u , 0u } , { 1u , 0u } ,
10 { 1u , 0u } , { 1u , 0u } , { 1u , 1u } , { 1u , 1u }
11 } ;

Listing 6.2: The lookup table for the i value during parent key generation.
1 uniform uint parentKeyTableI [ 3 2 ] = {
2 0u , 0u , 1u , 2u , 1u , 2u , 3u , 3u ,
3 0u , 0u , 0u , 0u , 0u , 0u , 0u , 0u ,
4 0u , 0u , 0u , 0u , 1u , 0u , 0u , 1u ,
5 0u , 1u , 1u , 0u , 1u , 1u , 1u , 1u
6 } ;

Listing 6.3: The lookup table for finding the correct points of a barycentric triangle.
1 uniform int pointMap [ 1 6 ] [ 3 ] = {
2 { 2 , 3 , 0 } , { 0 , 2 , 1 } , { 1 , 0 , 3 } , { 3 , 1 , 2 } ,
3 { 0 , 0 , 0 } , { 0 , 0 , 0 } , { 0 , 0 , 0 } , { 0 , 0 , 0 } ,
4 { 4 , 0 , 2 } , { 4 , 0 , 2 } , { 4 , 1 , 0 } , { 4 , 1 , 0 } ,
5 { 4 , 2 , 3 } , { 4 , 2 , 3 } , { 4 , 3 , 1 } , { 4 , 3 , 1 }
6 } ;
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