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Fig. 1. A dashboard to support the analysis of complex relationships between risk assessments of individual body parts over long
sessions that span single or multiple operations. Ergonomists can understand how to mitigate ergonomic risk by using coordinated
multiple views (CMV) (a) ErgoView, (b) ErgoTimeline, (c) scatter plot matrix, and (d) parallel coordinates.

Abstract— Ergonomic risk assessment is now, due to an increased awareness, carried out more often than in the past. The
conventional risk assessment evaluation, based on expert-assisted observation of the workplaces and manually filling in score tables, is
still predominant. Data analysis is usually done with a focus on critical moments, although without the support of contextual information
and changes over time. In this paper we introduce ErgoExplorer, a system for the interactive visual analysis of risk assessment data.
In contrast to the current practice, we focus on data that span across multiple actions and multiple workers while keeping all contextual
information. Data is automatically extracted from video streams. Based on carefully investigated analysis tasks, we introduce new
views and their corresponding interactions. These views also incorporate domain-specific score tables to guarantee an easy adoption
by domain experts. All views are integrated into ErgoExplorer, which relies on coordinated multiple views to facilitate analysis through
interaction. ErgoExplorer makes it possible for the first time to examine complex relationships between risk assessments of individual
body parts over long sessions that span multiple operations. The newly introduced approach supports analysis and exploration at
several levels of detail, ranging from a general overview, down to inspecting individual frames in the video stream, if necessary. We
illustrate the usefulness of the newly proposed approach applying it to several datasets.
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1 INTRODUCTION

Recent advancements in smart factories, via Industry 4.0 (I4.0), raised
generalized requirements concerning a more thorough analysis of work-
ers’ activities in several settings. These include manufacturing, process
industries, and construction, to mention just a few [19]. Also, workplace
accidents or other health-related incidents that might cause injuries to
workers, raise legal disputes in which carefully collected evidence may
be required to set out the actual responsibilities and eventual compen-
sations [6]. However, traditional workplace activity monitoring and
ergonomic assessments rely on self-reporting or specialists’ direct ob-
servations. In risk evaluation, for instance, observations regarding the
human body focus on measuring angles of the trunk and limb joints.
This makes the procedure costly and severely prone to intra- and inter-
observer variances [27]. Several alternatives to automate procedures for
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tracking and collecting ergonomic data have been proposed, including
accelerometers, RFID devices, motion sensors, LiDAR scanners, GPS,
physiological monitoring, and many others. We refere to Subedi and
Pradhananga [30] for a thorough literature review on the topic.

The new data-driven I4.0 framework requires a more systematic and
unbiased collection and analysis of workers’ activities. This helps opti-
mize processes in manufacturing, construction, and various other indus-
trial settings, in which human-assisted observation is inadequate. Com-
puter Vision (CV) is becoming the main alternative to human-assisted
monitoring. Recently several CV-based approaches have been pro-
posed aimed to provide adequate unsupervised solutions to ergonomic
assessment. In particular, deep-learning based body pose estimation
like STAF [25] or VIBE [12] are enabling novel and significant break-
throughs in several contexts, including workspace ergonomic assess-
ment [20]. This trend enabled a complete digitization of the different
workplace aspects, including personnel activities, providing a wealth
of potentially valuable data. In ergonomic assessment, for instance,
routine monitoring may require evaluating about 25 joint angles and
their combined relative values at least once per second. Thus, a single
worker’s hourly activity generates a large amount of data that require
adequate tools to perform exploratory analyses. This helps ergonomists
pinpoint situations or contexts that require intervention or find relevant
situations that may inform litigation. However, to the best of our knowl-
edge, there are no attempts to provide means to extract and handle
significant ergonomic information in workplaces in a sensible way.

In this work we introduce ErgoExplorer, a visualization tool able
to explore and analyze time dependent ergonomic scores from ob-
servations encompassing very long periods. By means of CV-based
data extraction from regular cameras, the system can analyze and syn-
thesize large amounts of ergonomic data. The goal is to facilitate
the ergonomists’ tasks to detect unwanted or unexpected workplace
conditions. This in turn enables insights from complex interplays of
situations, to evaluate possible workplace scenarios on a sound ba-
sis, and to address matters in which a careful yet massive ergonomic
data analysis must be carried out. ErgoExplorer is based on coordi-
nated multiple views, incorporating the traditional score tables used
by ergonomists in an interactive manner. They are linked with other
depictions, including two novel views, ErgoView and ErgoTimeline.
In addition we customize other views to study temporal aspects of the
scores.

2 ERGONOMIC ASSESSMENTS

Workplaces enforcing a safety culture are known to be more productive,
with high employee morale and low burnout. A careful ergonomics
integration is among the most relevant factors in this enforcement.
Work-related musculoskeletal disorders (WMSDs) are typical work-
place health issues that may result in inflammation or degeneration of
functional body structures [8]. WMSDs are the leading cause of pro-
ductivity losses due to deaths and work-related permanent disabilities,
litigation, sick leaves, and the related indirect costs [4]. Ergonomic
assessment programs aim to detect and assess actual or potentially
harmful workplace situations, suggesting interventions to prevent the
occurrence of WMSDs [17].

Traditional workplace activity monitoring and ergonomic assess-
ments rely on self-reporting or on specialists’ direct observations re-
garding the angles of main body joints. Rapid Upper Limb Assessment
(RULA) [21] and Rapid Entire Body Assessment (REBA) [22] appear
to be the most widespread approaches in this respect [15]. Human-
assisted evaluation has to be performed by specialized ergonomists.
The complexity of such a manual task typically requires the evaluation
to focus only on critical moments in which the workers are executing
potentially or actually risky movements. With pencil-and-paper-based
methodologies, ergonomists observe workers performing tasks and
then fill a table. They are slow and cumbersome when it comes to
monitoring a worker over an extended period of time. This requires
large intervention times of human experts, whose sole presence may
also alter the actual worker’s performance. As a consequence, the re-
sulting assessments are vulnerable to observer fatigue, have scalability
difficulties, and depend heavily on the experts’ subjective criteria. This

leads to non-uniform evaluations, intra- and inter-observer variance,
and other detrimental issues [26, 27]. However, the scoring tables are
essential as experts rely on them to consolidate the measurements taken
throughout an activity and they are the primary tool for decision making
up to now.

Rapid Entire Body Assessment (REBA) generates a postural ex-
amination framework sensitive to musculoskeletal risks in various work
tasks. It is specifically applicable to unpredictable working postures
found in construction, health care, and other service industries [22].
With REBA, body joints (e.g., shoulders or elbows) are evaluated based
on their angular deviations from a predefined safe and comfortable
posture. Ergonomists assign individual joint and posture scores to each
body region for a visually monitored working task. Depending on the
specific case, they fill additional worksheets for each significant change
of a body posture. The ergonomic assessment considers bio-mechanical
and postural load requirements on the neck, trunk, and upper limbs dur-
ing the work cycle. For this, a systematic process has to be performed to
evaluate the required body postures, exerted forces, and repetitions for
the tasks being assessed. Moreover, limbs are analyzed separately (e.g.,
right versus left upper arm) if performing different actions. So instead
of a single-page worksheet containing the three tables, ergonomists
need additional tables to assign respective scores. Deviations from
the predefined safe postures receive individual scores that are integer
numbers related to the actual angular deviations in all joints. Joint
scores are then combined into limbs and trunk scores using specific
tables typically presented in ad-hoc worksheets. The limbs and trunk
scores finally guide the computation of the overall grand score.

3 PREVIOUS WORK

Visual analysis of joint movements was proposed in several contexts [3],
including the study of locomotion [16, 32], deviations in movement
patterns [18], ortopedics-oriented biokinematic data [5, 13], sports [11],
and human-computer interaction [33]. However, there are only a few
proposals in the literature targeting the visual analysis of workers’
performance in actual workplace settings. The work of Han et al. [9]
introduces simulated 3D working environments to perform ergonomic
analyses. The simulated environment is used as an observation tool.
Specialists can assess the different tasks and activities that the workers
will perform, and if they will result in unhealthy postures, inappropriate
repetitions, excessive force or static loading, or stress in some body
parts. Teizer et al. [31] present an educational and training environment
for construction workers that is based on the integration of real-time
location tracking and immersive 3D data visualization. Kanan et al. [10]
propose an autonomous system to monitor the position of workers and
equipment. Its effectiveness has been tested on real construction sites.
As a result, they display a video summary to supervise the proximity of
the worker and the risk area around the equipment.

More automatized proposals apply CV-based ergonomic analyses.
Bauters et al. [2] discuss a multicamera-based model to automate the
analysis of assembly workstations. The proposed system generates real-
time information to support improvements in workers’ performances.
The collected data is analyzed in terms of specific key performance
indicators (KPIs). The resulting information is presented in a specifi-
cally designed dashboard that visualizes the workers’ efficiency, pace,
value-adding activities, anomalous work cycle situations, and other rel-
evant parameters. Video processing is based on traditional engineered
feature extraction. Thus, the approach is less flexible compared to
state-of-the-art practices, and highly dependent on the fine-tuning of
several processing aspects, camera settings, and data fusion.

A similar goal was investigated by Li et al. [14], where the authors
apply 3D skeletal modeling to emulate the workers’ movements in
real construction and manufacturing sites. According to the authors
the method is able to discern ergonomic risks by detecting inadequate
body postures and also to evaluate force and load handling that may
potentially generate injuries. The actual information involved in tasks
maneuvering have to be delivered from the workplace design and envi-
ronment, and the task schedule, which, according to the authors, can
be obtained from direct observation or video recordings. The result-
ing data is then used together with the mentioned 3D model to infer



Table 1. Task types.

Ergonomic Task Analysis Typical Topic Question Abstract Task

T1: Determine the type of ergonomic analysis Q1: What is an adequate overview? Categorize (Fig 1)
Q2: What is the purpose of the analysis? Distinguish

T2: Define goals and evaluation criteria Q3: What are the expected outcomes of this analysis? Identify
Q4: What are the performance assessment criteria? Compare (Fig 1)

T3: Task decomposition table or diagram

Q5: How can this work be split into tasks? Distinguish
Q6: How many times is each task performed? Compare
Q7: How much time is spent on each task? Compare
Q8: Which task should be analyzed first? Identify

T4: Check decomposition validity Q9: Which data represents the task best? Locate
Q10: Are outliers and wrong data filtered out? Distinguish

T5: Identify risky movements
Q11: What risky movements are related to a particular task? Identify
Q12: How are scores distributed in the risk tables? Categorize
Q13: Which body joints present high risk? Distinguish
Q14: Is the risk balanced on both sides of the body? Compare

T6: Test hypotheses concerning performance factors
Q15: When is intervention required? Distinguish
Q16: How to mitigate ergonomic risk? Identify
Q17: How to validate improvements? Compare

ergonomic information such as the joints’ locations and angles. This
enables a successive risk assessment analysis using traditional methods
like RULA [21] or REBA [22].

The latest breakthroughs in deep learning applied to CV enable a
more thorough and rigorous monitoring, in particular by means of
body-pose estimation-modules like STAF [25] or VIBE [12]. In Mas-
siris Fernandez et al. [20], for instance, the effectiveness and accuracy
of a CV-based approach was tested in a variety of scenarios. Difficult
workplace settings with several workers are included, involving occlu-
sions and self-occlusions, varying illumination conditions, moving and
egocentric cameras, etc. The success of this approach triggers new
challenges, in particular how to convey and help make sense of the
large amount of activity data that is collected second by second.

Another significant aspect of video-based massive data collection
is related to adequately filter out irrelevant parts of takes that may
hamper the significance of the overall data analysis and visualization.
Workers often perform movements that are unrelated to their actual
activities, and in a different time granularity. Examples include a short
arm movement to scratch the forehead, a more prolonged arm and
head movement to check the time on a smartphone, an even longer and
more complex sequence of movements to grab a water bottle, and sip,
etc. Indiscriminate movement collection and analysis, oblivious to the
aimlessness of these or other kind of events, will certainly generate
noisy parameters that in the long term may compromise the overall
performance of the system. For this reason, event-based semantic video
summarization appears to be a feasible alternative. In Song et al. [29]
the authors propose an event-centric video summarization method (i.e.,
an approach not based on takes or key-frames). The underlying method
considers event detection based on trajectory analysis, and a random
forest classifier to recognize abnormal deviations from the previously
detected trajectories. These detected abnormal events then enable a
coverage algorithm that summarizes the complete relevant set of frames.

In most of these approaches, the main interest is to collect and
represent relationships between different movements (e.g., joints, poses)
instead of collecting, analyzing, and visualizing large sets of sequential
data. This limits their applicability in large-scale projects like the
ones required for I4.0. An example would be the combined analysis
of several workers’ activities over extended periods of time and in
varying working conditions. Some approaches take advantage of the
advancements in virtual 3D worlds, CV, and data visualization. So far
none aims to produce an integrated solution that is able to provide all
aspects required for ergonomic assessment of several workers, along
large periods of time, and to summarize the analysis in sensible ways.
In this work, we propose an encompassing methodology that is able to:

• collect CV-based information related to workers’ performance in
real working sites,

• evaluate this information regarding the most widespread er-
gonomic assessment methods,

• split the ergonomic analysis into domain tasks, determined by
specific topic questions, in order to generate visualizations that
fulfill the requirements, and

• present the results in a flexible and actionable dashboard that
facilitates the most useful data manipulation operations to easily
extract the relevant conclusions.

4 TASKS ABSTRACTION AND REQUIREMENT ANALYSIS

We first perform a design study comprising a characterization of the
problem domain, which in our case is an ergonomic hierarchical task
analysis [1]. As Meyer et al. [23] suggested for real-world problem-
driven studies, we initiated participatory design sessions with four
domain experts. In the sessions with the domain experts, we identi-
fied several analysis tasks for the exploratory analysis of ergonomics
movement data. The subdivision into tasks is similar to other com-
monly applied time-and-motion studies. Splitting into tasks and the
underlying question scheme are adequate to pinpoint and prioritize the
circumstances that may be riskier. Our aim is to design a suitable inter-
face to support ergonomic decision-making and thus improve workers’
well-being. The objects of analysis are ergonomic and angular distri-
bution data and their temporal, similarity, quantity, and dependency
relations as quantified through an automated video analysis. The analy-
sis task provides a dataset composed of tables describing the angular
joint distribution per worker and per video frame. These angles are
calculated based on 3D CV body-joint inferences [20]. The underly-
ing CV-based algorithms to estimate the ergonomic data have many
parameters, for instance detection thresholds for filtering outliers, or
acquisition-confidence factors if the video takes are not of good quality.
Extra filtering procedures may be needed due to other circumstances,
like worker’s occlusions or self-occlusions. The REBA method uses the
resulting joint angle information as the basis to calculate ergonomic risk.
It determines risk attributes with ordinal categories, where diverging
low values represent a low ergonomic risk and viceversa.

The main focus of our approach is to support a-posteriori analysis
tasks of time dependent scores obtained by one of the scoring schemes
(REBA or RULA). In an ergonomic evaluation case, the analysis aim
might vary depending on what kind of information is most relevant to
the stakeholders, and on the peculiarities of each evaluation task. The
ergonomic analysis begins with an overview of the time-and-motion
study, which is afterwards decomposed into tasks at desired levels of
detail, in a similar vein to Schneiderman’s visualization mantra [28].
Then, tasks are sorted hierarchically, depending on various factors in
light of the analysis purposes. In particular, and after the interviews, we
have distinguished six different evaluation tasks, which are decomposed



into 17 basic questions that ergonomists have to address at different
analysis stages (see Table 1). These questions were compiled from
two sources: interviews with ergonomists about their data and analysis
methods, and surveys of problems addressed in the literature [1]. The
questions are the basis for defining the design goals of our visual
analysis tool, and for conveying the relevant information and data
relationships in a clear and distinguishable way.

4.1 Task abstraction
Defining the type of ergonomic analysis (T1) and the goals and eval-
uation criteria (T2), it is essential to highlight that these are context-
dependent aspects. An ergonomic analysis is generally part of the
continuous improvement practices in enterprises and companies. How-
ever, an on-premise ergonomic analysis may also be required due to
regulation changes, direct expert or authority recommendations, the
detection and determination of undesired situations, or as part of other
corrective actions after contingencies or accidents. In this context,
questions Q1 and Q2 clarify the focus of the ergonomic analysis, and
questions Q3 and Q4 state the expected performance criteria. In this
initial phase, it is essential that our tool supports the user to understand
what happened during the worker’s activity, what should have happened
in case something was undesirable, what might have happened in hypo-
thetical contexts, and to estimate the rate and cost of failures. Task T3
is concerned with adequate factorization of the analysis, decomposing
the overall activity into smaller analysis units. Question Q5 focuses on
the work-to-task division. Questions Q6, Q7, and Q8 point to the task
triage. The word triage is borrowed from medical parlance, in which a
sorting by urgency determines the allocation of patients according to
system priorities. In the task triage, we sort each task in terms of input,
output, protocols, records, value enrichment, and risk criteria. During
task T4, the requirement is to confirm the task decomposition, proposed
goals, and performance benchmarks. For this purpose, questions Q9
and Q10 intend to filter outliers or useless data by selecting an ideal
task candidate, which represents the movements performed by a worker
during a routine task.

Task T5 is concerned with understanding the actual ergonomic prob-
lems, in particular risky or potentially harmful movements or prolonged
positions. For this, we have to express if risky movements are asso-
ciated with a specific task (Q11 and Q12), a body joint (Q13), or a
body side (Q14). Finally, in T6 it is essential to arrive at conclusions,
especially if a specific ergonomic improvement is required with some
urgency. In REBA, for instance, if a task is found to be of very high
risk, an ergonomic intervention is demanded immediately. Our tool also
provides specific support for this kind of actions (Q15). Perhaps the
most important question during the ergonomic analysis is Q16, which is
how to mitigate ergonomic risk. An expert should refer to the prevailing
state-of-the-art or best practices to implement and validate (Q17) the
potential alternatives. The underlying purpose of Q16 and Q17 is to
establish an impact measure. This may have a translational effect in re-
ducing accidents, diminish the incidence of WMSDs, retrain personnel,
and overall save undesired ergonomy related-costs. Whenever possible,
such an impact measure confirms the validity of the diagnosis and the
proposed solutions.

4.2 Requirements
Once the analysis tasks were defined, we then elicited the following
requirements from the ergonomy experts that participated in this study:

• R1: Enable a fast path for an initial observation (T1).

• R2: Provide a way for observing the workers’ movements and
postures during several work cycles (T2).

• R3: Quickly specify the most compromised postures, critical
angle ranges, and highest force-load tasks (T3).

• R4: Locate postures that are held during the longest period of
time (T3).

• R5: Provide a way to find (or discard) atypical actions or joint-
risk estimations (T4).

• R6: Provide a way for visual and descriptive identification of the
task and the movements performed (T1, T5).

• R7: Provide means to easily locate frames or video portions with
risky movements for workers’ retraining (T1, T6).

• R8: Incorporate the REBA score tables which provide an action
level with an indication of urgency (T3, T6)

• R9: Provide comparisons of time-dependent scores for single and
multiple joints (T5).

• R10: Quickly compare the risk distribution for each joint between
the two sides of the body (T5, T6).

5 THE ErgoExplorer DESIGN

Based on the identified analysis tasks and the given requirements, we
designed the ErgoExplorer tool. It provides means to quickly identify
the focus required in a given analysis task, and to detect and understand
relevant information within large amounts of information. It offers
an initial overview of the data with an adequate level of detail. The
tool then allows to delve into specific subsets of the data (e.g., when
risky movements arise) and gather all the details relevant to the specific
situation. To make the ErgoExplorer dashboard easier to interpret,
we place a human body image in the center of the coordinated multiple
views, which are then arranged around it, as shown in Fig. 1. All the
views are linked. If the user brushes in one view, the corresponding data
items are highlighted in all the other views. In the following subsections
we present and motivate the rationale behind the design and use of the
different views according to the tasks and requirements. We start with
the description of visual encodings in ErgoView, i.e., the central view
which is composed of several smaller views. We continue with the
description of the ErgoTimeline, and conclude the section with the
chosen interaction design. In order to illustrate the new techniques, we
visualize ergonomic data from two video collections. The first dataset
contains 15861 video frames and 30 corresponding ergonomic data
attributes per captured video frame for a worker painting a wall (approx.
4.5 hours of video material). The second dataset has only 300 frames
and describes a person who does gymnastics.

5.1 Visual encodings in ErgoView
The main component, ErgoView, is the central view for the explo-
ration, which includes other views arranged around a human body
image (see Fig. 2). This arrangement addresses different design re-
quirements, presents known information appropriately and, according
to the experts’ opinion, engages, and facilitates the specific analysis
tasks. Besides the human silhouette which serves as an orientation
landmark, the ErgoView contains REBA Tables, ErgoGauges, and
ErgoMovements. The well-known REBA Tables represent a link to
the conventional way in the domain of risk assessment, and they are re-
quired by the domain experts (R8). REBA Tables are arranged around
the picture of a human body, where the body silhouette is seen from
behind. This orientation makes it easier for ergonomists to quickly
associate the scores in the tables positioned on the right side with the
corresponding joints on the right side of the human body, and analo-
gously for the left side. The same is true for the ErgoGauges, which are
placed in a row above the silhouette. They support a detailed analysis
of ergonomic risk for all body joints (R9). In addition to the proper left
and right placement, a line also links each gauge to the corresponding
body joint, making the visual connection even more explicit. Finally, at
the bottom we have the ErgoMovements view, which makes it possible
to include further sources of information into the analysis, such as im-
ages and video (R7). Each of the three components of the ErgoView is
explained in detail in subsections below. The ErgoView layout proved
to be very practical according to the experts, and it is used as a starting
point in the analysis.

5.1.1 REBA Tables

At the beginning of an analysis experts need to quickly reveal the spread
of potentially risky movements in the data (R1). Our view of REBA
Tables is designed to support this basic requirement. In particular, it



Fig. 2. ErgoView. (a) The REBA Table B is maximized, which shows
the data attribute Score for the wrist, lower arm, and upper arm of the
left body side (see Fig. 3 for details on the design of the augmented
score tables). (b) The ErgoGauge is used to visualize the entire range
of measured values for the corresponding joint angle; here, the right-
shoulder view is maximized. (c) The ErgoMovements view addresses the
requirements (such as R5, and R7) to enable image(s) or video preview,
for example, to inspect a time window around a specific pose (R1).

uses three scoring tables (A, B, and C) that reflect the division of a
body into sections, including the upper arm, lower arm, wrist, neck,
trunk, and legs. Tables A and B show raw data attributes, while Table
C receives scores from tables A and B as input. Values from Table
C with an added activity score constitute the final result of a posture
evaluation, which is an action level with an indication of the severity of
the assessment.

Because REBA Tables are still widespread in the application do-
main, we display them (R8), but in an interactive and cumulative way
(R3). In our approach, posture scores are computed automatically us-
ing CV methods as explained before. A vast number of scores for an
extended period of time can be calculated and deployed for analysis au-
tomatically. We display all scoring tables at once, three for the left and
three for the right body side (R10). Moreover, we propose to augment
all tables to allow ergonomists to compare time-dependent scores for
single and multiple joints (R9). Our design relies on histograms and
a heatmap to show time-dependent data while retaining the primary
purpose of REBA Tables.

We briefly explain the original table design. Since all tables share
similar designs, we will use Table A as an example. The three data
attributes used in this table are TrunkScore, NeckScore, and LegScore.
The original design of Table A is shown in Fig. 3(a). Note that
TrunkScore goes from 1 to 5, NeckScore from 1 to 3, and LegScore
from 1 to 4. The posture scores for each attribute are pre-entered in the
corresponding cells. Ergonomists can quickly select one value for each
joint based on their observation of the worker’s posture. In this figure,
a diamond icon indicates the assigned score (2 for the neck, 3 for the
legs, and 5 for the trunk). An established hierarchical scoring scheme
is used, which means that in order to calculate the final posture score,
ergonomists must go from the top data attribute (Neck). Depending
on the score given there, they mark the score in the level below (Legs)
and then find the intersection with the third attribute (Trunk) to read the
derived score, which is 8 in this case. The same procedure is repeated
for Table B and for Table C. Because each cell in a table can hold only
a single scalar value, the original REBA Tables are not appropriate for
analyzing a collection of observations. For this reason, we adopt the
basic table design, but allow each cell to hold more than one value. We
encode the resulting value in color, and the table becomes a heatmap.
We also add marginal histograms for rows and columns. To explain our
design, we use terminology that differentiates between horizontal and
vertical data attributes—this relates to rows and columns in the tables,

Fig. 3. Design details of the REBA Table A. (a) The original table design
as published by McAtamney and Hignett [22]. (b) The main parts of
the augmented table. (c) The proposed Table A which is interactive and
includes vertical and horizontal histograms, and a heatmap (R8).

respectively, but also to how the histograms in the tables are oriented.
For example, Fig. 3(b) shows four horizontally oriented histograms
(one for horizontal-data attribute NeckScore, and three for horizontal-
data attribute LeftLegScore) and one vertically oriented histogram
(for vertical-data attribute TrunkScore). The numbers of bins in the
histograms in the first level, i.e., for the horizontal data attribute 1, and
vertical data attribute 1, correspond to the number of posture scores
that can be assigned to the respective joint. In the second level, i.e., for
the horizontal data attribute 2, the number of histograms corresponds
to the number of bins in the histogram that is one level above. Also
at this level, the number of bins in each histogram corresponds to the
number of scores for the respective joint. Since at the first level there
is only one histogram the total number of data items is the sum over
all bins. However, at the second level, the total number of data items is
the sum of all bins of all histograms. Here, each histogram has as many
items as contained in the bin of the first-level histogram located at the
top of a second-level histogram. REBA Tables do not use more than
two levels. However, our approach allows for more horizontal or verti-
cal levels in a table (e.g., the RULA tables are commonly designed with
two vertical levels). The height of a bin in a histogram indicates the



frequency of the corresponding joint score in the data, while a heatmap
uses color intensity to indicate the frequency distribution of the com-
puted posture scores. We opted for a heatmap because we wanted to
keep the numerical values of the overall REBA score for each table
cell as well. If we use a single posture measure, instead of showing
many measures, then on each level there is only one populated bin in
the histogram, and in the heatmap only one cell is used. This would be
the same as looking at the original table depicting only single scalar
values. The dataset shown in the example case has more than 15000
rows, i.e., unique posture measurements. As histograms and heatmaps
represent aggregated visualizations, depicting such an amount of data
is not a problem.

5.1.2 ErgoGauge

The REBA method defines a safe posture for each joint in terms of the
most desirable joint angles, and our REBA Tables support a whole-
body ergonomic risk evaluation. The requirement R3 describes the
need to support a detailed ergonomic-risk distribution-analysis for each
joint. A safe posture, e.g., for the elbow, means the forearm position
is within an angle between 60 and 100 degrees concerning the vertical
axis of movement. As we have angles to visualize, we decided to use
a radial layout. We show a single measurement angle as a radial line.
Since data are angle measurements of human body joints, we display
only a part of the circle corresponding to the valid range of a particular
joint movement. In this way, a quick connection between the actual
and valid joint movements is established. Fig. 4 shows the basic design
of the view.

Linking an angle to its assigned score is also an important aspect that
we want to convey in this visualization. Since angles are only indirectly
related to posture scores, we use color coding to communicate the
movement risk for each joint angle. The ErgoGauge classifies and
locates each joint’s estimated risk according to the ergonomic angle
using the traffic light palette (red, yellow, and green), with red indicating
the worst score. We choose red, yellow, and green after discussions
with domain experts although these colors are not distinguishable for
persons with impaired color vision. In such a case, the color palette
can be modified accordingly. Varying the length of segments (without
coloring them) is another option to reduce cognitive demand and help
ergonomists to concentrate on analyzing and comparing different angle
scores and related angle ranges (see Fig. 4(b)). While this choice was
appreciated by ergonomists, it was found that, in rare cases, different
posture scores may be assigned very similar or the same joint-angle
value. Other parameters such as load may affect the given score. In
this particular case, the combination of the color and length channel
to encode the joint score proved to be better in emphasizing such an
unusual posture (R5). A corresponding ErgoGauge example is shown
in Fig. 4(d). Without color coding, the ErgoGauge shows only the
possible range of joint movements. All three design choices are shown
in Fig. 4. The top row shows Dataset1 with fifteen thousand entries
compared to the bottom row with Dataset2 and a few hundred entries.
Using only the ErgoGauge by itself, it is hard to know how many items
are within a certain range.

5.1.3 ErgoMovements

There is a general trend towards an automatic monitoring in workplaces.
Ergonomy experts will be provided with detailed ergonomic data to con-
duct a thorough a-posteriori analysis. However, visual data will still be
the most important information in their work. One of the requirements
has been that ErgoExplorer should include means to analyze videos
and posture images during the assessment task. This can be accom-
plished with the ErgoMovements view, which provides standard video
playback options (R7) and also supports further requirements, including
R1, R2, R3, R5, R7, and R6, as explained in the following. Compared
to the pencil-and-paper-based REBA method, ErgoMovements helps
users to create a better mental representation of the analyzed data by
linking numerical values in the views together with actual workers’
movements. For example, by examining the quantitative and qualitative
data presented in the REBA Tables and displayed in the ErgoView,
the ergonomist can quickly conclude the seriousness of the situation

Fig. 4. Four possibilities to depict the actual range of the recorded
angles using the ErgoGauge are shown. (a) and (b) use only one color
(information) while (c) and (d) use three different colors (the usual heat
map palette). (d) uses color and different line lengths. Since angles
are only indirectly related to posture scores, this can be very useful for
discovering deviating or inappropriate working postures that can affect
the workers’ performance or their health.

and whether to react immediately. In order to help analysts perceive
the depicted information more efficiently (especially regarding R5), we
provide options to display different sets of pre-selected images (see
Fig 5). Images are one of the attributes in our datasets, and each image
is associated with a specific time point. The user can select any of
the related data tables shown in the ErgoView, to display the corre-
sponding set of images. Each of the images relates to its corresponding
REBA score. There is an option to quickly switch between the tables
to gain insight into the worker’s actions in relation to the tables’ scores.

We have considered different ways of selecting representative im-
ages since quite different postures can result in the same overall score
in the table. In working conditions where actions are repeated cycli-
cally (as is our case), the experts mentioned that any image of a group
with the same score is a good representative of the whole group. In
this case, they identified the relevant task to establish a relationship
between the results presented in the REBA Tables, the complexity of
the work, and the related risk factors to which the worker is exposed.
ErgoMovements helps to clarify the observed workers’ ergonomics
data in the context of their original work environment (R2, R6, R7).
Moreover, ErgoMovements can show examples of unsafe actions as
well as good practices previously executed during the workday (R3,
R5, R7), which in turn supports the reduction of ergonomic risks. For
instance, workers who are at a high ergonomic risk undergo retrain-
ing sessions. During this retraining, ErgoMovements depicts repre-
sentations of the currently performed movements and postures (R7),
highlighting the aspects that need to improve, and also the progress to
achieve safer working practices.

5.2 ErgoTimeline

The ErgoTimeline shows the distribution of joint angles and their
risks over time (see Fig. 6). ErgoTimeline analysis (T3) depicts an
action’s repetitions, duration, and other time-related aspects. This is
practical for analyzing routine a-posteriori instead of on-premise work-
ing contexts. Usually, the selection of routine levels and a work-to-task
partitioning (work sampling) are made by firsthand inspection, which
is time consuming and lacks inter-rater reliability [7, 27]. Based on
the tasks that make up the work at hand, five levels of decreasing rou-
tinization can be distinguished [7]: i) a constant task with a predictable
work cycle; ii) various cyclical tasks; iii) a mixture of cyclical and
non-cyclical tasks; iv) a single non-cyclical task, and v) multiple non-
cyclical tasks. The ErgoTimeline assists experts in assessing as to
whether the analyzed work has some level of routinization and how an
action can be split into smaller parts. Moreover, it directly supports
tasks T3 and T4, the decomposition of actions, and its validity. It also
supports the evaluation of repeatability and facilitates the elimination
of outliers. The main concept of this view is to depict the joint angles



Fig. 5. (a) For each of the scores computed in Table C, an image is
automatically selected that gives visual feedback to the expert about
the worker’s action performed. In the shown case, the worst scores are
nine and ten, and the related action is dipping a roller into a container
with paint placed on the floor (R7). (b) Table A for Dataset2 is sparse,
however, risk assessments for legs, neck, and trunk are most of the time
within an acceptable range.

by a line chart. In this way, the analysts see the values as a function
of time, and can easily spot cycles, repetitions, and irregularities (R2,
R5). We show data for several joints in a single chart to support a
visual correlation analysis (R9). Color coding and labels are used to
distinguish between joints in this case. Finally, there are limits which
indicate a risky or unhealthy value for each joint (R7). We depict the
current limit values as vertical lines colored in green for non-risky
and in red for risky postures. ErgoTimeline also superimposes the
curves on colored background (R3). An example is given in Fig. 6(c)
to examine joint angles in detail. As limits are given per joint only,
in case of comparing several joints a common vertical axis becomes
impossible. In this case the vertical axis is split across parts of the
view. An advantage of ErgoTimeline is that we do not rely on regular
work cycles. We provide a scoring scheme for joint angle-movements
created to handle static, dynamic, or unstable postures based on REBA.

The measured joint angles are not the only attributes for calculating
the posture scores, but they are still crucial for a more detailed ergonomy
analysis, e.g., to determine how an injury occurred. In Fig. 6(a) we
observe the effect of fatigue and lateral unbalance. At the beginning
both shoulders move evenly and as the worker’s right shoulder gets
tired, the left shoulder begins to execute more abrupt movements. In
Fig. 6(b), we see at the end of the sequence a posture correction made
by the gymnast that stands upright. Finally, it is possible to inspect how
a variation in the joint angle affects the estimated risk score with the
overlap display, as depicted in Fig. 6(c). The ErgoTimeline indicates
a high risk exposure for elbows and cyclic movements in the shoulders.

In addition to the specifically designed views described above, we
also allow for other standard views if needed. During the analysis
tasks, parallel coordinates and scatter plots are often used to explore
correlations between values. The layout is fully configurable, and Fig. 1
shows the setup preferred by the domain experts, though other settings
are possible as well.

5.3 Interaction Design

Actionable views are essential for some requirements (e.g., R3, R6).
For instance, brushing facilitates selecting the critical task to be er-
gonomically evaluated (Q9). In all views, we support very simple
types of data selection, i.e., through mouse clicks. Where needed, we
added more advanced brushing operations, including composite brush-
ing and an angle-brush that selects a user-defined angle on a circle

Fig. 6. ErgoTimeline to depict angular values over time for gymnastics
movements (Dataset2). (a) and (b) compare angles for the left and right
elbow and for the left and right shoulder, respectively. (c) simultane-
ously compares angles & risks of the elbows and shoulders. Different
body joints operate in different angle ranges Each vertical axis is scaled
according to the range of the corresponding data attribute (R9).

in the ErgoGauge view. Concerning the REBA Tables, the user can
select a single bin in a histogram or make a composite brush by select-
ing several histograms with the mouse. If a user selects one or more
cells in the heatmap, we regard this action as adding new data items
to the same brush and not as creating a new brush and adding it into a
composite brush (see Fig. 7). Ergonomists appreciated this realization
because, in most cases, they select a couple of cells (posture score
values). Then they observe the relations in other views to generate
hypotheses or valuable clues about the possible causes of actual (R6) or
potential ergonomic risks (R8) and suitable feedback recommendations
(R7). With ErgoGauges we support the analysis of joint angles that
deviate from a safe posture. We implemented a brush that follows the
radial layout of its parent view, as shown in Fig. 8. We support a quick
selection of all data items that share the same joint score by enabling
the user to click on the outer ring of the ErgoGauge. Also, the user
can adapt the brush handles or enter the values in numeric fields for
exact positioning. More than one brush can be specified, allowing the
user to combine different angle ranges. This may be needed to create a
reference stage for a risk-distribution analysis.

Analyzing the time-dependent data is of high priority for er-
gonomists. To support this requirement, we implemented a range
brush in the ErgoTimeline. The brush can be placed at an arbitrary
position on the horizontal axis, and the user can change the brush’s
extent and position at any time.

The path of curves or the color-coded results in the ErgoTimeline
are clearly visible for visualizing data with a small number of time
steps. However, in some scenarios, posture measurements must be
taken over a prolonged time, and as a consequence, fine details in the
ErgoTimeline may be lost. As shown in Fig. 9(a) it is impossible to
perceive all the curves’ fine-detail changes. Multiple brushes can be



created to support time-interval comparisons, as shown in Fig. 9(b). We
have implemented a magnifier (zoom slider) as a details-on-demand op-
tion that can be adjusted in two ways. First, the users specify the range
on the temporal, i.e., horizontal, axis that the magnifier should enlarge.
Then, they decide how much of the view space is dedicated to display
the magnified data (see Fig. 9(c)). In this way it is possible to create
fine-detail brushes on the temporal axis. Second, it is possible to set up
the magnifier to work in the other direction, i.e., to compress a large
portion of the data onto a tiny part of the display. Our method allows
the user zooming in and out to filter outliers in the work sequences
(Q10) and to compare values obtained in the other views.

Fig. 7. Brushing in REBA Tables. Two cells (highlighted by red rectan-
gles) are selected in a heatmap (R8).

Fig. 8. Brushing in ErgoGauge. (a) A brush was created to select the
right-shoulder angles in the range from 62 to 66.8. (b) Corresponding
radial lines are highlighted for the right elbow in the linked ErgoGauge
(R10).

6 DISCUSSION

As ErgoExplorer was modeled in a multidisciplinary effort, the
complete design cycle received significant feedback from expert er-
gonomists. In the design, a fast access to situations and focus on infor-
mation where REBA risk scores are high, has been a vital goal. Based
on the analysis tasks and questions (see Table 1), ErgoExplorer has
been able to simplify the experts’ activities and to quickly pinpoint all
interventions if they are immediately required (R1). The REBA Tables
are especially useful in analyzing tasks with real or potential hazards.
They are able to summarize the accumulated risk distribution along
complete work cycles with different time granularities (i.e., simple task
repetitions, complete tasks, complete working days, etc.).

Also, as mentioned in Sect. 4.2, determining and segmenting work
cycles are lengthy and (sometimes cumbersome) procedures. In this
regard, the ErgoTimeline presents an easy understandable representa-
tion of the ergonomic risks along time. It allows the users to discern
the work cycles and all of the movements that characterize them (R2).
This is especially relevant to pinpoint a single working cycle that can
be taken as a representative of all the other cycles. The goals are to
localize inadequate working postures (R3) or movements that repeat
or extend for an inappropriately long duration (R4), and to pinpoint

Fig. 9. Interaction in ErgoTimeline. (a) The angular values over time for
worker’s movements (Dataset1) (b) Two brushes were created to select
distinct ranges on the angles time-line for long-term observation of the
wall painting task. The range values for the active brush (pink) are also
shown. (c) Part of the timeline was zoomed in to analyze the disparity in
movement between the right and left shoulder (R9).

outliers or anomalies (R5). The traditional determination of work cy-
cles is prone to subjective visual-interpretation biases. Therefore, it has
been appreciated by the users to easily link the numerical ergonomic
risk estimations in the ErgoTimeline (e.g., peaks) to viewing frames
(R6) in the actual video capture where the associated events occurred.

Comparing the same movement performed across different tasks,
has been another analysis task facilitated by the combination of
ErgoTimelinewith viewing frames. This possibility was quite well re-
ceived by the users. It allows the experts to retrain workers concerning
movements where they are exposing themselves to undue risks (R7), or
otherwise to show them exemplars on how to correctly perform a task.
It is common knowledge in the ergonomy literature that good practices
are adopted faster if workers are able to see for themselves in the very
moment when they are making a wrong movement sequence [24] (R7).

As a noteworthy characteristic of REBA Tables, the final users
needed almost no explanation since they are familiar with understanding
the meaning of a plain traditional REBA Table. For instance, if most
values in the REBA Table C are concentrated in values above 8 [22],
this means that the ergonomic risk is high and the current working
activity requires an intervention by a specialist (R8).

Experts considered valuable to present angular estimations directly
in the ErgoGauge view with a 180° rotation This generates a mirror-
like opposing visual between both sides of the body, instead of showing
them in a separate user-interface widget. The users can remain fo-
cused on the main purpose of the visualization (R10). In addition to
the presentation of the most frequent conditions, ergonomists are also
interested in detecting irregular or undesirable body movements, and
in identifying where and when these movements arise. This type of
analysis is not easily feasible without a visualization tool like the one
presented here. A manual inspection of the data at the required level
of detail would be a daunting task. Our interactive visual analysis tool
supports this and other complex tasks by utilizing the linking&brushing
mechanism of the coordinated multiple views (CMV). For instance,
the user brushes in one of the views a region where angular deviations
can be considered risky or inadequate. The selected movements are



highlighted in all the other views, facilitating the remaining analysis
tasks (R10). A zoom slider was added to simplify searching fine details
and filtering with immediate response. After initial demos and presen-
tations of our approach to the domain experts, several modifications
were incorporated following their comments and suggestions (R9).

The accompanying video shows a representative example of a fre-
quent use case. Initially, we represent responses to the ergonomic
questions Q1, Q2, and later to questions Q8, Q9, and Q10. With the
main view of ErgoExplorer (Fig. 10), a user can define the focus
of the ergonomic analysis. Typically it will be a routine inspection,
but may also be a more pressing scenario where improvements are
needed immediately. Following question Q8, the ergonomists can pre-
pare a task triage, where they prioritize the inspection of high risk
(Q11), more repetitive (Q6), or abnormal movements (Q9 and Q10).
ErgoMovements provides access to the brushing results. Pictures con-
taining the riskiest body positions are shown in Fig. 11 and the maximal
REBA risk score is given in Fig. 1. Additionally, the linkage to other
views allows the users to focus on particular body segments that gener-
ate the riskiest body positions. The histograms in the tables highlight
repetitive postures (Fig. 12). Fig. 13 shows the results of brushing
high-risk angles of the right shoulder through outlier detection on the
ErgoTimelines.

Fig. 10. Main view of ErgoExplorer (R1)

Fig. 11. Riskiest body positions are highlighted through brushing and
depicted in the frame view (R3)

7 CONCLUSION

We present ErgoExplorer, an approach for the interactive analysis,
visualization, and interpretation of ergonomic risks in video sequences.
It is based on the REBA scores of joint positions and angles as de-
rived with computer vision techniques. Our aim is to develop useful
visualization techniques for managing time series data of ergonomic
information in conjunction with the video sequences. The purpose is to
facilitate assessment tasks to pinpoint risky situations, repetitive tasks,
and other undesirable conditions that may arise in workplaces. We

Fig. 12. Repetitive postures are highligthed through brushing (R4)

Fig. 13. Selection of right-shoulder angles with high risk (R10)

propose a taxonomy of ergonomic evaluations based on a task analysis
by generating the key questions that – according to the knowledge elic-
itation of the domain experts’ activities – best describe the ergonomic
analysis process. The complete ergonomic assessment cycle comprises
the finding of adequate answers to the key questions following the
proposed methodology. Based on the collaboration with the domain
experts, several future research directions are being considered. The
most salient is to incorporate the RULA ergonomic risk evaluation (and
perhaps other, newer assessments) into our analysis. This would lead
to a more comprehensive and complete pipeline for ergonomic anal-
ysis. Also, a freely available ErgoExplorer installation is expected
to facilitate large-scale cooperative research activities in ergonomics,
through the collection and assembly of much larger datasets with which
more elaborate statistical analyses will be feasible. We initiated inter-
changes with the Colombian Academic Network of Ergonomics, and
also with several ergonomists in Argentina, to provide them with free
access to ErgoExplorer. This will allow us to access richer (prop-
erly anonymized) datasets, and enhance the usefulness of the proposed
visualization and interaction approaches.
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loesqueléticos en el lugar de trabajo. Organización Mundial de la Salud,
5(5):1 – 30, 2004.

[18] K. Manal, C. C. Chang, J. Hamill, and S. J. Stanhope. A three-
dimensional data visualization technique for reporting movement pattern
deviations. Journal of Biomechanics, 38(11):2151–2156, 2005. doi: 10.
1016/j.jbiomech.2004.10.008

[19] V. M. Manghisi, A. E. Uva, M. Fiorentino, M. Gattullo, A. Boccaccio,

and A. Evangelista. Automatic ergonomic postural risk monitoring on
the factory shopfloor -The Ergosentinel tool. Procedia Manufacturing,
42(2019):97–103, 2020. doi: 10.1016/j.promfg.2020.02.091
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