Generating Molecular Motion Blur Videos
for a User Study

CS Report
Johannes Eschner

August 2022

1 Introduction

This report documents the process of creating a series of short animated videos of a molecular
scene. The purpose of these videos is to conduct a user study, which investigates whether
motion blur effects can be used as an illustrative tool to better guide the user’s attention in
crowded visualizations of complex biological processes.

The aim of the implementation is to use an existing framework to create the necessary videos
and to iteratively explore different approaches to achieve the desired motion blur effect. As
the expected outcome is a series of non-interactive videos, there is no emphasis on delivering
the results in real-time. While the molecular rendering framework we use is capable of
rendering animations in real-time, our motion blur implementation is a pure post-processing
effect, which is applied to videos and not to interactive visualizations.

In the rest of the report there are two main sections detailing the implementation of the
video generation. First there is a section which explains the molecular rendering, including
the scene configuration and the reaction animation. The second section provides details on
the motion blur post-processing and the automated video generation.

2 Implementation

2.1 Molecular Rendering

The molecular renderer we utilize for generating the videos is the molecular visualization
framework Marion [2]. As our study scene shows a simple reaction which consists of two
molecules briefly attaching and then detaching again, the scene is entirely constructed and
does not represent an actual chemical reaction. All molecules are alpha-beta tubulin proteins,
rendered in an atom-level representation.

2.1.1 Configuration

The scene which is used for the user study consists of a total of 1000 molecules, of which
two will react during the animation. Each video is characterized by the parameters seen in
Table 1.

For the study we created a total of 40 videos, varying the parameters speed (4 levels), trail
length (5 levels), smoothness (2 levels) automatically. Each randomized parameter (see Table
1) takes the video index (0 to 39) as seed value to be able to reproduce single videos with with
same settings. The configuration of each video is encoded in the file name, which has the
following structure 012 _t11 ts_cs_s2.170_.190. The first number in the filename is the video
ID, which is used as random seed. The value after t1 is the trail length, cs stands for the

sparse scene (1000 molecules) whereas cd would signify a dense scene with 5000 molecules.
This dense scene, however, is not part of the final study. s2 shows that the video has a speed
level of 2. Finally, the numbers 170 and 190 are the indices of the two reactants, which
are selected by drawing two random numbers (a,b with @ # b (mod 8)) between 0 and the
number of molecules in the scene. In the reactant IDs the color of the two molecules in the
video is also implicitly encoded as ID (mod 8) = ColorIndex.

Pre-Defined Parameters (from config)

Possible Values | Description

The speed of individual
molecules in the scene. Speed level
2 corresponds to an average speed of
480nm/s. Increases with a step size of
2 to a maximum of 8 which corresponds
to an average speed of 1.92um/s. For
reference a single alpha-beta tubulin
protein has a length of 8nm [1].

Parameter Name

movement

Speed

Determines the strength of the noise ap-
plied to the molecule motion paths. Only
applies to the context molecules and not
the reaction. 0 corresponds to full noise
level while 1 removes the second pass of
the noise function.

Smoothness [0.0, 1.0]

Length level of the motion blur trail
within screen space. 0 means no motion
blur. Level roughly corresponds to trail
length in molecule lengths, depending on
random speed variation.

Trail Length

Random

Parameters

Parameter Name

Possible Values

Description

Reactant One

[0, 999]

Index of the first reactant molecule in
the protein instance buffer. Must fulfil:
ReactantOne # ReactantTwo (mod 8)
(to have two different colors)

Reactant Two

[0, 999]

Index of the second reactant molecule in
the protein instance buffer. Must fulfil:
ReactantOne # ReactantTwo (mod 8)
(to have two different colors)

Reaction Timestamp

0.25, 0.75]

Timestamp at which the two reactants
first attach. Has to be within the mid-
dle 50% of the animation.

Position Seed

[0, 999]

Random seed for the position at which the
reactants react in the animation.

Table 1: Parameters by which the scene is defined. A decimal point in the Possible Values column
represents a floating point value, otherwise values are integers. All intervals are closed
intervals.

2.1.2 Scene

In the Marion framework there is a scene called dots.cpp which contains the code for setting
up and rendering the molecular scene. Here, the scene parameters such as the total amount
of molecules in the scene (numPoints) are defined. The parameters which are defined in the
config file (/apps/vr4d/work/scripts/dots/config. json) of the scene are also collected
within the scene file and passed to the shader. The animation of the molecules takes place in
the vertex shader of the app (/apps/vr4d/work/shaders/rendering/cellVIEW/proteins/
renderproteins.vs).

2.1.3 Vertex Shader

The molecular animation takes place in the vertex shader. Protein instances are passed into
the shader using buffers, which contain information on their position and IDs. The scene
parameters, which determine the characteristics of the animation, are passed into the shader
as uniforms. For each of the reactant molecules an ID is passed to the shader. This ID is
the index at which the reactants lie in the protein instance buffer.

The molecular motion is animated using two pseudo-random noise functions, one for trans-
lation and one for rotation. The base noise function is based on an implementation from
Shadertoy '. At each frame in the animation, which for the study has a duration of 20
seconds, the next iteration of the continuous random noise function determines the new po-
sition and rotation of each protein. To account for the randomness of Brownian motion, the
random position value is calculated by a weighted sum of two offset random noise iterations,
where the weight of the second iteration is the smoothness parameter ranging between 0 and
1. Using this smoothness parameter the jitter of the proteins is adjusted. Here, there is a
distinction between the context molecules in the background and the two reactants. While
the reactants are always shown with unsmoothed motion, the smoothness of the context
molecules can be adjusted using the smoothness parameter.

Apart from the definition of the two reactant indices, the reaction animation is controlled
by two more randomised parameters. The first parameter is the reaction timestamp, which
for the 20 second animation for the study lies between 5 and 15 seconds into the animation
(see Figure 1). Note that internally the 20 second animation is represented as a time span
between 0 and 1. The second parameter is a seed value which determines the random position
of the reaction using the same pseudo-random noise function as the molecular movement.
In the reaction animation the two reactants will initially behave like the context molecules,
moving around on random paths. Five seconds before the reaction timestamp the random
trajectories of the two reactants start a linear interpolation towards the random reaction
position. This linear interpolation between the random motion and the linear trajectory
towards the reaction position is based on the work of Le Muzic et al. [3].

Figure 1: Schematic representation of a reaction between two reactants (red and blue). The reaction
timestamp is approximately at 0.5 with the reaction interpolation starting at 0.25 and
ending at 0.75.

https://www.shadertoy.com/view/4dS3Wd

https://www.shadertoy.com/view/4dS3Wd

Apart from the animation the vertex shader is also responsible for assigning a random color
to each molecule. This is done by choosing one of eight colors from the qualitative color set
'8-class Set 1’ from ColorBrewer * based on the mod of the protein instance ID.

2.2 Post-Processing and Video Generation

For the simple videos without any motion blur added, the scene is rendered straight to PNG
frames, each containing the reactants and the context molecules. In videos where motion blur
is to be applied, the scene is rendered twice. First only the reactants are rendered, discarding
all the fragments which only contain context molecules in the fragment shader. Then the
context molecules are rendered with the reactant molecule fragments set to black to mask
out any occlusions. This distinction has to be made as we only want to apply the motion blur
trails to the context and not the reactants. Masking in the other direction is not necessary
as the blurred motion blur trails will be semi-transparent after the post-processing step and
therefore they will never fully occlude the reactants. With the PNG frames generated, we
use FFmpeg * to compile them into video files. As we need a high temporal resolution in
order to achieve smooth motion blur trails, we render the scenes with 120 frames per second.

Once each version of the scene is rendered, the motion blur trails are added to the context
molecules using a Python script which accumulates a set number of frames and then averages
their color intensities. The number of frames to be accumulated depends on two parameters.
One is the speed of the given video as determined by the scene parameters and the other is
the trail length which determines the absolute length of a trail in screen-space independent
of the speed. This way we can control the factor trail length independently of the speed. All
accumulated averaged frames are then saved into a new video sequence which now contains
the final motion blur trails. An example of this can be seen in Figure 2.

(a) Scene with speed setting 2 and trail length 4. (b) Scene with speed setting 8 and trail length 4.

Figure 2: Two different speeds with motion blur trails of the same length applied to the outputs.

With the trails generated the last step in the post-processing pipeline is to generate the
final videos by blending the motion blurred context molecules with the separate reaction
videos. This is done by using the FFmpeg filter library and employing the Screen blend
mode. All post-processing is performed by a single Bash script which, when placed in the
output directory, generates the final video files from the PNG frames generated by Marion.

A possible future improvement on this video generation approach would be to implement
the motion blur trail generation in Marion. This way the post-processing could be done in
real-time.

Zhttps://colorbrewer2.org/#type=qualitative&scheme=Set1&n=8
3https://ffmpeg.org/

https://colorbrewer2.org/#type=qualitative&scheme=Set1&n=8
https://ffmpeg.org/

References

[1] Shinya Inoué and Edward D. Salmon. “Force Generation by Microtubule Assembly /Disassembly
in Mitosis and Related Movements”. In: Molecular Biology of the Cell 6.12 (1995).
PMID: 8590794, pp. 1619-1640. DOI: 10.1091/mbc.6.12.1619. eprint: https://doi.
org/10.1091/mbc.6.12.1619.

[2] Peter Mindek, David Koutil, Johannes Sorger, David Toloudis, Blair Lyons, Graham
Johnson, Meister Eduard Groller, and Ivan Viola. “Visualization Multi-Pipeline for

Communicating Biology”. In: IEEFE Transactions on Visualization and Computer Graph-
ics 24.1 (2017).

[3] Mathieu Le Muzic, Julius Parulek, Anne-Kristin Stavrum, and Ivan Viola. “Illustrative
Visualization of Molecular Reactions using Omniscient Intelligence and Passive Agents”.
In: Computer Graphics Forum 33.3 (June 2014). Article first published online: 12 JUL
2014, pp. 141-150.

https://doi.org/10.1091/mbc.6.12.1619
https://doi.org/10.1091/mbc.6.12.1619
https://doi.org/10.1091/mbc.6.12.1619

	Introduction
	Implementation
	Molecular Rendering
	Configuration
	Scene
	Vertex Shader

	Post-Processing and Video Generation

	References

