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Kurzfassung

Mit der Zeit steigt nicht nur die Rechenleistung von Rechnern sondern auch Scan Techniken
werden besser. Dadurch wird es immer leichter eine Umgebung zu scannen und ein 3D Mo-
dell von dieser zu erstellen. Heutzutage sind schon Smartphones und Dronen in der Lage einen
Bereich zu scannen. Hierbei ist zu beachten, dass die Ergebnisse mit hoher Wahrscheinlichkeit
schlechter als die von bestimmten Scannern ist. Um den Leuten nun zu ermöglichen ihre Mo-
delle kombinieren und bearbeiten zu können, haben mein Kollege Manuel Keilman und ich eine
Software dafür geschrieben. Hierbei ist es wichtig, dass es sich bei den Modellen um Punkt-
wolken handelt. Mit der Software können Punktwolken zusammengefügt und Bereiche extra-
hiert werden. Diese Bereiche können verschoben oder gelöscht werden. Unser primäres Ziel
sind Punktwolken von Straßenszenen die mittels LiDAR gescannt wurden. Um zwischen den
Objekten einer Straßeszene unterscheiden zu können, haben wir einen Klassifizierungsalgorith-
mus namens GRanD-Net [13] benutzt. Dieser clustered jedoch nicht die Punktwolke, weshalb
ein weiterer Algorithmus hierfür notwendig ist. Um nun zwischen Objekten derselben Klasse
unterscheiden zu können, benutzen wir DBScan [15]. Sowohl die Klassifizierung als auch das
Clustern müssen nur einmal ausgeführt werden, bevor die Punktwolke hochgeladen wird. Der
Vorteil beim Clustern von Punkten mit ähnlichen Eigenschaften ist, dass Nutzende nicht im-
mer die Punkte selber auswählen müssen, womit die Usability verbessert wird. Die Ergebnisse
vom Klassifizieren und Clustern tendieren leider dazu, nicht überall gute Ergebnisse zu liefern.
Hierbei können Nutzende jedoch unsere Software benutzen, mit der sie Fehler selbst verbessern
können. Unsere Software soll demnach Nutzenden ermöglichen ihre Punktwolken zu analysie-
ren und sie leicht anzupassen.
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Abstract

With scanning technologies and the processing power of computers increasing it is getting easier
to scan the surrounding area and upload a 3D model of it. Nowadays mobile phones and drones
are capable of doing that. However, the results most likely are not as good as dedicated scanners.
To offer people an option to explore their scanned objects my colleague Manuel Keilman and
I wrote a software with which users can upload multiple point clouds. Those point clouds can
then be modified by adding, deleting, or moving parts of it. Our primary target is point clouds
of street scenes. We selected an existing classification algorithm called GraND-Net [13] to
identify objects of the scene. Since the classification algorithm does not cluster the classes a
separate algorithm for that was needed. That is why we use DBScan [15] in order to distinguish
different objects of the same class. Both steps are done before starting the application since they
only have to be done once. The benefit of grouping points with similar features is that users
do not have to manually select everything which improves the usability of our software. After
classifying as well as clustering users can upload their point clouds and then select objects in
order to modify them. Mistakes tend to happen which is why our software also offers users the
option to manually classify whatever they want. All of that should make it easier for users to
analyze and modify their point clouds.
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CHAPTER 1
Introduction

Scanning 3D objects and loading them in a program nowadays is not as much of a hurdle as
it was a couple of years ago. Computers have higher processing power and software is written
more efficiently. The equipment needed to create 3D objects is not too expensive either. Certain
mobile phones or drones are able to scan an area. One of the main ways to scan objects is to
use LiDAR which utilizes light in order to scan an area. This thesis mainly focuses on 3D point
clouds of real-life street scenes in Vienna which have been caught with LiDAR. Point clouds are
3D objects that only contain information about the coordinates and colors of points. [24]
The goal of this thesis, therefore, is to write a software with which users can modify those
scanned point clouds. They should be able to move, delete and combine areas of a single or of
multiple point clouds together. Scanning an environment tends to end up with holes in some
areas. In case there are holes in the ground there is an option to fill those out. In order to do
that the ground has to be detected first and that’s where the RANSAC algorithm comes in handy.
Filling out holes can then be done with an Image Inpainting algorithm. Identifying the ground
is not only important in order to fill holes but also to place objects at the same height. Those
algorithms and their use cases in our software were carried out by my colleague Manuel Keilman
and are therefore discussed in his thesis in detail. [18]
In order to make it easier to modify point clouds, there is an option to classify them. With
classifying and then subsequently clustering a point cloud, points would be assigned to different
clusters which are also referred to as objects in this thesis. Objects, in this case, are cars, trees,
buildings, humans, the ground, and poles. Being able to choose objects makes it much easier to
apply one of the modifying operations that were mentioned. Users do not have to create a box
and fit it to select certain points to change the scene. Classifying can be done automatically with
the classification algorithm GRanD-Net [13] which will be explained further in the upcoming
chapters. If one wants to use that option they would have to run GRanD-Net on their point cloud
as a preprocessing step.
After classifying the cloud, it is clustered so that it is easier to distinguish and select objects of the
cloud. For clustering, the DBScan [15] algorithm was used as it does not need any information
about the actual numbers of clusters. Mistakes tend to happen when clustering as well as when
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classifying but that’s where the software should come in handy to make fixing those mistakes
easier. In case the results are not satisfying users can still classify and cluster areas manually by
creating a box that can be modified. All the points within that box are selected. Once points are
selected they can be classified and changed like objects.
Immersive Redesign could open up a lot of opportunities to create a scene and experiment with
it. Being able to modify a scene enables users to analyze it easier. Users could upload a scan
of an empty street with its surrounding buildings and vegetation. If they want to know what it
would be like if vehicles were on there they could simply add clouds of some vehicles and place
them where they want.
As of now the classification and clustering results tend to have mistakes where areas are not
classified properly or clustered optimally. However, when that is not a problem anymore users
could do the preprocessing steps on a huge scene and then upload it to the software. Then they
have an overview of where all the vehicles or trees are which should end up saving some time
when analyzing a scene.
In the next section, the algorithms and certain terms will be explained further. After that, the
methodology of the parts I was responsible for will be discussed in detail. Following that certain
aspects such as run-time and visual appearance of the mentioned algorithms and our software
will be evaluated. Lastly, options that could improve the current version of our software will be
mentioned with a brief explanation of why they could be helpful.
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CHAPTER 2
Related Work

2.1 Point Clouds

Point clouds are objects which consist of unconnected points in the 3D space. Due to point
clouds only containing points and no other information it is relatively easy to create those. One
simply needs a sensor such as LiDAR with which an environment can be scanned. Afterwards,
the collected information can be stored in a laz file and then be used in our software to view it
for example. [24]

2.2 GRanD-Net Algorithm

GRanD-Net is a semantic segmentation network for point clouds with millions of points. The
algorithm only requires a point cloud as an input. After uploading the point cloud it is reduced to
a constant size by performing grid-subsampling. In order to assign a label to every point and not
only the subsampled ones, the indices will be tracked for up-sampling. Afterwards, the data is
uploaded in multiple batches. To improve the learning process the data is given randomly rather
than in order. Then the k-Nearest Neighbours (kNN) algorithm is applied with k predefined
points of all the subsampled points. In case the subsampled points are fewer than the k neigh-
bours the k points are substituted with the subsampled points. In order to assemble a batch of
point clouds, indices for all the adjacent points are created. With those indices, relative features
can be extracted. After that, dilated convolution and Gaussian error linear unit (GeLu) activation
functions are used to create the model.
Convolution is used to extract low-level features in the first layer as well as higher-level fea-
tures in the network. Dilated convolution adds a parameter with which the hole in a kernel can
be modified which improves performance since the receptive area of a kernel is enlarged. In
GRanD-Net dilated convolution is used to process irrelevant data faster while maintaining the
necessary features.
GeLu considers the sign and the magnitude of an input. The input is multiplied with a value
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which is evaluated stochastically depending on the input. GeLu is used on the outputs of the
neural network. The benefit of using GeLu is that non-linear features can be learned better.
Afterwards, the dilated residual blocks are stacked. The result of that is up-sampled and run
through multi-layer perceptrons as well as fully connected layers. That method makes sure that
the labeling is not faulty. During up-sampling, the labels are processed step by step contrary to
a simple interpolation which does not consider the distinction of classes.
After up-sampling conditional random field (CRF) is applied. CRF processes labels based on
the coordinates of the input point and the labels of adjacent points. Furthermore, a cost function
is used to improve the accuracy. [13]

Alternative Algorithms

Below a couple of alternative algorithms that were used on the SHREC Dataset will be men-
tioned. According to the paper [20], those did not perform better regarding overall classification
accuracy as well as classification accuracy for each of the classes. A table containing the accu-
racy values is displayed in Figure 3.1. That ended up being the reason for choosing GRanD-Net
over any of those.

PointNet++

PointNet++ is an upgrade of the PointNet algorithm [22] that tries to learn deep features effec-
tively by processing point coordinates. [20] That is done by using an ordered neural network
that applies the PointNet algorithm recursively on a subsample of the point coordinates. Met-
ric space distances are utilized in order to learn local features. [23] PointNet++ was introduced
in 2017 whereas GRanD-Net was published in 2020. That is likely the reason for PointNet++
performing worse than GRanD-Net as GRanD-Net utilizes the given information better.

P4UCC

Progressive 4-staged Urban Cloud Classifier (P4UCC) is a non-learning algorithm that consists
of a 4-stage pipeline that classifies a point cloud sequentially. Despite P4UCC being a non-
learning algorithm it performed better than some of the learning algorithms. That could be a fact
due to some classes not being represented enough in the training dataset. For example, poles
only make up 0.47% of the training dataset. Nonetheless, P4UCC ended up being worse than
GRanD-Net. [20]

Spherical DZNet

Spherical DZNet converts a 3D point cloud into a 2D image and then tries to classify it with
a convolutional neural network. The results are converted back into 3D space and interpolated
for initial input. That method does seem to struggle with spherical projections. The object size
changes depending on the distance to the sensors. That has a negative impact when training a
model. Furthermore, that could the reason why that method struggled with classifying poles
properly. [20]
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ResGANet

ResGANet uses graphs to encode the spatial features of a point cloud. With that information,
an end-to-end model is trained with a residual graph attentional network. That model predicts
the labels of the point cloud. Similar to Spherical DZNet it struggled with classifying poles due
to the small representation of poles in the training dataset. Besides, it performed worse than
GRanD-Net. [20]

2.3 Laz Format

As mentioned previously LiDAR can be used to scan an environment. The collected data can
then be stored in a laz file. The laz format is a lossless compression of the las format and usually
is a tenth of the storage size of the las one. [5]
The las format consists of the following 3 parts: header, variable length records (VLR) and point
records. The header stores information about the version and point format. The point format
indicates which dimensions the file has. Dimensions are similar to attributes of a class. Examples
would be ’x’, ’y’ and ’z’ for the coordinates of the points. VLRs, however, contain information
about the spatial reference system and dimensions that were added to the existing ones. Lastly,
the point records store information about the point formats which define the existing dimensions
of that format. [3]
Custom dimensions can be added from version 1.4 onwards but the values can only be integers
or floats. That feature is beneficial since a dimension for cluster information can be created
which does not exist otherwise. [4]

2.4 DBScan

The Density-Based Spatial Clustering of Applications with Noise algorithm (DBScan) is a clus-
tering algorithm which identifies clusters and noise in spatial databases such as point clouds.
The algorithm has 2 parameters ’eps’ and the minimal amount of points needed for a cluster.
The ’eps’ value determines if two points are within the same neighbourhood. If the distance be-
tween both is greater than the ’eps’ value they are not considered in the same neighbourhood and
therefore not in the same cluster. Once a point has been assigned to a cluster it is not considered
for other possible clusters anymore. However, if two clusters are determined to be close to each
other they could be merged into one cluster. [15]

Choosing DBScan over k-Means

Another popular clustering algorithm is k-Means. In order to use k-Means the amount of desired
clusters, x has to be given as an input. Afterwards random x points are chosen and considered as
the center of a cluster. Then the distance for each point to the cluster centers is calculated. The
points are assigned to the closest cluster. Once all points are assigned the center is recalculated.
That process is repeated until the center of the clusters does not change. Even though k-Means
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could be used as a clustering algorithm the fact that it needs the number of clusters as an input
ended up being the reason it was not used since the number of clusters is unknown. [21]

2.5 Open3D

Open3D is an open-source library that is used for processing 3D data. It offers data structures
such as points clouds, meshes, or RGB-D images and algorithms for C++ and Python. [25] In
this thesis, a lot of functions for the point clouds were used. Furthermore, the GUI as well as
rendering the scene and the data structures were created with that library. We chose this library
since it is not difficult to use it and its functions are rather fast as they usually only take a couple
of ms.
Some of the essential and frequently used functions for the point cloud operations are ’se-
lect_by_index’, ’paint_uniform_color’ and ’get_oriented_bounding_box’. The most important
one being the ’get_oriented_bounding_box’ which returns an ’oriented_bounding_box’ object.
[9] With the bounding box function ’get_point_indices_within_bounding_box’ we are able to
get certain indices of points of the point cloud. Once the indices of the points are known those
points can be extracted with the already mentioned ’select_by_index’ function. If one wants to
transform the selected area they can call one of the given ’translate’, ’rotate’, or ’scale’ func-
tions. [10]
As mentioned the GUI was also created with that library. There are a couple of ways to imple-
ment a GUI with the library. We used the visualization.gui package since that one allowed us to
easily customize our GUI. [11]
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CHAPTER 3
Methodology

The purpose of this project is to first classify point clouds of real-life street scenes caught with
LiDAR, then cluster them and subsequently be able to modify them in a program, which my
colleague Manuel Keilman and I wrote. With our program, objects which are certain areas of a
point cloud such as cars and buildings should be able to be moved and deleted. In order to move
objects on the ground, a method for placing and translating them at the same height was neces-
sary, which is why we use the RANSAC algorithm. Additionally, the option to fill holes in the
ground by Image Inpainting is given. Since my colleague Manuel Keilman explains RANSAC
and Image Inpainting as well as the reason for choosing those in his thesis [18], I will not go
into further detail regarding those topics.
My part of the project was to find a classification algorithm specifically for street scenes which
will be mentioned further in section 3.1. Since the algorithm we use does not automatically
cluster the different classes a separate algorithm that does that was necessary. The reason why
clustering is important is so that users can select single objects rather than having to select ev-
erything that is classified as a class but that will be explained further in the upcoming sections.
Due to the fact that the number of actual clusters is unknown an algorithm that does not need
that information was necessary. That is where DBScan [15] comes in handy which is a density-
based clustering algorithm that only has the following inputs: the minimal number of points
necessary for a cluster and a parameter ’eps’ which is a number that specifies how close points
should be next to each other to be considered of the same cluster. If the distance between two
points is greater than the ’eps’ value they will not be considered neighbors which means they do
not belong together. Since the results were rather good and the run-time usually was within a
couple of milliseconds we ended up using it. More regarding performance can be found in the
’Evaluation’ chapter 4.2.
Lastly, my responsibility for the program was to figure out a way how users can load the clas-
sification and clustering results into the GUI which is done via laz files. Laz is a compressed
type of the Las file format which is used to store LiDAR data. Along with its rather low memory
consumption, the major benefit is that dimensions can be added, which has been done to store
the clustering results. Dimensions are similar to attributes of a class that can be read once a laz
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file has been loaded. Some pre-existing ones would be ’x’, ’y’, and ’z’ for the coordinates or
’red’, ’green’, and ’blue’ for the color information of the points.
Regarding the GUI, I also implemented that users can filter the cloud by the classes that were
used in the SHREC dataset [1] which are ’building’, ’car’, ’ground’, ’pole’, and ’vegetation’.
Since our dataset occasionally contains some human beings ’human’ is also a filtering option.
Furthermore, the option to set the class of marked areas in the point cloud is given. That is
necessary due to misclassification by the classification algorithm and suboptimal clustering at
some areas. Marking can be done by placing a box and then fitting it to contain all the desired
points. All of those aspects will be discussed in detail in the upcoming sections.

3.1 Classification

For the classification, we used the GRanD-Net Algorithm [13]. On the Github page [19], the
authors have a pretrained model based on the SHREC 2020 dataset [1]. This dataset contains 80
point clouds of which the ground truth is available. The choice for the algorithm was based on
the fact that GRanD-Net performed better than any other algorithm on the mentioned dataset as
seen in Figure 3.1. Since we use the given pretrained GRanD-Net model and the SHREC dataset
contains 5 classes it is only possible to assign points to one of the 5 following classes: building,
car, ground, pole, and vegetation.

Figure 3.1: Algorithms used with the SHREC dataset [20]

In order to use the algorithm, the point cloud has to be represented in a txt file. The txt
file is formatted as follows: each line represents a point and the coordinates are separated by
whitespace. The first column represents the x-value, the second one the y-value, and the third
one the z-value. The txt file can contain further columns such as color or label but those will not
be taken into consideration as the algorithm only evaluates the first 3 columns. An example can
be found in Figure 3.2.

8



Figure 3.2: Example txt format with x (1st column), y (2nd column) and z-values (3rd column),
4th column ’Label’ will not be considered. Each line represents a point.

Since our dataset [6] consists of laz files, I wrote a script with which those can be converted
into txt files is given (laz_to_txt.py). Additionally, the cloud can be subsampled via voxel sub-
sampling which tends to improve the classification results for our dataset but for the SHREC
dataset the results were worse. Even removing 0.3 % of a point cloud of the SHREC dataset
ended up with a 40% worse result. Since there is no ground truth available for our dataset,
the results were evaluated by the visual appearance. By subsampling with a factor of 0.5 some
objects such as cars and buildings were classified more accurately which ends up in a better
result. The average run-time for the classification algorithm took about 19 min and 10 sec and it
did not matter how many points a cloud had. Since objects of our dataset were classified more
accurately when subsampling it is beneficial to use it. A detailed review can be found in the
’Evaluation’ chapter. When using voxel subsampling the cloud point coordinates are divided by
0.2 which equals the size of one grid cell. By dividing the coordinates by 0.2 each point can be
assigned to one grid cell. After testing a couple of values the results for our dataset were the
best for 0.2. Not every dataset has the same ratios of absolute values as our dataset which is why
that value can be multiplied with a factor that users can type in to fit it for their dataset. If users
want to apply a factor to the default number they simply have to type in the value for the input
’–voxel_size’. The number will then be multiplied by 0.2. So if one types in 0.5 for ’voxel_size’
the voxel size will be 0.2 * 0.5 which equals 0.1. The lower the voxel size the higher the number
of points that remain. After calculating the voxel size the coordinates of the input point cloud
are divided by the voxel size value and saved in an array ’grid_array’. In order to obtain the
grid coordinate for each point, the calculated values in the ’grid_array’ array are truncated by
taking the value that comes after the decimal point. An example for the truncation part: if the
grid coordinate was [2.5, 5.3, 0.7] then the value after truncating would be [2, 5, 0]. Afterwards
all unique values of that calculation are evaluated. Lastly, each grid coordinate is saved as a key
in a hashmap with its value being one of the points inside that grid.
After running the classification algorithm a file with the labels assigned to the points is created.
The labels in this case are a number between 0 and 5 with the numbers representing a class. That
file has as many lines as the input txt file but it only contains the label number. In order to know
which classification belongs to which point the lines have to be matched. So the point in the txt
file in the first line has the classification value of the first line in the labels file. In Figure 3.3 the
numbers associated with the class can be seen with an example of a file created by the algorithm.
That file can then be added onto a laz file by running the script add_label_to_laz.py.
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Figure 3.3: Left: Label number with associated class. Right: Example of created file with labels
and a brief explanation of how to interpret it

3.2 Clustering

After running the classification algorithm, the next step is to cluster the points of objects with
identical classification id. In order to do that, DBScan is used, since the number of clusters
is unknown. Instead of running DBScan on the whole cloud, it is divided into parts that only
consist of one class. All points that are classified as ’car’ for example end up as one point cloud
and that process is repeated for each class. After splitting the cloud DBScan is applied to each
class but the ’ground’ class because the ground generally is one big piece and can therefore
remain as a single object. Furthermore, users will not be moving or removing the ground as they
would with cars for example. That method ends up with better clustering results than running
DBScan once for the whole cloud but that will be discussed further in the ’Evaluation’ chapter.
In order to reduce run-time and improve clustering results, the split parts of the cloud that contain
more than 105 000 points are subsampled via the same voxel subsampling as described in the
classification section. 105 000 is the boundary since after testing some values that number ended
up with the best results in terms of visual appearance and run-time. A good example would be
that for a tree only one cluster is assigned as seen in Figure 3.5 rather than the top and bottom of
that tree being different clusters as seen in Figure 3.4.

After running DBScan, usually, not all points are assigned to a cluster. However, since the
number of unassigned points tends to be rather low and represents mostly very small sets of
points that are not too close to actual objects, those are removed. An example can be seen in
Figure 3.6. Before removing those points a bounding box for each cluster is created and all
points inside are assigned the value of the cluster. That step is done because noise points are
sometimes within the bounding box of an existing cluster. Instead of removing those, they are
added to the existing cluster. In case two bounding boxes overlap the points are assigned to one
of these. Basically, as soon as noise points are assigned to a cluster they will not be considered
for other clusters. Even though minimizing the number of noise points could be achieved by
changing the ’eps’ value that will likely take more time since finding the proper value requires
some testing. Furthermore changing the ’eps’ value might improve one area of the cloud but
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Figure 3.4: Example of a clustering result
with the top & bottom of a tree being separate
clusters

Figure 3.5: Example of optimal clustering
result where the whole tree belongs to one
cluster

Figure 3.6: Clustering of building class, points in black are noise points
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make another one worse so it is much easier to assign noise points if they are within an existing
cluster. Examples of different ’eps’ values and the noise points can be found in the ’Evaluation’
chapter.
Since DBScan is run for each class and only returns an array of integers that represents the
cluster values for each input point, a method for distinguishing the different classes and their
clusters is necessary. In order to do that the cluster values are converted to float numbers where
the number before the decimal point is the cluster number. The point after the decimal point
is the class value. For example cluster value 3.5 would be ’Vegetation 3’ because 5 represents
vegetation and 3 is the cluster number. The reason why the cluster values are converted to float
numbers and not to strings or any other type is that only integers and float numbers are allowed
to be added to a laz dimension and as already mentioned that is how the cluster values are stored.
After running the above-mentioned method for each of the split parts of the cloud, all of them are
combined by stacking the results into one array and then storing them in a laz file. The benefit
of creating a laz file is that a new dimension ’clusters’ can be added and then afterwards be read
with the ’.clusters’ attribute to obtain the cluster values.

3.3 Operations

After clustering a point cloud it can be opened in our program. Other file types than laz can also
be used but those cannot save the clustering results due to their structure not allowing to add of
a new attribute for the cluster values.
A clustered point cloud can be filtered by one of the following 6 classes which were already
mentioned at the beginning of this chapter: building, car, ground, pole, vegetation as well as
human. Human is not a class that can be assigned by the pretrained GRanD-Net model but
since our dataset occasionally contains some, it can be done manually through our program. By
choosing to filter a class, all clusters of the given class are colored differently and a label above
each cluster’s center with the class and cluster number as its value is placed. So when filtering
a cloud by ’car’ above the points that have the cluster value ’1.2’ the created label is ’Car 1’ as
1 is the cluster number and 2 is associated with the ’car’ class. The label is placed above the
cluster’s center as that seems to be the best place visually to match a label with its cluster. In
order to prevent from labels being placed within the point cloud the biggest z value of the whole
cloud is evaluated once before placing the labels since that value does not change. The center
of the cluster is calculated by calling the open3d function ’get_center()’ from the PointCloud
Class [10]. The function is based on the C++ ’ComputeCenter()’ function [2]. It simply adds
up all the points of the cloud and then divides the sum by the number of points. In order to
place the labels the function ’add_3d_label()’ of the SceneWidget Class is called [12]. With that
approach, each label is placed at the center x and y values of its cluster with the z value being
the highest z value of the whole cloud. An example can be found in Figure 3.7

As briefly mentioned, a whole cloud or parts of it can be clustered manually by creating an
’OrientedBoundingBox’ with open3d [9] which can be modified. After creating a box all of the
points inside are marked in green, specifically RGB value (0, 1, 0) as displayed in Figure 3.8.

To evaluate which points are inside open3d’s method ’get_point_indices_within_bounding_box’
is called with the points of the loaded point cloud. Those points can also be filtered by one of
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Figure 3.7: Example of how clusters specifically of the ’car’ class are shown in our software

the classes. In that case, the points that belong to the chosen class are marked in green whereas
the other ones are colored in their original color. An example can be found in Figure 3.9.
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Figure 3.8: Example of created bounding box, points inside are colored in green

Figure 3.9: Example of the same bounding box as in Figure 3.8 but with ’car’ class selected as
filter
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If a class is not represented in the points, nothing will be marked in green. Furthermore, the
marked points can be assigned to a different cluster and class than their current one by opening
the ’Classification’ menu and clicking ’Set [desired class]’. Additionally, there is an option to
only select existing clusters. In that mode, only points of the selected object can be changed. So
if one wants to change the class of a cluster or parts of it, they can select the cluster via ’Select
Object’ and then modify the box accordingly in order to assign another class for the marked
points. An example of how that can be done is displayed in Figures 3.10 to 3.13.

Since open3d’s PointCloud Geometry [10] does not have a cluster or classification attribute,
the cluster values are stored in a separate array where the indices of the values align with the or-
der of the points. That obviously means that after modifying parts of the cloud, the cluster array
has to be adjusted accordingly when removing points or changing the indices of some points in
the cloud.
In order to have no restrictions regarding the selection of points, the box can be modified through
translation, scaling, and rotation. All of those operations are done with open3d’s methods for
those transformations (translate(), scale(), rotate()). The default translation is on the x- and y-
axis plane. Translation can also be limited to one of the 3 axes (x, y, z). The default scaling
operation is in all axes but just like translation, scaling can be limited to one of the 3 axes. Ro-
tation, however, is only available on the z-axis in order to not overload that feature and keep it
simple for users. An example of how to move a car with a box created with the ’Select’ oper-
ation is illustrated in Figures 3.14 to 3.17. All of the previously mentioned transformations are
necessary for that.
Once the box is placed and the desired points are marked, those can either be moved to another
location or deleted from the cloud.
Since GRanD-Net, as well as the clustering algorithm mentioned in the previous section, tend

to have misinterpretations and do not always deliver optimal results as displayed a couple of
times in this chapter, our program can be used to manually fix these mistakes which was also
shown.
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Figure 3.10: Example of misclassification where a building is classified as vegetation

Figure 3.11: Adjusting the box to the building part of the object
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Figure 3.12: Select building operation

Figure 3.13: Selected same area as in Figure 3.10, now it is classified correctly
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Figure 3.14: Clicking on an area with a car after selecting the ’Select’ operation creates a
bounding box

Figure 3.15: The bounding box is rotated with key ’R’ to fit the car

Figure 3.16: The bounding box is scaled in the x or y direction by clicking ’S’ and then either
’X’ or ’Y’

Figure 3.17: The points inside can be moved with key ’M’18



CHAPTER 4
Evaluation

In this chapter different aspects such as results of the classification algorithm, GRanD-Net, [13]
and run-time for the various operations that are mentioned in the ’Methodology’ chapter were
evaluated on our dataset. Additionally, the self-written scripts that were mentioned in chapter
3.1 were tested with the SHREC 2020 dataset [1] as the ground truth is available for those which
was used to figure out whether those scripts might be beneficial for another dataset.

4.1 Hardware & Software Specification

My colleague Manuel Keilman and I decided to use Python 3.9 which at the time of developing
the program was the latest version that supported the open3d library which was the one we
mainly used [8]. The software was tested on Windows 10 as well as Linux Ubuntu 22.04. The
classification algorithm however was only tested on Linux Ubuntu 22.04.
The following Hardware was used for the ’Classification’ section:

• CPU: AMD Ryzen 7 5800X, 8-Core, 3.8 GHz

• GPU: NVIDIA GeForce RTX 3080

• RAM: 64.0 GB

• OS: Linux Ubuntu 22.04

The following Hardware was used for the ’Clustering’ and ’Program / GUI’ section:

• Notebook: Asus UX550VE

• CPU: Intel Core i7-7700HQ, 4-Core, 2.8 GHz

• GPU: NVIDIA GeForce GTX 1050 Ti (4GB VRAM)

• RAM: 16.0 GB

• OS: Windows 10 Home, 64-bit
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4.2 Classification

In this section, the performance and the results of the GRanD-Net algorithm will be reviewed
in detail. Performance, in this case, equals the run-time to classify point clouds with different
amounts of points. Since there is no ground truth information available for our dataset, the
classification results will be judged by the visual appearance of the classified point clouds. Due
to voxel subsampling being an option the clouds will be subsampled with different factors and it
will be evaluated whether that improves the classification results. As mentioned our dataset will
be judged by its visual appearance. The SHREC dataset, however, contains the ground truth,
which is why the subsampling will also be evaluated on that dataset in order to see the impact
on another dataset.

SHREC Dataset

In this section, only the voxel subsampling script is evaluated since the results of the GRanD-Net
algorithm on this dataset were already reviewed in [13]. Out of the 60 available test point clouds
[1], the following ones were randomly picked: 5D4L1TX7.txt in Figure 4.1, 5D4KVQ9U.txt in
Figure 4.3 and 5D4KX3TQ.txt in Figure 4.2.
All of those point clouds were classified with a couple of different input values and without
subsampling in order to see the impact of the method. Despite subsampling reducing the total
amount of points of cloud, the GRanD-Net algorithm took just as much time as without subsam-
pling. The average run-time was 19 min and 12 sec.
After running the GRanD-Net algorithm on each of these files the created label file by GRanD-
Net which was mentioned in chapter 3.1 was iterated through and then compared to the ground
truth of the point clouds. Since the ground truth was given as the 4th column of the mentioned
txt files, the values of the 4th column were iterated through and then compared to the created
label file. For each line that matched a counter was incremented by 1. In order to obtain the total
percentage of correctly classified points, the counter was divided by the total amount of points.
As shown in each of the graphs the subsampling method performed way worse than not sub-
sampling at all. In general, the more is being subsampled the worse the result ended up being.
Even removing roughly 0.3 % of the points for 5D4KX3TQ resulted in a 42% worse result as
seen in Figure 4.2. As shown in all of the graphs it is not worth subsampling the point clouds
of the SHREC dataset at all, especially since the run-time is not reduced. A reason why the
SHREC dataset performed much worse than our dataset could be that the clouds in the SHREC
dataset are not as dense regarding points. The points are spaced out more and therefore creating
voxel-grids could end up removing relevant information for the classification algorithm. In our
dataset, however, the clouds are rather dense and therefore combining points could end up with
a more clear model.
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Figure 4.2: Percentage of correctly classified points with different subsampling input values for
5D4KX3TQ.txt. The subsample input value is multiplied by 0.2 and the result of that is the size
of a grid cell. For example, 0.2*0.5 ends up with a grid cell size of 0.1.

Figure 4.1: Percentage of correctly classified points with different subsampling input values for
5D4L1TX7.txt. The subsample input value is multiplied by 0.2 and the result of that is the size
of a grid cell. For example, 0.2*0.5 ends up with a grid cell size of 0.1.
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Figure 4.3: Percentage of correctly classified points with different subsampling input values for
5D4KVQ9U.txt. The subsample input value is multiplied by 0.2 and the result of that is the size
of a grid cell. For example, 0.2*0.5 ends up with a grid cell size of 0.1.

Our Dataset [6]

In this section, the following point clouds were classified with and without subsampling: 8088.laz
4.4, 741.laz 4.5, 8090.laz 4.6 and 33476.laz 4.7. Since the ground truth of the classes for each
point is not available, the result of the classification will be judged by its visual appearance.
If for example a car is mainly classified as something else then that is obviously a suboptimal
result. Depending on how much the original cloud is subsampled it can increase the percentage
of the points of the car that are identified properly which will be discussed further later on in
this section. Even though the point clouds consist of different numbers of points the run-time
for the GRanD-Net algorithm remained the same which was about 19 min 10 sec just like with
the SHREC dataset. In order to visualize the classes assigned to a point cloud the script, ’visual-
ize_laz_classification.py’ can be used after running the ’add_labels_to_laz.py’ script which was
mentioned in section 3.1. In the ’visualize_laz_classification.py’ script the color scheme works
as follows: buildings are blue, cars are red, the ground is brown, poles are yellow and vegetation
is green. Examples of what the result looks like can be found in Figures 4.8 to 4.19.
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Figure 4.4: Point cloud 8088 of our dataset.

Figure 4.5: Point cloud 741 of our dataset.
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Figure 4.6: Point cloud 8090 of our dataset.

Figure 4.7: Point cloud 33476 of our dataset.
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Figure 4.8: Classification of 8088.laz not subsampled. As displayed the cars at the center and
the majority of the buildings are misclassified as vegetation.

Figure 4.9: Classification of 8088.laz subsampled with a factor of 0.5. Subsampling the cloud
improved the result compared to Figure 4.8. The majority of the cars at the center are classified
as such. More parts of the building are classified properly as well.

Figure 4.10: Classification of 8088.laz subsampled with a factor of 0.25. Subsampling even
further ends up with a similar result as in Figure 4.8

.

25



Figure 4.11: Classification of 741.laz not subsampled. As displayed the pole on the left is clas-
sified as a building and vegetation. Furthermore, the ground at the top is classified as vegetation.

Figure 4.12: Classification of 741.laz subsampled with a factor of 0.5. Compared to Figure 4.11
the ground at the top is classified as such. Besides the pole on the left is identified properly.

Figure 4.13: Classification of 741.laz subsampled with a factor of 0.25. Subsampling too much
ends up with similar misclassification as in Figure 4.11.
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Figure 4.14: Classification of 8090.laz not subsampled. As displayed a lot of cars and buildings
are classified as vegetation.

Figure 4.15: Classification of 8090.laz subsampled with a factor of 0.5. Subsampling the cloud
ends up with more parts of the buildings being classified properly. Furthermore, the cars at the
center are identified more as well.

Figure 4.16: Classification of 8090.laz subsampled with a factor of 0.25. Subsampling more
than in Figure 4.15 ends up with similar miclassification as in Figure 4.14.
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Figure 4.17: Classification of 33476.laz not subsampled. As displayed some cars on the left
side are classified as cars and vegetation. Besides the pole on the right is identified as a building
and vegetation.

Figure 4.18: Classification of 33476.laz subsampled with a factor of 0.5. Compared to Figure
4.17 the pole on the left is classified as such. One car on the left is identified properly as well.

Figure 4.19: Classification of 33476.laz subsampled with a factor of 0.25. Subsampling more
than in Figure 4.18 ends up with similar results as in Figure 4.17
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As it is shown in the Figures 4.8 to 4.19 the classification overall seems better when subsam-
pling the clouds. The value with the most optimal results of the ones that were used seems to
be 0.5. As seen in Figures 4.8, 4.10 for cloud 8088 and 4.14, 4.16 for cloud 8090 some cars at
the center of the clouds were not classified as such but rather as ground or vegetation. However,
those are classified more accurately when subsampling the cloud with a value of 0.5. Another
example would be that in Figures 4.17, 4.19 for cloud 33476 and 4.11, 4.13 for cloud 741 the
pole on the left side of the image is classified as a combination of building and vegetation. In
Figure 4.18 and 4.12 however, the pole is completely classified as such. Even though the results
are overall better certain areas are still classified almost completely wrong. The most frequent
misclassification is that buildings are classified as vegetation. Hence, the option to manually
classify those parts in our software. Another reason is that humans are not recognized at all
since that is not an option with the GRanD-Net algorithm. Overall the results are rather good for
some clouds as seen in Figure 4.12 where almost all the cars are classified correctly.

4.3 Clustering

In this section, the run-time to cluster the clouds 741, 8088, 33476, and 8090 with a subsam-
pling factor of 0.5 is evaluated. Besides the visual appearance of the clusters is evaluated. Since
DBScan is used which has the ’eps’ value and the minimal number of points needed for a cluster
as its parameters those will be reviewed. The ’eps’ value determines if two points are within the
same neighbourhood. If the distance between both is greater than the ’eps’ value they are not
considered in the same neighbourhood and therefore not in the same cluster.
The minimal number of points needed for a cluster does not have a lot of impact unless the
number is quite big which usually does not end up with good results because a lot of areas are
considered noise points. Noise points do not belong to a cluster since they do not fulfill the input
parameters. A comparison between a parameter value of 175 points and 25 points for the points
that were classified as vegetation can be found in Figures 4.22 and 4.26. It is clearly visible that
setting the number for the minimal number of points too high ends up with a lot of noise points

The more impactful parameter, however, seems to be ’eps’ since it determines what belongs
to a potential cluster. In general the higher the ’eps’ value the longer the run-time of DBScan
but the results seem to be better in most cases. In the subsection ’eps’, different ’eps’ values are
compared. All of them were tested on the point clouds 741 and 8088 with the same minimal
number of points value.
Additionally, the difference between splitting the cloud into its classes before clustering and
clustering the whole cloud at once is evaluated. In both cases, the ground is not clustered since
there usually is one ground. While clustering everything at once is faster and might seem better
at first, the fact that a connected component might contain multiple classes has to be considered.
For example, a cluster might contain a wall but parts of the wall are classified as vegetation and
they are not close to each other. In that case, the vegetation cluster could be far apart as displayed
in Figure 4.20.
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Figure 4.20: Clustering the whole cloud without splitting it into classes. Each color represents
a cluster in this Figure. The classes for this cloud can be seen in Figure 4.9. Green circles show
the vegetation part of the blue cluster. Both areas would be considered as one cluster which is
suboptimal as they are far apart.

Minimal number of points

The minimal number of points required to be considered a cluster does have an impact on the
results of the clustering but if the value is not too high it does not affect it a lot. Obviously, if
the value is too high which for our dataset would be above 175 points there will be quite a lot of
noise points which has an impact on how the clusters are put together. As seen in Figure 4.21
the majority of the cars are regarded as noise points and even for vegetation a lot of points are
considered noise as displayed in Figure 4.22.

The results are much better when taking 100 points as a value but there are still quite some
noise points as seen in Figures 4.23 and 4.24.

Therefore 25 was chosen as a value since the noise points for that value are rather small and
not close to each other as displayed in Figure 4.25 and 4.26.
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’eps’

The eps value does have more impact on how the clusters are formed than the min. points but the
algorithm also takes longer when increasing that value. A high value like 1.75 ends up with the
best results for cloud 8088.laz as displayed in Figure 4.28 compared to 4.27 which has an eps
value of 0.5. However, a value of 1.75 is not as good for cloud 741.laz as displayed in Figures
4.29, 4.30 and 4.31. Since the range for points in which neighbors can be found is increased
with a higher eps value the cars of 741.laz are all considered as one object whereas for eps value
0.5 there is a better distinction between the smaller parts. The reason a higher value is better for
8088.laz is partly because its parts such as the buildings are much bigger in general. So with
a higher value, more points in the nearby area will be considered. Since the cars of 8088.laz
are not near to each other the higher value does not negatively impact those clusters as it does
with 741.laz. Choosing the right eps value is therefore important for having good clusters and a
higher value does not always end up with better results.

Splitting into classes vs all at once

Splitting the cloud into its different classes ends up with better clustering results compared to
clustering the whole cloud at once. Clustering everything at once is much faster since the al-
gorithm only has to be applied once. Clustering the cloud 8088 with ’eps’ value 1.75 and min.
points 25 took 10 seconds less when applying the algorithm to the whole cloud. Since cluster-
ing is only performed once before using the application the run-time is not as important as the
final results. As displayed in Figure 4.20 the clusters of clustering all at once might seem good
enough but it does not take into consideration which classes are in a cluster. Even though the
blue building for 8088.laz is one cluster that is almost ideal not all of those points are classified
as such. Therefore splitting that cluster into its classes afterwards can end up with clusters not
being a unit but rather parts that are far apart which in the end is not a good result.

Overall run-time

The run-time of the whole clustering process took between 17 and 44 seconds where the number
of points of a cloud and the eps value had an impact on that time. Cloud 741.laz has about 2.12
million points and with eps 0.75 it took 17 seconds. The same cloud with eps 1.25 took 28.3
seconds and with eps 1.75 even 44 seconds. The eps value, however, does not always have such
an impact as cloud 8090.laz which has 9.34 million points took 37.4 seconds with eps 0.75 and
only 38.29 seconds with eps 1.75 which is only a minor increase.

4.4 Program / GUI

In this section, the run-time, as well as the visual appearance of the following operations of
our software, are evaluated: the classification ’Set [class]’ as well as the ’Filter [class]’ options.
Those operations were applied on the 8088.laz cloud which was classified with a ’voxel_size’
input of 0.5 and clustered with an ’eps’ value of 1.25 and min. points value 25.
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Run-time

The average run-time for the ’Set [class]’ operations was between 0.2 and 0.25 seconds. The
bigger the area the longer it took but since it took a quarter of sec at max it is a rather fast
operation. The reason for that is that the operation does not require rendering the scene again.
When setting a class the indices of the points within the created box are retrieved. Afterwards
those indices in the designated arrays for the cluster and class values are changed. The new
cluster value of a class is always the current max of that class incremented by one.
’Filtering [class]’, however, took much more time compared to the ’set’ operation because by
filtering the clouds have to be rendered once to apply the changes which is not the case when
setting a class. As displayed in Figure 4.32, it can take quite a few seconds to show the results. In
general, if a class contains more points the longer it usually takes to render it. Since the ground
usually contains the most points by far it takes the longest time when it is selected with the filter
operation but since the ground usually is one cluster it is much more efficient to simply select it
with the ’Select Object’ operation as that takes about a third of the time filtering does.
When placing all 3 clouds into one scene it can take up longer than when summing up the times
of each cloud individually, e.g. vegetation takes 17.25 seconds if all clouds are in a scene, but
if each cloud is in a single scene it and then the time is summed up it takes 3.15 seconds less.
Even though it might seem quite a bit that it takes 26 seconds for filtering the ground all of the
clouds together contain about 20 million points of which the ground is about 11.5 million.

Visual appearance

In terms of visual appearance, there is nothing to say about the ’Set [class]’ operation since that
only changes the label by deleting the old one and creating a new one when a cluster is selected
with the ’Select Object’ operation.
In terms of filtering the cloud based on the classes, it works rather well as displayed in Figure
4.33 and 4.34. In general, the fewer clusters in the scene the easier it is to have a good overview
which means that is clearly distinguishable which cluster belongs to which part of the cloud. If
a lot of clusters for example 200 are in a scene there will be a lot of labels and therefore a lot of
overlapping text which can be distracting. That however should not be a problem when zooming
into specific areas. Another downside is that when a lot of clusters exist the difference in color
at some point will not be noticeable as easily since a colormap is used which contains a limited
amount of colors. Despite interpolating between those colors the difference is sometimes hard
to notice. In Figure 4.34 ’car 29’ and ’car 30’ almost have the same color but since the label is
always above the center of the cloud users should still be able to figure out which label belongs
to which car. In the worst case, they can use the ’Select Object’ operation to figure out what the
exact cluster is.
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Figure 4.21: Clustering cars of cloud 8088 with a minimal number of points value of 175. Noise
points are colored in black

Figure 4.22: Clustering vegetation of cloud 8088 with a minimal number of points value of 175.
Noise points are colored in black
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Figure 4.23: Clustering cars of cloud 8088 with a minimal number of points value of 100. Noise
points are colored in black

Figure 4.24: Clustering vegetation of cloud 8088 with a minimal number of points value of 100.
Noise points are colored in black
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Figure 4.25: Clustering cars of cloud 8088 with a minimal number of points value of 25. Noise
points are colored in black

Figure 4.26: Clustering vegetation of cloud 8088 with a minimal number of points value of 25.
Noise points are colored in black
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Figure 4.27: Clustering buildings of cloud 8088 with eps value 0.5. Noise points are colored in
black.

Figure 4.28: Clustering buildings of cloud 8088 with eps value 1.75. Noise points are colored
in black
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Figure 4.29: Clustering cars of cloud 741 with eps value 0.5. Noise points are colored in black.

Figure 4.30: Clustering cars of cloud 741 with eps value 1.25. Noise points are colored in black

Figure 4.31: Clustering cars of cloud 741 with eps value 1.75. Noise points are colored in black
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Figure 4.32: The run-time for filtering a class performed on multiple clouds as well as all of
them together in one scene
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Figure 4.33: Filter ground when clouds 741, 8088, and 8090 are in a scene

Figure 4.34: Filter cars when clouds 741, 8088, and 8090 are in a scene
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CHAPTER 5
Future Work

5.1 DBScan Variation

As described in the ’Evaluation’ chapter currently there is no way to figure out good values for
’eps’ other than trying different ones out. Therefore one aspect that can be improved in the
clustering process is to automatically calculate a good ’eps’ value so that users do not have to
spend time trying different ones out. There are a couple of variations of DBScan available that
can do that, e.g. this one [7]. Using one of those should therefore improve that aspect of the
clustering process.

5.2 Multiple Filtering & Object Selection

Currently, it is only possible to filter clouds with a single class. Furthermore, it is only possible
to select one object at a time. Therefore the software can be improved by adding the option to
filter clouds with a combination of different classes which should end up saving some time since
multiple classes can be processed at the same time. Besides adding the option to select multiple
objects at the same time can be quite helpful, especially for fixing classification mistakes. If
one part of a building is classified as ’vegetation’ and the other part is classified as ’building’
it would be quite helpful to be able to select both and merge those into the desired class. Not
only fixing mistakes would be easier, but being able to process multiple objects at the same time
should also end up saving some time.

5.3 Classification algorithm

As mentioned numerous times it currently is not possible to classify humans with the GRanD-
Net algorithm when using the pretrained model of the SHREC dataset. In order to reduce the
misclassification of humans in clouds, another algorithm that has a pretrained model with hu-
mans could be used. If none are available a model of our dataset could be trained with the
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GRanD-Net algorithm and then be used to classify the clouds which should improve the results.
Using the RandLA-Net algorithm [17], which GRanD-Net is inspired by, and the SemanticKITTI
dataset [14] [16] would be an option. That dataset contains human beings, cyclists, and the same
street classes as the SHREC dataset [1].

5.4 Laz files

Currently, users can only save the classification and changes of clouds in a laz file. In order to
improve usability different options such as creating an external txt file with the classification and
cluster values could be created. By doing that users are not forced to save their files in the laz
format.
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