
Statistische Methoden zur
Bewertung einer Künstliche
Intelligenz (KI) Software im

Diagnostischen Umfeld

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Biomedical Engineering

eingereicht von

Tek Sin Chung, BSc
Matrikelnummer 01525236

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Dr Renata Georgia Raidou
Mitwirkung: Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller

Wien, 2. Februar 2022
Tek Sin Chung Renata Georgia Raidou

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at





Statistical Methodologies for
Assessing an Artificial

Intelligence (AI) Software in a
Diagnostic Setting

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Biomedical Engineering

by

Tek Sin Chung, BSc
Registration Number 01525236

to the Faculty of Informatics

at the TU Wien

Advisor: Dr Renata Georgia Raidou
Assistance: Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller

Vienna, 2nd February, 2022
Tek Sin Chung Renata Georgia Raidou

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at





Erklärung zur Verfassung der
Arbeit

Tek Sin Chung, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 2. Februar 2022
Tek Sin Chung

v





Danksagung

In erster Linie möchte ich mich bei meiner Betreuerin, Dr. Renata Georgia Raidou, vom
Institut für Medizinische Visualisierung und Visual Analytics der TU Wien bedanken, die
viel Zeit und Mühe in die Betreuung dieser Arbeit investiert hat. Ihre Anleitung und ihr
Beitrag während des gesamten Projekts ermöglichte mir die Fertigstellung dieser Arbeit.

Ich möchte mich auch bei Dr. Richard Ljuhar, CEO von ImageBiopsy Lab, dafür bedanken,
dass er mir die Möglichkeit gab, an einem so interessanten Projekt zu arbeiten.

Mein aufrichtiger Dank gilt insbesondere Dr. Matthew D. DiFranco, CSO von ImageBiopsy
Lab, der als mein externer Betreuer fungierte. Vielen Dank, dass Sie mir Ihr Fachwissen
während dieses Projekts zur Verfügung gestellt und mich während meiner gesamten
Arbeit unterstützt haben.

Ich möchte mich auch bei meinen Kollegen, Dr. Zsolt Bertalan und Dipl. Ing. Ulrich
Mayer bedanken, die mich ermutigt haben, ein großes Projekt wie diesen anzugehen.

Schließlich möchte ich mich bei meinen Freunden und meiner Familie bedanken, die mich
während dieser Arbeit unterstützt haben.

vii





Acknowledgements

First and foremost, I would like to thank my supervisor, Dr. Renata Georgia Raidou,
from the Institute of Medical Visualization and Visual Analytics at TU Vienna for putting
in time and effort to supervise this thesis. Her guidance and contribution throughout
this project enabled me to complete this work.

I would also like to extend my gratitude to Dr.Richard Ljuhar, CEO of ImageBiopsy
Lab, in given me the chance to work on a such an interest project.

My sincerest thanks especially to Dr. Matthew D. DiFranco, CSO of ImageBiopsy Lab,
for stepping up as my external supervisor. Thank for providing your expertise during
the time of this project as well as providing support throughout my thesis.

I would also like to show my gratitude to my colleagues, Dr.Zsolt Bertalan and Dipl. Ing.
Ulrich Mayer, both encouraging me to take the first step in tackling a big project such as
this.

Finally, special thanks to my friends and family, who has been supportive of me throughout
this thesis.

ix





Kurzfassung

Die radiologische Bestimmung des Knochenalters (KA) anhand eines Röntgenbildes der
linken Hand ist nach wie vor der Referenzstandard für die Beurteilung der Skelettreife im
Zusammenhang mit dem Wachstum zugrunde liegenden Erkrankungen. Aufgrund der Sub-
jektivität und des hohen Zeitaufwands der BA-Bestimmung setzen sich KI-Algorithmen
immer mehr durch. Daher empfehlen wir Methoden und statistische Empfehlungen für
die Bewertung der Performance eines KI-Tools vor. Unsere Strategie wurde in einer
retrospektiven Studie mit dem KI-Modell PANDA überprüft, einer vollautomatischen
KI-Software, die zur Schätzung des KA auf Handröntgenbildern verwendet wird.

Wir analysierten die Röntgenbilder von 342 Patienten retrospektiv. Drei zertifizierte
pädiatrische Radiologen beurteilten das KA unabhängig voneinander nach der Greulich-
&-Pyle-Methode (GP). PANDA wurde anschließend verwendet, um automatische Schät-
zungen des KA aus demselben Satz von Bildern zu erstellen. Die Ground Truth wurde
auf der Grundlage des Mittelwerts der Schätzungen ermittelt. Wir bewerteten die Über-
einstimmung der KI mit den Lesern anhand von Bland-Altman-Limits of Agreement
(LOA), der orthogonalen linearen Regression und mit dem Konzept der Austauschbarkeit

Die Bland-Altman-Bewertung ergab eine durschnittliche Differenz zwischen den Bewertern
und der KI von -0,72 mit einem 95%CI (-1,46; 0,02) Monaten, was keinen fixen Bias
anzeigt. Unter Verwendung einer orthogonalen linearen Regression wurde die Steigung
zwischen den Lesern und der AI-Software mit 1,02 (95%CI: 1,00, 1,03) angegeben. Es
wurde keinen proportionalen Bias festgestellt. Die Quadratwurzel des absoluten Wertes
des Äquivalenzindexes der KI-Software im Vergleich zu den Bewertungen durch die
Radiologen wurde mit -5,8 Monaten festgestellt. Dies bedeutet, dass die KI-Software mit
den Bewertungen von Fachleuten austauschbar ist.

Die vorgeschlagenen Metriken sind nicht auf die Bewertung des Knochenalters beschränkt
und können auch auf andere klinische Outputs angewendet werden, sofern es sich um
eine kontinuierliche Variable handelt. Wenn man eine Bias zwischen zwei Messtechniken
feststellen will, sollte eine Regressionsanalyse durchgeführt werden. Wenn es darum
geht, festzustellen, ob eine Methode sicher durch eine andere ersetzt werden kann,
insbesondere in der klinischen Praxis, ist Bland-Altman vorzuziehen. Gibt es keinen
geeigneten Referenzstandard, mit dem verglichen werden kann, kann das Konzept der
Austauschbarkeit verwendet werden. Diese statistische Methode ist nicht auf einen
Referenzstandard angewiesen.
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Abstract

The radiological determination of bone age (BA) from a left-hand x-ray continues to be
the reference standard for skeletal maturity assessment related to short or long stature,
and underlying conditions. Artificial (AI) algorithms are becoming more prevalent due to
the subjectivity and time-consuming nature of BA assessment. Therefore, we proposed
methods and statistical recommendations in assessing standalone performance of an AI
tool. Our strategy was verified in a retrospective study using the AI model, PANDA, a
fully automated AI software used to estimate bone age (BA) on hand radiographs.

We analyzed radiographs of 342 patients retrospectively. Three board certified pediatric
radiologists made blind reads of BA using the Greulich & Pyle (GP) method independently.
The AI-software, PANDA, was subsequently used to provided automated estimations of
BA from the same set of images. The ground truth was established based on the mean of
the estimations. We assessed agreement of AI with readers based on comparison of Bland-
Altman limits of agreement (LOA), orthogonal linear regression and interchangeability.

Bland-Altman assessment displayed a mean difference between readers and AI to be
-0.72 with 95%CI (-1.46; 0.02) months displying no fixed bias. Using orthogonal linear
regression, the slope between readers and AI software was reported to be 1.02 95%CI
(1.00, 1.03). No proportional bias was observed. The square root of the absolute value of
the equivalence index of the AI software compared to assessments made by readers was
observed to be -5.8 months. This indicates that the AI software is interchangeable with
expert readers.

The proposed framework is generalizable to the other applications aside from bone age. If
one wants to find bias between two techniques of measurement, regression analysis should
be performed. If the purpose is to see if one method may be safely replaced by another,
especially in clinical practice, Bland-Altman plot is preferred. If there is no adequate
reference standard to compare to, interchangeability can be used. This statistical method
does not rely on a reference standard.
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CHAPTER 1
Introduction

From the beginning it seemed
reasonable to suppose that bone
age assessments were something a
computer could do better than a
human operator.

Tanner & Whitehouse

1.1 Introduction
The goal of this chapter is to introduce the readers to the concepts provided in the
thesis. This section presents the driving force as well the overall goal, methodologies, and
contribution of the thesis. To supplement, we also include an overview of the structure
of the thesis.

1.2 Motivation
Artificial intelligence (AI) in the clinical setting has become more prevalent than ever
[HT17]. By deriving insights from vast amounts of data, AI has the potential to transform
the healthcare sector. Computer-Assisted Detection (CAD) systems can solve specific
radiological tasks with high efficiency. Nonetheless, AI remains an extension of human
capabilities, not a replacement. A clinical decision, a diagnosis, is to this day still the
responsibility of the clinical expert. Manufacturers make sure not to take away this duty
by labeling their AI devices accordingly [ACR]. In certain difficult and time-consuming
tasks, AI can provide a solution within a short amount of time. This might lead to a
tendency of the user to overly rely on the output without confirming the results. Hence
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1. Introduction

the user will in some cases likely be unable to “catch” an error in output with the device.
This poses a risk, as some therapies employed could be significantly life-altering for the
patient. Therefore a high level of performance of the AI should usually be demonstrated.

According to the Food & Drug Administration (FDA), the standard paradigm suggests
that an assessment of false positives (sensitivity) and false negatives (specificity) is
sufficient to assure the safety and effectiveness of an AI medical device. Performance
data of such cleared devices empower such assumptions [ACR].

Although these quantities apply to classification-based outputs, where the numbers of
outputs are finite when dealing with outputs of continuous nature, where the number of
outputs to be measured within an interval can be uncountable e.g., age estimation, this
is often not optimal. Attempting to group continuous variables into bins and assessing
performance as if the outputs were of categorical variables will lead to an inaccurate
representation of the performance results. This type of metric will introduce some
arbitrariness to the analysis and hence the loss of information [Har20]. As a general
rule, it is desirable to avoid techniques that introduce arbitrary assumptions, particularly
in cases where alternative techniques are available to easily avoid these assumptions.
Finding these methods though is a challenging task.

Thus, in this thesis we propose alternatives methodologies and a framework for statistical
performance assessment of an AI in the form of agreement, bias assessment, and inter-
changeability and test our clinical as well as statistical assumptions on PANDA, a bone
age AI model, whose clinical output is continuous, provided by the company ImageBiopsy
Lab.

By providing a framework in assessing the performance of an AI bone age model we want
to give researchers the ability and knowledge to demonstrate the safety and effectiveness
of their device. In addition, we intend to consider a framework that is not limited to
the assessment of the bone age model itself but also applies to other areas in clinical
AI, whose outputs are continuous. For this theses, we can summarize the main research
question as Which statistical strategies support researchers in demonstrating safety and
performance of an AI algorithm whose output is continuous?

1.3 Contribution
Our work is motivated by the lack of clear guidance in validating artificial intelligence as
medical devices. The current standard of practice as discussed in Section 1.2is inade-
quate to address AI software providing numerical outputs (e.g., age, angles, distances).
Therefore, our contribution to the state-of-the-art with this thesis is a workflow for the
statistical assessment of AI solutions in bone age assessment

In this thesis, we will provide a framework for researchers with state-of-the-art statistical
techniques. This selection of methods will support any researcher in the assessment of AI
software independent of the type of the numerical output of interest. Special care is given

2



1.4. Aim of Work

to the enrichment of the test data set and the comparison to reference standards, i.e.
the ground truth, to avoid pitfalls when applying the proposed statistical methodologies.

1.4 Aim of Work
This work aims to define a statistical framework used by researchers on how to assess the
performance of AI algorithms, whose output is a continuous variable. For this reason, we
use PANDA, a bone age estimation software provided by ImageBiopsy Lab, as a reference
device to test our proposed methodologies. We looked up similar procedures that have
already been implemented for bone age and other approaches that might be applied
interchangeably. Subsequently, we derived the following three research questions that are
of interest for all medical experts when justifying good performance assessment practice.

Q1 How does the clinical aspect of the output of interest influence the distribution and
granularity of the data set to be tested on?

Q2 How can the performance of the software whose output is continuous be shown and
which choices of performance metrics and performance targets are available and
feasible?

Q3 How can we estimate sufficient sample size and power?

To answer the questions above, we will focus on the following tasks in the remainder of
this thesis.

T1 Understanding the principles of bone age assessment, its clinical output including the
intervention of AI and the relevance of the clinical assumptions into the statistical
considerations (Q1).

T2 Exploring the current methodologies of performance assessment of bone age and
possible limitations (Q2 & Q3).

T3 Proposal of an improved and more robust framework for performance analysis (Q2
& Q3).

1.4.1 Requirements

The outcome of this thesis should not only incorporate the tasks as above but also include
a set of requirements.

3



1. Introduction

R1 Generalizability

While this thesis puts its primary focus on bone age, the framework proposed should
not be limited to this specific output but should also apply to any clinical output of
continuous nature irrespective of the use case. Therefore methods should be sought
out that can be applied to a broader perspective and not limited to the performance
assessment of bone age specifically. The implementation, i.e., scripts and tools used
should be created with this specific aspect in mind.

R2 Scalability

One of the final goals of AI in the medical setting is to find its way to commercial use
in a clinical institute. Therefore the device must pass the regulatory barrier laid out
by the US and Europe, known as FDA and MDR, respectively. The regulatory field
enforces a harsh standard concerning adequate methodology and performance targets
with hopes that AI/ML-based Software as Medical Device (SaMD) will deliver safe and
effective software functionality that improves the quality of care that patients receive.
The selection of methods and definition of targets to be met to keep both the personnel
in the medical as well as in the regulatory field satisfied is what the thesis will aim for.

R3 Reproducibility

The underlying concept of the proposed framework must be designed in a way that allows
researchers to reproduce the methods without being bound to a specific design.

1.5 Methodological Approach
Irrespective of the clinical output in question, many of the statistical considerations done
are traced back to the underlying usage and clinical assumption made for the output of
interest. In this case, we are looking at bone age specifically. Understanding the nature of
clinical output serves as an initial basis for all further tasks and subsequently an overview
of the testing data set on which is assessed on.

Therefore, the goal of T1 is to understand the underlying specification in a bone age
assessment. Here we factor in considerations such as demographics (age, gender, ethnicity)
and tackle the issue of generalizability of data mainly to the census population but also
limitations of the AI Model PANDA. The result of this analysis yields an overall expected
distribution of the testing data set and support the argumentation of the statistical
method selection.

Based on previous research, we consider the Bland-Altman analysis and the concept
of interchangeability for performance assessment. Orthogonal linear regression (OLR)
is used to assess any potential bias. The reasoning for the proposed methodologies is
because the core issue at hand is a situation of comparing two methods that assess the
same output. The output of an AI is essentially a different method providing the same

4



1.6. Thesis Outline

assessment, i.e., a new method against a reference method. It is inevitable that opinions
of AI and medical professionals differs to a certain extent. The question here is what
is the difference to be expected and to what extent is this difference acceptable? The
solution here is to look into agreement and interchangeability, more specific differences
to be expected between the two methods. By looking at the differences in outputs
instead of binning results to perform a discrete analysis of sensitivity and specificity,
we avoid the pitfalls of arbitrariness and loss of information. This presents a more
accurate representation of the clinical performance. The related works section emphasizes
emphasize the justification why these proposed methods are the most suitable for assessing
the performance of this kind further and fulfill the requirement of generalizability (T2&
Req. Generalizability).

Finally, based on our proposal, we prove our assumptions in form of a multicenter study.
We involve a cohort of over 300 children and three expert pediatric readers, who establish
the ground truth. The device in question, the bone age software, PANDA, is tested against
the current reference standard which is the radiologist, the ground truth, themselves.
We apply Good Clinical Practice (GCP) as expected from the medical industry, hence
implementing the framework in a scalable manner (T3 & Req. Scalability).

The contribution complementing this thesis is a statistical analysis done via a python
script illustrating the outputs as seen in the results section. The underlying concept of
these scripts is further described in the implementation section. The proposed allows
the medical researcher to perform a fast and in-depth solution for data analysis based
on the presented framework in this thesis. Though for this thesis the programming
language “Python” was the choice of implementation we ensure that irrespective of the
language used, the underlying concept behind is presented in the manner, i.e., pseudo
allowing researchers to reproduce the methods proposed without any limitations (T3 &
Req. Reproducibility).

1.6 Thesis Outline
We structure the complete thesis as the following: Chapter 2 provides an outline of the
medical, technical, and statistical background. The medical background explains the
intricacies of bone age assessment, different methodologies used in the clinical environment
in more detail, treatments resulting from a bone age assessment including its limitations.
While the technical background summarizes the device of interest PANDA provided by
ImageBiopsy Lab and how its AI complements the workflow of the clinical setting, the
statistical background creates a foundation of the underlying statistical methodologies
used in the proposal for performance assessment of a bone age model. Coming up next,
Chapter 3 emphasizes the recent works in performance assessment methodologies of
AI bone age models, their current advances, and limitations from a statistical point
of view. There we investigate why the statistical considerations made by many of the
recent advances are lacking. Based on the outcome of the presented works and the issues
at fault, Chapter 4 discusses possible solutions and how our approach differs in the

5



1. Introduction

form of a study design. Here we start with the estimation of an adequate sample size
followed by the acquisition of data including the establishment of ground truth. We
then define and justify the statistical metrics and targets used to assess the performance
of the clinical output. After deciding on the proposed methods, Chapter 5 outlines a
detailed explanation of the implementation process that results in python scripts and
tools used. Chapter 6 demonstrates the results and possible findings of the predictive
power of PANDA against medical experts performed during a formal evaluation using
the proposed methods. As a result, in Chapter 7 Finally, in Chapter 8, we summarize
and discuss the conclusion of this thesis, validation of our proposal in the medical and
regulatory field, and possible future directions this topic can improve on.

6



CHAPTER 2
Background

2.1 Introduction
In order to understand the reasoning that is further explored in the later chapters, a
thorough understanding of the topics encapsulating bone age needs to be laid out. This
consists of understanding the meaning of bone age, its relevance in the clinical setting,
the current standard of practice, the demographics on where bone age assessments are
performed and finally its limitations and how the intervention of AI supports the reader.

The factors mentioned above lay out the foundation for the statistical considerations
and will answer why specific methods for performance assessment are more suitable than
others and explain the logic behind the compilation of the testing data set.

2.2 Clinical Background
As part of Task T1 as outline in Section 1.4, one needs to understand the clinical
implications of the output provided by the AI to correctly define the distribution and
granularity of the data set to be tested on. At the end of this section, the proposed
solution will answer the issue concerning Research Question Q1.

2.2.1 Bone Age
Bone Age is an assessment of skeletal maturity typically based on the radiographs of
the left hand and wrist and is a routine procedure in pediatric radiology departments
[Mar11]. Bone age assessment relies on the predictable changes of ossification centers over
time. The hand, in particular, contains many of these ossification centers for which their
progression over time can be tracked by radiography. Abnormal growth is determined by
comparing the bone age to the chronological age of a child and can be an indication for
several conditions, such as growth hormone deficiency or hypothyroidism.

7



2. Background

The most common methods to assess bone age are the Greulich-Pyle (GP) method,
typically used by US pediatric radiologists and endocrinologists [GP50], and the Tanner-
Whitehouse (TW) method, more commonly used in Europe [TW83]. The GP method
is atlas-based and involves a comparison of the whole hand morphology to the typical
morphology of different developmental stages. The TW method is more elaborate and
involves the scoring of individual bones for maturity indicators, after which a bone age
can be derived from the sum of the scores. The two methods are based on two different
study populations: The GP method was originally based on an American population of
high socio-economical status in the 1940s, while the TW method was originally based on
a Scottish study population of low socio-economical status in the 1950s. A large-scale
study found that the mean difference between the two methods is 0.39 (-2.24; 2.18) years,
with the (TW method assessments being on average slightly higher than the GP method
[BEK+99]. Regardless, even though the (TW method is more fine-grained, both methods
are in good agreement with each other and, in part due to its simplicity and being less
time-consuming, a majority of radiologists adopt the GP method [CSI17, KSO+94].

The measurement of bone age according to GP is intended to be performed on the
non-dominant hand. Based on the atlas of GP, the left hand was used as the preferred
way of measurement. This is due to most of the population being right-handed. This
results in making the left hand more suited for analysis, as the less dominant hand is less
frequently used and therefore less likely to be maimed or in any way injured. The overall
concern regarding the use of radiographs of left or right hands is whether the bone ages
estimated in each of the two hands of an individual child are sufficiently close so that the
same estimate of bone age can be derived from either of them. The GP atlas provides
references to support the conclusion that discrepancies between the two sides are too
insignificant to constitute a source of error in the determination of skeletal status, thus
supporting the evaluation of either hand. The decision of whether to use the left or right
hand for an individual patient is left up to the physician ordering the hand bone age
estimation [GP50].

2.2.2 Clinical Use - Bone Age Assessment of Radiographs

The main use of Bone Age assessment in a clinical setting is to evaluate abnormalities in
development by comparing the difference of skeletal bone age to the chronological age
(birthdate) of a child [BSY+07]. The assessment of chronological age is a matching process,
comparing the radiograph of a subject to a defined reference that involves a sample of
known sex and age [BEK+99]. The process of age estimation is a measure of biological
maturity that is converted to the chronological age by comparison with a reference
[Fle32]. A delayed bone age (corresponding to a younger chronological age) can be an
indication of several conditions such as growth hormone deficiency, hyperthyroidism,
and malnutrition. Advanced bone age is associated with elevated sex steroid levels,
which happens in precocious puberty or congenital adrenal hyperplasia. Several genetic
overgrowth syndromes, such as Sotos syndrome, Beckwith-Wiedemann syndrome, and
Marshall-Smith syndrome, are associated with significantly advanced bone age [CSI17].

8



2.2. Clinical Background

2.2.3 Ethnic Variation in Skeletal Maturation
Both GP and TW methods for determination of bone age were first defined in a primarily
white population, albeit in the 40s and 50s, raising questions about the applicability of
these assessments to different ethnicities. Consequently, several studies have assessed
bone age in populations of diverse ethnic backgrounds, by both GP and TW methods.
A recent study, using data collected from the Los Angeles Children’s Hospital, reports
the differences between bone and chronological age stratified by ethnicity. It found
statistically significant differences for the Asian and Hispanic groups, as well as for white
females, but no significant differences for either the African American group or white boys.
Regardless, these differences were all less than 0.3 years, which is unlikely to be clinically
significant. An age-stratified analysis reveals that bone is significantly overestimated for
Asian and Hispanic children, especially in girls between the ages 10-13 and boys between
11-15 years old [ZSV+09].

2.2.4 Limitations of the GP Atlas
To summarize, the GP Atlas:

• Is a set of reference images over a range of ages (31 reference images for males and
26 for females)

• Standards are derived from a study of healthy white middle-class children in the
Cleveland area from 1931-to 1942

• Reference images range from 3 months to 18 years for girls and 19 years for boys

Disadvantages of the method are that it is subjective and there are long intervals between
reference standards (some more than others). Also, it only includes a very specific patient
group as bone age is influenced by gender, race, living environments, social resources,
and nutritional status [TFRSPdlC+07]. Practitioners are aware of its limitations and
drawbacks but are also aware of its widespread adoption and clinical use as a standard
for bone age assessment.

2.2.5 Role of Artificial Intelligence (AI) in the Assessment of Age
Estimation

Bone Age is an assessment of skeletal maturity typically based on the radiographs of
the non-dominant hand and wrist and is a routine procedure in pediatric radiology
departments where bone age assessments are compared to the chronological age in light
of detecting any potential endocrine and/or metabolic disorders. While this process is
incremental to many disease evaluations, since the introduction of the still current golden
standard by Greulich & Pyle over 60 years ago, little has changed to improve this tedious
process. Nonetheless, the "Radiographic Atlas of Skeletal Development of the Hand and
Wrist" by William Greulich and Idell Pyle is considered the standard in determining
skeletal age in children [GP50]. Other methods, due to their technical complexity in
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acquisition [PBM18, DTBP+20] or interpretation [TW83], are used less often in practice
[BTSK16].

Bone age assessment or determining a “skeletal age” is a sophisticated task complicated
by the complexity of evaluating the wide variations in bone mineralization tempo, shape,
and size encompassed in the large number of ossification centers in the hand and wrist
and hence requiring one to account and weighting for these multiple factors and as such is
not a simple quantitative measurement and much more complex task [SRGO06]. As such,
this type of assessment is very much prone to inter-and intra-rater variability [MIH+13].
In addition, depending on the experience and training of the radiologist, the process of
estimating skeletal age based using the GP atlas can be quite time-consuming and also
to a certain degree subjective.

To help radiologists handle these cases, many neural networks using AI algorithms
from deep learning, image classification, and object recognition can provide imaging
studies with meaningful results with almost the same accuracy as highly trained pediatric
radiologists Several CAD systems already exist for the determination of bone age [MIH+13,
BYW+20]. Recently, a new CAD system called PANDA was launched, which is built on
artificial intelligence [IB ]. The deep learning algorithm was trained with x-rays and the
corresponding bone age estimation according to GP.

However, AI algorithms are known to have numerous limitations where incorrectly flagged
studies might even increase the workload of radiologists and pose a risk to the patient
getting treated. Given the intended use of having the bone age determined automatically
in the clinical setting, the heavy reliance on the outputs, the challenging tasks, and the
associated risks, a very high level of performance should be demonstrated to assure the
safety and effectiveness of the device.

2.2.6 Enrichment of Testing Data Set by Clinical Indications
Relevant for Bone Age

Based on the assessment of the previous chapters, the relevance of the specific demo-
graphics listed below are to be considered when sampling the data:

1. Age

2. Sex

3. Ethnicity

From the clinical perspective, the performance testing data set should contain enough
granularity in terms of age and sex for assessment based on the intended patient population
and intended use of PANDA. While ethnicity seems to be another important factor in
a bone age assessment, the GP for estimating bone age from a hand radiograph does
not rely on ethnicity. Rather, patient ethnicity may be taken into consideration by
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the radiologist or referring physician when interpreting the bone age for the individual
patient. Disadvantages and limitations of the GP method are well known as presented
in the section2.2.3. Nevertheless, the GP method is accepted by radiologists and is still
considered one of the gold standards to this day [PPMDM+20]. As such, while one must
ensure that multiple ethnicities are represented in the performance data set, special
considerations are not required.

Summary

To sum it up, bone age is assessed differently for male (m) and female (f) in every stage
of age from 3 months to 18 and 19 years, for girls and boys, respectively. As such,
the testing data sampled must ensure sufficient granularity based on the indication of
PANDA’s patient population regarding age and sex, which are two parameters relevant
for bone age assessment.

2.3 Technical Background

This section addresses the device in question that is used to validate our statistical
assumption, how the software is used in the clinical setting, and what role the medical
device is fulfilling.

2.3.1 PANDA - Pediatric Bone Age and Developmental Assessment

PANDA is a fully automated, radiological image processing software intended to aid
medical professionals in the estimation of pediatric bone age according to the GP method
on non-dominant hand radiographs of children [IB ]. The usage of PANDA is limited
to bone age estimation of children aged between 24 months and 192 months (girls) or
204 months (boys). Manual estimation by comparing digital radiographs with reference
images in the GP atlas is tedious and suffers from a high degree of inter-rater variability.
PANDA facilitates the radiological evaluation of the bone age, where physicians can
predict conditions that affect the growth of children in a consistent way. PANDA provides
a swift automated method to estimate bone age. The device performs an assessment
based on the whole image of the single hand radiograph, which is fed into a convolutional
neural network and outputs a single bone age value. As a result, all bones visible on the
radiograph, including the carpal bones are taken into account by the model.

The bone age estimation is presented on a PANDA report along with the

• chronological age (CA) derived from the DICOM input image
• difference between bone age (BA) to chronological age (BA-CA)
• standard deviation (SD) from the Brush Foundation tables based on the CA
• assessed image along with overlays indicating the assessed region.
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The outputs can be viewed on any legally marketed DICOM viewer workstation. PANDA
operates in a Linux environment and can be deployed to be compatible with any operating
system supporting the given virtualization such as the third-party software “Docker”.

2.3.2 PANDA in the Clinical Workflow
Patients with a clinical suspicion of having a growth disorder, such as delayed or ad-
vanced development, are referred by a pediatrician or pediatric endocrinologist for a
PA radiograph of the non-dominant hand for initial screening of hand bone age. The
resulting radiograph is saved to the PACS.

Figure 2.1: In the automated workflow A, the hand radiograph is automatically sent
to PANDA, and the radiologist sees the PANDA results when they open the study
for viewing. In the radiologist request workflow B, the radiologist requests a PANDA
assessment while viewing the hand radiograph and receives the results in the radiology
workstation alongside the original study [IB ]

From this point, there are two ways for the radiologist to use PANDA:

Workflow A: Automated

1. An x-ray is sent to the PACS.
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2. The PACS is pre-configured by a technician of the clinical environment to auto-
matically direct PA hand radiographs intended for bone age assessment as DICOM
files to PANDA without the radiologists in between to run the software.

3. PANDA returns its outputs as DICOM files to the PACS, and they are stored with
the original study.

4. The radiologist requests the PACS to view the study on a radiology workstation.

5. The study is sent from the PACS to the radiology workstation, and the PANDA
output(s) are viewable by the radiologist along with the original DICOM.

Workflow B: Radiologists request

1. An x-ray is sent to the PACS.

2. The radiologist requests the PACS to view the study on a radiology workstation.

3. The study is sent from the PACS to the radiology workstation.

4. The radiologist sends a request to the PACS to send the DICOM to PANDA.

5. The study is sent from the PACS to PANDA.

6. PANDA sends its result(s) back to the PACS.

7. The PANDA outputs are sent to the radiology workstation for viewing alongside
the original DICOM.

In both cases, PANDA receives radiographs from a PACS, analyzes the images, outputs
the bone age as a result, and stores the analysis results in the PACS as a DICOM file
attached to the original study. Once PANDA receives the image, the analysis and the
generation of reports are fully automated and entail no user interaction. The user can
send images to PANDA via standardized DICOM commands or the file interface and
receive reports over the same interface. In this sense, the user does not “operate” the
device but simply reviews the reports presented to them and can accept or reject them
within their standard reading workflow.

Summary

To summarize, PANDA automates the current manual process of the Greulich & Pyle
bone age estimation method of hand radiographs. The usage of PANDA is limited to
bone age estimation of children aged between 24 months and 192 months (girls) or 204
months (boys). As fixed age interval is fundamentally a limitation, the testing data
set must factor in the intended use population. In addition, based on how PANDA is
integrated into the clinical workflow of the radiologists, AI essentially is giving an extra
opinion. To be more accurate, both, AI and the medical expert, are using different
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methods to assess the same output, which in this case is bone age. Moving forwards, the
question then would be a matter of comparing the two methods with each other and
assessing whether the differences to be found are clinically relevant.

2.4 Statistical Background
2.4.1 Introduction
So far we have established that the role of AI in the clinical setting is automating part
of the workflow within a diagnosis done by the healthcare professional. AI achieves its
purpose by estimating the clinical output of interest using different techniques compared
to the manual standard of practice. Strictly speaking, it is a comparison of methods.
For bone age specifically, the workflow conducted by the radiologists is the established
method for assessing the skeletal age of a child. However, with the latest advancements
in AI, it is worthwhile to investigate whether AI can yield comparable results to a human
expert. This can minimize the time and effort spent by radiologists. Therefore, it is of
great importance that the AI agrees with the current standard, which has to be backed
with evidence.

2.4.2 Bland-Altman Analysis
The Method Comparison Problem

In clinical practice, medical professionals often wish to assess or measure quantities such
as cardiac stroke volume, blood pressure, bone age that is in many cases extremely
difficult to measure directly without any adverse effects on the subject. As such an
evaluation usually involves indirect methods of measurement or assessment. When new
methods are proposed the evaluation is done by comparison to the established method
rather than the true quantity. The established method (standard method) is also known
as the "gold standard" but should not imply that the measurement was done without
errors. This is because we cannot be certain that either method reflects the actual result.
For bone age specifically, the radiologist is the established method for assessing the
skeletal age of a child. We also know that the specialist is prone to inter-and intra-rater
variability [MIH+13]. Nonetheless, today, the specialists are still considered the reference
standard. In such cases, we want to see whether these methods are comparable. There
will inevitably be a lack of agreement to a certain extent. What matters is the amount
of disagreement,i.e., how much the new method differs from the reference method. To
specify, the differences generated from the two methods must be within an acceptable
range from the clinical point of view. If this assumption-based clinical interpretation is
full-filled, the old method can be replaced by the new method [BA99]. For example, if
the differences of an automated bone age assessment via AI are within an acceptable
threshold, we can rely on the assessments done by the model, as a difference smaller than
the threshold would not affect clinical decision-making.
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The Bland-Altman Plot

The Bland-Altman plot is a simple and very powerful method to compare two measurement
techniques, where measurements/assessments of the same output on two different methods
are compared. The Bland-Altman plot is a good way of showing where any disagreements
occur [Gia15].
The underlying principle is based on comparing two measurements, X and Y that are
assumed to be the same. We plot a graph of how the difference between two measurements
(X - Y ) varies with the ’true’ measurement. Quite often we do not know the ’true’
measurement, as it is usually unknown which of the two measurements is correct, so in
the absence of a true measurement, we use the average of X and Y as the best estimate
of the true measurement.

Figure 2.2: Example of the Bland-Altman-Plot computed in Python’s MatplotLib - The x-
axis indicates the tentative "true" measurement of the output between two measurements.
The y-axis indicates the differences between the two methods. The black line displays
the mean of differences (reflecting the absolute bias). The dashed line shows the Limits
of Agreement. The red line the maximum acceptable limit

In this graphical method, we graph the difference (X - Y ) on the vertical axis and the
average (((X - Y )/2) on the horizontal axis in form of a scatter plot as seen in Figure2.2.
To support interpretation, three types of additional lines are included as displayed in
Figure2.2.

1. Black Line - Mean of differences - This indicates the expected bias when using
the new method over the reference method.

2. Black Line dashed - Limits of Agreement - Confidence limit of agreement,
shortened limits of agreement. Data points along the y-axis encapsulate 95% of the
differences resulting from using the new method over the reference method.
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3. Red Line - Clinically Acceptable Threshold - Acceptable limits defined a
priory, based on clinical assumptions or standards or literature. This threshold
presents the maximum difference one can accept resulting from using the new
method over the other.

If the limits of agreement are within the clinically acceptable threshold, the new method
is in agreement with the reference method.

2.4.3 Interchangeability
The concept of interchangeability stems from the idea of biosimilarity, a term relevant
in the pharmaceutical industry, where equivalence between a test drug to a reference
drug is established [OSS14]. FDA defines an interchangeable product as one that may be
substituted for the reference product without the intervention of the health care provider
who prescribed the product [Com]. This means drugs are considered interchangeable
when the same or similar results can be produced within the same patient. To show
interchangeability we compare the differences between the test and reference drugs to
differences between two responses with the reference drug.

To simplify:

Excess/Reduction of Differences =

Difference (New Drug Reference Response 1 and Reference Drug Response 2) - Difference
(Reference Drug Response 1 and Reference Drug Response 2)

where

Excess/Reduction of Differences < Predefined Acceptable Limit

The result is either an excess or reduction of differences, which is compared to a certain
limit defined during the planning phase of a study. If the result is below the Predefined
Acceptable Limit, the new drug is considered interchangeable if not superior to the
reference drug.

The concept of interchangeability is currently applied by the FDA to drug testing, but
can also be applied in multiple areas [Com] such as in the field of imaging. The biggest
advantage of interchangeability is the independence of requiring a reference standard to
compare to [OSS14]. A "true" Ground Truth will not always be available and may not be
necessary to determine. While a reference standard as required by Bland-Altman is not
always easy to define, the concept of interchangeability does not rely on any reference
standard, but the differences created by one method over the other.

2.4.4 Sample Size and Power Study
Studying the entire population in any research is neither realistic nor viable. That is why
an often large set of representative individuals is selected from the population, known
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as a sample. In any clinical study, it is essential to determine the appropriate number
of subjects during the planning stage of a study to provide a reliable assessment with a
certain degree of statistical significance [Len01]. The importance of sample size stems
from economic and ethical reasons. Undersized studies might not have the capability to
produce relevant results. The lack of samples can inhibit the detection of an effect or
differences between two methods when one should exist [Alt90]. Therefore, the study
might result in a waste of resources when exposing subjects to harmful treatments
without advancing knowledge. On the other hand, having more samples than required, an
unnecessary number of subjects are potentially exposed to harmful treatments. Therefore
an optimized sample size is very important.

A lot of techniques for sample size calculations are described in most conventional
statistical textbooks and a growing amount of software using formulas. All these equations
require one to have some idea of the results expected in a study. To simplify, the majority
of formulas expect the following assumptions, resulting in four basic components:

1. Type 1 error (alpha) - The probability to get a false-positive result
2. Power or Type 2 Error (beta) - The probability to get a false-negative result
3. The smallest effect of interest - Difference between the studied groups one

wishes to detect; mean of the sample differences.
4. The expected variability - Expected standard deviation of the sample differences

The estimated values are often based on either convention (related to Type 1 and Type 2
errors) or assumptions from previous literature or performed pilot studies (related Effect
Size). To estimate these components, we elaborate on these four parameters and put
them into perspective relevant for AI.

Principles of Hypotheses Testing

Quantitative research is driven by research questions and hypotheses, known as alternative
hypotheses. Every alternative hypothesis is followed by a null hypothesis. The null
hypothesis does not need to be explicitly stated because it is always the opposite of
the hypothesis. The alternative hypothesis will in many cases be about some form of
relationship or effect/difference between variables. The null hypothesis claims that the
variables being tested are not related and show no effect/difference, that the results are
the product of random chance. To demonstrate that a hypothesis is likely true researchers
need to compare it to the opposite situation, i.e., to reject the null hypothesis.

To put this into perspective, if a researcher asks the question "Is there a difference between
the assessment of bone age between AI and the reference standard?" The alternative
hypothesis would indicate: "Automated analysis with AI and the expert radiologists are
in agreement." Therefore the null hypothesis would be that "Automated analysis with AI
and the expert radiologists are not in agreement."
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Assuming we want to back up the alternative hypothesis, we have to refute the null
hypothesis. Instead of trying to prove the alternative hypothesis, the researcher must
show that the null hypothesis is likely to be wrong.

Type I and Type II Errors

The null hypotheses is True False

Rejected Type I error
(False Positive) Correct Decision

Not rejected Correct Decision Type II error
(False Negative)

Table 2.1: Type 1 Type 2

The chance for an error can occur in every study. There are two major types of error
– Type I and Type II errors as seen in Table2.1. Both forms of errors are concerned
with the researcher’s potential for making mistakes. A Type I error occurs when the
researcher mistakenly rejects the null hypothesis. For example, even though treatment is
not effective or shows any sort of difference, we say it is. If the null hypothesis is rejected
it means that the researcher has found a relationship among variables even though there
is none. So a type I error happens when there is no relationship but the researcher finds
one.

A type II error is the direct opposite. It occurs when the researcher mistakenly accepts
the null hypothesis. For example, a treatment is effective, but the researcher could not
find the evidence. If the null hypothesis is accepted it means that the researcher has not
found a relationship among variables, when one exists. So a type II error happens when
there is a relationship but the researcher does not find it.

Although it is hard to predict when an error will occur, researchers can reduce the chances
of making a mistake when making statistical decisions. Statistical considerations that
are used to calculate the required sample size for research are linked to the chance of
making an error. Researchers must evaluate the required power, estimated effect size,
and acceptable significance level when establishing a sample size.

The Level of Significance α

The statistical significance of a study’s findings is used to estimate how likely the results
are due to chance. The α level is decided before a study and is set to a value of the
maximum mistake rate that a researcher is ready to accept. To be more precise, assuming
there is no difference to be detected, meaning the null hypothesis is true, how often will
the researcher say otherwise, that is providing a false-positive result. Typically 0.05 is
set as a very common convention, which suggests that if the null hypothesis is true, it
will be rejected in only 5 out of 100 cases [CBB09, CA15].
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Power 1 - β

The possibility that the researcher would correctly reject the null hypothesis when it is
false, thereby avoiding a type II error, is known as power. It refers to the likelihood that
your test will detect a statistically significant difference if one would exist. The lesser the
probability of a type II error, the greater power research has. A type II error is more likely
when power is low. Power increases as the sample size grow because more information is
collected, making it simpler to reject the null hypothesis accurately. Usually, power is set
at 0.8 or greater before a study begins, meaning that you should have an 80% or greater
chance of finding a statistically significant difference when there is one [SH20, CBB09].

Effect Size - Minimum Difference to be Detected

The smallest clinically meaningful difference that would be valuable to identify as
significant in the trial should be stated clearly by the researcher before the investigation
begins [Alt90]. Larger minimum effect sizes or differences indicate the possibility that
the underlying populations are separated, making it simpler to detect significance and
increasing the study’s power. Smaller minimum effect sizes, on the other hand, indicate
that the underlying populations may overlap, and the power to detect the difference as
significant will be much more difficult as type II error increases. For example, the more
effective a tested treatment is, the smaller the sample size needed to detect a positive or
negative effect [CSCYS21, KB10].

Variability

Sample Size is affected by the standard deviation of the population from which data is
collected. A statistical test is more likely to identify a significant difference for tightly
distributed data, with a small standard deviation, than for loosely distributed data,
with a large standard distribution that results in greater possibilities for overlap of the
distributions [KB10]. In many cases, similar to the relevant minimum difference to be
detected, the population statistic may not be known before doing research. Estimates
might be derived from already available data from literature or by performing a pilot
study to get an estimate of such reference values.

Summary

Potential methods for assessing the performance of an AI of continuous nature include
assessing the differences between the new method and the reference standard and whether
these differences are acceptable. Bland-Altman analysis of agreement and the method of
interchangeability is a few of the known methods. In addition to the applicable methods,
the number of samples necessary to be analyzed needs to be assessed. The sample
size is closely tied to statistical power and significance. A power analysis is most often
used to calculate what sample size is needed. Assuming three of the four values out
of the parameters — sample size, effect size (mean difference and standard deviation),
significance level, or power — are known, the final parameter can be calculated. Since α
is usually 0.05 and power 1-β is usually 0.8, researchers need to pay the most attention
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to the effect size to calculate the needed sample size. Without an adequate number of
samples, irrespective of the method used, because the test is not powered, we cannot
conclude any statistical significance.
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CHAPTER 3
Related Work

3.1 Introduction
After understanding the clinical aspects of bone age assessment we now explore the
current practice of statistical methodologies used to assess the performance of AI models
estimating bone and critically review the plausibility of these studies. This chapter
presents the state-of-the-art solution and describes already presented solutions, and their
shortcomings within the context of this thesis. First, initial approaches to establish
a comparison between two methods will be presented and their deficiencies will be
discussed. Based on the method of agreement, proposed by Bland-Altman, a more
detailed description of other works will be reviewed and critically assessed. Finally, we
assess the method of interchangeability based on the concept of bioequivalence and carry
its methodology over to the concept of AI imaging. The exploration and analysis of
publication in this field will provide a starting point from which improvements to the
final framework can be made.

3.2 Comparison of Means
Initially, when we compare different methods, Method A and Method B, we derive
measurements based on both methods. One method used to assess agreement was
proposed by Cater by comparing means [Cat79]. Cater examined two approaches for
measuring the gestational age of human babies. Gestational age was calculated from
the last menstrual period but can also be derived from a score, the total maturity score
(TMS), based on external physical characteristics. The author applied both methods on
multiple groups of infants, stratified by the birth weight, compared the mean of each
group using an unknown significance test, and concluded that the TMS is a convenient
and accurate method of assessing gestational age in term babies. According to his
benchmark, agreement between two methods is given when the result delivers the same
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mean measurement. This method of comparison informs little about the methodologies’
accuracy. Even though having similar means is a necessary condition it is insufficient to
claim agreement between two methods.

To put this into perspective, we simulated two sets of measurements as seen in Table
3.1. Based on the assessment via using the mean method resulting in an average of four,
one would think, Method A and Method B are equivalent. In addition, we included an
analysis of significance to further emphasize the misconception. The histograms of our
data as seen in Figure 3.1 is not normally distributed. Both of the variables violate the
assumption of normality. This means, the conventional paired t-test is not applicable
and one should use a different test to analyze this data. An alternative to the paired
sample t-test is the Wilcoxon signed-rank test. The results indicating a p-value of 0.97
indicate no significant difference between both measurement methods.

The measurements displayed in the Table 3.1 demonstrate that measurement done on
these paired subjects varies significantly. The histograms of both measurements (Figure
3.1 are very different which gives the sign that perhaps measuring means is not enough.
Bland and Altman criticized this method as measurement errors were not considered in
this assessment [MWN+21].

Measurement Method A Method B
1 0 3
2 8 4
3 6 4
4 0 6
5 1 3
6 7 4
7 8 3
8 1 5
9 0 5
10 6 4
11 7 3

Table 3.1: Simulated Measurements - Method A and Method B
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Figure 3.1: Simulated measurements done by Method A and Method B. The histogram
of the measurements clearly shows that the measurements are not in agreement even
though the mean is the same.

3.3 Correlation

Method comparison studies have also been analyzed using correlation coefficients. The
correlation coefficient gives a value that describes any relationship between variables.
Many studies have used the different techniques of the correlation coefficient to claim
whether a method is in agreement or not. Keim et al. assessed two methods to measure
the stroke index, a value analyzing the cardiac stroke volume [KWT+76]. The authors
wanted to assess whether the stroke index obtained with dye-dilution techniques can also
be obtained by impedance cardiograph. Based on their assessment with the correlation
coefficient with (R = 0.49, n = 122, p-value less than 0.001) the authors concluded
non-agreement of the two methods.

Serforntein et al. analyzed two different methods based on a scoring system to see
whether the estimation of gestational age at birth agrees with each other [SJ78]. The
authors claimed based on the correlation coefficient of R = 0.85 that these methods can
be used interchangeably. One can see from the results as listed in Figure 3.2that using
one method over the other would result in not only a fixed but also a proportional bias.

Other similar attempts to present evidence for method comparison were assessed by
Laughlin et al. [LSF80] and Hunyor et al. [HFC78]. The authors investigated different
methodologies to assess blood pressure. While Laughlin et al. presented evidence of
whether clinical blood pressure monitors can be replaced with home blood pressure
monitors, Hunyor et al. investigated seven different types of blood pressure (devices
measuring blood pressure). Both presented evidence using the correlation coefficient.
Based on the results as listed in Figure 3.3 Laughlin et al. presented low correlation,
therefore, indicating that clinical blood pressure monitors cannot be replaced with home
blood pressure monitors. Similar results based on correlation have been reported by
Hunyor et al. testing the replaceability for seven different blood pressure monitors.
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Figure 3.2: Serforntein et al. compared two methods based on a scoring system for
estimating gestational age using correlation [SJ78]; The plot shows a presence of both,
fixed and proportional bias. As such, a high correlation of R = 0.85 does not necessarily
mean good agreement when comparing methods against each other.

Figure 3.3: Laughlin et al. assessed home and clinical blood pressure monitors are
replaceable and presented evidence against this by showing a low correlation between
these two methods when measuring the systolic and diastolic blood pressure [LSF80].

However, the usage of the correlation coefficient is not always appropriate, as it measures
the strength of a linear relationship between two methods, not the agreement between
them. From the logical point of view, two approaches measuring the same thing but
in a different way are expected to result in a good correlation anyway. The correlation
coefficient will always be close to r = 1 and always be significant. One can get a good
correlation even if the two measurements disagree (refer to Figure 3.2).

To put this into perspective, Figure 3.4 shows the comparison of two methods measuring
systolic blood pressure. A correlation of R = 0.94 and R2 = 0.88 would insinuate good
agreement due to an excellent correlation. The plotted trend line through the data
indeed shows a good linear relationship between these two measurements. However,
when looking at the scatter plot, we can see that measurement 1 is almost always larger
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than measurement 2, which indicates that perhaps this method of evaluation also is
not sufficient to allow us to conclude whether the two measurements are in agreement.
Assuming the two methods are in agreement, the points on a scatter plot of the two
methods must lie close to the line of equality, not just close to the line of best fit. Hence,
the correlation coefficient is not a measure of agreement; it is a measure providing
information regarding the strength of a linear relationship.

Figure 3.4: Comparison of two methods measuring systolic blood pressure; Data were
taken from Bland and Altman [MWN+21] and generated using Python’s Matplotlib; The
red-dotted line displays the line of best fit to the data with R = 0.94. The yellow line
indicates the line of equality with equation y = x.´For every point in y an equal point in
x is followed as well. There is a clear difference between the line of best fit and the line
of equality. Therefore, agreement cannot be claimed.

3.4 Regression

Generally, a study of linear regression is done in parallel with correlation analysis. Based
on the reasoning made in the previous section, assessing points in relation to the line of
identity would be more suitable than assessing agreement just based on the line of best
fit. The results of one measuring method are directly connected to the results of another.
As a result, it appears natural that linear regression analysis would be a valuable tool for
comparing measurement methods. Regression analysis employs correlation ideas, but it
goes beyond describing the degree of strength between two variables [Dog18]. Simply,
the slope and intercept of the regression line can be investigated to determine if the
parameters are near the line of equality, i.e., a slope of one and an intercept of zero. To
specify, regression coefficients of the scatter plot will provide more information about
agreement because assuming measurement x and y are the same then we expect the
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intercept to be zero and the slope is equal to one. This strategy, however, is not without
flaws as the result from such analysis can be at times misleading.

Standard linear regression analysis known as Ordinary Least Squares (OLS) regression
assumes the dependent variable is measured with error, while the independent variable is
not. Depending on the choice of the dependent variable, this results in two alternative
lines of best fit, which in some cases can give two substantially different approximations
(refer Figure 3.5) The magnitude of the difference between the two divergent lines increases
as the correlation between the two variables decreases [Hol96]. This can be avoided by
employing a method that assumes errors in both variables and yields a symmetrical
solution, such as Deming regression.

Figure 3.5: Regression lines using y as the independent variable (solid line) and x as the
independent variable (dotted line) [Hol96].

In addition to the misuse of models for linear regression, difficulties also arise because
regression does not yield quantified values for disagreement making parameters difficult to
interpret when claiming for interchangeability. A slope of 1 and an intercept of 0 merely
indicate whether a proportional or fixed bias exists. Concluding agreement based on the
existence of bias is not sufficient. This does not argue completely against performing
regression analysis. According to Ludbrook and Bland and Altman, if the investigator
wants to calibrate one measurement against another or find bias between two techniques
of measurement, regression analysis might be performed. However, if the purpose is to
see if one procedure may be safely replaced by another, especially in clinical practice, the
information provided in a regression analysis is insufficient [Lud09, BA86]. Agreement is
not present or absent, but something that must be quantified. This is where the method
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of difference, the Bland-Altman method, comes into play.

3.5 The Analysis of Differences with the Bland-Altman
Approach

Assuming that the goal is to assess whether one clinical method is interchangeable with the
other one should statistically study the differences of one measure over the other. Ideally,
that model would yield identical findings acquired by two different methods, meaning
all differences would be equal to zero. However, each measurement is accompanied by
some degree of error. This is especially true, for a subjective measurement such as bone
age, where even within the reference standard, i.e., the radiologists show great variability
among themselves [MIH+13]. This is why it is important to evaluate the magnitude
of such differences. The general framework of the Bland-Altman technique has been
outlined in Section 2.4.2. To summarize, the Bland-Altman Plot simply graphs every
difference between two paired methods against the mean of two measurements and allows
one to investigate any possible relationship between error in measurement to the true
values and conclude whether the expected differences exceed any clinical relevance to
determine whether the reference and the new method are interchangeable.

Although the Bland-Altman might be an intuitive method, like every other statistical
method, certain boundary conditions need to be fulfilled [Dog18]. Other additional
requirements might be necessary depending on the clinical use case to be addressed to
avoid pitfalls when performing studies of this kind. Generally, the following things need
to be addressed:

1. Assumption of normal distribution of differences
2. Adequate sample size
3. Clinical and statistical relevance

3.5.1 The Assumption of Normal Distribution
First, the requirement to fulfill the assumption of an approximation to a normal distribu-
tion is one of the fundamental challenges in the Bland-Altman analysis. The continuous
variables of paired measurement themselves need not be normally distributed but their dif-
ference approximate one [Dog18]. To elaborate, the distribution of the data for bone age
from the new and reference method does not necessarily need to be normally distributed
but the difference between these two paired methods should be. If the requirement of
a normal distribution is not met, the data can be logarithmically transformed [Gia15].
Visual inspection via a histogram or QQ-Plots but also using classical methods for testing
against normally (Shapiro-Wilk, D’Agostino and or Kolmogorov-Smirnov test) can be
used to verify such assumptions [GZ12a]. It is up to the researcher to decide based on
the available techniques whether the distribution of the data is sufficiently normal or
requires transformation.
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3.5.2 Adequate Sample Size
A more critical problem inherent to every study, in general, is the lack of an adequate
sample size. This problem and the impact of insufficient sample size have been addressed
in Section 2.4.4. Method comparison studies need to be sufficiently sized to claim the
effect detected to be statistically sound. For instance, an inappropriate number of
samples might lead to a low chance of finding the actual fixed bias (indicated as the mean
difference in the Bland-Altman plot) or narrower limits of agreement when comparing
two methodologies, i.e., false-negative results in form of misleading results and potentially
claiming good performance due to the lack of samples. The author recommends including
the maximum allowed difference between the two methods as a parameter in the sample
size calculation when assessing for agreement [Dog18]. The Bland and Altman method
provides an equation to estimate an appropriate sample size when performing method
comparison studies on their website [Bla]. This equation is defined as:

SE = s√
3n

(3.1)

where SE is the standard error of differences between the reference and the new method,
s is the standard deviation of the differences between measurements by the two methods,
and n is defined as the sample size. Assuming one can estimate the accepted standard
error and the expected standard deviation, the sample size can be worked out. Lu et
al. criticized this approach. They argued that the equation does not account for an
appropriate power and maximum allowed difference (also insinuated by Dogan et al.)
between the two methods in the calculation [LZL+16]. As such, they proposed a different
equation involving these two parameters in the sample size calculation. The standardized
equation for estimating an appropriate sample size is shown in Equation3.2. His approach
has been validated for correctness via the results from the Monte-Carlo simulation. His
concept has been commercially implemented in the statistical software package tailored
for use in biomedical science [Wik].

n =
(2 + z2

1−γ/2)[tinv(1 − β/2, n − 1, t1−α/2,n−1)]2S2
D

2(z1−γ/2SD − δ)2 (3.2)

where tin(•) is denoted as the inverse of a Student’s non-central t-distribution, z[•] stands
for the level of significance α, σ for the standard deviation of differences between two
methods and δ being the maximum allowed difference considered acceptable.
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3.6 The Current State of Research of Artificial
Intelligence (AI) in Bone Age Assessment

Literature review as outlined in Section 3.6.1 investigated the current state-of-the-art in
regards to performance assessment of bone age models using AI. Based on the analysis,
the result shows clinical studies with multiple deficiencies, e.g., lack of test samples,
issues with Ground Truth, inadequate testing set. Therefore, the reported performance
is questionable from both, the clinical and statistical aspects. Upon further research, the
lack of studies might be due to the novelty of AI and its use case in bone age assessment.
We investigated any related works in the past ten years (as of January 2022) in the
scientific database "PubMed" for relevant articles using a broad search string defined as
(("bone age") AND ("artificial intelligence")) OR (("deep learning") AND ("bone age")).
The search deemed 64 studies as potentially relevant, where the majority of the articles
were published after 2017 as seen in Figure 3.6.

Figure 3.6: Published articles relevant for artificial intelligence in bone age assessment
from 2011 to 2021. The trend shows the majority of the articles were published after
2017. This date coincides with the release of a public data set of bone age images.

This trend coincides with the release of the RSNA bone age data set, a publicly available
data set as an initiative to motivate the creation of AI tools for radiology. The outcome
of this challenge resulted in a study summarized by Halabi [HPKC+19]. The RSNA data
set composed of 14036 clinical radiographs of the non-dominant hand was drawn from the
picture archive and communication systems (PACS) of two institutions, Lucile Packard
Children’s Hospital at Stanford University (Palo Alto, Calif; n = 2983) and Children’s
Hospital Colorado (Aurora, Colo; n = 11053). These images had been interpreted by
multiple pediatric radiologists, who documented skeletal age in the radiology report based
on a visual comparison to the GP atlas.

Therefore, we assume due to the scarcity of available data, research in this field was
very limited. After assessing for titles and abstracts only 15 articles remained relevant
for this thesis. The studies excluded were articles focusing on the creation of the
model itself instead of performance, reviews, and surveys discussing the potential use
case of AI in medical imaging and assessing bone age on a different anatomical region.
Due to similarities between the remaining study, we discuss two of these clinical more
specifically. These two studies cover for the majority the current state-of-the-art in
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assessing performance of AI in bone age.

3.6.1 Statistical and Clinical Relevance in Bone Age Assessment
A statistically relevant result based on any hypothesis test does not necessarily always
lead to a clinically relevant result. To simplify, an outcome of a statistical analysis might
yield significant results from the statistical point of view but from the clinical point
of view, these results might not be significant enough to trigger a change in clinical
management [Rub21]. Others might accidentally claim clinically relevant findings based
on inappropriate use of the statistical tests applied to the data. In the following section,
we dive further into what has been established in the field of AI, specifically bone age
and further elaborate and question the clinical relevancy the authors claim to make.

Larson et al. developed and validated a bone age AI model for the RSNA Bone Age
Machine Learning Challenge [LCL+18], initiated by Halabi et al. [HPKC+19]. The study
was an initiative to facilitate and demonstrate the practical use case of AI in medical
imaging. This team assessed the performance of the bone age model by using the mean
absolute difference (MAD) as a metric for measuring accuracy and Bland and Altman’s
Limits of Agreement as a measure for agreement. The MAD is an intuitive measure
of variability that indicates the mean of the absolute values of differences between
observations of the predicted value (AI) and their true value (Reference Standard,
Ground Truth). According to Larson et al. the ground truth/the reference standard was
established by the mean of the reviewers’ bone age estimates as an objective reference
standard bone age cannot be determined. Their device was tested on a data set of 200
radiographs stratified by gender (100 males, 100 females). The distribution of the testing
data set is shown in Table 3.2.

Bone Age (years)
<3 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 All

female 4 3 3 2 6 10 4 9 10 14 12 10 2 8 3 0 0 0 100
male 3 0 1 5 4 3 4 6 5 13 18 13 11 6 7 0 1 0 100
All 7 3 4 7 10 13 8 15 15 27 30 23 13 14 10 0 1 0 200

Table 3.2: Bone age and sex stratification of the RSNA testing dataset [LCL+18]

Larson et al. report the performance of their model with a mean difference in bone age
estimates of 0 years, reporting essentially no bias, and a MAD of 0.63 years, meaning on
average the estimates of their model differ from the Ground Truth of the testing data set
of about 6 months. These results are also accompanied with an analysis of agreement, the
Bland-Altman plot, showing the maximum differences one would expect when comparing
AI against the Ground Truth, in this case, the mean of the reviewers estimates, as
seen in Figure 3.7. Though the limits of agreement or not displayed specifically in the
plot, one can assess visually that the expected differences lie in the range of 1.5 years.
Unfortunately, Larson et al. does not define the maximum allowed difference, i.e., a
pre-defined clinical agreement limit, where differences below this threshold are clinically
negligible.

30



3.6. The Current State of Research of Artificial Intelligence (AI) in Bone Age Assessment

Figure 3.7: Bland-Altman Analysis of Larson et als AI model against the Ground Truth
[LCL+18]. The x-axis displays the mean estimation between the model and the observers’
mean estimate (Ground Truth) indicating the tentative "true" value. The y-axis shows
the difference between the estimation of the AI and the Ground Truth indicating the
disagreement between the two methods.

The results showed excellent performance of the AI model. Upon reviewing the statistical
analysis though, certain issues might raise concerns about the clinical relevancy presented
in this paper. Even though the statistical tests show promising results, it is unclear
whether the results showing significant values may perhaps be a statistical fluke as the
authors did not provide any sample size calculation. The assumption that a sample size of
200 images is sufficient to indicate that the performed tests are essentially not powered. In
addition, no confirmation that the distribution of the differences approximates a normal
distribution was provided to apply the Bland-Altman analysis. Figure 3.8 describes
Larson et al.’s testing set via a histogram which approximates a normal distribution
with a slight skew to the right. Based on this we assume that the differences will also
approximate a normal distribution a explain the legitimacy of using the analysis for
agreement.

Finally, upon further review, the distribution on the test data set in Figure 3.8 and more
detailed in Table 3.2 clearly shows that the data does not contain enough granularity
for the assessment of certain age groups especially for younger age groups (<3) and
older age groups (>16). Suffice to say, multiple age/sex categories in the testing data
set are under-represented or not represented at all. These shortfalls indicate proves
that statistical evidence does not necessarily coincide with clinical relevance. Essentially
Larson et al.’s statistical approach shows good performance overall but the evidence
shown is skewed towards the ages with higher samples and therefore does not reflect
the actual performance over all ages. Larson et al. also acknowledge in the paper that
the model itself does not perform well on patients of younger ages. We assume that
this is because they attempt to reflect the applied clinical practice where the underlying
population distribution of children, who are inclined to have a bone age assessment, are
normally distributed. The sampling strategy of stratifying only by age might not the
ideal method in this case as, specifically for bone age as explained in Section 2.2, the
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Figure 3.8: Distribution of the testing set used to assess performance. The distribution
approximates a normal distribution [LCL+18].

testing data sampled must ensure sufficient granularity in age and sex.

A similar statistic is presented in a retrospective study conducted on a German cohort of
514 patients with various indications for a bone age assessment by Booz et al. [BYW+20].
The researcher tested a commercially available AI software estimating bone age to assess
the performance on a standalone data set. The authors tested their data for normality
and report the results, in addition to the MAD and Bland-Altmans Limits of agreement,
an analysis of correlation. Though not specifically addressed with proper power analysis,
a sample size of over 500 patients should be sufficiently sized for the sake of the study.
Similar to the Larson study, the testing data reflect a normal distribution. As such the
performance shown in this paper tends to reflect the age groups with higher representation
in the data set.

Another study conducted by Kim et al. assessed the performance of their AI on a Korean
cohort of 200 children [KSY+17]. They addressed the issue of testing on a normally
distributed data set by performing stratified random sampling by age. The Bland-Altman
analysis showed high differences between the age of 12−15 year old children. The authors
listed several limitations concerning the results of this study. They reported results based
on a limited sample set indicating that no power analyses were performed. In addition,
estimating the performance based on a cohort from a single clinical site raises concerns
over the generalizability of the overall population in terms of ethnicity.

We understand that simulating real-world clinical practice should be the first approach,
where performing random sampling would be the most dependable method. But when it
comes to testing for performance it is important to find a balance between efficacy and
effectiveness. This boundary is not easy to find. Larson attempted to stratify by gender,
whereas Booz sampled completely randomly, both resulting in a similar distribution of the
testing set. We assume because age is such a high contributing factor in the assessment
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of bone age, stratifying by age should be the higher priority, i.e., to put every age group
as per indented patient population of the AI on the same level of scrutiny simulating not
a normal distribution but instead a uniform one.

Another popular metric of differences used by many authors is the mean absolute
deviation (MAD) [LCL+18, BYW+20, RLY+19, HPKC+19, PBM+20, YGX21, KKQ+20,
WCG+21], as well as the root mean square error (RMSE)[TLS+18, KSY+17]. Both types
of mean assess the absolute deviation of the AIfrom the Ground Truth. The difference
between the two types of mean is, compared to the MAD, the MAD penalizes outliers
more due to squaring the differences before estimating the absolute of means. The
MAD on the other hand is more intuitive to interpret. Many authors claim good
performance of their AI model based on either or both types of means, suggesting
this metric to be state-of-the-art in assessing performance. Upon further investigation,
all of them do not justify why these deviations can be considered acceptable. Our
assumption from the clinical point of view is that deviations up to 6 months may be
insignificant [SLK+20]. The GP atlas provides reference hand images in 0.5–1 year
increments. For instance, the reference images for females between the age of 10 to 14
are 10, 11, 12, 13, 13.5, and 14; As such, a bone age that is half a year lower or higher
than the Ground Truth may not be clinically significant. Looking at the quality of the
respective study design, many of these trials raise certain deficiencies. Among others
a justification of adequate sample size [LCL+18, HPKC+19], inadequate distribution
of samples [TLS+18, BYW+20, WGC+20, PBM+20, YGX21, KKQ+20] or concerns
regarding a proper Ground Truth the device’s performance is compared to [KSY+17].
These pitfalls raise concerns regarding the reported performance the authors claim in
their studies.

3.7 The Analysis of Differences Without a True Reference
Standard Using the Concept of Interchangeability

As already introduced in Section 2.4.3, the idea of interchangeability proposed by Obu-
chowski et al. has already existed in the realms of pharmaceutical products where one
assesses the switchability between test (new) and reference drug (reference standard)
[OSS14]. To summarize, a drug is interchangeable when both test and reference drug
produces the same results with a certain degree of acceptable error. The new drug must
at least not be inferior to the reference drug. Obuchowski et al. applied this idea to
diagnostic and imaging tests motivated by the fact of constant innovation in the medical
imaging field and procedures where one needs to know whether a new diagnostic test
can replace or perform as well as the existing test, i.e., without adversely affecting the
patient. The author explains, one of the main advantages of testing for interchangeability
is the apparent necessity of a reference standard to compare to. This is because a valid
reference standard, a true Ground Truth, will not be always available.

Obuchowski et al. applied this concept to a study in the measurement of the acetabular
version for patients with femoroacetabular impingement using two modalities, CT and
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MRI. The state-of-the-art for measuring this parameter is using computed tomography
(CT). Patients suspecting to have this measure taken during their preoperative planning
also have their magnetic resonance imaging (MRI) exam taken in many cases. Both
modalities allow the measuring of the acetabular version, where the benefit of using only
the MRI would reduce the amount of exposure one would get from radiation. For the MRI
to replace the CT, the former modality must not be inferior to the reference modality.
The CT on the other hand, even though state-of-the-art, is not the true gold standard.
Fortunately, the concept of interchangeability does not rely on a reference standard. The
theory assesses the differences in any possible random scenarios and investigates whether
the excess of differences created by the new methodology are considered acceptable or
not. The authors define the null and alternative for testing for interchangeability as
follows:

H0 : γ = E(YiT jk − YiRjk�)2 − E(YiRjk − YiRjk�)2 > θi (3.3)

H1 : γ ≤ θi (3.4)

where YiT jk denotes the result with the new test (T) (in this case MRI) by reader j for
sample i on occasion k, and YiRjk denotes the result with the existing reference modality
(in this case CT) by reader j for sample i on occasion k. The difference denoted as γis
then compared to an accepted excess of differences θin a random reader scenario. The
random reader scenario simulates an environment where the differences between every
pair of readers are considered in the measure of differences. This ensures any potential
inter-and intra-rater-variability is included in the assessment as well. Assuming the
excess of differences γcreated by the new modality is within the accepted difference limit
θ, we can safely assume that the new modality is interchangeable with the reference
modality. The Obuchowski study with J = 3 readers and i = 22 hip images shows that
replacing MRI measurements with CT measurements would result, as the author states
"indifference in measurements of 2.0°-3.1° in excess of the differences that we would
expect to see just using CT ". Therefore they concluded that MRI is interchangeable with
CT in the measurement of the acetabular version for patients with femoroacetabular
impingement.

This concept re-purposed by Obuchowski et al. from the pharmaceutical side to imaging
and diagnostic tests might also find application in AI, where one of the core tasks in
medical AI is to solve imaging problems where a true reference standard might not always
be available, specifically for bone age. The method of interchangeability might be one of
the metrics to assess the performance of AI.

3.8 Conclusion
To this day, many have attempted to assess agreement using multiple approaches such
as mean, correlation, or regression. The Bland-Altman method has established itself in
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multiple areas of medicine as an appropriate technique for comparing methods against
each other and may help researchers to compare a new method against another one
or a reference standard. Recently, the analysis for agreement has started to see the
application in the field of AI, specifically in the assessment of bone age. While research
papers attempted to evaluate the performance of such models, many lack important
aspects in terms of sample size or adequate representation in the testing set based on the
clinical relevancy to justify good performance of their model. These shortfalls should
be addressed in our future performance testing. Finally, while a reference standard as
required by Bland-Altman is not always easy to define, another theory, the concept of
interchangeability, does not rely on any reference standard, but the differences created
by one method over the other. The independence from requiring a reference standard
makes this statistical method for assessing performance very powerful.
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CHAPTER 4
Realization of Study Design

4.1 Introduction

The absence of a clear guideline in how to evaluate the performance of an AI estimating
continuous outputs, in this case, bone age makes this topic very interesting for researchers.
Emphasized by the lack of an adequate study design as seen in the current state-of-the-art
in bone age assessment, referenced in Section 3.6.1, a framework consisting of possible
methods for performance assessment would benefit the researcher. We addressed the
prerequisites required by Task T1 and Task T2, as defined in Section 1.4, in Section 2.2
and 2.4, respectively. To achieve Task T3, we proposed an updated framework based on
the pitfalls discussed in Chapter 3, considering the following tasks as listed below:

• Study Design
• Objectives and Hypothesis
• Statistical methods & Performance targets
• Sample Size & Power Study
• Sampling Strategy & Generalizability

Based on the assumptions above, we escalated our statistical consideration into a full-
fledged clinical study to provide evidence of a working framework. Therefore, ImageBiopsy
Lab provided us with their medical software, the bone age AI model, PANDA, CE-marked
since 2019 [IB ]. The focus of this thesis is to apply our proposed statistical techniques and
modeling on PANDA to present additional evidence related to standalone performance.
Outputs based on the statistical considerations are implemented via Python scripts.
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4.2 Study Design
This section presents an overview of the intended workflow of the clinical study. As part
of Requirement R2 outlined in Section 1.4, medical device software must present evidence
of performance in form of a clinical study. This includes the selection of methods and
definition of targets to be met to keep both the personnel in the medical as well as in
the regulatory field satisfied. The investigations in the following sections afterward will
provide evidence to back up the proposed study design.

4.2.1 Acquiring the Images: Sampling
The US clinical site has access to existing bone ages reports from multiple subsidiaries
from which the standalone performance test data set of 345 images as described in Section
4.6 is drawn. Sampled bone age studies will be anonymized and stored in a clinical
management system. Access is restricted to authorized users on a per-project basis.

4.2.2 Study Personnel: Acquiring the Radiologists’ Readings
Three fellowship-trained pediatric radiologists will provide readings utilizing the GP
method through a clinical trial management system. Each radiologist will be an American
Board of Radiology-certified radiologist with sub-specialty certification/Certificates of
Added Qualifications (CAQs) in pediatric radiology. Each observer will have at least 5
years post-fellowship experience in the interpretation of pediatric bone age exams. As
discussed in Section 4.4.1, the mean of the three assessments will represent the ground
truth to test the hypothesis of agreement between PANDA and readers. The clinical
management system consisting of a viewer and custom-built annotation tool is used for
facilitating readings of the images. An example of a reading scheme is provided in Figure
4.1. The radiologists will be blinded to the chronological age of the subject as well as the
bone age assessments from the clinical report including the bone age readings among
each other. This measure is taken to ensure that the radiologist doing the reading is
assessing as unbiased as possible [BDB+01]. The annotations will be added as metadata
to the stored cases.

4.2.3 Model Validation: Acquiring PANDA’s Readings
Automated analysis of the radiographic images with the PANDA software was accom-
plished via an internal clinical pipeline by the installation of PANDA in a Docker container
integrated into the clinical management system of the study site. PANDA will be executed
on the standalone performance test data set of 345 images. The results will be provided
back for data analysis.

4.2.4 Statistical Analysis
Statistical methods to be assessed are described in Section 4.4. The analysis will be based
on Bland-Altman, regression, and the concept of interchangeability. Outlier detection
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Figure 4.1: Reading of bone age Part 1 - Overview of the interface to provide to enable the
bone age assessment from the observers on the clinical site. Users will render a bone age
assessment by providing the radiographic age in years and months to the corresponding
plate according to the GP clinical reference standards.

will be performed using the modified z-score [IH93]. This detection method is defined for
a given measurement xi as

zi = xi − x̄

1.4825 ∗ MAD
(4.1)

where MAD is the median absolute deviation. Measurements with a modified z-score
above 3.5 or below -3.5 are considered potential outliers. These samples will be visually
inspected to determine the root cause of the deviation. Based on the result of the outlier
assessment, the sample may be excluded from the statistical analysis. Based on the
clinical relevance of bone age as described in Section 2.2, we also assessed the performance
of the AI model on different sexes.

4.3 Objectives and Hypothesis of the Clinical
Investigation

Any proper and sound research study requires objectives derived as a hypothesis. A well-
defined research hypothesis contributes greatly to the solution of the research problem.
Therefore we lay out the objective of interest and develop the hypothesis that will serve
as the baseline of the study.
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4.3.1 Objective
In this multi-center, retrospective study the investigators are targeting to study the
agreement of an AI model with the reference standard, which comprises of PANDA
compared to expert radiologists’ estimation of bone age. To this end, archived X-ray
images from multiple clinical centers in the USA will be sampled and evaluated for the
estimation of bone age using the PANDA software and the readings from the radiologists.
The primary objective is to validate the performance of the AI model (PANDA) in
making automated estimation of bone age. This is done by comparing the automated
measurements of hand radiographs (output of PANDA) with the measurements made
by expert radiologists. The evidence displayed must show non-inferior performance
compared to the current reference standard.

4.3.2 Hypothesis
This study will assess performance via Bland-Altman and interchangeability to assess
whether PANDA and expert radiologists bone age are in agreement and interchangeable:

Agreement:

1. H0: Automated analysis with PANDA and the Ground Truth are not in agreement.
Alternatively expressed as
H0 : 95%(µP anda − µRads) ≤ −Δ | 95%(µP anda − µRads) ≥ −Δ

2. H1: Automated analysis with PANDA and the Ground Truth are in agreement.
Alternatively expressed as
H1 : −Δ ≤ 95%(µP anda − µRads) ≤ +Δ

where µ stands for the respective assessment, PANDA and the Ground Truth, and Δ
indicates the clinically maximum allowed difference. Two methods are in agreement if
95% of occurring differences (Upper and lower bound of 95% CI limits of agreement) are
within Δ.

Proportional Bias:

1. H0: Automated analysis with PANDA and the Ground Truth is proportionally
biased. Alternatively expressed as
H0 : B1 
= 1

2. H1: Automated analysis with PANDA and the Ground Truth is not proportionally
biased. Alternatively expressed as
H1 : B1 = 1

where B1 stands for the slope based on orthogonal linear regression of PANDA and the
Ground Truth. If the 95% CI for slope does not contain 1, there is statistically significant
evidence for proportional bias between the two methods [Lud97].

Interchangeability:
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1. H0: Automated analysis with PANDA is inferior to the assessments of three expert
radiologists. The new method is not interchangeable. Alternatively expressed as
H0 : γ = E(YiT jk − YiRjk�)2 − E(YiRjk − YiRjk�)2 > 0

2. H1: Automated analysis with PANDA is interchangeable to the assessments of three
expert radiologists. The new method is interchangeable. Alternatively expressed as
H1 : γ = E(YiT jk − YiRjk�)2 − E(YiRjk − YiRjk�)2 ≤ 0

where γ stands for the resulting difference when interchanging one method with the other,
PANDA and the expert readers. A detailed description of the hypothesis is provided in
Equation 3.3. Setting θ ≤ 0 would indicate equivalent or superior performance when
interchanging the AI with the expert observers.

4.4 Statistical Methods and Performance Targets -
Ground Truth, Agreement, Regression &
Interchangeability

As part of Task T1 and Task T2 defined in Section 1.4, Chapter 2 explained the basics of
the current state-of-the-art statistical tools used in the assessment of bone age assessment,
where Chapter 3 addressed the legitimacy and pitfalls when using the said methods for
assessing the performance of the AI model. Based on the assessment in the previous
chapters and as part of fulfilling the defined requirements (Requirement R1 — R3), we
propose the following statistical methods and performance targets as part of Task T2.
At the end of this section, the proposed solution answers the issue concerning Research
Question Q2.

4.4.1 Ground Truth: Establishing a Reference Standard
For this study, the Ground Truth for the comparison of methods will be the mean of bone
age assessments made by each of the three human reviewers per image. The number of
participating observers are based on the clinical standard, known as Blinded Independent
Central Review (BICR), deeming three readers sufficient [SRM+21] As described in
Section 2.2, bone age assessment is prone to high inter-rater variability. We will take
measures to minimize inter-rater variability as much as possible. Recruiting experienced
and training personnel will minimize variability to a high extent. Therefore the mean
should be a more accurate representation of the actual bone age assessment compared to
for instance the median, as outliers are less impactful and less prone to occur.

In addition to the above measures taken, we will verify the reliability of the Ground Truth
in the form of the intraclass correlation (ICC). The intraclass correlation coefficient is a
widely used reliability index in analyses of interrater reliability. It is constructed by the
variance components for reader (3 participating readers), case (age group), and random
errors for an ANOVA model. Based on the 95% CI of the ICC estimate, values less than
0.5, between 0.5 and 0.75, between 0.75 and 0.9, and greater than 0.90 are indicative of
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4. Realization of Study Design

poor, moderate, good, and excellent reliability, respectively, based on Koo et al [KL16].
Multiple forms of the ICC exist. For this study specifically, we will assess reliability via
mean-rating (k = 3), absolute-agreement, 2-way mixed-effects model justified as follows
according to the definition by Koo et al.:

• mean rating: mean value of 3 raters as an assessment basis, the experimental
design of the reliability study involves 3 raters,

• absolute agreement: different raters assign the same estimate to the same
subject.

• 2–way–mixed–effects model: selected raters are the only raters of interest

4.4.2 Agreement: Bland-Altman Method
The performance of PANDA on bone age assessments will be assessed for agreement and
absolute bias with expert radiologists using Bland-Altman plots. 95% confidence interval
(CI) of limits of agreement (LOA) between the two methods (denoted as a blue interval
in Figure 4.2 is calculated based on the average reading of radiologists (= Ground Truth)
vs. PANDA. The 95% CI of LOA is compared to the standard boundary (denoted as
a red line in Figure 4.2, the maximum allowed difference Δ. Δ will be defined as the
average LOA between any reader combination, i.e., radiologist vs radiologist. Assuming
we recruit experienced and trained personnel to reduce variability as much as possible,
the readings of the radiologists will be considered clinically relevant. Therefore differences
occurring between any single radiologist pair participating in the study would reflect
the differences happening in the real world. Averaging all the differences of each reader
pair, i.e., their average LOA will bring one closer to the expected maximum difference
Δ. Agreement and therefore good performance is shown when the upper bound of 95%
CI of the upper LOA and the lower bound of 95% CI of the lower LOA are within the
maximum allowed difference. In addition, the mean difference in the Bland-Altman plot
indicates the presence of a fixed bias. Fixed bias is present when the intercept differs
significantly from zero. The CI of the mean difference must include 0 to emphasize the
lack of significant fixed bias [Lud97].

4.4.3 Proportional Bias: Regression Analysis
Section 3.4 addressed the misuse of linear regression when concluding for agreement. It
also established the method as a useful indicator for assessing bias. Therefore, regression
of PANDA’s measurement vs. the Ground Truth will assess any age-specific proportional
bias based on the slope. The standard linear regression, ordinary least squares regression,
as addressed in Section 3.4 is not a suitable model due to only taking errors of one
variable into account. As such, the regression model utilized will be orthogonal linear
regressions, a model assuming errors in both, the independent and dependent variable
[BR90]. Proportional bias is present when the slope differs significantly from unity. The
CI of the slope must include 1 to emphasize the lack of significant proportional bias
[Lud97]. Figure 4.3 visually presents the presence of proportional bias.
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Interchangeability

Figure 4.2: Description of reference values - measurement of agreement between PANDA
and mean of the radiologists’ assessment. The 95% CI of limits of agreement (LOA)
of PANDA (blue) will be compared to the maximum allowed difference (red - limits of
agreement among the radiologists) [Sch21].

Figure 4.3: Ideally, two interchangeable methods (M1 and M2) do not present any
proportional bias, as seen in (a). Proportional bias is present when the slope differs
significantly from unity (b). [Lud97].

4.4.4 Interchangeability: Analysis of Expected Differences With
Absence of a Reference Standard

In addition to providing evidence of the performance of PANDA via agreement and
regression, an assessment of interchangeability utilizing the concept from Obuchowski et
al. is conducted [OSS14]. The benefits of not relying on a reference standard have been
discussed in Section 4.4.

To summarize, when tests are compared with each other, in this case, PANDA and
the radiologists, one expects that both assessment methods produce the same clinical
result in any given patient. To show the interchangeability of two modalities, one
compares the differences in assessments from one method over the other. To specify, the
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differences between PANDA and the radiologists are compared to differences between
two assessments of the radiologists under different occasions in time. The assessment
yields an estimated equivalence index γ with a 95% confidence interval. The equation for
the test for interchangeability then goes as listed below

γ = E(YiT jk − YiRjk�)2 − E(YiRjk − YiRjk�)2 (4.2)

where YiT jk denotes the result with the new test (T) modality, that is PANDA, by
radiologist j, which provides the same result for every read, for image i on occasion k,
and YiRjk denotes the result with the existing reference modality, that is the radiologists,
by radiologist j for image i on occasion k.

However, in this study, the readers will only read each image once and as such provide
no replicates. Therefore, we adapt the definition of γ as following:

γ = E(YiT − YiRj)2 − E(YiRj − YiRj�)2 (4.3)

The subscripts for the replicate/occasion and the subscript for reader in device output
are removed. On the right-hand side of this equation, the first mean square explains
the deviation between the device output with the assessment from the radiologist; while
the second mean square explains the deviation among the assessments from different
radiologists. Thus, when calculating the estimation of γ, the first mean square average
over all the readers and cases and the second mean square average over all the pair
of readers and the cases, the result shows the excess of difference resulting from the
comparison. Figure 4.4 visualizes the concept of interchangeability intuitively.

If γ>0, it means the deviation between the device output and the assessment from the
truthers is larger than the deviation among the assessments from the truthers. We
then need to assess whether these differences are acceptable within the clinical practice.
Setting the equivalence limit to 0 or smaller provides evidence that the new AI-supported
methodology is superior to the current reference standard.
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Interchangeability

Figure 4.4: The concept of interchangeability is tailored to the use case of AI in the
clinical setting. The AI is considered as an additional reader. The first mean square on
the left-hand side explains the deviation between the device output with the assessment
from the radiologist; while the second mean square on the right-hand side explains the
deviation among the assessments from different radiologists.
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4.5 Sample Size Calculation & Power Study
Section 2.4.4 addressed the importance of having a sufficient sample size and performing
power studies to produce clinically relevant results from a clinical investigation as part of
answering Research Question Q3 and Task 3 addressed in Section 1.4. Multiple formulae
exist to assess an adequate sample size. For this thesis, we are applying the Bland-Altman
method to assess agreement between two methods, i.e., AI compared to the mean of
the radiologists’ assessment. Section 3.5.2 discussed Lu et al’s approach for sample size
estimation when using the Bland-Altman method. As such, to estimate the number
of images for performance testing we utilize the formulae of Lu et al. as described in
Equation 3.2, based on the following parameters:

1. a predetermined level of alpha α, beta β

2. the mean (µ) and standard deviation (σ) of differences between two methods

• model & radiologist

3. clinical acceptable limits (δ) - the maximum allowed difference between

• radiologist & radiologist (inter-reader variability)

In clinical studies, the parameters above are usually estimated from data in existing
literature or are obtained from the results of a pilot study. As sample size estimation can
only be approximated anyway, the estimates do not need to be exact [Bla15]. For this
study, we will rely on data from existing studies.

4.5.1 Establishing the Reference Values
The study from Larson et al. as described in Section 3.6.1 presents an ideal case for
estimating parameters necessary for calculating the sample size. Even though we pointed
out flaws related to this study, due to the similarities between ours and the author’s case
in terms of study design and the AI model in question, we can consider the results of
their study sufficiently close to use for sample size estimation.

Figure 4.5 summarizes the study results of the Larson study. This figure shows a
comparison of their AI model against their observers and a comparison of their observers
among each other. To provide reference values for the mean difference, the standard
deviation of the differences, and the clinical acceptable limits, we utilize these clinical
reads summarized below [LCL+18].

Level of Significance α and Power of the Study

Generally, the significance level alpha α is set to 0.05. Depending on the level of
significance one wants to achieve, based on the risk of the device or drug, one can define a
significance of 0.1 or 0.01. For this study, we define α = 0.05. This means we are willing
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4.5. Sample Size Calculation & Power Study

Figure 4.5: Reference values (Mean difference, Standard deviation of differences &
Clinically acceptable threshold) from the Larson study were used to determine the sample
size

to accept a 5% risk of concluding a significant result when there is no significant result
(false positive). The power, specified as 1 - β, where β stands for the probability of type
II errors, is generally set to 0.80. For this study, the power is set to 0.85. This means
we are willing to accept a 15% risk of not detecting a significant result when there is a
significant result (false negative).

Mean Difference & Standard Deviation of Differences

The mean difference and the standard deviation of differences between the model and the
radiologist are estimated based on the average of the clinical reads between Reviewer
1-3 and Model as reported in Figure 4.5. We will exclude the reads of the clinical reports.
The clinical reports consist of assessments from different readers and would increase the
overall reader variability. In addition, the credentials of the radiologists are unknown.
Both these pitfalls might affect the estimation of the parameters adversely. Therefore
excluding the clinical report would lead to a closer approximation of the parameters
for sample size calculation. Based on data in the literature provided in Figure 4.5 and
summarized in Table 4.1, the mean difference used for the sample size estimation is
the average of the mean differences between the estimates of reviewers compared to the
performance of the model. µ was found to be 0.3 months.

Reviewer 1 Reviewer 2 Reviewer 3 Mean of Radiologists
Model [months] 0.69 0.66 -0.44 0.30

Table 4.1: Mean difference of the three human reviewers’ estimates in months, compared
with that of the model. Reference values are taken from Figure 4.5 of Larson et al’s
paper [LCL+18]. The average of these three estimates form the basis used for the sample
size estimation with µ = 0.3 months.
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The parameter for estimating the standard deviation of the differences can be estimated
based on the mean difference and one end of the limits of agreement (LOA = mean
difference ± 1.96 * standard deviation). Rearranging the standard formula we can
estimate the standard deviation of differences (standard deviation = (LOA - mean
difference)/1.96). For each observer (Reviewer 1-3), the standard deviation of differences
is calculated as seen in Table 4.2 based on the results from the Larson study as reflected
in 4.5. The average of the three standard deviations of difference σ is expected to be
10.35 months and serves as one of the parameters used to estimate the sample size.

Mean Difference & Limits of Agreement
[months]

Standard Deviation
[months]

Mean Standard Deviation
[months]

Model vs. Reviewer 1 0.69 [-18.44, 19.81] 9,76
10.35Model vs. Reviewer 2 0.66 [-18.74, 20.06] 9.90

Model vs. Reviewer 3 -0.44 [-22.77, 21.90] 11.40

Table 4.2: Calculation of the mean standard deviation of the three human reviewers’
estimates in months, compared with that of the model. Reference values are taken from
Figure 4.5 of Larson et al’s paper [LCL+18].

Maximum Allowed Difference

The standard boundary is defined as the maximum allowed difference between two
modalities – new and reference modality. Typically a reference standard of acceptable
differences exists to compare to. However, in some cases, this is not always available.
How far apart measurements can be without leading to problems is a question of clinical
judgment. Statistical methods cannot answer such a question.

To find an acceptable difference in bone age assessment we will rely on real word practice.
We will utilize the intra-rater variability of the expert readers. Clinical assessments made
by experienced personnel are to be considered legitimate assessments. Therefore any
differences occurring between the observers should be considered acceptable, As such,
we can use the limits of agreement among each observer pair. The average limits of
agreement of the three reader pairs will determine the acceptable boundary.

Based on the reference values in Figure 4.5 and summarized in Table 4.3, we first assessed
the average of the mean differences of each observer pair (Reviewer 1-3) resulting in an
average of mean differences µmeandifference = −0.75 months. Applying the same principle
as described for estimating the parameter of the standard deviation of differences in
Section 4.5.1, we estimated the standard deviation of differences from each observer
pair and calculated the mean. This results in a standard deviation of the mean inter-
observer difference among the radiologists µstddiff = 11.69 months. Given the definition
of 95% limits of agreement (LOA = mean difference ± 1.96 * standard deviation of
differences) with µmeandifference = −0.75 months and µstddiff = 11.69 months, the upper
and lower limits of agreement based on all observer pair is 22.16 and -23.66 respectively
(−0.75[−23.66, 22.16]). The maximum difference among the radiologists, either the lower
or upper limits of agreement will be used as the maximum accepted difference. We
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designate the highest difference within the limits of agreement as the maximum allowable
difference. Therefore the maximum allowed boundary δ, is 23.66 months. The
results are summarized in Table 4.3

Mean Difference &
Limits of Agreement

[months]

Standard
Deviation
[months]

Average of Mean Differences &
Average of Mean Standard Deviation

Reviewer 1 vs. Reviewer 2 -0.03 [-19.70, 19.65] 10.04
[-0,75; 11.69]Reviewer 1 vs. Reviewer 3 -1.12 [-26.44, 24.20] 12.91

Reviewer 2 vs. Reviewer 3 -1.10 [-24.89, 22.70] 12.14

Table 4.3: Mean limits of agreement of the three human reviewers’ estimates in months.
Reference values are taken from 4.5 of Larson et al’s paper [LCL+18].

Based on the parameters (mean difference µ, the standard deviation of differences σ and
the maximum allowed difference δ) listed above and utilizing the formulae of Lu et al. as
outlined in Equation 3.2, the minimum number of images to guarantee the power of the
statistical test (0.85) for standalone performance testing was calculated to be at least
333 images.

4.6 Sampling Method
In Section 3.6.1 we discussed the pitfalls of entirely relying on random sampling. To
summarize, assuming the underlying population of patients having a bone age assessment
taken is normally distributed, the analysis would lack sufficient granularity for younger
and older age ground. The lack of samples for younger and older age groups would make
the result clinically irrelevant. At the end of this section, the proposed solution will
answer the issue concerning Research Question Q1 as outlined in Section 1.4.

That is why, the standalone performance testing data set should contain enough gran-
ularity in terms of both, age and sex, for assessment based on the intended patient
population of PANDA as described in Section 2.3.1. PANDA is intended for 24 months
(2years) – 204 months (17 years). This results in a total of 15 age groups. It is important
to note that the goal of the standalone performance testing is to show that PANDA
works equally well overall ages as defined in the intended patient population. By equally
distributing samples among the 15 age groups, enough granularity in the performance
data can be provided over all ages. As such stratified sampling i.e. dividing members of
the population into homogeneous subgroups, in this case in ages, will be conducted to
achieve this objective. Based on this strategy (stratification based on ages) the data can
now be randomly sampled from multiple clinical sites. This strategy allows the provision
of a robust performance over the ages of the intended patient population while at the
same time indirectly considering an approximate distribution of other parameters such
as ethnicities and sexes.

It is important to note that following this sampling strategy will not result in any sampling
bias during the sampling process. Aside from the criteria set in age no insight regarding
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Age Group 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
start month 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192
end month 35 47 59 71 83 95 107 119 131 143 155 167 179 191 204
n images 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23

Table 4.4: Distribution of the images from the standalone performance testing dataset in
months. Based on the intended age population a total of 15 age groups is defined.

other relevant parameters (refer Section 2.2 for bone age such as race, gender, condition
(normal, delayed, advanced), and underlying diseases will be available when sampling the
data. This means no stratified sampling based on sex will be performed, as the second
major parameter for bone age. Nonetheless, the standalone performance data set should
provide a balanced distribution of male and female patients overall. Based on the US
census in 2018, simple random sampling should be sufficient to ensure equal distribution
among sex [Bur21]. This methodology of sampling the standalone performance yields
sufficient granularity as indicated in the device’s patient population regarding age and
sex as well as providing an adequate representation of the pediatric US population.

To conclude, Section 4.5 determined a minimum number of images 333 samples to be
sufficient for the study. To provide adequate performance over all ages, we will provide
equal distribution among every age group increasing the total number of images in the
standalone performance testing data set to 345 images for 15 age groups as reflected in
Table 4.4.
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CHAPTER 5
Implementation

5.1 Introduction
This chapter presents the implementation of the proposed statistical tools described in
section 4.1. The data analysis as outlined in section 4.1 utilizes python scripts. First,
section 5.2 will provide the details of implementing the estimation of the adequate sample
size for the Bland-Altman method based on the methodology of Lu et al [LZL+16]. This
is done as part of Research Questions Q3 as required in section 1.4. Following that, we
provide a step-by-step guide in regards to the implementation of the statistical methods
as part of the fulfillment of Task 2 as part of section 1.4.

To facilitate reproducibility of the results as per R3 of the requirements outlined in section
1.4.1, we ran the scripts in a virtual environment with Python 3.8 with the following core
libraries:

• NumPy 1.20.1
• pandas 1.2.4
• SciPy 1.6.2

In addition, providing a description of the proposed method in form of pseudo code as
part of Requirement R3, emphasizes the criteria set by Requirement R1 making the
methods language independent and therefore generalizable.

5.2 Estimation of Sample Size
As outlined in equation 3.2, the standard formula can be used to estimate the required
amount of samples needed, provided the mean difference µ = 0. In many cases µ > 0.
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Alternatively, Lu et al. suggested reaching the required estimate by using an iterative
method based on their power formula

power = 1−(β1+β2) = 1−(prob(t1−α/2,n−1, n−1, τ1)+prob(t1−α/2,n−1, n−1, τ2)) (5.1)

where the type II error β consists of two parts, β1 & β2 indicating the type II errors for
both, upper limit of LOA and lower limit of LOA, respectively. Both values of error
are estimated by probt[•, n − 1, τ1] & probt[•, n − 1, τ2], respectively. They denote the
comulative distribution function of a Student’s non-central t-distribution with n − 1
degrees of freedom and the respective non-centrality parameter τ1 & τ2.

Both parameters, τ1 & τ2, are therefore estimated as follows.

τ1 =
δ − µ − z1−γ/2σ

σ

�
1
n +

z2
1−γ/2

2(n−1)

(5.2)

τ2 =
δ + µ − z1−γ/2σ

σ

�
1
n +

z2
1−γ/2

2(n−1)

(5.3)

where z[•] stands for the level of significance α, µ and σ for the mean and standard
deviation of differences between two methods, respectively, and δ being the maximum
allowed difference considered acceptable.

Assuming we can pre-determined these parameters above, we can estimate using equation
5.2 and 5.3, the respective parameters τ1 & τ2. These parameters are then plugged
inserted into equation 5.1 including the sample size n to estimate the required power.

In case the sample size is the parameter of interest, we can re-purpose the power formula
in a binary search algorithm to look for desired n as outlined in Algorithm 5.1

As such, the script implemented uses the following parameters as input:

• µ expected mean of differences
• σ expected standard deviation of differences
• δ maximum allowed difference between 2 methods
• γ = 0.05 by default; confidence level of LOAs; 95% of data are inside the LOAs
• α = 0.05 by default; confidence level of LOA Confidence Intervals. 95% LOA CI’s

contain the true population percentile.
• maximum sample size nmax before stopping the binary search

52



5.3. Implementation of the Bland-Altman method

Algorithm 5.1: Binary search to estimate sample size
Input: Maximum sample size nmax, preferred power β
Output: Number of required samples nestimate

1 Set LowestSampleSize ← 0;
2 Define HighestSampleSize ← nmax = 10000;
3 while LowestSampleSize ≤ HighestSampleSize do
4 PrelimSampleSize ←

Middle of LowestSampleSize &HighestSampleSize;
5 Estimate Power using equation 5.1 using PrelimSampleSize as starting point
6 if Power estimated via PrelimSampleSize < preferred power β then
7 set LowestSampleSize = PrelimSampleSize ;
8 else if Power estimated via PrelimSampleSize > preferred power β then
9 set HighestSampleSize = PrelimSampleSize ;

10 else
11 return nestimate = PrelimSampleSize ;
12 end
13 end

5.2.1 Verification of the Implemented Method

Lu et al’s sample size algorithm has been implemented into multiple commercially
available statistical software. One such software, MedCalc, uses the method by Lu et al
to calculate the said sample size. The company provides an example of calculated sample
sizes using reference inputs on their website [Wik]. The example data used to verify the
implemented search algorithm 5.1is provided in Figure 5.1. Verification yielded a positive
outcome as results as seen in the table presented in Figure 5.1 reflected the values in our
testing.

5.3 Implementation of the Bland-Altman method
The Bland-Altman method entails examining pairs of measurements from a group of
subjects summarized into a scatter plot. The y-axis represents the difference between
two measurements, while the x-axis represents the mean of the two values. The mean
of differences µ and SD of differences σ are then calculated, allowing an estimation of
the upper and lower limits of agreement. Finally, both, µ and σ are also included in the
scatter plot as a horizontal line. The mean difference and limits of agreement are values
stemming from a single sample, thus may not reflect the values of the entire population.
Therefore estimation of the confidence interval of the above measures provide a more
accurate representation. The calculation of the CI of the mean difference and the limits
of agreement are displayed in equation 5.4 and 5.5, respectively. µ relates to the mean
of differences, while Sd relates to the standard deviation of differences for n samples.
tinv(•) stands as an indicator for the defined point of the t distribution (95%) with n - 1
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Figure 5.1: Reference values based on the MedCalc Software to verify algorithm 5.1 [Wik]

degree of freedom.

Suppose a data frame with the following structure as outlined in Table 5.1, where
BoneAgePreds represents the prediction of the AI model and GroundTruth indicates
the mean of three observers for each subject patientID. The concept for performing an
analysis of agreement is presented as seen in Algorithm 5.2.

CImeandifference = µ ± SD√
n

∗ tinv(1 − α/2, n − 1) (5.4)

CILOA = LOAupper,lower ± SD ∗
�

1
n

+ 1.962

2(n − 1) ∗ tinv(1 − α/2, n − 1) (5.5)

patientID BoneAgePreds GroundTruth
1 modelPrediction_pat1 gt_1
2 modelPrediction_pat2 gt_2
3 modelPrediction_pat3 gt_3
n modelPrediction_patn gt_n

Table 5.1: Example data frame used to present the analysis of agreement via the Bland-
Altman method.
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Algorithm 5.2: Implementation of the Bland-Altman method
Input: Data frame as defined in Table 5.1
Output: Bland-Altman Plot

1 Calculate the mean and standard deviation differences of the AI & the ground
truth by comparing the assessment of every read against the model’s prediction.

2 µ ← Mean(BoneAgePreds − BoneAgeReads);
3 σ ← SD(BoneAgePreds − BoneAgeReads);
4 LOA ← µ ± 1.96 ∗ σ;
5 Estimate the 95% CI based on equation 5.4 & 5.5
6 Define a maximum allowed difference δ.
7 Plot the data and draw the horizontal lines for 95% CI µ, upper and lower 95%

LOA, and maximum allowed difference δ.

5.4 Implementation of the Orthogonal Linear Regression
Similar to the standard linear regression, ordinary least squares (OLS), Orthogonal linear
regression draws a line of best fit of the data. While the OLS regression fits a line based
on the assumption that only the dependent variable is subject to measurement errors,
orthogonal linear regression assumes error in both, dependent and independent variables.
Pythons SciPy package provides a function to estimate the slope and intercept based
orthogonal linear regression [ort]. We utilize this function to implement our regression
method to assess proportional bias. Suppose a data frame with the following structure as
outlined in Table 5.1. A description of the values in the data frame is provided in Section
5.3. The basic concept for performing an analysis of proportional bias is presented as
seen in Algorithm 5.3.

Algorithm 5.3: Implementation of the orthogonal linear regression
Input: Data frame as defined in Table 5.1
Output: Proportional Bias from Regression Plot

1 Estimate the slope and intercept using the function from SciPy based on the
output of the AI and the Ground Truth

2 slope, intercept ← OrthogonalLinearRegression(AI, GroundTruth);
3 Bootstrapping slope will yield 95% CI of slope
4 Draw the scatter plot and illustrate the line of best fit based on slope and

intercept using the equation y = slope ∗ x + intercept

5.5 Implementation of the Concept of Interchangeability
The description of the concept of interchangeability has been explained in section 2.4.3
and graphically summarized in Figure 4.4. Suppose a data frame with the following
structure as outlined in Table 5.2, where BoneAgeReads represents the reads of each
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patientID reader BoneAgeReads BoneAgePreds
1 1 read1 modelPrediction_pat1
1 2 read2 modelPrediction_pat1
1 3 read3 modelPrediction_pat1
2 1 read1 modelPrediction_pat2
2 2 read2 modelPrediction_pat2
2 3 read3 modelPrediction_pat2
continue for n images

Table 5.2: Example data frame used to present the concept of interchangeability.

individual observer and BoneAgePreds indicate the prediction of the AI model for each
patientID. To note, the value modelPrediction is the same for every patientID, as the
model consistently produces the same output per patientID.

As such, the underlying algorithm to assess the performance using the concept of
interchangeability is presented in Algorithm 5.4.

Algorithm 5.4: Implementation of the concept of interchangeability
Input: Data frame as defined in Table 5.2
Output: 95% CI Equivalence Index γ

1 Calculate the mean of squared differences of the AI & observers by comparing the
assessment of every read against the model’s prediction.

2 Mean of squared difference AI ← Mean(BoneAgePreds − BoneAgeReads)2;
3 Calculate the mean of squared differences of the observers by comparing the

assessment of every reader against each other i.e. R1, R2, R3 → R1vR2, R1vR3,
R2vR3.

4 for patientID ← 1 to maximum iterations do
5 Inter-rater-variability ← Get difference of every observer combination
6 end
7 Mean of squared difference Observers ← Mean(Inter-rater-Variability)2;
8 Equivalence Index γ ← Mean of squared difference AI - Mean of squared

difference Observers
9 Bootstrapping with 10000 repeats as suggested by the authors will yield 95% CI

of γ
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CHAPTER 6
Results

6.1 Introduction
The chapter presents the results of the proposed validation framework highlighted in
section 4.1 and therefore answers the research questions as outlined in section 1.1. To
recapitulate the study design, the standalone performance data set was sampled from
multiple US clinical sites affiliated with a tertiary care center, which serves large portions
of various US states. Images were sampled and ground-truthed following the process
as described in section 4.6 and 4.4.1, respectively. The total number of images in the
standalone performance testing data set was 345 single-hand images. In this data set,
there are readings of hand images by three board-certified radiologists for bone age
consisting of a total of three reads per image. The mean of the three radiologists
established the ground truth. These images were then analyzed by PANDA and the
corresponding reports were collected and analyzed for statistical performance as proposed
in section 4.4. The methods include a comprehensive statistical assessment based on
Bland-Altman and regression and an assessment via the concept of interchangeability.
The following results will be presented and discussed in this section.

1. Standalone performance test data set

a) Study population
b) Removal of outliers

2. Reliability of the Ground Truth

3. Agreement

a) Bland-Altman plot of the standalone performance data set
b) Analysis of agreement
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4. Regression analysis

5. Calculation of the equivalence index

6.2 Study Population
Radiographs of the left hand from the institute for pediatric radiology of a tertiary
care university hospital were accessible (5541 exams). The patient population of the
institute is predominantly Caucasian. Indications for all children and adolescents was the
assessment of bone age by the Greulich and Pyle atlas. Only one exam per patient was
used in the study. Based on the technical indications of PANDA as described in 2.3.1
we excluded children younger than two years, as well as ages above 17 years. Stratified
random sampling was performed to select 23 patients for each year of life, resulting in
a study sample of 345 patients with a mean chronological age of 9.77 ± 5.05 ranging
between 2 -– 17 years consisting of 178 males (mean chronological age, 10.1 ± 5.22)
and 167 females (mean chronological age, 9.46 ± 4.86). The collation of the standalone
performance testing set is presented in Figure 6.1 The underlying diseases and indications
for the children presented as follows: 56.2% (n=194) Endocrine, nutritional and metabolic
diseases, such as small stature, high stature or precocious puberty; 15% (n=52) hereditary
related factors such as scoliosis; 11.3% (n=39) normal condition; 6.4% (n=22) mental
and behavioral disorders such as developmental delay and 10% (n=38) other conditions.

6.2.1 Failure Rates
PANDA successfully produced output for 345 images resulting in a failure rate of 0/345
= 0%. Failures in this context are considered to be images where PANDA produces an
error report rather than a bone age output report.

Exclusions

Out of a total of 345 images, 1 image was excluded from the test set. The reason is
provided below. The subject in question is a three years old white females suffering
from accelerated growth. The participant was excluded as her radiograph was considered
outside the scope of the study. The radiograph consisted of an image of a right hand.
Two out of three readers did not provide a bone age assessment for this image because it
was outside the scope of the study.

Outliers

The outlier detection via the method of Iglewicz & Hoaglin yielded 4/344 potential
outliers from the statistical point of view. Outliers were determined by calculating the
robust z-score on the differences between PANDA and ground truth. A robust z-score
above 3.5 or below -3.5 was treated as a potential outlier. When an outlier was deemed to
indicate a problem that was outside the scope of the intended use or imaging requirements
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6.2. Study Population

Figure 6.1: Study Sample constitution. From an eligible set of individuals from a clinical
center, 345 patients were selected stratified by age between 2 – 17 years old. 23 images
were allocated for each bin. After quality control, the cohort eligible for the study were
342 subjects, 175 girls and 167 boys.

59



6. Results

then the image was removed from the data set for standalone performance testing. Upon
visual inspection by the clinical investigator from the study site, 2/4 potential outlier
images were confirmed to be outliers and were removed from the standalone performance
test set. The participants excluded were considered outside the scope of the study. The
exclusions were justified by not conforming to the image requirements set by PANDA
due to poor radiographic quality or poor hand positioning. The concerned subjects were
both two years old white females, one suffering from premature thelarche and the other
showing signs of poor growth.

Providing unintended inputs to the medical AI software, PANDA, can result in unexpected
results, which might significantly deviate from the Ground Truth. These artifacts would
affect the reported statistics adversely if they were included in the data analysis. The
performance reported would not reflect the true results as the outcome is skewed based
on the influence of the artifacts.

The other two potential outliers were conforming to image and data requirements of
PANDA following a visual inspection by the clinical investigator and hence were not
excluded from the study. After controlling for outliers due to image quality such as poor
radiographic quality or poor patient positioning, standalone performance testing was
conducted on a set of 342 images as described in Figure 6.1. The total number of patients
included in the standalone performance testing, therefore, exceeded the predefined limit
of minimum sample size as described in section 4.5 (n=333).

6.3 Reliability of Ground Truth

To address the concerns of reliable ground truth, as to whether the mean of the three
reads is considered reliable as ground truth, we assessed the intra-class correlation (ICC)
amongst the three expert observers to determine the reliability of the expert radiologists
in rating bone age on the standalone performance test set.

Post-hoc power analysis of the ICC was performed in line with techniques described in
Walter et al. [WED98]. Using 0.05% significance, 85% power and 3 raters, 21 samples
per case were estimated to be sufficient to observe minimum acceptable reliability of 0.85.
For this study, a case was considered one age group as described in 4.4.1.

ICC estimates and their 95% confidence intervals were calculated based on a mean-rating
(k = 3), absolute-agreement, 2-way mixed-effects model. The definition of good reliability
is described in Section 4.4.1. To reiterate, based on the 95% CI of the ICC estimate,
values less than 0.5, between 0.5 and 0.75, between 0.75 and 0.9, and greater than 0.90 are
indicative of poor, moderate, good, and excellent reliability, respectively, based on Koo
et al. [KL16]. The values for the majority of the respective age groups show an ICC of
over 0.90 as presented in Table 6.1, indicating excellent reliability. The age group for the
group of nine year old is slightly lower with an ICC of 0.88, well within good reliability.
The lower end of the CI for all age groups shows a downwards trend in reliability starting
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Age group Age Interval ICC
1 (n=21) 24 to 35 months 0.93 [0.86; 0.97]
2 (n=22) 36 to 47 months 0.96 [0.92; 0.98]
3 (n=23) 48 to 59 months 0.97 [0.94; 0.99]
4 (n=23) 60 to 71 months 0.90 [0.79; 0.95]
5 (n=23) 72 to 83 months 0.94 [0.89; 0.97]
6 (n=23) 84 to 95 months 0.93 [0.86; 0.97]
7 (n=23) 96 to 107 months 0.92 [0.85; 0.97]
8 (n=23) 108 to 119 months 0.93 [0.86; 0.97]
9 (n=23) 120 to 131 months 0.88 [0.77; 0.95]
10 (n=23) 132 to 143 months 0.90 [0.81; 0.96]
11 (n=23) 144 to 155 months 0.94 [0.88; 0.97]
12 (n=23) 156 to 167 months 0.97 [0.94; 0.99]
13 (n=23) 168 to 179 months 0.97 [0.94; 0.99]
14 (n=23) 180 to 191 months 0.97 [0.94; 0.99]
15 (n=23) 192 to 204 months 0.96 [0.93; 0.98]

Table 6.1: Results of reliability testing for the mean of the observer assessment as the
ground truth via the ICC. The model used is the mean-rating (k = 3), absolute-agreement,
2-way mixed-effects type. The ICC, supplemented by its 95% CI is estimated for each age
group. The results show good reliability overall cases based on the definition of reliability
as set by Koo et al. [KL16].

from five years to 12 years old. This indicates disagreements between the truthers to
some degree within these age groups but negligible based on the criteria set by the ICC.

6.4 Test for Agreement: Bland-Altman’s Limits of
Agreement

6.4.1 Test for Normality

We outlined in section 3.5.1 that testing for agreement using the Bland-Altman method
requires the data to approximate a normal distribution. Specifically, the data based
on the differences between the two methods, bone age estimations from PANDA, and
the ground truth should approach a normal distribution. An assessment for normality
should be performed both, visually and with significance tests [GZ12b]. Therefore we
first visualized the data via the histogram and the Q-Q-plot as seen in Figure 6.2 to
investigate the distribution of the sample. The histogram illustrates the distribution of
differences between PANDA and the Ground Truth. The curve roughly approximates a
bell-like shape as seen in Figure 6.2a. The differences between PANDA and the Ground
Truth are drawn in the Q-Q-plot. A perfect normal distribution follows a diagonal line on
a 45-degree angle. Deviations from the diagonal line indicate deviations from normality
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(a) Histogram of the difference between the bone
age estimations for PANDA and the ground truth

(b) Q-Q-plot of the difference between the bone
age estimations for PANDA and the ground trut

h

Figure 6.2: Testing for normality by the means of visualization of the data via Histogram
and Q-Q-Plot. Plots indicate potentially a Gaussian Distribution.

[MPS+19]. An approximation of this is seen in Figure 6.2b indicating potentially a
Gaussian distribution. Few small deviations can be seen at the bottom left of the
plot, which indicates that the data is not perfectly normally distributed. These visual
checks were accompanied by statistical tests using the D’Agostino’s and Shapiro-Wilk’s
Test for normality [GZ12b], resulting in p-values of 0.03 and 0.03, respectively. While
D’Agostino suggests the data is bell-shaped and Shapiro not. The disagreement of some
tests is based on the nature of significant tests being overly sensitive to large sample
sizes or not sensitive enough for low sample sizes [MPS+19]. With the support of the
illustrated histogram and Q-Q-plot as recommended by the authors, we treated the data
as sufficiently Gaussian and proceeded with the analysis of agreement.

6.4.2 Test for Agreement

As established per Section 4.4.1 and verified in Section 6.3, the ground truth for this
study is considered to be the mean of bone age assessments made by each of the three
human reviewers for each image. Agreement is shown when both, the upper and lower
end of the 95% CI of upper and lower limits of agreement (LOA), respectively, of PANDA
against the ground truth, are within the average LOAs of the radiologists themselves.

The mean difference reflects the fixed bias indicated as the red dashed line in Figure
6.3. A fixed bias is present when 95% CI for mean difference (illustrated as the red
gradient in Figure 6.3) does not include 0. The mean difference between the average
of the three readers and PANDA was -0.72 months (95%CI : [−1.46; 0.02]), indicating
no significant fixed bias (see Table 6.2). The upper and lower LOA between PANDA
and the Ground Truth is 12.98 months (95%CI : [11.72; 14.25]) and -14.42 months
(95%CI : [−15.69; −13.15]), respectively, as indicated by the grey-dashed line with the
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6.4. Test for Agreement: Bland-Altman’s Limits of Agreement

CI displayed as the grey gradient in Figure 6.3 and detailed in Table 6.2.

Figure 6.3: The Bland-Altman plot demonstrates agreement between PANDA and
the average assessment of radiologists (Ground Truth) of the study population. The
shaded red area depicts 95% CI for mean differences and accounts for the absolute
bias. The shaded grey area displays 95% CI for Limits of Agreement. The dotted blue
lines indicate the mean limits of agreement amongst expert radiologists and serve as
acceptance thresholds for PANDA. The LOA based on PANDA and the Ground Truth
did not surpass the maximum allowed difference. This indicates that PANDA agrees
with the observers.

PANDA vs. Ground Truth
Mean Difference

[months]
PANDA Lower LOA

[months]
PANDA Upper LOA

[months]
Radiologists Mean Lower LOA

[months]
Radiologists Mean Upper LOA

[months]
-0.72

(-1.46; 0.02)
-14.42

(-15.69; -13.15)
12.98

(11.72; 14.25) -20.74 22.68

Table 6.2: Results of testing for agreement between PANDA and the expert readers in
table format.

The maximum allowed difference is the average of the inter-rater-variability among each
reader pair as listed in Table 6.3 Given the definition of 95% limits of agreement (LOA
= average difference ±1.96 * standard deviation), with an average of mean differences
of -0.97 months and a mean of the standard deviation of differences of 11.07 as seen in
Table 6.3, the upper and lower limits of agreement is 22.68 and -20.74, respectively (-0.72
[-20.74, 22.68]). These LOA are the average maximum difference among the radiologists
and establish the maximum allowed boundary limits marked as the blue dashed lines in
Figure 6.3 .

The alternative hypothesis state, two methods are in agreement if

H1 : −Δ ≤ 95%(µP anda − µRads) ≤ +Δ
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Mean Difference
[months]

Standard Deviation
[months]

Average of Mean Differences &
Average of Mean Standard Deviation

[months]

Average LOA
[months]

Reviewer 1 vs. Reviewer 2 0.44 10.45
[0.97; 11.07] [-20.74; 22.68]Reviewer 1 vs. Reviewer 3 1.46 12.81

Reviewer 2 vs. Reviewer 3 1.01 9.97

Table 6.3: Mean Difference and Standard Deviation of each observer pair in months. The
mean of the observer pair LOA’s establishes the maximum allowed difference.

As seen in Table 6.2, the upper and lower boundary of the 95% CI of the upper and lower
LOA between PANDA and mean observers did not exceed the upper and lower LOA of
the mean observers.

Alternatively, we express this as:

H1 : −20.74 months≤ −15.69 months ∧ 14.25months ≤ 22.68 months

Mathematically, this demonstrates that the assessment of the model agrees with the
assessment of the average reads of observers.

The analysis of agreement shows that relying solely on radiologists to estimate bone age
will result in differences between -20 months to 23 months of under- and overestimation,
respectively. Using PANDA would reduce these differences to -16 months to 14 months
of under- and overestimation, respectively. Figure 6.3 displays the Bland-Altman plot
illustrating our description above. The upper and lower bound of the shaded grey area
indicating the upper and lower bound of the 95% CI of LOA does not surpass the
maximum allowed boundary presented as the blue-dashed line.
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Subgroup Analysis - Sex

Based on the clinical relevance of bone age we also assessed the performance stratified by
gender, for boys and girls, respectively. The summarized results are displayed in Table
6.4 and Figure 6.4 and 6.5 for male and female populations, respectively.

Limits of Agreement [months] Maximum Boundary [months]Sample Mean Difference [months] Upper LOA Lower LOA Lower B. Upper B.

Boys(n = 167) 1.38
[0.34, 2.42]

14.73
[12.95; 16.51]

-11.97
[-13.75; -10.19] 24.80 -17.40Cohort

for
girls/boys Girls(n = 175) -2.73

[-3.71, -1.75]
-15.59

[-17.26; -13.92]
10.13

[8.46; 11.80] 19.28 -22.55

Table 6.4: Performance of PANDA against ground truth for girls/boys.

Figure 6.4: Bland-Altman plot demonstrates agreement between PANDA and the Ground
Truth of the male study population. The shaded red area depicts 95% CI for mean
differences and accounts for the absolute bias. The shaded grey area displays 95% CI
for Limits of Agreement. The dotted blue lines indicate the mean limits of agreement
amongst expert radiologists and serve as acceptance thresholds for PANDA. The LOA
based on PANDA and the Ground Truth did not surpass the maximum allowed difference.
This indicates that PANDA agrees with the observers.

As presented in Table 6.4 and visualized in Figure 6.4 and Figure 6.5, the upper and
lower boundaries of the 95% CI of the upper and lower limits of agreement, respectively
(shown as the grey gradient), of the male and female subgroup fall within the respective
maximum boundaries (illustrated as the blue-dashed line) and therefore demonstrate
good agreement. Mathematically, we express this for males:

H1 : −17.40 months ≤ −13.75 months ∧16.51 months ≤ 24.80 months

and for female:

H1 : −22.55 months ≤ −17.26 months ∧11.80 months≤ 19.28 months
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Figure 6.5: Bland-Altman plot demonstrates agreement between PANDA and the Ground
Truth of the female study population. The shaded red area depicts 95% CI for mean
differences and accounts for the absolute bias. The shaded grey area displays 95% CI
for Limits of Agreement. The dotted blue lines indicate the mean limits of agreement
amongst expert radiologists and serve as acceptance thresholds for PANDA. The LOA
based on PANDA and the Ground Truth did not surpass the maximum allowed difference.
This indicates that PANDA agrees with the observers.

Based on the results in Table 6.4, the 95% CI of the mean difference does not include
0, therefore indicating significant fixed bias for both sexes. The assessment shows that
PANDA has a slight tendency to overestimate bone age for boys of approximately one
month and underestimate bone age for girls of about three months.

6.5 Test for Presence of Proportional Bias - Slope of
Regression

Proportional bias was tested using orthogonal linear regression between PANDA and the
Ground Truth, and assessing whether the slope of the regression line is near 1. The slope
of the regression reflects the proportional bias. A proportional bias is present when 95%
CI for slope does not include one. Estimates and confidence intervals obtained for slope
and intercept are presented in Table 6.5 and visualized in Figure 6.6.

The alternative hypothesis state, the two methods are not proportionally biased if

H1 : B1 = 1

The 95% CI for the slope indicated by the red line in Figure 6.6 is reported to be
B1 = 1.02(1.00, 1.03) for the entire cohort. The slope includes B1 = 1. Therefore no
significant proportional bias is present.
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6.5. Test for Presence of Proportional Bias - Slope of Regression

PANDA vs. Ground Truth
Slope Intercept
1.02

(1.00; 1.03)
-0.72

(-1.46; 0.02)

Table 6.5: Intercept and slope of orthogonal linear regression of the study population.
The 95% CI for the slope includes 1 and therefore indicates no proportional bias.

Figure 6.6: Regression analysis between the ground truth (mean assessment of radiologists)
and PANDA. The dashed-black line describes the line unity with the slope B1 = 1 and
intercept B0 = 0. The red line illustrates the line of best fit based on the orthogonal
regression model. The slope indicates the presence of a proportional bias. 95% CI for
slope includes 1 and demonstrates no significant proportional bias.
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6.5.1 Subgroup Analysis - Sex
Based on the clinical relevance of bone age we also assessed the performance stratified by
gender, for boys and girls, respectively. The summarized results are displayed in Table
6.6 and Figure 6.7 and 6.8 for male and female populations, respectively.

PANDA vs. Ground Truth
Slope Intercept

Boys
(n=167)

1.02
[1.00; 1.03]

1.38
[0.34; 2.42]

Girls
(n=175)

1.01
[0.99; 1.03]

-2.73
[-3.71; -1.75]

Table 6.6: Intercept and slope of orthogonal linear regression of male and female the
study population.

Figure 6.7: Regression analysis between the ground truth (mean assessment of radiologists)
and PANDA for the male study population.
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Figure 6.8: Regression analysis between the ground truth (mean assessment of radiologists)
and PANDA for the female study populations.

As presented in Table 6.6 and visualized in Figure 6.7 and Figure 6.8 for the male and
female cohort, respectively, the dashed-black line describes the line unity with the slope
B1 = 1 and intercept B0 = 0. The red line illustrates the line of best fit based on the
orthogonal regression model. A proportional bias is present when 95% CI for slope does
not include one. The 95% CI for the slope indicated by red line in Figure 6.6 is reported
to be B1 = 1.02(1.00, 1.03) and B1 = 1.01(0.99, 1.03) for the male and female cohort,
respectively. The slope includes B1 = 1 for both population. Therefore no significant
proportional bias is present.
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6.6 Test for interchangeability - The Equivalence Index
The results of the interchangeability test are presented in Table 6.7. The mean squared
difference between PANDA and the assessments made by random readers was 91.2; the
mean squared difference between two assessments made by random readers (Radiologist
1, 2, and 3) was 125.4. The estimated equivalence index is -34.2. To make the result
interpretable, the square root of the absolute value is taken, resulting in an index of γ =
-5.8, with a 95% CI of -7.1 to -4.8 (via a bootstrap percentile CI). The equivalence index
is below the pre-specified acceptance criteria of γ ≤ 0. The negative equivalence index
indicates that switching PANDA in place of an expert reader would lead to an average
reduction in differences between bone age estimates as compared to expert readers alone.
Based on the results of the interchangeability test, PANDA is non-inferior to the readers
and therefore is interchangeable with the readers.

PANDA vs. Random Readers
(Radiologist 1, 2 & 3) -
Mean squared difference

[months2]

Random Readers (Radiologist 1, 2 & 3)
among each other

Mean squared difference
[months2]

Equivalence Index
[months2]

Signed square root of
absolute value of

Equivalence index
[months]

91.2 125.4 -34.2 -5.8
(-7.1; -4.8)

Table 6.7: Results of testing for interchangeability between PANDA and the expert
readers.
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CHAPTER 7
Discussion

7.1 Results and Limitations of the Standalone
Performance Testing Set

In Section 2.2.6 we established that the important parameters for bone age assessment
are age and sex. To answer Research Question Q1 How does the clinical aspect of the
output of interest influence the distribution and granularity of the data set to be tested?
as part of the aim of the thesis in Section 1.4, we evaluated the performance of our
AI model on the data set stratified by age from multiple centers in the US. Based on
our assumption of the US census as discussed in Section 4.6, simple random sampling
resulted in approximately equal distribution among sex. Our sampling strategy resulted
in a uniform distribution as seen in Table 6.1 except for outliers considered in section
6.2.1. This strategy allowed testing on a sample with enough granularity and adequate
representation over all ages and sex as defined by the intended patient population of
PANDA.

Thus, the answer to the question is, bone age specifically is assessed differently for male
(m) and female (f) in every stage of age from 3 months to 18 and 19 years, for girls and
boys, respectively. As such, the testing data sampled must ensure sufficient samples in
age and sex, the two parameters relevant for bone age assessment. Table 4.4 presents the
distribution of the data to be tested on.

We solved the answer to Research Question Q3 How can we estimate sufficient sample
size and power? by investigating sample size estimation methods available based on our
hypothesis testing for agreement. An accepted approach and implemented in multiple
statistical software, e.g. MedCalc, PASS, is based on Lu et al’s method. The general
equation provided by Lu et al’s paper to estimate the sample size (refer Equation 3.2
included a boundary condition assuming the mean difference µ = 0. As a certain amount
of bias should be expected from either side, the AI or the expert readers, the mentioned
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formula could not be applied to our case. Therefore, as described in Section 5.2, we
utilized the author’s power formula as seen in Equation 5.1 and applied an iterative
method to estimate the required sample size based on the desired power. This approach
has also been suggested by the authors. The concept of the binary search algorithm has
been outlined in Algorithm 5.1. The implemented method has been verified against the
expected inputs and outputs based on the reference values from the statistical software,
MedCalc, as seen in Figure 5.1. These values are listed on their website [Wik]. The sample
size for the standalone performance data set was estimated using reference parameters
based on literature from the Larson study, as presented in 4.5. Applying the parameters
to the script resulted in a minimum acceptable sample size of 333 images for a power of
85%.

Thus, the answer to this question is the following: Sample size is closely tied to statistical
power and significance. A power analysis is most often used to calculate what sample
size is required. Assuming three of the four values out of the parameters —– sample size,
effect size (mean difference and standard deviation), significance level, or power —– are
known, the final parameter can be calculated. In clinical studies, these parameters are
usually estimated from data in existing literature or are obtained from the results of a
pilot study. Our study relied on data from existing studies, specifically the Larson study.

Our data set is collected to address the performance of the entire population suspected to
have a bone age assessment limited to the patient population of PANDA. In some cases,
one might be more interested in how the AI performs for specific age groups. Specifically
for younger and older age groups where subjects experience rapid growth is in some cases
interesting to assess. Our data set as listed in Table 4.4 provides only 23 images per age
group. The number of images will lack the power to provide statistically sound results.
This is one limitation of the data which we tested on.

7.2 Results and Limitations of the Reliability of the
Ground Truth as the Mean

To ensure that our device met its intended use of providing a radiological bone age
estimate with accuracy and precision that was clinically meaningful, performance must
be measured against an appropriately validated ground truth. If the ground truth was
to be obtained through a mean of radiological bone age estimates performed by expert
radiologist readers, as performed for this study, we had to ensure that the variability of
the estimates is low enough. This is done to provide confidence in the validity of the
ground truth against which PANDAs’ performance was measured.

To ensure inter-reader variability does not negatively impact the ground truth, we
considered reader qualifications, training, and recruitment of multiple readers in the
truthing process. In addition, we also provided the Intra-class Correlation (ICC) among
the truthers to determine the reliability of the expert radiologists after the data has been
truthed. The ICC value provided should reflect the inter-reader variability.
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As mentioned in Section 4.4.1, the ICC value is constructed by the variance components
for the reader, case, and random errors for an ANOVA model. We ensured that the case
variability is smaller than the reader variability. This is to ensure the ICC value will be
dominated by the reader variability (based on the expert radiologists) and not the case
variability (bone age). If the case variability is much larger than the reader variability,
the ICC value will be dominated by the case variability and cannot reflect the reader
variability. Therefore we performed analysis for each age group based on the majority of
the plates reflected in the GP Atlas.

The results provided indeed show good reliability using the mean of the experts reads as
the ground truth. With an ICC of over 0.90, Koo et al. defined this statistic as excellent
reliability.

7.3 Results and Limitations of Testing Methodology
We evaluated multiple methods for assessing the performance of AI models with outputs
with continuous variables. For this thesis, we used bone age assessment as an example.

To answer to Research Question Q2 How can the performance of the software whose output
is continuous be shown and which choices of performance metrics and performance targets
are available and feasible?, we proposed and executed a study including a statistical
analysis using the Bland-Altman plot, regression & the concept of interchangeability.

The Bland-Altman plot estimates presented in Section 6.3 relies on a reference standard,
the ground truth, to compare to. We established and validated our assumption of the
reference standard as the mean of the observers’ estimate. The limits of agreement i.e.
the extreme differences to be expected from using PANDA over the radiologist between
-14.42 and 12.98 months, were below the maximum acceptable boundary we defined as
the limits of agreements based on the reader inter-rater variability as seen in Table 6.2
with a difference between -20.74 and 22.68 months.

Testing the hypothesis for agreement as described in Section 4.3.2 and supported by the
results in Section 6.4.2 presents

H1 : −20.74 months≤ −15.69 months ∧ 14.25months ≤ 22.68 months

Based on this assessment we can safely reject the null hypothesis H0. Therefore, we
can conclude that PANDA agrees with the current reference standard. We have as
such provided evidence that integrating the AI into the clinical workflow, supports the
radiologist in reading bone age more accurately of approximately 6 months on average.

Subgroup analysis based on sex shows that the mean differences, an indicator for fixed
bias, reported in Table 6.4 between PANDA and expert readers vary from 1.38 months for
boys to -2.73 months for girls. These differences could reveal tendencies of either PANDA
or expert readers towards slight over-or under-estimations of GP bone age, but we do
not see the differences reported here rising to a level of clinical significance. We assume
the presence of a fixed bias is influenced by the precision of GP bone age estimates. The
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outputs provided differs between PANDA (nearest month model) and experts (nearest
plate from the atlas or between two plates). The result is a binning effect, as expert
reader estimates are made in 3-month intervals.

One limitation we found during testing for agreement was our defined maximum bound-
aries as 22.68 and -20.74 months (upper and lower, respectively), the difference one
would expect from the clinical practice. Similar results have been report by Larson et al
with cases up to 24 months [LCL+18]. These differences reflect the rare (5% based on
the definition of the limits of agreement) and extreme cases that one can expect when
relying solely on readings of the experts. However, the proposed maximum acceptable
difference among the radiologists is large enough to invalidate the clinical meaning of
the reading for the younger age group. Being allowed about 1-2 years off the ground
truth especially for the younger age group might be concerning. This can be explained as
the threshold is based on the study population examined resulting in the establishment
of the maximum allowed difference. In our analysis, the cases range from 2 years to 16
years. The boundary generalizes to the studied group and can therefore not accurately
reflect the boundary tailored to the younger age group specifically. However, as seen in
Figure 6.3 these cases of such differences occurring are rare. Nonetheless, this limitation
for the younger age group should be further investigated. To address the matter of
generalizability as required by Section 1.4.1 we proposed a method that does not rely on
a ground truth to compare to i.e. the concept of interchangeability.

We presented in this study a method of evaluating clinical acceptance of a bone age AI
algorithm using interchangeability, which incorporates the randomness of clinical reads
made by different experts and simulates the impact of adding the AI algorithm into this
workflow. An interchangeable reader would go unnoticed, in that inter-reader differences
would not change when that reader began making bone age estimates. In this study, the
introduction of the AI bone age algorithm PANDA led to a reduction in inter-reader
differences of approximately 6 months on average based on the results in Table 6.7.

Testing the hypothesis for interchangeability as described in Section 4.3.2 and supported
by the results in Section 6.6 presents

H1 : γ ≤ −5.8

Based on this assessment we can safely reject the null hypothesis H0. Therefore, we can
conclude that PANDA is interchangeable with the current reference standard.

Thus to summarize, if the researcher wants to calibrate one measurement against an-
other or find bias between two techniques of measurement, regression analysis might be
performed. However, if the purpose is to see if one procedure may be safely replaced by
another, especially in clinical practice, the Bland-Altman plot is preferred. If there is
no adequate reference standard to compare to, required for the Bland-Altman analysis,
interchangeability can be used. This statistical method does not rely on a reference stan-
dard to compare to. It assesses any excess or reduction in differences from interchanging
one method over the over.
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7.4 Reflection on the Scientific Outcomes of the Thesis
This section reflects on how this thesis contributes to the state-of-the art, overall. We
assess to what degree we have fulfilled the overall goals as set in Section 1.4 based on the
evidence in our results.

As stated in Section 1.2, the current state-of-the-art does not address how the performance
of AI in medical imaging whose output is continuous e.g., bone age, distance, or angles
on radiographs, should be assessed. Due to the recent application of AI methods in
medical imaging, there is currently no reference standard or clear guidance for assessing
the performance of AI-based technology in healthcare with continuous values.

Specifically, for the estimation of bone age, a difficult and time-consuming task, where
AI can provide a solution within a short amount of time, not much research relating to
performance assessment has been done in this field, as explained in Section 3.6. To the
best of our knowledge, this is the first comprehensive methodology to fill this gap in
literature.

The overall aim of the entire research project was to explore and execute suitable statistical
models in a clinical study to assess the performance of an AI software used in healthcare.
In Chapter 2, we determined the role of AI as supplementary, a second opinion, using
different means to assess the same output, compared to the gold standard, the radiologist.
Therefore, we concluded this to be a method comparison study. The Bland-Altman
method has established itself in multiple areas of medicine as an appropriate technique
for comparing methods against each other, and may help researchers to compare a new
method against another one or a reference standard. Our research as outlined in Chapter
3 show that the analysis via Bland-Altman has recently begun to see the application in
the field of AI, specifically in the assessment of bone age. We also investigated other
statistics that do not rely on a reference standard, i.e., the concept of interchangeability,
already applied in the pharmaceutical field. In addition, we have also addressed the issue
of the presence of bias and proposed the analysis using regression.

While research papers attempted to evaluate the performance of such models, many
lack important aspects in terms of sample size or adequate representation in the testing
set, based on the clinical relevancy, to justify good performance of their model. These
shortfalls were addressed in our performance testing as outlined in Chapter 4. We created
a study protocol that could deliver meaningful results considering but not limited to study
population and methods, sample size, and power. Our study design consisted of partially
writing scripts to analyze and visualize the data, as well as addressing any statistical
considerations relating to sample size and power. The details have been presented in
Chapter 5.

Our results presented in Chapter 6 support the following claim. If the researcher wants
to calibrate one measurement against another or find bias between two techniques of
measurement, regression analysis should be performed. If the purpose is to see if one
method may be safely replaced by another, especially in clinical practice, the Bland-
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Altman plot is preferred. If there is no adequate reference standard to compare to,
a requirement for the Bland-Altman analysis, interchangeability can be used. This
statistical method does not rely on a reference standard to compare to.

7.5 Reflection on the Tasks and Requirements of the
Thesis

In Section 1.4, we defined tasks and requirements to address the answers to the questions
(Q1 - Q3) interesting for researchers. To this end, we will discuss to what degree they
were accomplished.

Task 1 Understanding the principles of bone age assessment, its clinical output including
the intervention of AI and the relevance of the clinical assumptions into the statistical
considerations has been addressed in Section 2.2, resulting in the solution as presented in
Section 7.4 for Research Question Q1. We established in Section 2.2 that bone age is
age and sex dependent. Therefore, the standalone performance testing data set should
contain enough granularity in terms of both, age and sex based on the clinical implications
of bone age and the intended patient population of PANDA. The underlying distribution
must be uniform. By equally distributing samples, enough granularity in the performance
data can be provided.

Task 2 Exploring the current methodologies of performance assessment of bone age and
possible limitations addressed part of Research Question Q2 and Q3. In Chapter 2
and further emphasized in 3 we have established that the Bland-Altman Method for
agreement, regression and the concept of interchangeably statistical methods that should
be used to assess performance. These methods addresses the issue of generalizability
and scalability, as required by Requirement R1 and Requirement R2. The statistical
techniques mentioned above can be applied to any clinical output of continuous nature
irrespective of the use case [SSA+21]. It is not bound to the assessment of bone age
specifically, therefore fulfilling Requirement R1. These methods are established techniques
applied by many fields of clinical research [Dog18, Com]. As such, the proposed methods
accomplishes the requirement as defined in Requirement R2.

We addressed Task 3 Proposal of an improved and more robust framework for performance
analysis by applying these methods resulting from Task 2 into a clinical study as outlined
in Chapter 4. We ensured that the study was sufficiently powered as described in Section
4.5, defined a more robust sampling method as outlined in Section 4.6, and established
an adequate reference standard and performance targets to compare to in Section 4.4.1
and 4.4, respectively. We also ensured the fulfillment of Requirement R3 by providing
the information for the statistical methods, sample size calculation in a reproducible
manner as presented in Chapter 5.

To conclude, our thesis has adequately addressed every task presented in this work while
incorporating the constraints as the set by the requirements.
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CHAPTER 8
Conclusion & Future Works

Already 20 years ago Tanner and Whitehouse suspected "From the beginning, it seemed
reasonable to suppose that bone age assessments were something a computer could do
better than a human operator" [Car02]. As this study demonstrates, the two great
authorities in bone age assessment will be proven right in the long run. This chapter
summarizes the work presented and provides a conclusion to the investigation conducted.
In addition, an outlook for possible improvements and other future topics are given.

8.1 Summary
The main research question defining this thesis was Which statistical strategies support
researchers in demonstrating safety and performance of an AI algorithm whose output
is continuous? As demonstrated in this thesis, one can use Bland-Altman analysis for
agreement, regression or interchangeability as defined and applied in Chapter 4 and
Chapter 6, respectively, to demonstrate safety and performance of an AI algorithm whose
output is continuous. When applying these statistical tests, one needs to ensure that
the test is sufficiently powered in order to claim significant results (Section 4.5). Finally,
clinical implications behind the output in question will determine the distribution of the
sample that is tested on. We addressed this issue for bone age as presented in Section
2.2. This can differ from other clinical outputs and should be evaluated beforehand.

In this retrospective study, we assessed an automated computerized solution for bone
age assessment and compared its performance against expert readers. The role of AI in
the clinical setting is currently supplementary. A time-saving tool providing a different
opinion compared to its current referenced standard, the human operator. Therefore, it
is essential to assess whether two different approaches agree with each other and whether
the differences resulting from using one method over the other will result in clinically
relevant. We present in this study methods of evaluating clinical acceptance of a bone
age AI algorithm using the measure of agreement based on the Bland-Altman analysis
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and interchangeability. While agreement relies on a reference standard to compare to, a
ground truth will not always to available or can be applied. Therefore we presented an
alternative solution utilizing the concept of interchangeability. This method does not
rely on a reference standard, as it incorporates the randomness of clinical reads made by
different experts and investigates whether replacing the AI with an expert would result
in unacceptable differences.

Based on the current state-of-the-art we proposed using the analysis of agreement via
Bland-Altman and interchangeability as adequate techniques to assess performance.
To assess the effectiveness of the methodologies, the proposed statistical analysis was
escalated to a clinical investigation.

We evaluated both approaches on a data set sampled from a multi-center clinical site
stratified by age to evaluate the performance for each age with the same weight. Three
pediatric experts in reading bone provided assessments to each sample. Ground truth
was established using the mean of three estimations. An important step was to provide a
power analysis to the study. This is done to ensure that the results acquired from the
investigation are powered and the results are significant.

For the analysis of agreement, we defined the average inter-rater variability based on
the average LOA of each reader pair from expert radiologists as the maximum allowed
difference considered acceptable. The results of the experiment support the conclusion for
good agreement showing differences occurring using the AI are lower than the differences
occurring among the expert observers. The results from assessing for interchangeability
indicate that using the AI in place of an expert reader would lead to an average reduction
in differences between bone age estimates as compared to expert readers alone. Both
approaches, therefore, support the idea that looking at the differences and assessing
whether such differences are acceptable in the clinical practice determines whether a
device is in agreement or interchangeable.

The main contribution to this thesis is a workflow for the statistical assessment of AI
solutions in bone age assessment. In conclusion, the results presented in this study show
promising results for the proposed methodologies. Both metrics are not restricted to the
assessment of bone age and can also be applied to other output of interest provided the
output is a continuous variable. Whether one assesses performance using Bland-Altman’s
limits of agreement or interchangeability strongly depends on the clinical aspect of the
output of interest. It is up to the researcher to decide which method is adequate based
on the use-case of the device.

Our proposed approach is indeed generalizable to the other applications aside from bone
age. We have also applied our framework to length and angle measurements of the
lower extremity, a different diagnostic output, whose output is a also continuous variable
[SSA+21]. Aside from assessing for agreement with the Bland-Altman-Approach, we also
assessed for non-inferiority using the concept of interchangeability by quantifying the
equivalence index γ.
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8.2 Future Work
Finally, we present possibilities for further improving our framework including future
investigations.

Diverse and Larger Data Set

From the result of the performance testing, it seems that there is no significant bias
between the AI’s prediction and the ground truth and also no apparent trend of difference
over the magnitude. Bone age is influenced by gender, race, living environments, social
resources, and nutritional status. While the performance testing data set satisfies the
minimum requirements from the statistical and clinical aspect, further evaluation on a
more diverse and larger data set specific for age, race, and sex might provide even more
insight on whether a bias of the algorithm exists.

Clinically Acceptable Difference

Additional measures could be taken to further improve the quality of the ground truth.
This inherently also affects the maximum threshold δ established based on the mean of
the LOA of the observer pairs. Even though actions were taken to reduce variability as
much as possible based on the observers’ experience, competence, and training, differences
among the observers are still very large. Aside from the inherently flawed manual process
of reading bone age, it appears that the broad clinical boundaries may be still impacted
by substantial intra-reader variations in bone age estimations. This could be one of the
possible reasons for the large threshold. To address the concern of high intra-reader
variability that may be contributing to clinically potentially questionable boundaries, we
may consider using more than three readers. This measure could reduce any potential
selection bias for the readers. Alternatively, the ground truth can be determined by
allowing the three truthers to reach a consensus on the estimated bone age if the intra-
reader variability,i.e., the difference in bone age assessment among each other exceeds a
certain amount.
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GCP Good Clinical Practice. 5
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MAD Root Mean Square Error, a metric to assess accuracy, similar to the standard
deviation it measures the square of the absolute difference between two measures
and averages it. Due to the differences being squared, this metric penalizes outliers.
This metric provides information about the absolute difference of two measures
irrespective of whether the difference is positive or negative.. 33

MDR Medical Device Regulation. 4
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PA Projection of an X-ray in which beam path is from the back (posterior) to the front
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PACS Picture archiving and communication system, technology providing storing and
easy access to images and reports of multiple modalities. 12, 13

PANDA abbreviation for Pediatric Bone Age and Developmental Assessment, an AI
model that estimates bone age, a clinical output considered a continuous variable.
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