
Incremental Updates of
Path-Traced Scenes during

Editing

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Medieninformatik und Visual Computing

eingereicht von

Pascal Dario Hann
Matrikelnummer 01633018

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Mitwirkung: Univ.Ass. Dipl.-Ing. Dr.techn. Bernhard Kerbl, BSc

Nina Semmelrath

Wien, 1. Mai 2021
Pascal Dario Hann Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Incremental Updates of
Path-Traced Scenes during

Editing

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Media Informatics and Visual Computing

by

Pascal Dario Hann
Registration Number 01633018

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Assistance: Univ.Ass. Dipl.-Ing. Dr.techn. Bernhard Kerbl, BSc

Nina Semmelrath

Vienna, 1st May, 2021
Pascal Dario Hann Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Pascal Dario Hann

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. Mai 2021
Pascal Dario Hann

v

Danksagung

Ich möchte mich bei Bernahrd Kerbl und Nina Semmelrath für ihre Mitarbeit an dieser
Bachelorarbeit bedanken.

vii

Acknowledgements

I would like to thank Bernhard Kerbl and Nina Semmelrath for working with me on this
bachelor thesis project.

ix

Kurzfassung

In dieser Arbeit präsentiere ich einen neuen adaptiven Sampling Algorithums für 3D
Bearbeitungssoftware, der von mir und meinen Kolleg/Innen entwickelt wurde. Der
Algorithums basiert auf der Idee Wissen darüber wie eine Änderung an einer Szene die
unterschiedlichen Teile dieser betrifft, für adaptives Sampling zu verwenden. Wir teilen
das Bild in Regionen auf und sortieren diese, nach diesem Wissen, von der am meisten
betroffenen Region zu der am wenigsten betroffenen. Diese Reihenfolge verwenden wir um
das Renderingbudget in erster Linie auf die stärker betroffenen Regionen zu fokusieren
und erst danach auf die weniger Betroffenen. Dies geschieht in einem inkrementellen
Rendering Prozess. Wir haben diese Methode entworfen um Path-Tracing zum Rendern
des Viewports in 3D Bearbeitungssoftware verwenden zu können, ohne mit den Arte-
fakten und Wartezeiten auf ausreichend qualitative Ergebnisse, die diese Technologie
üblicherweise mit sich bringt, kämpfen zu müssen. Unser Ziel mit diesem Algorithmus
ist es, Benutzer/Innen von 3D Bearbeitungssoftware einen möglichst ununterbrochenen
Arbeitsfluss zu ermöglichen und dabei trotzdem nicht auf hochqualitative Rendering
Ergebnisse verzichten zu müssen.

xi

Abstract

In this work I present a novel adaptive sampling algorithm for 3D editing software,
developed by me and my colleagues. The algorithm is based on the idea of using
knowledge about how a given user interaction affects a scene visually. We split the
image into regions and order them, according to that knowledge, from most noticeably
affected to least. The rendering budget can then be focused on the more affected regions
earlier and on the lesser ones later in an incremental rendering process. Although this
concept could probably work with other rendering methods, we designed it to be able
to use path-tracing as the viewport renderer in 3D editing software without the typical
grain-like noise and waiting times for sufficiently smooth rendered images this technology
usually comes with. The goal of this work is to offer users of 3D editing software an as
uninterrupted workflow as possible while still being able to see their work in high quality.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1

2 Related Work 7
2.1 Sampling . 7
2.2 Image reconstruction . 11

3 Method 15
3.1 Splitting up the image into regions . 16
3.2 Determining most to least affected regions of the image 17
3.3 Building the spiral queue . 18
3.4 Switching modes . 19

4 Implementation 23
4.1 Software environment . 23
4.2 Adapting the path-tracer . 24
4.3 Adapting the accumulate pass . 27
4.4 Interaction pass . 27

5 Evaluation 31
5.1 Hardware environment . 31
5.2 Results . 31
5.3 Further work . 37

6 Conclusion 39

List of Figures 41

List of Tables 42

xv

Bibliography 43

CHAPTER 1
Introduction

3D modelling software is essential for a plethora of use cases. Be it creating virtual
representations of the physical world for simulations and visualisations or translating
human fantasy into media like movies or even interactive media like video games. 3D
modelling software is at the centre of all these endeavours and artists and designers
rely on these tools to visualise their work. In order to get a good understanding and
feel for what they are trying to achieve as early in the process as possible, it is of very
first importance to be able to produce high level visuals quickly. Having to undergo a
lengthy rendering process in order to see one’s work under the final or at least close
to final rendering circumstances hinders the design workflow. This leaves artists the
choice to either interrupt their workflow regularly and wait for a computationally heavy
high quality render or having to work with an obfuscated version of their creation and
guessing as to what the final product might or might not look like.
A majority of those computation-heavy steps can be attributed to radiance computation.
Lighting a virtual scene is simultaneously one of the most difficult problems in rendering
as well as one of the most rewarding ones. Lighting a scene realistically, i.e., in accordance
to the real physical world, goes a long way towards creating an illusion of said world.
As with many natural phenomena, imitating lighting is exceptionally complicated and
algorithms that do so usually are very computational resource intensive.
One straightforward approach, which has become the industry standard for its simplicity
and accuracy, is called ray-tracing. The basic idea of the process is to "follow" the rays of
light that are present in a scene. Every time a ray hits a surface the impact of that ray
on the illumination of that specific intersection is calculated and the ray is consequently
followed in its new reflected direction. This is a simplistic view on the real physical
phenomenon imitated by ray-tracing. In a real world scenario an infinite amount of
light rays is present and most objects are not perfectly reflecting but rather of diffusing
characteristics. This means that when a ray hits one such surface, not a single ray
gets reflected into a new direction but an infinite amount of new rays get scattered in

1

1. Introduction

every direction around the intersection. However, even when only using a very limited
amount of rays to simulate real world radiance, a relatively close approximation of the
real behaviour of light in a scene can be achieved. A specialized form of ray-tracing
first presented by James T. Kajiya in his milestone publication about the rendering
equation [Kaj86], is called "path-tracing". It follows rays shot from the camera into
the scene, only considering one new branch at every hit surface, creating a path from
the camera to a light source. Which of the many possible ray-directions to choose at
an intersection is decided randomly, making this algorithm a so-called "monte carlo"
algorithm. Monte carlo algorithms, named after the grand casino in Monaco’s capital,
use random sampling to achieve numerical results and are often used as an approximation
when a complete evaluation of a problem is impractical. Path-tracing achieves images
of exceptional quality. Nonetheless the results are heavily dependent on the number of
paths traced and for how many intersections they are followed. For a long time existing
hardware was not able to compute a sufficient number to achieve acceptable results in
real-time. Real-time computation, however, is necessary for interactability in software
like 3D modelling applications. In fact, as mentioned before, the shorter the rendering
time, the fewer interruptions a user’s workflow has to endure.

Even back when hardware was too limited to use ray-tracing in real time, because of its
accuracy and simplicity, it quickly became a standard for settings that didn’t rely on
real-time computation. Animated movies, for example, where the whole movie can be
precomputed, later to be viewed with high quality lighting details, were an early adopter
of ray-tracing algorithms like path-tracing. The artists creating models for these movies,
however, mostly had to work without knowing how their models would look in the final
ray-traced context, as a complete render with the technology was too computationally
heavy and hence time-consuming for real-time application.
In the last few years, advances in technology have made ray-tracing-based rendering
feasible for real-time applications. Using ray-tracing to render a scene while simultaneously
editing it in 3D software to get a good understanding of how the final rendered scene
will look like has become possible nowadays. See Figure 1.1 for a comparison of different
ways to render a scene in the popular 3D editing software Blender [Com18]. The two
upper images show techniques that don’t create distortions while rerendering after a
change to the scene, namely the "Material Preview" mode and the relatively new "Eevee"
rendering engine, developed by the Blender Foundation with speed and interactabillity
as its focus. Both these methods, however, lack the image quality of ray-traced scenes
and the artist can only get an approximation of what the scene is going to look like in
the final render context.
The images in the lower half show path-traced renders created with Blenders Cycles
rendering engine and the second with NVIDIA Optix denoising, NVIDIA’s state of the
art AI accelerated denoiser based on [CKS+17a], in addition to that. The denoiser
removes any grain-like noise still present in the path-tracing accumulation in an image-
reconstruction step. It should be noted, that the difference between pure path-tracing
and path-tracing in addition to denoising becomes lesser the more time for accumulation
is allocated until the results should be identical as the denoiser has no noise left to remove.

2

Figure 1.1: A comparison of different options to render one’s scene in Blender’s viewport.
In the upper left, we see Blender’s "Material Preview" mode. On the right beside it,
the relatively new Eevee renderer developed by the Blender foundation is used. In the
lower left corner, path-tracing with the Cycles renderer is applied and in the last image
NVIDIA Optix denoising is added on top of that.

This takes a considerable amount of computational resources, however, and the nearly
exact same result can be achieved with considerably less effort through denoising.

As can be seen in the comparison images, path-tracing produces results of high quality.
The render times, however, while having improved drastically in recent time, are still
long enough to interrupt an editing workflow. When rendering a scene with ray-tracing,
typically only a limited amount of rays can be computed simultaneously, thus the
rendering is not handled as a single action but rather as a continues process of tracing
rays and accumulating the samples into a gradually more refined image. The earlier in
this process, the more distortion in the form of grain-like noise is present in the image.
This noise can be very irritating to the viewer and it takes some time depending on
the hardware until the image quality is sufficiently smooth for further work. The usual
approach to rerendering with ray-tracing in an interactive editing setting is to discard the
accumulation up to the triggering change and to completely rerender the whole image
from scratch, indiscriminate to the magnitude of impact that change had on individual
parts of the scene.

See Figures 1.2 and 1.3. In these figures one can see how a scene is completely rerendered
when moving an object in the background just slightly from its original position. In
this example I moved the cup, that can be seen in the background, slightly to the right.

3

1. Introduction

Figure 1.2: Example of how a full rerender is triggered using ray-tracing in the 3D
modeling software Blender. The right screenshot was taken a few milliseconds after
moving the cup in the background slightly to the right. The whole image gets rerendered
from scratch and a significant amount of grain-like noise is present. I used Cycles as the
rendering engine for this example.

Figure 1.3: Same Example as in Figure 1.2 but with the NVIDIA Optix Denoiser enabled.
The denoiser gets rid of the grain-like noise in an image reconstruction step, but the
image is still considerably distorted for a few frames until it can get sufficiently refined
by the pipeline.

4

How big of a noticeable impact could this change possibly have on the donuts in the
foreground or the majority of the wall and table seen in the scene? Presumably very
little. The user is most likely interested in how the cup looks and how light is reflected
in its new position. There is no immediate need to rerender image regions containing
the donuts, most of the table and wall. The purpose of this work is to present an
alternative approach to rerendering the scene after changes to it, that gets rid of noise
while preserving the advantages of being able to see the models users are working on
under realistic rendering circumstances. We aim to achieve this by using information
about how a given user interaction affects the scene in a 3D editing context. We want
to determine an order of affected image parts, from most noticeably affected to least,
and focus the available rendering budget on the most affected regions immediately, while
relying on the accumulated rendering up to a triggering change to represent the less
affected regions. Eventually all regions get updated in an incremental manner, when the
rendering ressources become available to do so.

5

CHAPTER 2
Related Work

3D modeling software has existed with the trade-off between performance and visual
accuracy since its first iterations. Artists, on one hand, need to see their work in high
quality to get an understanding of how the finished product is going to look. On the
other hand, interactability is also an issue. The longer an artist has to wait for a render
after a change to a scene, the less fluent their workflow is going to be. To improve
performance modern approaches usually employ a combination of adaptive sampling and
image reconstruction.

2.1 Sampling

In general, to render a scene one needs to extract information like the position of geometry,
lightsources, materials etc. from it. The process of retrieving one piece of such information
is called sampling. In that regard the scene can be seen as a continuous signal that gets
digitized into a discrete finite one through sampling [Mit90].
If a continuous signal cannot be sampled at a sufficiently high rate this leads to irreparable
distortions in the signal known as aliasing [Sha49]. Since computational power is limited,
sampling algorithms constantly have to battle the problem of aliasing.

Adaptive sampling means that instead of uniformly sampling a signal, one chooses
different sample rates for different parts of the input. Usually the goal is to defer the
most resources to regions with high frequency, like edges of objects in a scene, while using
only a minimum of the computational budget on uniform areas with lower frequency.
This way resources can be used optimally to achieve the best possible trade-off between
quality and performance.

In [Whi05], Whitted describes how he used an adaptive sampling strategy to perform
simple image reconstruction through low-pass filtering on high frequency parts of the
image only. He uses this approach to counteract aliasing resulting from his suggested

7

2. Related Work

recursive ray-tracing algorithm. In this early evolution of adaptive sampling, the image
gets sampled uniformly as a regular spaced grid first and then the squares of the grid get
subdivided recursively if the intensity in their corners differ significantly.

While being adaptive, Whitted’s algorithm lacks an element of randomness which leads to
structural aliasing. Later publications built on this approach and introduced a stochastic
element [Mit87, Mit91]. Instead of structurally sampling points, these algorithms choose
sample points at random with higher density at high-frequency areas of the signal. The
advantage these approaches offer is that they yield aliasing in the form of high-frequent
noise which can be effectively countered with a low-pass filter.

These first, stochastic adaptive sampling strategies are an effective tool to reduce the
amount of resources needed for basic ray-tracing, however, they struggle with more
complex effects like depth of field or motion blur. The reason is that these effects
introduce new dimensions, outside of image space, like the position of a moving object at
a given time, to the sampled signal.
Mitchell [Mit91] describes how to evaluate the quality of sampling patterns for higher
dimensional problems and [HJW+08] built on the work of Kajiya in his pioneering
publication about the rendering equation [Kaj86] to present a multidimensional adaptive
sampling strategy. They start with a stochastic initial set of samples and store them
in a kD-tree, like Kajiya explored in his work. They then use an altered version of
Mitchells [Mit87] contrast algorithm to find regions with high frequency within the
multidimensional signal. Using that information they refine the regions stored in the
kD-tree.
The basic approach does not differ all that much from Whitted’s early adaptive sampling
strategy: Start with a coarsely distributed sample set, find regions within the signal with
high frequency and subdivide these regions to repeat the process.
The drawbacks of this technique are that adaptive sampling this way provides diminishing
returns with increasing dimensionality and the image reconstruction step, which is needed
afterwards, grows exponentially to the number of dimensions in cost. Overbeck also
notes that this approach produces blocky artifacts for problems of high dimensionality
[ODR09]. These factors considered, Hachisuka et al.’s algorithm works effectively for
problems with a low number of dimensions and expensive shading cost.

Not only areas of high frequency are of interest when it comes to keeping the number
of samples needed as low as possible. In ray-tracing scenarios one also should take into
consideration that not all rays contribute the same to the radiance of a given point. If
one casts a ray into a scene for instance and it hits a non-perfectly reflecting surface, one
would have to cast an infinite amount of new rays from that point to perfectly calculate
its intensity. Not all of these rays contribute the same to the result, however, since the
more parallel a ray gets to the hit surface the more attenuated it becomes. Algorithms
that take this knowledge into account and try to weight samples accordingly are called
importance sampling.
Different approaches use different information, for instance the used bidirectional re-
flectance distribution function (BRDF), the function describing how light is reflected

8

2.1. Sampling

from an opaque surface [LRR04], or the environment map or both [CJAMJ05], as criteria
for importance sampling. Importance sampling can be combined with the other adaptive
sampling strategies explained until now.
A form of importance sampling, called Metropolis light transport (MLT) [VG97] starts
with a set of randomly traced paths from light sources to the lens and then randomly
mutates them. The mutated paths get accepted or rejected depending on how much the
ray contributes to the ideal image, determined by a probability function. This strategy
offers a cost efficient, unbiased adaptive sampling approach that works for multiple
dimensions [KSKAC02]. However, MLT does not work for blurry effects such as motion
blur and depth of field.
The evolved form of a technique called lightcuts [WFA+05], multidimensional lightcuts
[WABG06], offers an effective way to compute illumination under the presence of complex
effects like motion blur or participating media. It works by discretizing the signal into
two point sets: light and gathering points. Light points are placed at the location of the
light sources in the scene and gathering points are located at the camera. The integrals
of the rendering equation can then be approximated by evaluating all pairings of light
and gather points. Since computing all pairings would be impractically expensive, Walter
et al. expand the technique by weighting the pairings, forming a hierarchy called the
product graph. The hierarchy is furthermore split into clusters adaptively. By importance
sampling the most contributing clusters, also called lightcuts, the signal can be effectively
approximated.
A family of algorithms analyse the signal not on a pixel basis but in the domain of
so-called wavelets, a group of wave-like functions [CDF92]. The advantage of wavelets
over pixels is that they offer a multi-scale representation of the image, thus being able to
represent both hard edges and smooth regions[SN96].
Bolin and Meyer use the wavelet representation to introduce a sophisticated visual error
metric by analyzing natural images [BM98]. Rather then necessarily focusing on areas
of the signal with high frequency they use their metric to find regions where errors
more noticable to the human visual system are more likely to appear and divert more
resources to them. This kind of adaptive sampling allows them to ignore areas which
other approaches would put high emphasis on, although the human eye would not even
be able to notice the error in them.
Insipired by [CJAMJ05] success in using wavelets for importance sampling, Overbeck et
al. publicated a paper on adaptive wavelet rendering [ODR09]. They suggest rendering
the final image directly into a wavelet basis. By sampling the signal in wavelet form,
they can find edges through the wavelet basis scale coefficients. These edges do not
have to be in the image domain but can also be of high value in other dimensions of
the rendering equation. Distributing more samples to these edges allows them to get an
adaptive sampling strategy for multiple dimensions producing good quality images with
significantly fewer samples than other approaches.
Another group of researchers explored the idea of analyzing the input signal directly in
the domain of frequency. [DHS+05] prove that complex effects of light transport such as

9

2. Related Work

occlusion, propagation, reflection, caustics and others can be effectively detected in the
frequency domain. Others built on this research to detect and adaptively sample effects
like motion blur [ETH+09] and depth of field [SSD+09].

The classic problem of monte carlo ray-tracing like path-tracing is the visual grain-like
noise that it produces. The lower the sample count the more prevalent this effect becomes.
[KS13] propose an adaptive sampling algorithm that predicts areas of the input signal
which are more likely to produce higher levels of noise than others. Their work is similar
to [BM98] where they both do not directly focus on frequency as a metric for adaptive
sampling but another factor. Where Bolin and Meyer focus on the human visual system,
Kalantari et al. focus on the intricacies of how typical ray-tracing algorithms work.

As time progressed, researchers realized that having adaptive sampling and image
reconstruction techniques operate independently of each other was not optimal and
a waste of resources. A number of algorithms emerged, which operated on the same
common idea: Starting with an initial render pass, arbitrarily assigning samples, they
choose a most optimal filter for reconstructing the current sampled image. Next, they
calculate the reconstruction error of the image and adaptively assign more samples to
regions with a higher error for subsequent render passes. Different papers have been
published relying on this concept and using Gaussian [RKZ11], non-local means [RKZ12],
local linear regression [MCY14] and polynomial [MMMG16] filters as a basis.
Another aspect sampling and reconstruction codependent techniques can differ in, is
the reconstruction error estimation metric used. While Rousselle et al. initially used a
greedy minimization algorithm [RKZ11], others and they themselves experimented with
the Stein unbiased risk estimator (SURE) later on and found that they were able to use
more effective filter kernerls for reconstruction as a result [RMZ13, LWC12].
[BEEM15] propose that instead of arbitrarily sampling the input signal for the initial
error estimation, one should sample fewer regions of the image but those more densely in
return. This way the resulting error estimates become more sparse but also more robust,
ultimately leading to a more accurate selection of suitable filters for reconstruction.
To further speed up the algorithm, [MIGYM15] came up with the idea to perform the
costly model reconstruction and filter optimization only for a few pixels and predicting
the filtered values for the others with linear prediction models.
Ultimately, however, these algorithms all suffer from their reliance on the quality of
the initial sampled image for the error estimation. If this initial step is done with to
few samples they fail to reliably compute the reconstruction error, thus being unable to
produce an acceptable result.

More recently, research has emerged on using machine learning [Sch15] for adaptive
sampling algorithms. [KBS15], [BVM+17] and [CKS+17b] explore machine learning for
removing noise from monte carlo ray-traced renders, these use however uniformly sampled
signals as their input. Motivated to introduce adaptive sampling to machine learning
based algorithms and combine it with image reconstruction, [KKR18] developed deep
adaptive sampling. They use two convolutional neural networks (CNN) responsible for
adaptive sampling and denoising respectively. The algorithm starts with sampling the

10

2.2. Image reconstruction

input signal with one sample per pixel monte carlo ray-tracing. Afterwards the CNN
responsible for adaptive sampling assigns additional samples adaptively. The two CNNs
are trained in conjunction with the goal of minimizing denoising error, thus more samples
are assigned to regions of the signal the denoiser would struggle with otherwise.
[HMS+20] expand on the work of Kuznetsov et al. by introducing time as a factor for
the training of their CNNs. The temporal feedback allows them to increase the effective
sample count. On top of that, their network responsible for adaptive sampling is able to
predict which regions of the signal are going to need more samples with the temporal
reprojected data from previous frames and the geometry buffer of the current frame alone.
This allows them to get rid of the initial sampling step, which [CKS+17b] had to use.

2.2 Image reconstruction

Image reconstruction is the inverse operation of sampling. Its the process of transforming
a digital image back into a continuous form [Mit90]. In most cases, image reconstruction
means applying some kind of filter to repair aliasing artifacts resulting from digitising
the input signal. Stochastic sampling techniques, like monte carlo ray-tracing typically
produce high-frequency noise. The fewer samples are used the higher the density of
the noise. A basic approach to counteract this high frequency noise is a low-pass filter
[Mit87, Mit91].

At the early stages of image reconstruction all the commonly used filters where linear
filters. Those are filters that typically simply average the sampled values. These kind of
kernels suffer from a lot of serious drawbacks, however. Too narrow filters can actually
increase the amount of noise in some sections of the image, broad or wide band filters
can lead to smeared or broadened boundaries and outliers (pixels whose value differs
greatly from its neighbours) spread to adjacent regions through averaging. See Figure
2.1 for an illustration of this matter.

For these reasons, [LR90] suggest using non-linear filters instead. More specifically they
use median and alpha-trimmed mean filters to address the problems of linear filter kernels.
While these non-linear filters can produce nearly noise-free images, they introduce their
own set of problems. The median filter is not energy preserving, meaning it can offset
edges [McC99] or shift the colors of an image [DWR10] . The alpha-trimmed mean kernel
removes all outliers even though they might be a valid part of the image [Sch13]. To
avoid these issues, [JC95] apply non-linear filters only on indirect diffuse lighting of the
image. This dodges the aforementioned problems but leaves open the issue of not being
able to apply image reconstruction to the rest of the image.

[RW94] introduce a set of energy preserving non-linear filters and show how applying
them with adaptive kernel width reduces blurring. Since the filters designed by them are
energy-preserving they do not lead to color shifts like the median filter used by Jensen et
al. Locally adapting the bandwidth of a filter kernel is an interesting idea to preserve
high-frequency features like outliers and hard edges, but since the filters themselves do

11

2. Related Work

Figure 2.1: This image is meant to illustrate from the upper left to the lower one: 1) An
outlier, in the form of noise, shifts the color and intensity of the regions lying around
it when averaged over with a linear mean filter. The effect becomes more drastic with
a narrow filter and more widespread with wide one. 2) In a narrow filter outliers like
noise have a heavy impact and can spread the noise to adjacent pixels. 3) A too wide
linear mean filter averages over many pixels for every filtered value which can lead to
distortions reaching from blurry features to a homogeneous image where every pixel has
the same color.

not respect such features, they still can get spread out through averaging leading to
blurry edges and similar artifacts.

Instead of applying the reconstruction filters as a preprocessing step, like most methods
did at the time, [SW00] opted to apply them during image formation. They used a
variable bandwidth strategy similar to Rushmeier et al. and suffer from similar problems
as in that their method also blurs regions of high frequency, which is more noticeable the
fewer samples are used.

[McC99] explores the possibility of using a technique called anisotropic diffusion for noise
reduction produced by monte carlo ray-tracing. It’s a filter based on an interpretation of
Gaussian scale-space [WRV98] and it offers the great advantages of being energy- and
edge preserving. However, this method has proven to be difficult to implement into a

12

2.2. Image reconstruction

progressive rendering pipeline since its incremental nature proves too costly to perform
every frame [Sch13].

[XP05] use bilateral filtering [TM98] for noise reduction in monte carlo ray-traced images.
Bilateral filtering is a method based on the idea that two pixels are related to each other
not only in spatial distance to each other but also in their intensity. To respect that
idea two filters are used in combination for bilateral filtering: a spacial and a range
filter. As a result applying the combined filter means that, each pixel is replaced with a
weighted average of its neighbours. The values of the neighbours are weighted by a spatial
component that favors nearer pixels over more distant ones and a range component
that in turn favours neighbors closer in intensity. This leads to nearby, similarly intense
neighbors contributing the most to the filters result for the current pixel. This way the
filter can smooth an image, removing noise while preserving edges.

Outliers are a big problem for filtering techniques, they can lead to objectionable artifacts
if spread by an averaging filter. At the same time simply removing them leads to a
biased result since they could be a valid part of the sampled scene. [DWR10] formulate
an outlier rejection algorithm that rejects outliers based on their joint density, meaning,
similar to bilateral filtering they consider two pixels to be close when they are both close
in spatial location and intensity. Removing the visually perceived outliers this way, does
reduce the introduced bias and conventional filtering methods can effectively remove the
remaining noise. Still the resulting Image is biased. [PBP11] present a similar method
using density estimation to reject bright spots from monte carlo ray traced images.

As mentioned before, [KBS15], [BVM+17] and [CKS+17b] present how to use machine
learning for image reconstruction. They train deep convolutional networks to learn the
highly complex relations between a noisy image and its ground truth to then predict
optimal filter kernels for reconstruction.

The work that we present in this writing does not incorporate image reconstruction,
however, it could be combined with the techniques mentioned in this section in order to
improve performance.

13

CHAPTER 3
Method

The technique we present attempts to use information about the user input in a 3D
editing context for adaptive sampling. We aim to determine which parts of a scene
are noticeably affected by a given user interaction, in order to use this information to
prioritize these parts during an incremental rendering algorithm. Instead of wasting
resources on regions of a scene that have not been drastically changed by an interaction,
we want to focus on the parts that actually look different after the change. In order to
achieve this goal we apply the following steps: Starting from a base render of a scene, the
initial render before any user interaction has been made, after a user changes part of it,
we incrementally rerender the regions most noticeably affected by the change first, leaving
the other parts of the image unchanged from the base render. We rerender the image
step by step from most to least affected image region, replacing the base render whenever
a whole region is done. The aim of this technique is that a user gets a quick high quality
render of the regions actually affected by his or her change, while less affected regions,
which rerendered likely look close or even identical to the render before the interaction,
get updated slowly in the background. This way the user should be able to work with
less interruption.
Having explained the general idea behind it, it has to be stated, that the main focus of
this work lies clearly on presenting a method on how to use an order of image regions,
most affected to least, for an incremental, adaptive and interactive rerendering algorithm,
not as much on how to generate such an order. Because of that, we make reasonable
assumptions for select interactions on how to generate the order of impact to act as a
proof of concept and leave a more thorough research of the matter open for further work.

For our algorithm to work, two main steps have to be performed for every user interaction:
First, for every image region, the magnitude of impact of the interaction on it has to be
determined, so that the regions can be ordered from most to least affected.
Secondly, when the order of regions has been determined, we immediately invest all
available rendering resources on rendering the most affected region first. Then we render

15

3. Method

the second most affected part and so on. Basically, the image has to be incrementally
rerendered according to the order of impact. Until a region gets updated, we rely on
previously accumulated color information to present the region. For this to work of
course, an initial render of the whole scene must be made to fall back on during the first
incremental rerender.
Because of it’s incremental nature, the effectiveness of our method relies on the assumption,
that image regions further down in the order of impact, have been little to not at all
affected by a given user interaction, so that it won’t be noticeable to the viewer if
we don’t update them immediately. That means, the more uniformly an interaction
affects the whole scene, the less effective our approach becomes. It works best for small
local changes, where only a small portion of the scene is affected noticeably, while its
effectiveness diminishes the more of the image is affected, as in those situations it will be
increasingly noticeable to the viewer that we update regions further down in the order
later. Formulated differently, the effectiveness of our method scales directly in proportion
to the spread of the magnitude of impact in the image region order. Ideally, the first few
regions in the order are heavily impacted by a change. Then the magnitude of the impact
falls of rapidly going further down the order, until the last regions are not affected at
all. The consequence of this, is that our approach does perform suboptimal in situations
where the image regions are affected uniformly. Interactions, such as changes to the
camera’s angle or orientation, which affect the whole image uniformly throughout are the
worst case scenario for this method. It would produce distorted looking results, as the
difference between already updated regions and the ones not, could be potentially very
stark, leading to a split image, where one part is updated and shows the new scene, while
the other is still in its old form. See Figure 3.1 for reference. The effect is comparable
to old monitors which had no image buffering feature. The image would get updated
in a way of a scan-line running from top to bottom, overwriting the old image with the
new one. To accommodate this problem, we implemented logic to handle interactions
uniformly affecting the whole scene differently than non-uniformly affecting interactions.

3.1 Splitting up the image into regions
For our approach it is essential that we divide the picture into uniformly big parts that
we can render individually, we will call them tiles. We adapted a standard path-tracer
in such a way that we can load the same tile into it multiple times, basically instead
of the full viewport we load in a buffer of the same size, filled with only a few different
tiles repeated multiple times. See Figure 3.2 for reference. Doing so, we can then let the
path-tracer sample this buffer the same way as it would a complete scene of the same
size, effectively meaning we render the same few tiles multiple times concurrently at a
relatively low sample rate. We use a compute shader afterwards to combine all these low
sample results of each unique tile into one, yielding a few high sample tiles in roughly
the same time as it would take to render a whole scene of the same size at a low sample
rate. We can only do this, because we used an unbiased renderer as the base for the
implementation of our adapted path-tracer. An unbiased renderer produces the same

16

3.2. Determining most to least affected regions of the image

Figure 3.1: This image is meant to illustrate how an incremental rerender performs poorly
for changes affecting a large portion, or even all of the scene heavily or even uniformly.
I rotated the ground plane in the scene and captured the screen midway through the
update. The red line splits the image into two parts, the upper being the updated one,
while the lower still shows the old image. It can be seen, that because of the change
affecting virtually the whole scene heavily, no regions cant be effectively isolated and
rendered later than others without causing visual disturbances.

result wether you let it run N times with one sample per pixel and average the results or
run it once with N samples per pixel over the same scene [KA91]. This is exactly what
we are doing, made possible because of the lack of bias in our renderer. Doing the same
with a biased sampler would lead to distortions since it would produce potentially vastly
different results doing it one way or the other.
We deliberately implemented the logic to handle individual tiles this way over adapting
the path-tracer to render single tiles successively at a high sample rate, because the
architecture of modern GPUs is optimized to handle a large number of simple jobs
concurrently, like it has to with our approach, rather than a few jobs with a heavy
workload consecutively, which would be the alternative.

3.2 Determining most to least affected regions of the
image

Optimally entire papers could be devoted to finding an optimal metric for recognizing
how noticeably a specific image region is affected by any given user interaction. Using
such a metric, one could then build a sophisticated list of image regions, ordered from
most to least affected. This list could then be used for our incremental rendering method

17

3. Method

Figure 3.2: This figure illustrates two different representations of buffers of the same size
for a path-tracer. On the left, in green, we see the whole scene being loaded into the
buffer once. This is how a standard path-tracer would typically operate. On the right we
see our method of loading in only a few tiles into the buffer, repeated multiple times. In
blue we see the first tile being repeated and a second one in red.

to rerender highly affected regions first and little affected ones last.

As I mentioned, however, this is not the main focus of this work, so we simply assume
one point of the image as the epicenter of the change. I will call it the point of change
(PoC) from hereon out. We define the point of change as the most affected point of the
scene or at least the center of the most affected region. A suitable candidate for the PoC
could for instance be the center of the bounding box of an object in the scene that has
been transformed (moved for example) by the user.
We simply assume that the relative spatial position of an image region relative to the
PoC of a given interaction, directly corresponds to how much it is affected by that change.
This means the closer an image region lies to the PoC, the more affected we consider it.
Following this assumption, we implemented two ways of ordering the image regions: a
base update queue and a spiral update queue. The base queue simply orders the tiles
from the upper most left region to the lower most right. We use this ordering method for
global changes, like the cameras position, where it makes no difference in which order we
prioritize the parts of the image, as they are all affected the same.
The spiral queue gets built every time a non uniformly affecting user interaction occurs. It
spirals outwards from the PoC of that interaction. See Figure 3.3. This outwards spiraling
order corresponds to our assumption of spatial proximity equaling rate of affection. We
use this queue for our incremental rerendering approach.

3.3 Building the spiral queue
The spiral queue gets built by traversing the tiles in an outwards spiral from the point of
change, which has been normalized by dividing it through the image dimensions. The
spiral motion works by stepping in one direction for a certain number of steps (step size),
changing the direction every time the step size has been reached. Every second step
completion, the step size gets incremented.

18

3.4. Switching modes

Figure 3.3: The basic default image update queue vs the spiral queue. The basic queue
traverses the tiles from the upper most left corner to the lower most right, while the
spiral queue spirals outwards from the point of change after an appropriate change.

We want to have every tile placed exactly once within our queue, as completing the queue
marks our incremental rendering approach having updated the image once completely in
high quality and we can switch back to a continuous refining rendering mode. In that
regard a problem we are faced with, is that most of the time the viewport won’t be a
perfect square and the PoC will probably not lie at its center. Because of that, blindly
traversing the tiles in an outwards spiral from the PoC will inevitably lead to hitting
the viewports boarders without having reached every tile once. To solve this we use a
brute force approach: we pretend that the rectangular viewport is part of a larger square
with the PoC at its center, we then traverse this square’s imaginary tiles in an outwards
spiral from the center, until we have reached every tile of the viewport exactly once. At
each tile, we check if its an actual tile of the viewport or just a theoretical one from
the surrounding assumed square, so that we only place actual tiles of the scene into the
queue. See Figure 3.4. We know when to stop the building algorithm, because we know
how many tiles there are at the time we start building the queue and this algorithm
should never visit one tile more than once. So we can simply stop building when we have
a number of tiles in our queue equal to the total number of tiles present at the start of
the process.

3.4 Switching modes

We designed our program to operate in 3 distinct modes. These modes mainly differ in
two ways: Firstly the number of copies per tile we place into the path-tracers buffer,
I will call it the number of repetitions(NoR). We use a fixed sample rate and tile size
and thus only control the number of samples per pixel that should be dedicated to a
single tile per render through the NoR. If we want individual tiles to get rendered at high

19

3. Method

Figure 3.4: This figure visualizes the assumption we make, when the PoC is not at the
center of a square viewport. We pretend the PoC (orange) lies at the center of a bigger
square (gray) which encloses the rectangle of the viewport (green).

quality we set the NoR high and low if we want only a rough render. The NoR directly
determines how many tiles get rendered in one rendering step. As both the size of the
path-tracers buffer and the size of one tile is fixed, the number of how many tiles get
updated in one rendering step calculates as the division of the buffer size through the tile
size multiplied with the NoR. So for example if we used a buffer size of 400x400 pixels, a
tile size of 10x10 and a NoR of 4 the number of tiles completed in one rendering step
would calculate as 10. We use a fixed sample rate of one path traced per pixel for the
whole buffer, so the NoR incidentally equals the number of samples per pixel, per tile.
For instance if we decide to repeat each unique tile 200 times, each copy gets rendered
with one path per pixel, so 200 paths per pixel of the tile get traced. If we used a higher
sample rate the number of samples per pixel, per tile would result from the multiplication
of this global sample rate and the NoR. To stay in the previous example of an NoR of
200, if we used a global sample rate of 10, that would mean we would trace 2000 paths
per pixel of each unique tile loaded into the path-tracer.
The second part the modes of operation differ in, is the strategy to accumulate the color
and intensity samples taken by the path-tracer per pixel. This accumulation is done in an
extra step once per frame. As I explained, our incremental rerendering method potentially
produces distorted looking results for uniformly affecting user interactions. Thus, for
global changes, like changing the camera, we throw away the image data accumulated up

20

3.4. Switching modes

to this point and start rendering the scene completely from scratch, which equates to no
accumulation at all. In these base renders we quickly render the image with a NoR of
1, which means every tile gets rendered exactly once in one rendering step, to achieve
a coarse image as fast as possible with the basic default update queue. After we have
completed this initial coarse image to work with, we switch to the second mode, which
continuously refines the image by accumulating the samples until another user interaction
occurs. It does so by repeating the first mode over and over, combining the results into a
continuously more refined accumulation of color and intensity values. These two modes
in conjunction basically emulate a standard whole-image path-tracer.
When however, a user interacts with the scene in a non uniformly affecting manner, we
switch to mode number three, incremental rerendering. We determine the PoC, build the
spiral queue and start traversing it outwards from that point. We do so using a high NoR
limiting the number of unique tiles rendered by the path-tracer in one step to only a few,
to achieve that those get rerendered in high quality. During this incremental rerendering
mode we replace only those tiles that have been completed in this manner and keep the
other’s accumulation up to the point when the process of the incremental rerendering
had started intact. This way the most affected regions of the image get updated in high
quality as soon as possible, while less affected regions get rerendered later. As soon as
the spiral has been traversed once, we switch back to the second mode that continuously
refines the image. See Figure 3.5 for an illustration of the 3 different modes.

21

3. Method

Figure 3.5: Starting from nothing, a base render is produced using the base queue, no
accumulation and a NoR of 1 (upper left). This is the first mode our program operates
in. It is used whenever a uniformly affecting user interaction is applied to the image and
for the initial render at the start. After the first render we switch to the second mode,
continious refinement, which repeats the first mode continuously and accumulates the
results to refine the image (refined image in upper right). In this example, I then select
the red cube in the center of the scene by right-clicking it. Then I change its rotation
in the GUI on the left (upper right image). This is an user interaction where our third
mode, incremental rerendering, is applicable. So we use it to rerender the image with
the spiral queue and a high NoR, replacing only finished tiles (lower left). Finally, the
program switches back to continuous refinement (lower right).

22

CHAPTER 4
Implementation

In the following chapter, I will explain the more technical details of how we implemented
our suggested incremental rerendering method into NVIDIAs rendering framework Falcor.

4.1 Software environment
Initially, we tried to implement our approach into the open source 3D modeling software
"Blender", specifically using the "Cycles" ray-tracing renderer developed and integrated
into Blender by the Blender Foundation and Cycles Team [Com18]. We wanted to tie
our logic into the workflow of using Cycles as the real time renderer in the work-space of
Blender. That way we would have been able to leverage the powerful editing tool-set
of Blender and could have achieved a high level of comparability to Blenders existing
approach for our users.
Unfortunately, we ran into many problems working with the Blender source code and
had difficulties implementing our desired logic into this kind of monolithic code base.
We came to the conclusion that the amount of work needed to complete the project in
the Blender environment was infeasible for the desired scope. A switch to a different
environment, NVIDIA’s Falcor open-source real-time rendering framework was made
[BYC+20].
Falcor is a light-weight framework, designed with modularity and expandability in mind.
That made it easier for us to implement our logic. We specifically used the included
"Mogwai" software as a graphical user interface and the "PathTracer" render graph as a
starting point. The drawback of NVIDIA’s code base is that it does not come with a 3D
editing tool-set. As Falcor is geared more towards pure rendering projects, there is per
default no way to edit scene geometry. Because of this, we had to implement rudimentary
editing capability ourselves.

The Falcor framework focuses on the concept of render graphs and render passes. A render
graph consists of any number of render passes, which in turn stand for one single step in

23

4. Implementation

Figure 4.1: Updated render-graph, now including the new InteractionPass.

the rendering pipeline, implemented by that graph. Starting with the "PathTracerGraph"
render graph we made the following three major changes and additions:

• Adapting the path-tracer

• Adapting the AccumulatePass render pass

• Adding a custom render pass for handling user interaction

The "mega-kernel path-tacer" is the implementation of a path-tracer that comes with the
Falcor framework. We adapted it and use it as our sampler to retrieve color and intensity
information form the scene. The "AccumulatePass" is used to accumulate the samples of
the path-tracer. Before our adaptions to it, it basically always operated in the first two
modes described in the corresponding section of this work: Section 3.4. It threw away
all accumulation if any change to scene was made, triggering a full rerender and then
stayed in continuous refinement mode until another change occurred. We implemented
the third accumulation strategy needed for our method and logic to switch between
the 3 distinct modes. We added our new "InteractionPass" at the end of the pass loop
of the PathTracerGraph. The mega-kernel path-tracer and the AccumulatePass were
adapted to react to triggers from the InteractionPass, but only if it is present and they
still function independently without the other passes, to keep Falcor’s design principle of
modularity intact. See Figure 4.1.

4.2 Adapting the path-tracer
Falcor’s mega-kernel path-tracer had to be adapted to work on a queue of tiles rather
than the whole viewport. As I explained before we achieved this by implementing a way
to load a buffer of viewport size into it, holding a few distinct tiles repeated a number of
times determined by the NoR, instead of the whole scene. In Addition to that we had
to implement a compute shader that combines all the copies of the same unique tiles,
rendered simultaneously by the path-tracer with one sample per pixel in one rendering

24

4.2. Adapting the path-tracer

step, into high quality renders with NoR times global sample rate of traced paths per
pixel.
We use a square tile size of 16 by 16 pixels and a global sampling rate of one path traced
per pixel, where one path is allowed a maximum of 3 bounces. We keep the NoR at 1 for
the first two modes of operation, to emulate a standard path-tracer and only change it
to a value of 256 during the incremental rerendering mode.
We needed to implement logic that switches between the base and the spiral queue and
the right NoR according to the current mode of operation. For that, the path-tracer
queries triggers placed into shared memory by the InteractionPass to determine which
is the current mode. If the Interactionpass is not present within the rendergraph the
path-tracer only operates within the first two modes and performs basically the same as
a standard whole image path-tracer. The spiral queue building logic also resides within
the source code of this render pass. It uses the PoC, also placed into shared render pass
memory by the InteractionPass. Lastly the path-tracer passes along the result of every
frame further down the rendering graph, in our case to the accumulation pass.

4.2.1 The spiral queue

1 void buildSpiralQueue(uint2 point_of_change, uint2 gridDim)

2 {

3 uint2 grid_PoC = point_of_change / uint2(tileSize, tileSize);

4

5 spiralQueue.push(grid_PoC);

6

7 int x = grid_PoC.x;

8 int y = grid_PoC.y;

9 int steps = 1;

10 int direction = 0;

11

12 while (spiralQueue.size() < gridDim.x * gridDim.y)

13 {

14 for (int j = 0; j < steps; j++) {

15 switch (direction)

16 {

17 case 0: x++; break; //RIGHT

18 case 1: y++; break; //DOWN

19 case 2: x--; break; //LEFT

20 case 3: y--; break; //UP

21 }

22

23 // brute force solution for the fact that the PoC may not be centered

24 // and the grid may not be symmetrical

25 if (x >= 0 && y >= 0 && x < (int)gridDim.x && y < (int)gridDim.y)

26 {

25

4. Implementation

27 spiralQueue.push(uint2(x, y));

28 }

29 }

30 direction = (direction + 1) % 4;

31

32 // every two turns the step size increases

33 if ((direction % 2) == 0)

34 steps++;

35 }

36 }

Source Code 4.1: The method that builds the spiral queue written in C++.

As can be seen in the code snippet: Source Code 4.1, the building of the spiral queue
boils down to a simple loop, which ends after every tile has been added to the queue.
Dividing the point of change through the tile size normalizes it for a normalized tile
grid. The grid is given by the parameter "gridDim", a two dimensional point with the
width(x) and height(y) of the grid. The gridDim gets computed by dividing the viewport
dimensions through the tile size. This normalization process allows us to move inside a
grid where every point from (0, 0) to (gridDim.x, gridDim.y) corresponds to the index of
a tile. To get the position of the tile in screen space one simply needs to multiply the
index with the tile size afterwards. Using this normalized grid, the algorithm traverses it
in a second loop, which performs a number of increments or decrements on the current
index according to the step size per step of the overarching while loop. According to the
current direction, either the x or y axis index get incremented or decremented.
To handle the problem of non-square viewports and non-centered PoCs, described in
Figure 3.4, we check each index if the corresponding theoretical tile actually lies within
the image or is just part of the assumed square encompassing it, before inserting it in
the spiral queue.
After the step size loop has finished, the direction gets incremented and modulated by
four so that the order switches every repetition between right, down, left and upwards.
Lastly, every second step completion the step size has to be incremented as the steps of
an outwards spiral get bigger after every second direction change.

4.2.2 Switching modes

As I touched upon, the algorithm runs in continues refinement mode per default and uses
a NoR of 1 per Tile. If a change to the camera occurs, all accumulation up to that point
gets thrown away and the refinement process starts anew with a single run through of
mode 1 and then reverting back to mode 2 until another interaction is made by the user.
If the point of change has been set by the InteractionPass, it means a non-uniformly
affecting user interaction was made and the path-tracer switches to incremental reren-
dering. For that, it uses the spiral queue and a NoR of 256 per tile. This queue gets
rendered exactly once, if not interrupted, then the path-tracer switches back to the base

26

4.3. Adapting the accumulate pass

queue and a NoR of 1 per tile, for continues refinement. If the completion of the spiral
queue gets interrupted by another user interaction before it could finish, the queue gets
replaced by the new spiral queue and the path-tracer starts to render this one instead.
Since the incremental logic updates the most affected parts of the image first and does so
at a high quality, the image should stay in a satisfactory state even when the user keeps
interrupting the path-tracer with rapid interaction chains, as long as it gets to finish a
minimal amount of tiles per interaction.
Reference Figure 3.5 from the method chapter for an illustration of the different modes.

4.3 Adapting the accumulate pass

The accumulation pass accumulates samples of the path-tracer in three different accumu-
lation modes. As outlined, the default mode is to continuously accumulate samples into
a more and more refined image. The other two modes are only employed when a user
interaction occurs. Global, uniformly affecting changes trigger the accumulation up to
that point to be thrown away, while all other interactions trigger the incremental reren-
dering process, where the accumulation gets replaced tile by tile as they get completed.
After the image has been completely rendered once in either mode, the logic returns to
its default continuous refinement mode.
To determine the correct mode the accumulation pass first queries the Falcor scene.
Falcor offers methods to query information about recent scene updates since the last
query. Through this interface we determine if a camera change, jitters excluded, has
occurred since the last frame. If that’s the case we have to reset the scene. If no
change has been made to the camera, the pass queries a parameter, which is set by
the mega-kernel path-tracer, if it should use incremental replacement accumulation or
continuous refinement.

4.4 Interaction pass

Since Falcor offers no functionality to support user interaction, beyond moving and
rotating the camera, at the time we worked on this thesis, we developed a custom render
pass, the "InteractionPass", to react to user input. So far we handle two different kinds of
interaction. The first is when the user clicks on the viewport in Mogwai. In that moment
we use a custom shader to trace a single ray from that pixel into the scene. The first
piece of geometry this ray hits gets marked as the currently selected object. When an
object is selected we display a set of information about it in a designated GUI element
implemented into Falcor’s render pass UI. Among it we display the object’s position,
scaling and rotation in Euler angles. The second user interaction we track, is the user
manipulating these values, by either inputting new ones via the keyboard or clicking and
dragging the cells directly. When the user changes the values for position, scaling or
rotation, we apply the corresponding transformation to the object. See Figure 4.2.

The second responsibility of the interaction pass is passing on information to the path-

27

4. Implementation

tracer and the accumulation pass. Whenever the user manipulates an object, we trigger
the path-tracer and accumulation pass to switch to the spiral queue incremental rendering
mode. The interaction pass currently passes along the selected pixel, which is the last
pixel a user clicked on during object selection, as the point of change for building the
spiral queue.

28

4.4. Interaction pass

Figure 4.2: The user interface we implemented into Mogwais own render pass UI. It
displays a selection of information about the selected object. The section marked in red,
shows position, scaling and rotation of this object in Euler angles. Its values can be
modified either by clicking and dragging or by directly altering them with the keyboard.

29

CHAPTER 5
Evaluation

In this chapter I will try to compare our method with classic path-tracing, evaluate the
effectiveness of our concept and discuss strengths, weaknesses and how our algorithm
could be improved upon in future work.

5.1 Hardware environment
The hardware I worked with on this project and that I used to run all the tests, evaluations
and representations shown, is as follows:

• CPU: AMD Ryzen 7 3700X

• GPU: NVIDIA GeForce RTX 2070 Super

• RAM: 16 GB DDR4

• OS: Windows 10 Pro x64

5.2 Results
Since we aimed to minimize visual disturbance in-between user interactions, the question
if our incremental rerendering approach is less, similarly or even more intrusive to the
viewer than conventional path-tracing remains a highly subjective matter. The best
way to evaluate a work such as this one, would be a user study among typical users of
3D editing software, however, this is beyond the scope of this bachelors thesis, so I will
instead provide basic use case examples and apply common sense reasoning to evaluate
them. An appropriate user study could be subject of future work on the matter.
I am going to give a comparison between our approach and Falcors standard path-tracing.
I used the scene "Nested_Dielectrics" included in the Falcor repository. It offers complex

31

5. Evaluation

reflections and caustics with a significant number of partially translucent objects. The
program runs at 60 frames per second on my test hardware.

For the first comparison I shrank a relatively small cube. This user interaction impacts a
comparatively small area of the scene. See Figures 5.1 and 5.2.

With classic path-tracing, typical grain like noise is instantly noticeable. The more frames
pass after the interaction the smoother the image becomes again. Notice after 10 frames
the image is still noticeably noisier than before the interaction.
Our approach shows no grain like noise at all. The image gets gradually updated with all
newly rendered parts already in high quality. After only 10 frames the image is basically
completely updated and ready for further work.

For the second evaluation I rotated another relatively small cube along the z axis. This
user interaction impacts a moderate area of the scene. See Figures 5.3 and 5.4.

Similar observations than in the first example can be made, but because a larger area of
the scene has been affected, our approach takes longer to achieve a complete update of
all the noticeably affected image regions. Notice that after 10 frames the immediate area
around the cube has been updated completely while the reflection of the object in the
reflecting ground surface, which is further away from the point of change, has not.

For the third comparison I moved a larger cube along the x axis. Since the sheer size of
the cube takes up a large portion of the image, the change affects a comparatively big
part of it. See Figures 5.5 and 5.6.

With this change affecting such a large part of the image, the classic path-tracing performs
considerably better than in the previous examples. After 15 frames the classic approach
has reached a noise level not too far off from our method showing the whole image in its
new state, while our algorithm only manages to update the parts of the image containing
the cube itself after 30 frames, still not correctly showing the reflection in the ground.
This is partially because of our suboptimal method of determining the order from most
to least affected part of the image simply by spatial distance to the PoC, but it shows
that our program gets less effective the more parts of the image are considerably affected
by a given user interaction.

To offer a more numerical comparison between classic path-tracing and our incremental
method, I made an user interaction that affected a moderately big part of the image,
namely rotating the red cube in the center of the scene once again, like I did in the
second example above. I rendered a very high-quality ground truth (GT) of the scene
with standard path-tracing after this change was made. See Figure 5.7. Then I compared
this GT with the results of classic path-tracing and our method using different NoRs,
after 5, 10 and 30 frames. I calculated the normalized root mean squared error (rmse)
between the GT and each of these results: See Table 5.1.

At first glance, it can be seen that our method performs significantly better in all captured
cases, going purely by the rmse values. An interesting observation is that while the values
go down quite linearly with classic path-tracing the more frames have been rendered,

32

5.2. Results

Figure 5.1: Shrinking of a relatively small object, the grey cube centered vertically at
the left of the scene, rendered with classic path-tracing. The viewport was captured, in
this order, 0, 2, 5 and 10 frames after the user interaction.

Figure 5.2: These images show the viewport captured at the same interval, after the
same user interaction as in 5.1, but rendered with our incremental path-tracing.

33

5. Evaluation

Figure 5.3: Rotation of a relatively small object, the red cube at the center of the scene,
rendered with classic path-tracing. The viewport was captured, in this order, 0, 2, 5 and
10 frames after the user interaction.

Figure 5.4: These images show the viewport captured at the same interval, after the
same user interaction as in 5.3, but rendered with our incremental path-tracing.

34

5.2. Results

Figure 5.5: Translation of a relatively large object, the large translucent cube at the
center of the scene, rendered with classic path-tracing. The viewport was captured, in
this order, 0, 5, 15 and 30 frames after the user interaction.

Figure 5.6: These images show the viewport captured at the same interval, after the
same user interaction as in 5.5, but rendered with our incremental path-tracing.

35

5. Evaluation

Figure 5.7: The ground truth for a roation along the z axis of the red cube at the center
of the scene.

Standard PT NoR 64 NoR 128 NoR 256
5 frames 0.11519 (∼12%) 0.01523 (∼2%) 0.01335 (∼1%) 0.01506 (∼2%)
10 frames 0.08106 (∼8%) 0.01788 (∼2%) 0.01539 (∼2%) 0.01425 (∼1%)
30 frames 0.04632 (∼5%) 0.02885 (∼3%) 0.02048 (∼2%) 0.01628 (∼2%)

Table 5.1: This table shows the normalized root mean squared error (rmse) between the
GT (Figure 5.7) after rotating the red cube at the center of the test scene and the results
of standard path tracing and our incremental method using different NoRs, after 5, 10
and 30 frames.

that is not the case for our incremental rerendering. The values fluctuate and generally
even minimally increase after more frames. This is explained by the fact, that depending
on the NoR used, which in this case is the same as the number of samples used per pixel,
per tile, the quality of the newly rendered tiles is lower than the high quality GT and
minimal levels of noise are present in these compared to the GT. In this example, after 5
frames, the immediate area around the interaction has been updated, while the rest of
the image is still taken from the high quality accumulation up to the rerender. So after 5
frames, the tiles that look most different in the GT compared to the accumulation up to
the point of the interaction have been updated already, while at the same time minimal
noise has been introduced as only a few tiles have been updated with renders using the
lower sample rate. After more frames have passed, more tiles have been updated with
less samples, so the quality difference between the GT and the incremental render shows

36

5.3. Further work

in the rmse values. Generally the value will drop for the first few frames, depending on
how much of the scene a given user interaction has affected, while the most affected tiles
are being rerendered, then increase slightly as little to not changed regions get updated
in lower quality than the accumulation up to the rerender. Nevertheless, the values will
stay relatively low throughout the whole rerendering process.

The trade-off between our approach and classic path-tracing is that with classic path-
tracing the viewer sees the whole image in its new state faster but rendered at a lower
quality, while our approach offers high image quality throughout the whole rerendering
process, but areas handled as less affected by the change get updated later than with the
classic approach. This confirms my argumentation that our method scales in proportion
to the spread of the magnitude of impact in the tile update order. When only a few
tiles are affected heavily, they can be placed at the top of the order and rerendered
at high quality immediately. The user won’t notice that the other tiles are updated
later as they are not, or at least not heavily noticeably affected. On the other hand,
the more uniformly and more tiles are affected by an interaction the less effective our
approach becomes compared to classic path tracing, which rerenders the whole image
indiscriminately.
One definitive advantage of our method over classic path-tracing is that there is no grain
like noise present at any point during the rerendering. So if a user sees this noise as
highly irritating our approach definitely seems favourable.

5.3 Further work

For the sake of simplicity and keeping the scope of this work manageable, some compro-
mises had to be made. I will list some points of this project that could be improved upon
here. For one thing, I explained in the related work section, that image reconstruction
techniques often get combined with adaptive sampling to achieve better results and
performance nowadays. We, however, chose to not use any particular of these algorithms.
The performance of our method probably could be improved by implementing an image
reconstruction algorithm into it.

Another point is our strategy to determine the affection rate of a region within a scene by
a given user interaction. We simply assume that regions spatially closer to the interaction
are affected more than those more apart. This assumption is likely wrong for some
interactions, for instance moving a light source could affect a strongly reflecting surface
spatially relatively far from the actual position perceivable more than the air around the
light-source. For this reason our idea could be improved by designing a metric to more
accurately classify the affection rate of a region by a given user interaction, in order to
change the order our incremental rendering algorithm then can process these regions
in. As part of this, regions that have not been affected at all could be identified and
get completely omitted from the update queue, preventing them getting rerendered in a
quality that is likely lower than the accumulation up to the point of rerender. It would
even be thinkable to use different metrics for different interactions.

37

5. Evaluation

The "point of change" as I have named it, also is up for discussion. Defining a single
pixel as the epicenter of change triggered by a user interaction is rather difficult. Our
approach of simply using the last selected pixel, while very practical, is suboptimal for
a wide variety of use cases. For example, a user rotates a relatively large object he or
she has selected by clicking on one of the outer corners. With our strategy of rendering
outwards from the PoC this pixel would be suboptimal since opposing sides of the object
would get updated rather late. A more suitable point for this example would maybe be
the center of the objects 2D bounding box. This problem could possibly be counteracted
by a better affection rate metric and updating order, but a combination of a better PoC
selection and order of impact would probably achieve the best results.

Finally less conceptual improvements of our project would be to support a wider range of
user interactions, like material changes or deformations, a better user interface/interaction
system or incorporating our idea into an existing software with a good user interaction
experience like Blender or Maya.

38

CHAPTER 6
Conclusion

In this work I presented a novel approach to rerendering scenes after an user interaction
within a real-time ray-tracing context for 3D editing. It builds upon the basic idea, that
most user interactions only affect limited parts of the scene noticeably to a viewer. Our
technique incrementally renders the image after an interaction, going from most to least
affected image region. We implemented our algorithm into NVIDIA’s Falcor rendering
framework alongside basic editing functionality. This framework is light-weight software
built with modularity and expandability in mind. It is designed for research projects
such as this one, but it doesn’t offer a very sophisticated user interface nor any editing
capability by default. As a result this initial implementation of our idea is more a proof
of concept rather than a finished product.
I evaluated our approach against classic full image path-tracing and confirmed that our
method eliminates the typical grain like noise. In addition it works increasingly well
the more localized an interaction affects the scene. However, I also recognised that our
method doesn’t necessarily always work better than full image rerendering. If significant
amounts of a total image are heavily affected by a change, our incremental approach yields
diminishing results. A classic full image path traced rerendering approach can arguably
deliver better results in shorter time in some cases. How well our method performs for
such, less optimal scenarios, depends on the chosen parameters of global sample rate, the
NoR for the incremental rerendering, the tile size, the metric to determine the magnitude
of effect an interaction has on a given image region and what pixel is choosen as PoC. In
the limited time and scope we had to work on this thesis, we achieved a proof of concept
but definitely not the limit of how far this approach could be optimized through careful
consideration and tests of these parameters.
In conclusion, I would say that we were able to prove the potential of this method
and that further work in this direction is warranted. If the method’s parameters could
be further optimized and if it could be combined with other existing state of the art
algorithms like modern image reconstruction methods, implemented into a sophisticated

39

6. Conclusion

3D editing software like Blender or Maya, it could offer a new level of uninterrupted 3D
editing workflow.

40

List of Figures

1.1 A comparison of different options to render one’s scene in Blender’s viewport. 3
1.2 Example of how a full rerender is triggered using ray-tracing in the 3D

modeling software Blender. 4
1.3 Example of how a full rerender is triggered using ray-tracing and NVIDIA

Optix Denoising in the 3D modeling software Blender. 4

2.1 An illustration about the problems of linear filtering. 12

3.1 This image illustrates how an incremental rerender performs poorly for changes
affecting a large portion of the scene heavily. 17

3.2 This figure illustrates two different representations of buffers of the same size
for a path-tracer. 18

3.3 The basic default image update queue vs the spiral queue. 19
3.4 This figure visualizes the assumption we make, when the PoC is not at the

center of a square viewport. 20
3.5 A figure illustrating the basic pipeline of our presented method of incremental

rerendering. 22

4.1 Updated render-graph, now including the new InteractionPass. 24
4.2 The user interface we implemented into Mogwais own render pass UI. . . 29

5.1 Shrinking of a relatively small object, the grey cube centered vertically at the
left of the scene, rendered with classic path-tracing. 33

5.2 These images show the viewport captured at the same interval, after the same
user interaction as in 5.1, but rendered with our incremental path-tracing. 33

5.3 Rotation of a relatively small object, the red cube at the center of the scene,
rendered with classic path-tracing. 34

5.4 These images show the viewport captured at the same interval, after the same
user interaction as in 5.3, but rendered with our incremental path-tracing. 34

5.5 Translation of a relatively large object, the large translucent cube at the center
of the scene, rendered with classic path-tracing. 35

5.6 These images show the viewport captured at the same interval, after the same
user interaction as in 5.5, but rendered with our incremental path-tracing. 35

5.7 The ground truth for a roation along the z axis of the red cube at the center
of the scene. 36

41

List of Tables

5.1 This table shows normalized root mean squared error (rmse) values. . . . 36

42

Bibliography

[BEEM15] Pablo Bauszat, Martin Eisemann, Elmar Eisemann, and Marcus Magnor.
General and robust error estimation and reconstruction for monte carlo
rendering. In Computer Graphics Forum, volume 34, pages 597–608. Wiley
Online Library, 2015.

[BM98] Mark R Bolin and Gary W Meyer. A perceptually based adaptive sampling
algorithm. In Proceedings of the 25th annual conference on Computer
graphics and interactive techniques, pages 299–309, 1998.

[BVM+17] Steve Bako, Thijs Vogels, Brian McWilliams, Mark Meyer, Jan Novák, Alex
Harvill, Pradeep Sen, Tony Derose, and Fabrice Rousselle. Kernel-predicting
convolutional networks for denoising monte carlo renderings. ACM Trans.
Graph., 36(4):97–1, 2017.

[BYC+20] Nir Benty, Kai-Hwa Yao, Petrik Clarberg, Lucy Chen, Simon Kallweit, Tim
Foley, Matthew Oakes, Conor Lavelle, and Chris Wyman. The Falcor render-
ing framework, 08 2020. https://github.com/NVIDIAGameWorks/
Falcor.

[CDF92] Albert Cohen, Ingrid Daubechies, and J-C Feauveau. Biorthogonal bases
of compactly supported wavelets. Communications on pure and applied
mathematics, 45(5):485–560, 1992.

[CJAMJ05] Petrik Clarberg, Wojciech Jarosz, Tomas Akenine-Möller, and Henrik Wann
Jensen. Wavelet importance sampling: Efficiently evaluating products of
complex functions. In ACM SIGGRAPH 2005 Papers, SIGGRAPH ’05,
page 1166–1175, New York, NY, USA, 2005. Association for Computing
Machinery.

[CKS+17a] Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, Christoph Schied,
Marco Salvi, Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. In-
teractive reconstruction of monte carlo image sequences using a recurrent
denoising autoencoder. ACM Trans. Graph., 36(4), jul 2017.

43

https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor

[CKS+17b] Chakravarty R Alla Chaitanya, Anton S Kaplanyan, Christoph Schied,
Marco Salvi, Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. In-
teractive reconstruction of monte carlo image sequences using a recurrent
denoising autoencoder. ACM Transactions on Graphics (TOG), 36(4):1–12,
2017.

[Com18] Blender Online Community. Blender - a 3D modelling and rendering package.
Blender Foundation, Stichting Blender Foundation, Amsterdam, 2018.

[DHS+05] Frédo Durand, Nicolas Holzschuch, Cyril Soler, Eric Chan, and François X.
Sillion. A frequency analysis of light transport. ACM Trans. Graph.,
24(3):1115–1126, July 2005.

[DWR10] Christopher DeCoro, Tim Weyrich, and Szymon Rusinkiewicz. Density-
based outlier rejection in monte carlo rendering. In Computer Graphics
Forum, volume 29, pages 2119–2125. Wiley Online Library, 2010.

[ETH+09] Kevin Egan, Yu-Ting Tseng, Nicolas Holzschuch, Frédo Durand, and Ravi
Ramamoorthi. Frequency analysis and sheared reconstruction for rendering
motion blur. In ACM SIGGRAPH 2009 Papers, SIGGRAPH ’09, New
York, NY, USA, 2009. Association for Computing Machinery.

[HJW+08] Toshiya Hachisuka, Wojciech Jarosz, Richard Peter Weistroffer, Kevin Dale,
Greg Humphreys, Matthias Zwicker, and Henrik Wann Jensen. Multidi-
mensional adaptive sampling and reconstruction for ray tracing. In ACM
SIGGRAPH 2008 Papers, SIGGRAPH ’08, New York, NY, USA, 2008.
Association for Computing Machinery.

[HMS+20] Jon Hasselgren, Jacob Munkberg, Marco Salvi, Anjul Patney, and Aaron
Lefohn. Neural temporal adaptive sampling and denoising. In Computer
Graphics Forum, volume 39, pages 147–155. Wiley Online Library, 2020.

[JC95] Henrik Wann Jensen and Niels Jørgen Christensen. Optimizing path tracing
using noise reduction filters. 1995.

[KA91] David Kirk and James Arvo. Unbiased sampling techniques for image
synthesis. SIGGRAPH Comput. Graph., 25(4):153–156, July 1991.

[Kaj86] James T. Kajiya. The rendering equation. SIGGRAPH Comput. Graph.,
20(4):143–150, August 1986.

[KBS15] Nima Khademi Kalantari, Steve Bako, and Pradeep Sen. A machine learning
approach for filtering monte carlo noise. ACM Trans. Graph., 34(4):122–1,
2015.

[KKR18] Alexandr Kuznetsov, Nima Khademi Kalantari, and Ravi Ramamoorthi.
Deep adaptive sampling for low sample count rendering. In Computer
Graphics Forum, volume 37, pages 35–44. Wiley Online Library, 2018.

44

[KS13] Nima Khademi Kalantari and Pradeep Sen. Removing the noise in monte
carlo rendering with general image denoising algorithms. In Computer
Graphics Forum, volume 32, pages 93–102. Wiley Online Library, 2013.

[KSKAC02] Csaba Kelemen, László Szirmay-Kalos, György Antal, and Ferenc Csonka.
Simple and robust mutation strategy for the metropolis light transport
algorithm. eurographics 2002/g. drettakis and h. P. Seidel, 21(3), 2002.

[LR90] Mark E Lee and Richard A Redner. A note on the use of nonlinear filtering in
computer graphics. IEEE Computer Graphics and Applications, 10(3):23–29,
1990.

[LRR04] Jason Lawrence, Szymon Rusinkiewicz, and Ravi Ramamoorthi. Efficient
brdf importance sampling using a factored representation. ACM Trans.
Graph., 23(3):496–505, August 2004.

[LWC12] Tzu-Mao Li, Yu-Ting Wu, and Yung-Yu Chuang. Sure-based optimization
for adaptive sampling and reconstruction. ACM Trans. Graph., 31(6),
November 2012.

[McC99] Michael D McCool. Anisotropic diffusion for monte carlo noise reduction.
ACM Transactions on Graphics (TOG), 18(2):171–194, 1999.

[MCY14] Bochang Moon, Nathan Carr, and Sung-Eui Yoon. Adaptive rendering
based on weighted local regression. ACM Trans. Graph., 33(5), September
2014.

[MIGYM15] Bochang Moon, Jose A. Iglesias-Guitian, Sung-Eui Yoon, and Kenny
Mitchell. Adaptive rendering with linear predictions. ACM Trans. Graph.,
34(4), July 2015.

[Mit87] Don P Mitchell. Generating antialiased images at low sampling densities.
In Proceedings of the 14th annual conference on Computer graphics and
interactive techniques, pages 65–72, 1987.

[Mit90] Don P Mitchell. The antialiasing problem in ray tracing. Advanced Topics
in Ray Tracing, 1990.

[Mit91] Don P. Mitchell. Spectrally optimal sampling for distribution ray tracing.
In Proceedings of the 18th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’91, page 157–164, New York, NY,
USA, 1991. Association for Computing Machinery.

[MMMG16] Bochang Moon, Steven McDonagh, Kenny Mitchell, and Markus Gross.
Adaptive polynomial rendering. ACM Transactions on Graphics (TOG),
35(4):1–10, 2016.

45

[ODR09] Ryan Overbeck, Craig Donner, and Ravi Ramamoorthi. Adaptive wavelet
rendering. ACM Transactions on Graphics (SIGGRAPH ASIA 09), 28(5),
December 2009.

[PBP11] Anthony Pajot, Loïc Barthe, and Mathias Paulin. Sample-space bright spots
removal using density estimation. In Graphics Interface, pages 159–166,
2011.

[RKZ11] Fabrice Rousselle, Claude Knaus, and Matthias Zwicker. Adaptive sampling
and reconstruction using greedy error minimization. ACM Trans. Graph.,
30(6):1–12, December 2011.

[RKZ12] Fabrice Rousselle, Claude Knaus, and Matthias Zwicker. Adaptive rendering
with non-local means filtering. ACM Transactions on Graphics (TOG),
31(6):1–11, 2012.

[RMZ13] Fabrice Rousselle, Marco Manzi, and Matthias Zwicker. Robust denois-
ing using feature and color information. In Computer Graphics Forum,
volume 32, pages 121–130. Wiley Online Library, 2013.

[RW94] Holly E Rushmeier and Gregory J Ward. Energy preserving non-linear
filters. In Proceedings of the 21st annual conference on Computer graphics
and interactive techniques, pages 131–138, 1994.

[Sch13] Karsten Schwenk. Filtering techniques for low-noise previews of interactive
stochastic ray tracing. PhD thesis, Technische Universität Darmstadt, 2013.

[Sch15] Jürgen Schmidhuber. Deep learning in neural networks: An overview.
Neural networks, 61:85–117, 2015.

[Sha49] Claude Elwood Shannon. Communication in the presence of noise. Proceed-
ings of the IRE, 37(1):10–21, 1949.

[SN96] Gilbert Strang and Truong Nguyen. Wavelets and filter banks. SIAM, 1996.

[SSD+09] Cyril Soler, Kartic Subr, Frédo Durand, Nicolas Holzschuch, and François
Sillion. Fourier depth of field. ACM Trans. Graph., 28(2), May 2009.

[SW00] Frank Suykens and Yves D Willems. Adaptive filtering for progressive monte
carlo image rendering. 2000.

[TM98] Carlo Tomasi and Roberto Manduchi. Bilateral filtering for gray and color
images. In Sixth international conference on computer vision (IEEE Cat.
No. 98CH36271), pages 839–846. IEEE, 1998.

[VG97] Eric Veach and Leonidas J Guibas. Metropolis light transport. In Proceed-
ings of the 24th annual conference on Computer graphics and interactive
techniques, pages 65–76, 1997.

46

[WABG06] Bruce Walter, Adam Arbree, Kavita Bala, and Donald P. Greenberg. Mul-
tidimensional lightcuts. In ACM SIGGRAPH 2006 Papers, SIGGRAPH
’06, page 1081–1088, New York, NY, USA, 2006. Association for Computing
Machinery.

[WFA+05] Bruce Walter, Sebastian Fernandez, Adam Arbree, Kavita Bala, Michael
Donikian, and Donald P. Greenberg. Lightcuts: A scalable approach to
illumination. In ACM SIGGRAPH 2005 Papers, SIGGRAPH ’05, page
1098–1107, New York, NY, USA, 2005. Association for Computing Machin-
ery.

[Whi05] Turner Whitted. An improved illumination model for shaded display. In
ACM SIGGRAPH 2005 Courses, SIGGRAPH ’05, page 4–es, New York,
NY, USA, 2005. Association for Computing Machinery.

[WRV98] Joachim Weickert, BM Ter Haar Romeny, and Max A Viergever. Efficient
and reliable schemes for nonlinear diffusion filtering. IEEE transactions on
image processing, 7(3):398–410, 1998.

[XP05] Ruifeng Xu and Sumanta N Pattanaik. A novel monte carlo noise reduction
operator. IEEE Computer Graphics and Applications, 25(2):31–35, 2005.

47

	Kurzfassung
	Abstract
	Contents
	Introduction
	Related Work
	Sampling
	Image reconstruction

	Method
	Splitting up the image into regions
	Determining most to least affected regions of the image
	Building the spiral queue
	Switching modes

	Implementation
	Software environment
	Adapting the path-tracer
	Adapting the accumulate pass
	Interaction pass

	Evaluation
	Hardware environment
	Results
	Further work

	Conclusion
	List of Figures
	List of Tables
	Bibliography

