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A B S T R A C T

Recent advances in neuro-imaging enable scientists to create brain network data that
can lead to novel insights into neurocircuitry, and a better understanding of the brain’s
organization. These networks inherently involve a spatial component, depicting which
brain regions are structurally, functionally or genetically related. Their visualization in
3D suffers from occlusion and clutter, especially with increasing number of nodes and
connections, while 2D representations such as connectograms, connectivity matrices,
and node-link diagrams neglect the spatio-anatomical context. Approaches to arrange
2D-graphs manually are tedious, species-dependent, and require the knowledge of do-
main experts.

In this paper, we present a spatial-data-driven approach for layouting 3D brain net-
works in 2D node-link diagrams, while maintaining their spatial organization. The
produced graphs do not need manual positioning of nodes, are consistent (even for
sub-graphs), and provide a perspective-dependent arrangement for orientation. Further-
more, we provide a visual design for highlighting anatomical context, including the
shape of the brain, and the size of brain regions. We present in several case-studies the
applicability of our approach for different neuroscience-relevant species, including the
mouse, human, and Drosophila larvae. In a user study conducted with several domain
experts, we demonstrate its relevance and validity, as well as its potential for neurosci-
entific publications, presentations, and education.

c© 2022 Elsevier B.V. All rights reserved.

1. Introduction1

Advances in neuro-imaging have enabled big brain initia-2

tives and consortia to create vast resources of brain data that3

can be mined for insights into mental processes and biological4

principles. This includes brain networks, representing the rela-5

tions between different spatial locations in the brain of a certain6

modality.7
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In the field of network neuroscience, brain networks rep- 8

resent the relations between different spatial locations in the 9

brain of a certain modality. These networks can be on var- 10

ious anatomical scales, ranging from brain region level [32], 11

to even neuron-level synaptic connectivity [48], i.e., connec- 12

tion between neurons that can span across brain regions. The 13

relations can be divided into anatomical/structural connectiv- 14

ity (anatomical links), functional connectivity (statistical func- 15

tional dependencies), and effective connectivity (directed causal 16

effects) [47]. Understanding and visualizing these networks is 17

crucial to investigate the cognition, memory, and many neu- 18
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Fig. 1. Spatial-Data-Driven Layouts of three different brain networks of species relevant in neuroscience. Nodes represent brain regions, colored according
to a common hierarchical ontology. The background parcellation colors indicate major brain regions. Gray areas represent regions without connections
for anatomical context. Edge opacity shows connection strength. Left: Strongest structural connections (top 2%) within the cerebral cortex of a mouse
brain, transversal view (from the top). Middle: Strongest functional connections (top 5%) within the cerebral cortex of a human brain, sagittal view (from
the side). Right: Synaptic connections between exemplarily selected individual neurons (nodes) projecting from and to the mushroom body (red) in the
Drosophila larval brain, transversal view (from the top). Neurons were assigned to brain regions (background parcellation) based on the regions they
exhibit the most synapses.

rological disorders, such as Alzheimer’s disease, autism, and1

anxiety.2

To relate brain networks to their anatomical context, anatom-3

ical data are needed. They are not a single type of data, they4

rather represent a diverse collection of reference templates,5

brain parcellations, and neuroanatomical ontologies. Together6

they form the common knowledge of how the brain is structured7

and how this structure can be referenced. A reference template8

is in general structural imaging data that has been combined9

(e.g., via image registration) to a structural representation of the10

brain for a group of specimens or a species. A neuroanatomical11

ontology is the formal representation of knowledge about the12

anatomy of the brain [30] of a species. This relates foremost13

to the composition of the brain, i.e., of which brain regions it14

consists and how these brain regions are subdivided (hierarchi-15

cally). It may also include naming or color conventions. Brain16

parcellations act as links between neuroanatomical ontologies17

and reference templates. In principle, a brain parcellation con-18

sists of a regional annotation of every voxel in a reference tem-19

plate. Hence, voxels can be associated with brain regions of an20

ontology for visualizing anatomical context and relating voxel-21

level to region-level data.22

Visualizations of brain networks are frequently used to show23

results in neuroscientific publications or for educational pur-24

pose, i.e., they are ubiquitous in literature because they quickly25

summarize information [31]. One possibility to visualize rich26

data is to use abstract visualization methods such as multidi-27

mensional scaling and scatter-plots [42]. Those methods lack28

anatomical context, which could provide neurobiologists with29

orientation, i.e., intuitively knowing where to find certain brain30

regions, which anatomical regions are shown, and from which31

area of the brain. For this purpose, a common way to visual-32

ize brain networks is a 3D node-link diagram, with brain re-33

gions rendered as spheres and connections rendered as straight34

lines [18, 54] while occluded elements can be discovered via in-35

teractive navigation in 3D visualizations. However, navigating 36

costs time, interactive 3D visualizations are not yet standard in 37

electronic papers and naturally unavailable in printed media. A 38

major issue with 2D node-link visualizations is the visual clutter 39

that occurs when many edges and nodes overlap due to the pro- 40

jection of the 3D structure onto a 2D plane. Moreover, keeping 41

an overview of the global network structure while visualizing 42

a high level of detail becomes challenging given a finite dis- 43

play area, since the users can lose track of their current position 44

while navigating. 45

Furthermore, most tools for such purposes are trimmed to 46

visualize data of a particular species. For example, Neu- 47

roMap [46] visualizes the brain of the common fruit fly 48

Drosophila melanogaster, where the anatomical layout of the 49

graph was generated manually. Such an approach would be 50

time-consuming regarding multiple species, as every species 51

has a unique hierarchical definition of brain regions. Another 52

problem concerning these regions is the selection regarding the 53

level of detail within the hierarchy. 54

In this paper we present an approach for the visualization of 55

3D brain networks in 2D space that inherently preserves spatial 56

organization and provides spatial context for orientation. Here, 57

we use node-link diagrams as the graph visualization technique 58

for its common usage in neuroscientific visualizations [32]. In 59

these diagrams, we present the connectivity between brain re- 60

gions, which we layout based on anatomical proximity, so that 61

nodes that are anatomically close are also close in the graph. 62

Furthermore, we render a brain parcellation in the background 63

by introducing a visual design to optimize spatial orientation. 64

Exemplary visualizations of three brains of different species can 65

be seen in Figure 1. 66

While individual parts of our approach are not novel on their 67

own, particularly using spatial information for graph layouting 68

[45] and providing group-level information for 2D graphs via 69

Voronoi tessellation [49], we introduce a new concept of using 70
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these techniques for the visualization of brain networks with1

spatial organization. Specifically we make the following novel2

contributions:3

• A novel method for generating Spatial-Data-Driven Lay-4

outs for neural networks of multiple species and perspec-5

tives. The proposed method overcomes the need of previ-6

ous solutions to manually define brain region related con-7

straints to generate anatomically feasible layouts.8

• Visual designs providing a consistent spatial context to the9

user to ease orientation and visual comparison of different10

brain networks.11

• A qualitative study that shows that Spatial-Data-Driven12

Layouts allow neuroscientists a faster overall understand-13

ing of 2D network graphs compared to traditional brain14

network visualization techniques.15

2. Related Work16

In recent years, an abundance of toolboxes have been pub-17

lished [19, 37, 39] that offer computation and visualization of18

multimodal connectivity data. While they provide a rich set19

of statistical and mathematical methods, their visualizations are20

static, and they often require experience in Matlab or Python21

scripting. In contrast, visualization methods support the pro-22

cessing of complex information, so neuroscientists can focus23

on understanding the data rather than handling it. This section24

gives an overview on visualization tools for connectivity data25

targeting a 3D anatomical context with respect to our method.26

A common way to visualize brain networks in neuroscientific27

publications are 3D node-link diagrams [6, 38, 55]. In these28

diagrams, network connections (edges) are often rendered as29

straight lines or arrows between spheres representing brain re-30

gions (nodes) across a 3D anatomical representation of the brain31

to help neuroscientists to orient themselves. One example is32

used in BrainNet Viewer [54], a graph-theoretical network vi-33

sualization toolbox to illustrate macro-scale human brain net-34

works as ball-and-stick models. It displays combinations of35

the brain surface, nodes, and edges from multiple perspectives36

(sagittal, axial or coronal) and allows the user to adjust dis-37

play properties like color and size of the network elements. Al-38

though this approach is intuitively understandable, visual clutter39

increases with the amount of edges and nodes due to the linear40

projection from 3D to 2D. With our method, we overcome this41

problem by adapting the graph layout based on spatial relations.42

Node-link diagrams are also used by the Connectome Visu-43

alization Utility [29], which offers a matrix (heatmap) and a cir-44

cular representation [24] of the network in separate views that45

are linked with each other. To counteract visual clutter, these46

views offer a selection/highlighting of nodes and edges, so one47

can focus on specific parts of complex networks. Bezgin et48

al. [9] also employed user-selected nodes to visualize only rel-49

evant sub-networks in the Macaque monkey brain. In this case,50

brain regions from a hierarchical ontology can be chosen to de-51

fine which connections should be shown as arrows overlaying52

3D brain anatomy, i.e., a 3D node-link diagram without depict- 53

ing the nodes. Another example is BrainTrawler [18], a task- 54

driven, web-based framework that incorporates visual analytics 55

methods to explore heterogeneous neurobiological data, includ- 56

ing their spatial context. It enables neuroscientists to analyze of 57

the genetic and functional characteristics of brain networks in 58

real-time via linked 2D-slice views and 3D network visualiza- 59

tions, as well as a visual-query based interaction scheme for 60

exploring sub-graphs. Similar approaches using query-guided 61

interactions for exploring electron microscopy stacks has been 62

proposed by Beyer et al. [7, 8] in the ConnectomeExplorer. 63

Here, labeled neuronal connections can be queried, and visu- 64

ally explored in linked views. These views comprise a 3D vol- 65

ume/mesh rendering, a 2D slice view, connectivity graphs, a 66

tree-view showing the hierarchical structure of segmentations, 67

and several statistical views (histograms, scatterplots etc). All 68

these interactive 3D network visualizations with linked views 69

[7, 9, 18, 24] contribute spatial context and enable the user to 70

focus on relevant sub-networks. Nevertheless, navigating these 71

approaches cost time, require domain expertise, and are natu- 72

rally unavailable for printed scientific papers. This is not an 73

issue with our method, since its output is a static figure with 74

inherent spatial information. 75

Although the 3D spatial representation of networks provides 76

anatomical context, 2D node-link diagrams with flexible lay- 77

outs are better suited for comparing connectivity[4] or iden- 78

tifying modules (well-connected groups of nodes) [36]. For 79

this reason, BrainModulizer [34] uses a linked presentation 80

of anatomy in 3D, and 2D networks to enable neuroscientists 81

to interactively explore functional connectivity. Spatial corre- 82

spondence is indicated via color coding of hierarchically or- 83

ganized brain modules, but can be also established via brush- 84

ing/selecting nodes in one of the views. Analogous to Brain- 85

Modulizer, BRAINtrinsic [11, 12] aimed to explore brain con- 86

nectivity with node-link diagrams based on network topol- 87

ogy. Instead of arranging nodes, they mapped the network 88

to a topological space by taking the networks intrinsic geom- 89

etry into account. For this purpose, they performed dimen- 90

sionality reduction (multidimensional scaling, isomap, and t- 91

distributed stochastic neighbour embedding) on structural and 92

functional connectivity data. In a 3D view that shows the net- 93

work as a node-link diagram, one can interactively switch be- 94

tween anatomical and topological spaces, show/hide particular 95

brain regions and compute network measures. This approach 96

has been taken further in the NeuroCave visualization system 97

[28], optimized for virtual reality environments. Networks are 98

shown in a coordinated view, so the network is visible in both a 99

3D anatomical space and a topological space simultaneously. 100

These approaches combine the advantage of 3D spatial rep- 101

resentations with the flexibility of 2D node-link diagram lay- 102

outs. However, the spatial context needed for the 2D node- 103

link diagram is provided via interaction with a linked view, 104

which is again not available for printed scientific papers, and 105

not yet standard for their electronic versions. With Spatial- 106

Data-Driven Layouts this can be avoided, since spatial context 107

is not only an intrinsic part of the visualization, but also of the 108

graph layout. 109
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Spatial relations and anatomical meaning can be integrated1

into an abstract visualization directly while avoiding occlusions2

and clutter simultaneously. For example, Jianu et al [27] used3

planar projections of fiber tracts generated by Diffusion Tensor4

Imaging to visualize neuronal connectivity as bundles, where5

single bundles can be highlighted for visual distinction. The6

endpoints of these bundles project directly onto a silhouette of7

the brain, providing spatial orientation. Due to a lack of labels8

and annotations, it is not possible to identify individual brain9

regions. An abstract visualization was proposed by McGraw et10

al. [33], who positioned the nodes of a graph using the auto-11

mated anatomical labeling (AAL) brain atlas, discarding one of12

the three coordinates. The nodes are grouped by the hemisphere13

(left, right) and their corresponding brain lobes. Minimizing the14

overlap is achieved by using the method by Misue et al. [16].15

The color of the nodes is determined by the lobe it belongs16

to, while the radius is proportional to the number of incident17

edges of the node. Edges are filtered and bundled in a similar18

approach as described by Holten and Van Wijk [23]. Visual-19

ization of inter- and intrahemispheric connectivity is separated20

to reduce clutter in interhemispheric connectivity. Another ap-21

proach that uses edge bundling was introduced by Böttger et22

al. [10] who bundled edges within a brain parcellation to vi-23

sualize groups of functional connections between brain areas.24

While edge bundling reduces visual clutter caused by edges,25

they do not reduce the clutter caused by overlapping nodes26

caused by 3D to 2D projections. Our Spatial-Data-Driven Lay-27

outs use force-directed layouting to avoid overlapping nodes,28

while edge cluttering is reduced by using edge routing.29

As an alternative to visualize the anatomical context in addi-30

tion to node-link diagrams, the context can be also integrated31

directly into the graph layout. What are known as “anatom-32

ical layouts“ are abstract 2D representations of brain regions,33

i.e., the 3D brain anatomy is flatted to a 2D space. NeuroMap34

[46] renders an interactive two-dimensional graph of the fruit35

fly’s brain and its interconnections in the form of a circuit-36

style wiring diagram. Anatomical context is provided by par-37

titioning the canvas into compartments that form an abstract38

representation of actual brain regions. For this purpose, fixed39

compartment positions that have been manually defined in col-40

laboration with neuroscientists are used to depict the overall41

structure of the brain. The visualization can be interactively42

adapted by adding new connections from additional data, fil-43

tering, highlighting, or layout adjustments. A similar, static,44

visualization approach has been used by Caat et al. [49] and Ji45

et al. [26], which maps functional networks derived from elec-46

troencephalography (EEG) to a planar projection of the human47

skull. To avoid cluttering, only the coherence between func-48

tional units, i.e., network modules, units are shown in a single49

image. The corresponding functional units of the EEG elec-50

trodes are indicated by colored Voronoi tessellation in the back-51

ground. The downside of these approaches [46, 49] is the man-52

ual labor that is required to create these layouts. Hence, they are53

inherently time-consuming regarding multiple species, as every54

species has a unique hierarchical definition of brain regions. We55

overcome this limitation by proposing a data-driven approach.56

3. Requirements 57

Based on a long-term collaboration with neurocientists work- 58

ing on neural networks from humans, mice and drosophila 59

melanogaster, we identified the following requirements for a 60

method to generate Spatial-Data-Driven Layouts of brain net- 61

works: 62

(R1) Anatomically Feasible The graph layout should intrinsi- 63

cally preserve the spatial organization of the network, i.e., 64

nodes related to brain regions that are anatomically ad- 65

jacent remain close in the graph layout. The layouting 66

should also deliver stable, anatomically feasible, layouts 67

for partial networks, i.e., networks spanning only a part of 68

the brain, to facilitate comparability of these networks. 69

(R2) Data Driven The vast number of connections and brain 70

parcellations, i.e., different regions, within the brain makes 71

manual arrangement of data an extensive task. Therefore, 72

the method should be able to handle the layouting in a 73

data-driven way, i.e., without manually defined spatial re- 74

strictions on the positioning of nodes. 75

(R3) Species-Independent Each species has a unique brain 76

anatomy and parcellation, so the method should work in- 77

dependently of these differences. 78

(R4) Perspective-Independent Different perspectives, e.g., 79

transversal (from the top) and sagittal (from the side) 80

should be possible to provide orientation, i.e., represent- 81

ing the perspective shape of the brain. 82

(R5) Providing Anatomical Context The final visualization 83

should provide sufficient context to facilitate the anatomi- 84

cal localization of a brain network. 85

(R6) Adaptable with regards to Anatomical Detail It should 86

be possible to highlight the anatomical detail of the graph 87

according to information density, (i.e., show more anatom- 88

ical detail for highly connected regions, or where networks 89

with more than one node per region exceeding the reso- 90

lution of the hierarchical parcellation), or by the region’s 91

anatomical size, i.e., where anatomical detail is evenly dis- 92

tributed over regions with equal size. 93

(R7) Consistent in Spatial Organization with respect to 94

Changes The layouting should be stable concerning 95

changes in the selection of visualized network nodes and 96

brain regions, and therefore, the mental map of the neuro- 97

scientist be retained. 98

(R8) Overlap-efficient Overlap of nodes and edges should be 99

minimized. 100

4. Methodology 101

When using graph layouting algorithms, spatial structures 102

and orientation get lost if such information is not represented in 103

the graph data. We utilize this presumed problem by proposing 104



Preprint Submitted for review / Computers & Graphics (2022) 5

Fig. 2. Scheme of a Hierarchical Representation of Brain Regions of a mouse
brain. The lowest level represents a voxel-level reference space, while
higher levels comprise brain regions.

a multi-stage algorithm, which facilitates connectivity describ-1

ing anatomical proximity of each brain region (Parcellation-2

derived Connectivity) for graph layouting, and the actual con-3

nectivity of interest for visualization (Rendered Connectivity).4

This means that anatomical adjacency of regions and overall5

shape of the brain is reflected in the layout.6

4.1. Input Data7

Hierarchical Brain Parcellation: This data represent the8

overall information of the species-specific hierarchical parcel-9

lation of the brain. This parcellation hierarchically subdivides10

a 3D reference space into brain regions, where each brain re-11

gion is defined via 3D coordinates. These can be either the re-12

gions’ voxel-level representations on the space, or, if not avail-13

able, the brain regions’ centers of mass (however the center is14

defined). Furthermore, for each region it includes a name, an15

acronym, a color-code, the region’s size, and a list of its sub-16

regions. This data can be typically derived from brain refer-17

ence atlases such as the Allen Mouse Brain Common Coordi-18

nate Framework [51], the Allen Human Reference Atlas [14],19

and the larvalbrain platform [3]. A scheme of the Hierarchi-20

cal Representation of Brain Regions consisting of the higher21

hierarchy levels of the Allen Mouse Brain Common Coordinate22

Framework can be seen in Figure 2.23

Brain Network: A brain network of interest is given as graph24

of nodes encoding neural elements at brain region level, and25

edges with weights indicating and characterizing the connec-26

tivity between these nodes, for example, functional resting-27

state connectivity from the Human Connectome Project [50]28

or structural connectivity from the Allen Mouse Brain Connec-29

tivity Atlas [35] (see mouse and human usage scenarios in Sec-30

tion 5.1 and 5.2). In case of availability of more fine grained31

connectivity information there can be more than one node re-32

lated to a brain region, for example, neuron-to-neuron synaptic33

connectivity data from CATMAID [41] (see Drosophila usage34

scenario in Section 5.3).35

4.2. Approach36

The algorithm for Spatial-Data-Driven Layouts consists of37

seven principal steps, depicted in Figure 3. In principle, the38

nodes of a brain network are projected onto a 2D plane, depend- 39

ing on the desired perspective. In case the brain network does 40

not cover the whole brain, additional nodes are added to repre- 41

sent the missing anatomical context (Step 1, 2, 3). Then, force- 42

directed layouting based on Parcellation-derived Connectivity 43

is used to adapt the initial 2D node projection so that nodes 44

that are spatially close in the anatomical reference space are 45

also close in the 2D graph (Step 4). To enforce an even dis- 46

tribution of nodes, another force-directed layouting step based 47

on Delaunay-triangulation is performed (Step 5). In the back- 48

ground of the graph, a colored Voronoi tessellation is added to 49

represent anatomy and overall shape (Step 6). Finally, the orig- 50

inal brain network’s edges are rendered. (Step 7). 51

Step 1 - Preprocessing: For producing anatomically feasi- 52

ble layouts (R1) in a data driven way (R2), we introduce a 53

Parcellation-Derived Connectivity (Figure 3 (1)) that represents 54

the closeness of brain regions in the anatomical reference space. 55

We derived this measure from the parcellation of brain regions 56

on a 3D reference space by computing the number of neigh- 57

bouring voxels (6-connectivity) between brain regions across 58

all hierarchy levels. We normalize the measure by the total 59

number of voxels of the respective two brain regions, other- 60

wise the measure would directly depend on the size of the re- 61

gions. The localized nature of this connectivity (only neigh- 62

bouring brain regions are connected) enables graph layouts that 63

retain these local structural relationships between brain regions. 64

Alternatively, or in case no parcellation is available, it is also 65

possible to approximate this measure with the reciprocal dis- 66

tance between region centers (however this center is defined), 67

which leads to inferior results. For details of the effect on the 68

layout see Section 5. If more than one node per brain region is 69

included, i.e., the original network is more fine grained than the 70

given Hierarchical Brain Parcellation, we add additional edges 71

with the maximum weight between to represent their anatomi- 72

cal closeness. 73

Step 2 - Graph Completion: Brain networks are generally 74

anatomically incomplete, i.e., not covering the whole brain. 75

Thus, to include the missing anatomical context (R1, R5, R7) 76

into our layouting and the final graph representation, we add 77

“Shadow Nodes“ covering the parts of the brain not being part 78

in the original network (Figure 3 (3)). These additional nodes 79

will be used only for layouting process, but are not rendered. As 80

a consequence, they fill space in the graph layout, but are other- 81

wise invisible. This empty, used-up space represents the miss- 82

ing anatomical context, where the presence of these nodes is 83

only indicated by a gray background coloring (hence the name 84

“Shadow Nodes“). In Figure 3 (Steps 2,3,4, and 5) these nodes 85

are shown in gray to help understanding the method. 86

The selection of the hierarchy level of the parcellation used 87

for the Shadow Nodes is one of the degrees of freedom in- 88

fluencing the layout and the final visual appearance of the 89

background. Depending on how much context is desired, the 90

Shadow Node Ratio (the area that the rest of the brain will take 91

for the layouting and background coloring in relation to the 92

brain network nodes - see Step 6 - Background Parcellation) 93

can be adapted: 94

• Shadow Node Ratio = 0: only brain network nodes will be 95
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Fig. 3. Principal steps to generate spatial-data-driven layouts. Step 1) Preprocessing the Input Data Preprocessing a Hierarchical Representation of Brain
Regions to generate Parcellation-derived Connectivity which will be used in later steps to layout a brain network. Step 2) Making the Graph Anatomically
Complete: If the brain network does not cover the whole brain, the missing anatomical context is added as Shadow Nodes, covering brain regions not
being part of the original brain network (gray). Step 3) Initialization: Projecting the 3D positions of the brain network regions as nodes on a canvas,
depending on the desired perspective (here: transversal view). Step 4) Layouting: Layouting the graph based on the Parcellation-derived Connectivity
using a force-directed layouting algorithm. Step 5) Triangulation: To evenly distribute the nodes, Delaunay-triangulation between the nodes is performed.
This triangulation is used as edges to perform another force-directed layouting with the results of the previous step as initialization. Step 6) Background
Parcellation: Parcellating the background for anatomical context and providing an overall shape. A Voronoi tessellation is used, where cells that belong to
the same brain regions are grouped together [53]. Step 7) Network Rendering: Rendering the nodes and edges of the brain network (Rendered Connectivity).

layouted and used for background coloring1

• Shadow Node Ratio = 1: The hierarchy level for the2

background context will set to a level, where the Shadow3

Nodes, i.e., the rest of the brain, will cover the same area4

(on the 2D canvas) as brain network nodes.5

• Shadow Node Ratio = N: The hierarchy level for the back-6

ground context will set to a level, where the Shadow7

Nodes, i.e., the rest of the brain, will cover N-times the8

area (on the 2D canvas) as brain network nodes.9

The effect of this parameter can be seen in Figure 5. As a10

consequence, the overall shape of the visualization is still pre-11

served even for sub-networks that do not cover the whole brain12

(R5, R6).13

Since the hierarchical parcellation is not balanced by the14

brain region’s anatomical size, it is not possible to choose a hi-15

erarchy level that results in a number of Shadow Nodes that fit16

the Shadow Node Ratio. Therefore, the hierarchy is traversed17

based on region size, so that every Shadow Nodes covers an18

equal anatomical space/region size.19

Step 3 - Initialization:20

If layouting (Section 4.2, Step 4 - Layouting) would be per-21

formed with random initial position of the nodes on a 2D22

canvas, its resulting representation would still resemble the23

anatomy due to the construction of the graph in Step 1 - Initial-24

ization and Step 2 - Graph Completion of our method. Hence, a25

random initialization would lead to tilted, turned, and deformed26

compared to common standard views aligned to the main axes27

of the brain.28

In informal interviews, domain experts expressed that the ori- 29

entation is crucial for the acceptance of the visualisation. Other- 30

wise, they could not sufficiently grasp the spatial structure after 31

initially looking at the graph (R4). 32

Here, sagittal (from the side) and transversal (from the top) 33

are typical views used in neuroscience and provide neuroscien- 34

tists with an initial orientation. We approximate these views by 35

choosing projection planes aligned to the respective main axes 36

of the brain as initialization for layouting. 37

Based on the user’s desired orientation of the final graph, we 38

select a plane (e.g., X-Y plane or Y-Z plane) and orthogonally 39

project the 3D positions of the brain network nodes on it to 40

define the initial node positions for the layouting (Figure 3 (2)). 41

For the sagittal view, where, due to the brain’s symmetry, the 42

left and right versions of brain regions would directly overlap, 43

we performed the layouting only on one side, and positioned 44

the nodes of the respective other side’s brain regions at a tilted 45

displacement. This mimics a form of perspective distortion, 46

and enables the viewer to always find the left/right versions of 47

a brain region at the same distance and angle from each other. 48

Step 4 - Layouting: We layout the graph based on the 49

Parcellation-derived Connectivity computed in Step 1 - Pre- 50

processing using a force-directed layouting algorithm to realize 51

R1, R2, R7 and R8. Here we used CoSE-Bilkent [15]. Depend- 52

ing on the occlusion/overlap of nodes in Step 3 - Initialization, 53

the forces applied by the layouting algorithm need to be man- 54

ually adjusted. Which forces these are, depends on the chosen 55

algorithm. For CoSE-Bilkent this is further discussed in Sec- 56

tion 4.3. The effect of parameter adjustment is demonstrated in 57

Supplementary Video 1. In the transversal view for the mouse 58
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brain, weak forces are enough due to the flatter composition1

of the regions (Figure 3 (4)). Parameters for the sagittal view2

require stronger values, to pull regions adjacent to each other3

together and push distant regions further apart.4

Step 5 - Triangulation: Although the previous step will min-5

imize node overlap, it is not guaranteed to lead to no overlap6

at all. To counteract this, we want to drive the layout towards7

an even node distribution, i.e., nodes being equidistant to each8

other. Therefore, we generate edges based on a triangulation9

between the nodes (Figure 3 (5)) (R8) and perform a force-10

directed layouting again.11

Step 6 - Background Parcellation: We are parcelling and col-12

oring the background to generate anatomical context (R5).13

First, all 2D nodes (real network nodes and shadow nodes)14

on the 2D canvas are parcelled via a Voronoi tessellation. Nat-15

urally, the Voronoi tessellation would parcel the whole rectan-16

gular canvas. To limit the tessellation to an area that resembles17

anatomy, i.e., around the nodes, we draw a convex hull with18

a certain padding around the nodes. Along this hull, we place19

virtual nodes that will be only considered by the the Voronoi20

tessellation. By setting the cells of these virtual nodes to in-21

visible, the remaining cells of the network and shadow nodes22

form the desired shape (Figure 3 (6)). Then, we group the cells23

together based on background regions. To identify these back-24

ground regions, a recursive algorithm is used, that, given a user-25

defined Number of Background Regions as parameter, traverses26

the hierarchy up to find either brain regions higher in the hier-27

archy with similar anatomical size or similar number of edges.28

Therefore, the background can be either focus on anatomy (size29

of brain regions), or provide context based on the information30

content (number of edges) (R6).31

To support the perception of orientation of the domain ex-32

perts with respect to the network of interest, we color the cells33

of the parcellation by their associated brain regions’ colors34

which enables the user their identification. Figure 4 shows this35

approach with different Numbers of Background Regions based36

on the region size. Background regions are further indicated by37

an outline around the groups/background regions in the back-38

ground (Figure 3 (6)). Note that in Figure 4, 5 and 6, we colored39

the whole background (even the Shadow Nodes) to demonstrate40

the process of background drawing. Otherwise, the background41

of regions that do not have connections, i.e., are not part of the42

network (Shadow Nodes), are colored in gray to not catch the43

viewer’s focus.44

To provide further orientation for the transversal view, we45

use the circumstance that the brain is typically divided into two46

hemispheres. Here, we highlight borders between cells of the47

left and right hemispheres in bold black, which leads to a mid-48

dle line separating these two parts of the brain.49

Step 7 - Network Rendering: Drawing the brain network (Fig-50

ure 3 (7)). Here, we label network nodes at region level with51

the region’s name, including its brain hemisphere (L as prefix52

for left or R as prefix for right) to add anatomical context at53

network level (R5). Here we use common acronyms often in-54

cluded in brain ontologies, as the full name would not fit into55

the node. The colour coding is derived from brain reference56

atlases [51, 14], where every brain structure is assigned a dis-57

Fig. 4. Effect of different Number of Background Regions on the context
visualized in the background of the brain network (strongest structural
connections in the whole brain), as described in Section 4.2, Step 6 - Back-
ground Parcellation. A background region is represented as parcels with
similar color and enclosed by an outline.

tinct colour based on its hierarchical level in the brain ontology. 58

For brain networks whose resolution exceeds the Hierarchical 59

Brain Parcellation, i.e., the network’s brain regions are more 60

fine grained than the parcellation, multiple nodes per brain re- 61

gions are added with similar coloring and rendered adjacent. 62

The opacity of rendered edges/links is representing the con- 63

nectivity strength (e.g., structural, functional or genetic) be- 64

tween nodes, causing weak connections to appear more trans- 65

parent. Note that due to clutter, we only render the strongest 66

connections in the figures of in this paper. Hence, some nodes 67

that are part of the networks, i.e., they have connections, are 68

rendered without edges. Other alternatives, such as thickness 69

or coloring causes more clutter, especially with growing num- 70

ber of edges. Edge bundling or different edge layouts (R8) can 71

be used to further reduce this, several of them (orthogonal and 72

organic edge layouting) are shown in the user study (see Fig- 73

ure 11 and Supplementary Material). 74

4.3. Implementation 75

We used the graph-drawing library Cytoscape.js [1] for the 76

implementation of a interactive visualization. Here, we selected 77

the CoSE-Bilkent algorithm [15] for layouting in Step 4 - Lay- 78

outing of our method for its speed and usability. There is no 79

limitation to use different force-directed algorithms. CoSE- 80

Bilkent represents merely one approach to show that force- 81

directed layouts can be used for Spatial-Data-Driven Layouts. 82

For our implementation, we omitted the nested layout- 83

ing/compound layouting functionality of CoSE-Bilkent, since 84

it produced rectangular compartments which interfered with the 85

shape/outline of the layouted graph. We investigated the effect 86

of the algorithm’s parameters, and selected three (node repul- 87

sion, edge length and edge elasticity) that had the strongest ef- 88

fect on the layouting. While node repulsion acts as pushing 89

force between nodes, edge length and edge elasticity controls 90
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Fig. 5. Effect of a different Shadow Node Ratios on the context visualized in
the background of brain network (structural connectivity within the thala-
mus), as described in Section 4.2, Step 2 - Making the Graph Anatomically
Complete.

how nodes are pulled together based on Parcellation-derived1

Connectivity. We created a prototype of an interactive visual-2

ization, where these parameters can be iteratively adapted via3

sliders in real-time, so that one can find a trade-off between4

mapping spatially close nodes in the anatomical reference space5

to spatially close positions in the 2D graph, and keeping the6

overall shape of the brain. An example of how the layout is7

reacting to parameter changes can be seen in Supplementary8

Video 1 for full and partial networks.9

5. Usage Scenarios10

We created usage scenarios on three different species (mouse,11

human and Drosophila) relevant for neuroscience to showcase12

anatomical feasibility (R1) of our approach, its general applica-13

bility on different brain architectures (R2, R3) and for different14

perspectives (R4). The effectiveness of our proposed visualiza-15

tion on the perception of brain networks by neuroscientists was16

evaluated in a separate user study in Section 6.17

For each brain architecture, we created Spatial-Data-Driven18

Layouts depicting common views in neuroscience (sagittal and19

transversal) and different ways to create Parcellation-derived20

Connectivity, i.e., distance or neighbourhood based (R2, R3,21

R4). To qualitatively evaluate the anatomical feasibility of22

the generated layouts (R1), we produced visualizations that re-23

imagine figures from neuroscientific publications to show that24

our approach can be used to present this information in a sim-25

ilar way. We omitted a numeric, quantitatve evaluation based26

on the distance of spatially-close nodes in the 2D graph. Here,27

one would evaluate the closeness of nodes in the resulting 2D28

graphs by their spatial closeness in 3D, which already depends29

on the input of the force-directed layout algorithm and the spa-30

tial closeness in 3D (Parcellation-derived Connectivity), hence31

one would evaluate the force-directed layouting algorithm, and32

not our approach.33

5.1. Mouse Brain 34

Setup: The mouse brain is a model organism widely used in 35

studies about brain connectivity [38, 17, 35]. To provide a com- 36

mon ontology and reference space, the Allen Institute released a 37

common coordinate framework on a cellular level resolution for 38

analysis, visualization, and integration of multimodal and mul- 39

tiscale datasets [51]. It does not only have a voxel-level repre- 40

sentation of brain regions, but also a brain region ontology, i.e., 41

a Hierarchical Representation of Brain Regions. We used this 42

data to create two types of Parcellation-derived Connectivity: 43

The number of neighbouring voxels (6-connectivity) between 44

brain regions (shown as edges in Figure 6, 2D projection), and 45

the reciprocal distance between their center-of-gravity. 46

The effects of using these connectivities on the Spatial-Data- 47

Driven Layouts can be seen in Figure 6. Here, we distinguish 48

between the sagittal and transversal view. As one can see in 49

Figure 6, 2D projection, the mouse brain is rather flat in the 50

transversal view, with rather few brain regions occluding oth- 51

ers, in contrast to the sagittal view. Therefore, for the transver- 52

sal projection, the effect on the spatial-data-driven layouting is 53

limited. The effect increases with the size of the network, as 54

can be seen in the distribution of 997 brain regions/nodes in 55

Figure 8. 56

Results: To verify if Spatial-Data-Driven Layouts can be 57

used to produce figures for neuroscientific publications, we re- 58

imagined an artistically drawn brain network suggested by our 59

domain experts. Figure 7 shows the brain reward circuitry in 60

the mouse brain as depicted by Russo et al., Figure 1 [40]. 61

For this figure, we use structural connectivity [35] to create 62

a brain network between brain regions that correspond to the 63

ones given in the paper [40]. Note, that the structural connec- 64

tivity and the dopaminergic circuitry do not represent the same 65

modality, hence, it can only be seen as an approximation, and 66

as a consequence, not all connections are similar or present. 67

We investigated then if the brain regions are correctly adjoin- 68

ing with the Interactive Atlas Viewer [2]. The only obvious in- 69

consistency was the distance between the lateral habenula (light 70

red, LH) and lateral hypothalamus (red, LHA), whose parent re- 71

gions (thalamus and hypothalamus) are positioned next to each 72

other. Closer inspection revealed, that the LH lies at the supe- 73

rior part of the thalamus, while the LHA lies at the lateral part 74

of the hypothalamus. Hence, both regions are not adjoined, and 75

are indeed positioned correctly. The visual appeal of this di- 76

agram was then tested in a user study, which can be found in 77

Section 6. 78

5.2. Human Brain 79

Setup: Similar to the mouse brain, the Allen Institute released 80

a reference atlas, the Allen Human Reference Atlas [14], to pro- 81

vide a common reference space for the human brain. In con- 82

trast to the mouse brain, the atlas provides only high-resolution 83

histology 2D slices, not a common coordinate framework to de- 84

rive the voxel-level representation of brain regions. Therefore, 85

neighbourhood-based Parcellation-derived Connectivity could 86

not be evaluated in this scenario. We use data from a paper 87

previously published by Hawrylycz et al. [22], which provided 88

3D positions of samples labeled with Allen Human Reference 89
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Fig. 6. Effects of Parcellation-derived Connectivity on the Spatial-Data-Driven Layouts of different species and views. Columns show species (mouse, human,
and Drosophila larvae) and view (sagittal and transversal), rows the 2D projection of Parcellation-derived Connectivity (2D Projection), layouting of the
nodes without connectivity at all, i.e., without Step 4 - Layouting of the approach (No Connectivity), layouting with the reciprocal distance between brain
regions as Parcellation-derived Connectivity (Distance), and layouting using the number of neighbouring voxels (6-connectivity) between brain regions as
Parcellation-derived Connectivity (Neighbourhood). There was no voxel-level definition of brain regions matching the Hierarchical Representation of Brain
Regions available for human, hence the layouting is missing in the last row. Edges for the 2D projections represent the neighbourhood-based Parcellation-
derived Connectivity for mouse and Drosophila larvae, and distance-based for human.

Fig. 7. Schematic of brain reward circuitry in a mouse brain as de-
picted by Russo et al., Figure 1 [40], with and without colored con-
text. The regions in the paper figure correspond in the following
way (paper figures’ region = this figures’ regions as node labels):
mPFC/medial prefrontal cortex = PL/prelimbic area, NAc/nuclues ac-
cumbens = ACB/nucleus accumbens, Amy/amygdala = BMA/basomedial
amygdalar nucleus, Hipp/hippocampus = HPF/hippocampal formation,
LHb/lateral habenula = LH/lateral habenula, LHA/lateral hypothalamus,
VTA/ventral tegmental area, and LDT/laterodorsal tegmental nucleus

Atlas brain regions to create the brain regions’ reciprocal dis-1

tance between them (edges in Figure 6, 2D projection). Note,2

that there have been recent releases of voxel-level common co-3

ordinate frameworks with region-level annotations [13, 5] that4

would be also suitable for applications in the future.5

We visualized the effects of using these connectivities on the6

Spatial-Data-Driven Layouts similar to the usage scenario in7

the mouse brain (Figure 6). Similarly, the transversal view al-8

ready showed promising results when layouting without con-9

Fig. 8. Effect of Spatial-Data-Driven layouting on node distribution for
larger networks (997 nodes). The left side shows a transversal 2D pro-
jection, the right side a Spatial-Data-Driven layout of the same network.
Background, labels and edges are removed for the clarity of the layout.

nectivity (Figure 6, No Connectivity), mainly because of the hu- 10

man cortex’s parcellation in frontal, lateral and posterior lobes. 11

Results: Again, we re-imagined an artistically drawn brain net- 12

work suggested by domain experts to showcase the applicabil- 13

ity of Spatial-Data-Driven Layouts for neuroscience publica- 14

tions. Gotter et al. (Figure 6, green) [20] published a fig- 15

ure showing orexinergic neuron projections originating from 16

the hypothalamus in the human brain. We sought to re- 17

produces the information shown by Gotter et al. with our 18

Spatial-Data-Driven Layouts by visualizing the strongest out- 19

going connections (top 20%) from the hypothalamus on a hi- 20

erarchical brain region level covering the majority of the pa- 21
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Fig. 9. Orexinergic neuron projections originating from the hypothalamus
in the human brain. Brain region hierarchy level was selected to cover
the majority of brain regions depicted by Gotter et al., Figure 6, green
[20]. Strongest 20% of outgoing functional resting-state connections of the
hypothalamus.

per’s brain regions (Figure 9). Since no structural connectiv-1

ity was available, we substituted functional resting-state con-2

nectivity from the Human Connectome Project [50]. This3

led to a surprisingly accurate overlap of the papers circuit ac-4

cording to our domain experts: The VTA/ventral tegmental5

area, ACB/nucleus accumbens (equals NAc/nucleus accum-6

bens), MBRa/midbrain raphe nuclei (covering DR/dorsal raphe7

nucleus), and the MBRF/midbrain reticular formation (cover-8

ing PPT/pedunculopontine tegmental nucleus) are among the9

strongest connections. LDT/lateral dorsal tegmental nucleus10

and LC/locus ceruleus were not covered in the data by Hawry-11

lycz et al. [22], but their parent region PTg/pontine tegmentum12

(including 20 other subregions) was still within the strongest13

40% of the connections (not shown in figure). Closer inspection14

of the brain regions’ positions with the Interactive Atlas Viewer15

[2] revealed consistency with brain anatomy. Obvious disloca-16

tions, like the split within brown regions (limbic lobe) can be17

attributed to the distance-based Parcellation-Derived Connec-18

tivity. Although they are adjoined, their centers of gravity are19

farther apart due to their anatomical structure. Neighbourhood-20

derived connectivity has the potential to compensate this issue,21

as can be seen in the mouse usage scenario. Visual appeal of22

this figure was again tested in the user study (Section 6).23

5.3. Drosophila Larval Brain24

Setup: The neural circuits of the common fruit fly Drosophila25

melanogaster are studied to investigate the generation of com-26

plex behavior. Especially their larval stages are examined27

[43], where their brains are with 10,000-15,000 neurons still28

small and compact, and therefore less complex. Visualiza-29

tions of individual neurons and neuronal circuits are subject30

to current research [48], but their representations in relation to31

anatomical context require manual definition and annotations32

[46]. To solve this problem with Spatial-Data-Driven Lay-33

outs, we took a hierarchical definition of compartments/brain34

regions used in the Drosophila community [21], and cre-35

ated neighbourhood-based (edges in Figure 6, 2D projection),36

and reciprocal distance-based Parcellation-Derived Connectiv-37

ity similarly to the mouse usage scenario. As research on the38

Drosophila brain focuses on individual neuronal circuits rather39

than brain regions (e.g., Saumweber et al. [43]), we sought to40

adapt the region-level visualization we used in the mouse and 41

human usage scenario with neuron-level data. As showcase, we 42

took the DAN-KC-MBON circuitry published by Schleyer et 43

al. [44] (Figure 2), and extracted in close collaboration with 44

Drosophila brain experts the neuron-to-neuron synaptic con- 45

nectivity data from CATMAID [41]. We added these neurons as 46

nodes to their respective compartments as child nodes (Step 1) 47

Preprocessing the Input Data), and encoded the synapse count 48

between them as connectivity. 49

Sagittal and transversal views can be seen in Figure 6. In 50

contrast to the other scenarios, we had to omit Step 5 - Trian- 51

gulation from layouting, which is used to generate a more even 52

distribution of nodes. The unique form of the Drosophila larval 53

brain with its elongated, slim caudal extension (thoracic gan- 54

glion in green and abdominal ganglion in orange) would have 55

been distorted otherwise. As a consequence, Figure 6 (No Con- 56

nectivity) shows a nice overall shape, but cluttered and over- 57

lapping nodes in the protocerebrum, especially in the optic lobe 58

(yellow). This effect was compensated when using the distance- 59

based Parcellation-Derived Connectivity (Figure 6, Distance). 60

The neighbourhood-based Parcellation-Derived Connectivity 61

(Figure 6, Neighbourhood) led to even better results for the 62

sagittal view, as it produced a more uniform distribution in the 63

abdominal ganglion (orange region). 64

Results: The result of re-imagine the showcase can be seen 65

in Figure 10, with the DAN-KC-MBON circuitry in the mush- 66

room body (red), inferior protocerebrum (brown), and supe- 67

rior lateral protocerebrum (green). The solid arrows represent 68

synapse count between the neurons, the dashed lines between 69

DAN-i1 nodes (in multiple regions) indicate that it is actually 70

the same neuron present in these three regions. The added 71

nodes displaced adjoined regions spatially correct. According 72

to our domain experts, this is a good first step towards repre- 73

senting neuron-level circuits with anatomical context. Further 74

enhancements, e.g., adding markers for input and output loca- 75

tions [43], i.e., sensory input, or motor output, in combination 76

with interactive information visualization (e.g., showing the in- 77

formation flow on mouse-over) could make this a valuable tool 78

for circuit research. 79

Due to the differences of the data used in this study with re- 80

spect to resolution (neuron vs region level) and scale (local con- 81

nectivity vs whole brain connectivity) in contrast to the mouse 82

and human, we did not perform a separate user study for this 83

species. 84

6. User Study 85

We performed a user study to investigate the effectiveness of 86

our proposed layouting method and visual design on the per- 87

ception of network visualization by domain experts. The objec- 88

tive was to prove the usefulness of Spatial-Data-Driven Lay- 89

outs for brain network visualization and to receive feedback 90

for future development. Ideally we wanted to include as many 91

scientists as possible, to get a wide range of opinions and to 92

be robust to individual point of views. Hence, we designed a 93

web-based questionnaire which was sent out to scientists work- 94

ing with brain networks, including computer scientists, compu- 95
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Fig. 10. DAN-KC-MBON circuitry as published by Schleyer et al. [44] (Fig-
ure 2) in the mushroom body (red), inferior protocerebrum (brown), and
superior lateral protocerebrum (green). Solid arrows represent synapse
counts between the neurons (nodes), dashed lines between DAN-i1 neu-
ron nodes (in multiple regions) indicate that it is actually the same neuron
present in these three regions.

tational biologists/bioinformaticians, and neuroscientists. The1

full questionnaire is included in the supplementary material.2

6.1. Study Design3

Evaluation of our approach was conducted on mouse and hu-4

man brain networks. We created a web-based questionnaire to5

measure user performance and user experience [25] for each6

species separately, whereby domain expert were encouraged to7

participate in the studies of the species for which they felt famil-8

iar with. The order of questions was randomized to counteract9

a learning effect.10

The studies included whole brain and partial networks in11

sagittal and transversal views. To compare our results, we also12

present visualizations with and without layouting, i.e., brain13

networks without our approach. Furthermore, we evaluated also14

the effect of the brain regions’ coloring by including gray-scale15

images. The questionnaire consists of four parts:16

(S1) Identifying Nodes/Connections: The first part was to17

measure the efficiency of the layouting in providing orien-18

tation. Therefore, we tested the viewers by checking how19

fast they can find specific nodes and connections in the20

graph compared to graphs without Spatial-Data-Driven21

Layouting. Here, we measured the time how long it takes22

to click on the node with the strongest connection to a23

given node in a whole brain network. This task was per-24

formed on different transversal views, with and without25

applied Spatial-Data-Driven Layouting, and different re-26

gions. In this experiment, the question order was random-27

ized to prevent unexpected learning effects.28

(S2) Visualization of Anatomical Context: Here, we showed29

whole and partial brain networks covering different parts30

of the brain. We varied different parameters, such as the31

Shadow Node Ratio (Section 4.2, Step 2 - Making the32

Graph Anatomically Complete) and the Number of Back-33

ground Regions (Section 4.2, Step 6 - Background Par-34

cellation), then we asked the participants to rank them by35

clarity, and how well they are suitable as paper figures and36

for educational purpose based on a Likert scale. Further-37

more, we compared artistically drawn figures from neuro-38

scientific publications [40, 20] to similar figures generated39

with our approach.40

Fig. 11. Edge routing algorithms that were used in the user study in addi-
tion to direct arrows.

(S3) Edge Visualization: Here we experimented with differ- 41

ent types of edge rendering. Participants were asked to 42

rank different numbers of edges (top 10%, 20% or 30% of 43

the edges), as well as different edge routing layouts (direct 44

arrows, organic edge routing with varied parameters, and 45

orthogonal edge routing, see Figure 11), based on clarity 46

and suitability for publications. 47

(S4) Demographic Data: The last part includes personal ques- 48

tions including the current position held by the participant, 49

level of expertise, familiarity with the brain-region ontol- 50

ogy, color-blindness, and gender. 51

The major results of the user study can are shown in Table 1, 52

and are summarized in the following subsections. 53

6.2. Results 54

We recruited eight participants for the mouse user study 55

(three female and five male participants), and six participants 56

for the human (three female and three male participants) to in- 57

vestigate the feasibility of the presented visualization. All par- 58

ticipants of the human user study took also part in the mouse 59

user study. All participants are at a senior level (postdoctoral re- 60

searchers principal investigators) with domain knowledge. Six 61

participants have worked and are familiar with the Allen Mouse 62

Brain Common Coordinate Framework [51] and three with the 63

Allen Human Reference Atlas [14]. 64

Part (S1) consists of three configuration settings of a net- 65

work covering structural connectivity over the whole brain, in- 66

cluding (a) directly projected layout, (b) Spatial-Data-Driven 67

Layout without background, and (c) Spatial-Data-Driven Lay- 68

out with background. There are in total six clicking questions 69

(for each layout, we prepared two questions) and measured the 70

task completion time. Only one participant made a mistake 71

which happened when the graph was synthesized directly from 72

the projection (a). It is straightforward that the task completion 73

time of (b) is shorter than (a), due to the few occlusions in (b). 74

In case (c) for the mouse study, the time increased compared 75

to (b), which may be because the colored background induced 76

another layer of visual complexity. This was also mentioned by 77

the participants that the concatenation of strong colors makes 78

it difficult to read the connectivity of entities in the diagram. 79

For the human study, the completion of (c) was as fast as (b). 80

This might be an effect of the more spherical form of the human 81

brain relative to the mouse brain. Here, a transversal projection 82

leads to higher deformation of the anatomical structure due to a 83
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higher displacement of the nodes. Hence, the background con-1

text supported the spatial orientation to find nodes/connections2

rather than to divert the viewers focus.3

In Part (S2), we tested different settings for the visualization,4

consisting of four questions with different hierarchy levels, two5

questions with different levels of background detail (Number of6

Background Regions), three question with varying size of back-7

ground context (Shadow Node Ratio) for sub-networks, and ad-8

ditional questions regarding coloring thereof. For the different9

hierarchy levels, we tested sagittal and transversal views, and10

the three configuration settings described in Part (S1). On av-11

erage, six participants considered our approach most visually12

preferable at coarse, middle and detailed levels, respectively.13

For the Number of Background Regions, they preferred rather14

low numbers to represent major brain regions.15

Half of the participant preferred to read sub-networks with16

the most background, i.e., highest Shadow Node Ratio, while17

the two neuroscientist with color weakness preferred simple18

sub-network without background. In comparison to full color19

images, seven out of eight participants prefer the mixture of20

gray and color background. The helpfulness of the background21

for spatial orientation was considered as for the mouse brain22

4.04 on a scale between 1 (poor) and 5 (good) and was consid-23

ered even higher with 4.58 for the human brain.24

When showing the graphs in Figure 7 and Figure 9, where25

we re-imagined a hand-crafted image from an existing work26

[40, 20] with our approach, we received an average ranking of27

3.63 (1 is poor and 5 is good) for the mouse and 3.33 for the28

human. The slightly lower score for human might be either due29

to the low number of participants (no significant difference), or30

because of the higher complexity in terms of node and edge31

count in the human figure.32

In Part (S3), we also did a comparison on various styles of33

edge rendering and various numbers of edges. Participants pre-34

ferred fewer edges for clarity due to the reduction of clutter.35

Not surprisingly, half of the participants chose the organic edge36

routing, since curve is well-known for its effectiveness of trac-37

ing a path in visualization [52].38

Finally, in Part (S4), we did not find demographic differ-39

ences, except for the preference of neuroscientists with color40

weakness for sub-network visualization without background.41

6.3. General Feedback42

We also received some general feedback from the partici-43

pants. One participant indicated that “Good work with the nice,44

comprehensive visualisations.”. Another participant mentioned45

that “the honeycomb parcellation is very nice, the edges visibil-46

ity in the long-range is quite tricky.”. Another participant sug-47

gests to us to “summarize these arrows into one arrow, pointing48

to some meaningful position in the target hierarchy, and only49

then branching out to each target area separately”, i.e to bun-50

dle edges of nodes that project between two brain regions on a51

higher hierarchy level.52

7. Discussion53

Section 5 showed the potential and relevance of our approach54

in neurobiological research on different species. The results55

of the user studies in Section 6 indicate a positive effect of 56

Spatial-Data-Driven Layouts (R1) on the perception of brain 57

networks by neuroscientists. By reproducing the results of the 58

user studies from mouse for human, we demonstrated a species- 59

independence of our approach (R2). The following discusses 60

the combined output of these studies in terms of usefulness of 61

the visual design, limitations, and potential further improve- 62

ments. 63

Visual Design. The overall approach of layouting node-link 64

diagrams representing brain networks according to their spa- 65

tial relations was perceived as intuitively by our domain experts 66

during the user studies. Here, we showed that the task of finding 67

nodes and connections in a graph can be performed faster when 68

using Spatial-Data-Driven Layouts over simple 2D projections 69

of 3D networks. Finding the nodes was possible by providing 70

the graph in perspective views, which are required to grasp the 71

orientation of the graph (R4). 72

The user studies showed that there is no unique solution to 73

how many background brain regions (determined by the Num- 74

ber of Background Regions parameter) are ideal. The partici- 75

pants rather preferred either few or many (R6). Furthermore, 76

the background can even interfere with edges, which resulted 77

in diminishing task performance in the mouse user study, part 78

(S1). 79

Furthermore, including brain regions, that are not part of sub- 80

networks as Shadow Nodes (set by the (Shadow Node Ratio), 81

was considered as highly useful, since it preserves the overall 82

shape of the brain (R1, R3) and allows the user to compare 83

different graphs. A larger Shadow Node Ratio was preferred, 84

as it provides a shape similar to a network covering the whole 85

brain. Rendering this additional context in shades of gray was 86

chosen to not divert the viewers focus, and was favored by a 87

majority of participants. 88

Limitations. In general, our approach is spatial-data-driven 89

and does not require manual re-positioning of nodes. The only 90

two parameters specific to our approach, Shadow Node Ra- 91

tio and Number of Background Regions, are mainly influenc- 92

ing the anatomical context, and not the arrangement of the 93

nodes per se. Nevertheless, the layouting is performed with 94

force-directed algorithms, which are typically not parameter 95

free. During the development of this method, we found that 96

these parameters depend strongly on the type of Parcellation- 97

derived Connectivity and the size of the graph. Our imple- 98

mentation can produce these graphs in an instant, so adapting 99

the parameters interactively via sliders (Supplementary Video 100

1) leads to brain anatomy representing graphs (R5) that also 101

retain the overall shape of the brain (R3). A way to investi- 102

gate the parameter space automatically would be to use opti- 103

mization algorithms such as gradient decent. Here, the force- 104

directed layouting parameters could be optimized towards max- 105

imizing the Parcellation-derived Connectivity between neigh- 106

bouring nodes, i.e., what is close in the anatomical reference 107

space is also close in the layout. Note, that the purpose of this 108

paper was to show that Parcellation-derived Connectivity can 109

be used for for layouting networks while maintaining spatial 110

organization. Hence, the optimization of parameters for force- 111

directed layouting was not in the scope, for they represent only 112
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Mouse Human
Participants 8 (3 female, 5 male) 6 (3 female, 3 male)
Part (S1): Median Task Completion Time
(a) directly projected layout 31s 43s
(b) SDDa layout without background 24s 32s
(c) SDDa layout with background 30.5s 30s
Part (S2) Anatomical Context
preferred our approach over 2D projection on different hierarchy levels (votes) 6 5
Number of Background Regions least | middle | most (votes) 5 | 2 | 1 0 | 6 | 0
Number of Shadow Nodes least | most (votes) 2 | 6 1 | 5
Shadow Nodes background colored | gray (votes) 1 | 7 1 | 5
helpfulness of background scoresb 4.05 4.58
visual appealing of re-imagined figureb 3.36 3.33
Part (S3) Preferred Edge Routing (votes)
direct (clarity | paper | education) 3 | 3 | 3 2 | 2 | 2
organic (clarity | paper | education) 5 | 5 | 5 4 | 4 | 4
orthogonal (clarity | paper | education) 0 | 0 | 0 0 | 0 | 0
Part (S4) Demographics
female | male 3 | 5 3 | 3
postdoc | principal investigators 5 | 3 5 | 1
neurosci. | bioinf.| comp. sci. 4 | 2 | 2 2 | 2 | 2
red-green color weakness 2 1

aSDD = Spatial-Data-Driven b1 (poor) to 5 (good)

Table 1. Results of the User-Study of Part (S1) Identifying Nodes/Connections, Part (S2) Visualization of Anatomical Context, Part (S3) Edge Visualization,
and Part (S4) Demographic Data

one exemplary way of layouting Parcellation-derived Connec-1

tivity. As a consequence, this approach would not guarantee2

keeping the overall shape of the brain.3

Another limitation is that, the background parcellation de-4

pends on the availability of Hierarchical Representation of5

Brain Regions, which is not necessarily given for every species.6

Creating a Parcellation-derived Connectivity can be also seen7

as an overhead, that not every potential user is willing to take.8

To ensure that nodes do not overlap (R8) and are evenly dis-9

tributed, we added an additional layouting step based on trian-10

gulation between nodes (Section 4.2, Step 5 - Triangulation). In11

the Drosophila usage scenario, we had to omit this task because12

its slim, caudal extension was distorted otherwise. Therefore,13

we can only recommend this step for species with bulkier brains14

such as the mouse and the human.15

Potential. Our user study showed that the figures that were16

re-imagined from hand-crafted paper illustrations are well per-17

ceived, so they could be considered for publications. However,18

more interactive features could enable this tool to be used also19

directly for neuroscience research. For example, features, such20

as highlighting the information flow from and to a node, edge21

filtering, interactive changing the networks hierarchy level, hi-22

erarchical edge bundling, or overlaying additional region-level23

data such as gene expression, might enable novel visual analyt-24

ics workflows.25

Furthermore, our proposed visualization of neuronal circuits26

in the Drosophila larval brain represents only a first step. Fur-27

ther developing the visualization to include markers for in-28

put/output locations, or a different encoding for neurons that29

span multiple brain regions, could make this approach a valu-30

able addition to currently used circuit diagrams. 31

Last but not least, we want to point out that our approach is 32

not limited to spatial brain networks. In principle, one could 33

use this approach to ”flatten” spatial 3D networks from differ- 34

ent disciplines to 2D graphs. Even without a hierarchical rep- 35

resentation of regions, and consequently without the rendering 36

of context in the background, nodes can still be layouted ac- 37

cording to their spatial relations, and therefore provide spatial 38

orientation. 39

8. Conclusion 40

In this paper, we present a novel approach to visualize brain 41

networks via spatial-data-driven layouting, and a visual design 42

to render anatomical context. Our method is data-driven, so it 43

does not require the manual definition of spatial restrictions to 44

generate anatomically feasible layouts, independent of species 45

or perspective. This is enabled by using Parcellation-derived 46

Connectivity, generated from brain atlases, to perform graph 47

layouting with standard force-directed algorithms. 48

We show in several case-studies on different species, that 49

this results in a positioning of nodes that inherently represent 50

the spatial relations between brain regions, i.e., brain regions 51

that are adjoined in the reference space are close together in the 52

graph. This indicates that our method could be applied to var- 53

ious species; generating novel anatomical layouts of neurosci- 54

entific networks. In further research, one could even investigate 55

the generalization of this approach by applying it to other dis- 56

ciplines, where ”flattening” a 3D network to a 2D space would 57

be beneficial. 58
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To provide further guidance, we developed a visual design to1

highlight the networks anatomical context. Here, we added a2

color-coded parcellation to the background of a brain network,3

to indicate major anatomical regions, and provide an overall4

shape, independent of the graph’s completeness. This back-5

ground is adaptable with regards to anatomical detail, to repre-6

sent either anatomical size or the number of connections.7

We evaluated both the layouting and the design in a web-8

based user study with domain experts from the field of neuro-9

science, computer science, bioinformatics, and computation bi-10

ology, which showed the general applicability of our approach11

for neuroscientific visualization. This suggest, that Spatial-12

Data-Driven Layouts are valuable, not only to domain experts13

working with the data, but also to their audience, to give an un-14

derstanding of brain networks that would be otherwise hard to15

grasp.16

For the future, we plan to integrate this approach into an in-17

teractive visual analytics tool to enable neuroscientists a quick18

deployment to their data, and ad hoc adjustment regarding the19

method’s parameters and brain regions of interest, to make this20

approach available to a wider audience. Furthermore, we want21

to enhance the neuron-level visualization and visual design of22

the Drosophila larval network graphs for a more detailed circuit23

representation.24
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