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Linking unstructured evidence to
structured observations
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Abstract
Many professionals, like journalists, writers, or consultants, need to acquire information from various
sources, make sense of this unstructured evidence, structure their observations, and finally create and
deliver their product, such as a report or a presentation. In formative interviews, we found that tools allowing
structuring of observations are often disconnected from the corresponding evidence. Therefore, we designed
a sensemaking environment with a flexible observation graph that visually ties together evidence in unstruc-
tured documents with the user’s structured knowledge. This is achieved through bi-directional deep links
between highlighted document portions and nodes in the observation graph. In a controlled study, we com-
pared users’ sensemaking strategies using either the observation graph or a simple text editor on a large dis-
play. Results show that the observation graph represents a holistic, compact representation of users’
observations, which can be linked to unstructured evidence on demand. In contrast, users taking textual
notes required much more display space to spatially organize source documents containing unstructured evi-
dence. This implies that spatial organization is a powerful strategy to structure observations even if the avail-
able space is limited.
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Introduction

Many professionals perform information-centric tasks,

where they need to acquire and make sense of infor-

mation from various sources.1 Examples are journal-

ists who need to research background information

around which they construct their story. Similarly,

consultants first need to understand their customers’

problems and extract information from existing rec-

ommendations and guidelines in order to come up

with specific advice for their customers. Intelligence

analysts browse documents to identify and synthesize

relevant pieces of information,2 such as the actors or

the methods involved in illegal operations. The chal-

lenge of effectively collecting, structuring, and making

sense of information is addressed by various research

communities, including cognitive psychology, human-

computer interaction, and visual analytics, and has

found its way into some commercial products.

Externalization, such as taking notes, is an essential

strategy to offload memory (‘‘external storage effect’’)

and to engage deeper into information processing

(‘‘encoding effect’’).3 Manually creating additional,

external representations supplements internal memory

representations with external representations,4 and lets

the user directly perceive the information .5 Several

studies have shown that graphical structuring is more

powerful than note-taking.6–8 Spatial grouping of con-

cepts in a graphical structure with respect to semantic
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similarity supports learning.6 and improves the per-

ception of relations.5,9 Spatial organization can be per-

formed using concept maps10 or mind maps,11 which

dictate a more or less strict underlying structure. In a

less structured form, spatial organization can also be

observed with paper documents on people’s desks12,13

or shared tables.14 If a large display space is available,

users may utilize the digital space to structure their

pieces of information.15 In general, large displays and

display ecologies can improve analysis16–18 and

increase subjective satisfaction.15 Among the opportu-

nities of large displays are the ability to subdivide the

space into focus and context,19,20 place reminders21 or

cluster windows.15 In practice, users often employ a

combination of such sensemaking approaches. This

allows to combine their strengths, but it also leads to

an unwanted fragmentation of the users’ information

and their workflow.22. How to avoid this fragmenta-

tion when extracting and structuring observations

from unstructured evidence is not well studied yet.

In this paper, we contribute quantitative findings

and qualitative observations from a user-centered

design process to characterize the sensemaking pro-

cesses of people with the goal to minimize fragmenta-

tion. Our initial design implications are derived from

formative interviews with knowledge workers from dif-

ferent professional domains. Based on these design

implications, we designed an observation graph as a

central sensemaking tool on a large display sensemak-

ing environment, which provides flexible, yet simple

methods to capture and structure observations. The

goals of the observation graph are to provide knowl-

edge workers with a less fragmented workflow to turn

unstructured evidence into structured observations

and compact visual representation of their captured

observations. The most distinguishing aspect of the

observation graph to achieve these goals is that it main-

tains clear connections between the user’s observations

and their underlying evidence.

To validate if the observation graph indeed leads to

a less fragmented workflow and a more compact visual

representation of users’ observations, we analyzed the

sensemaking processes of users performing an intelli-

gence analysis task. We let users analyze a large num-

ber of documents containing a hidden plot on a large

display, which lends itself for spatial organization stra-

tegies, similar to the ones observed on physical

desks.15. In contrast to the control group organizing

their findings through note-taking, observation graph

users in our study rarely used the large display space

to spatially organize their observations. The observa-

tions expressed through their graphs are more com-

pact than text-based notes, yet at the same time show

a much larger variety of structuring strategies. The

results thus indicate that the observation graph flexibly

links structured observations and unstructured evi-

dence into one holistic representation.

Related work

Many tools have been developed that support externa-

lization. A prominent early example to construct con-

cept maps is CMapTools,10 where users can also link

any digital resource to a concept or a linking phrase.

However, Eppler11 argues that the rigid rules of tradi-

tional concept maps and their strict top-down struc-

ture limit their applicability in practice. Tools like the

nSpace Sandbox,23 ScratchPad,24 CLIP,25 the collabora-

tive KTGraph,26 or texSketch27 enable users to struc-

ture their knowledge in an arbitrary graph, where they

also can attach evidence documents to the nodes.

InkPlanner28 aims to facilitate structured prewriting,

from early pen-and-paper ideation to gradual lineariza-

tion of a story. Others let users freely arrange extracted

entities from text editors or web browsers on a free-

form spatial interface.29–32

To support users in reaping benefits from increased

display space for sensemaking, several layout strategies

have been devised: The Analyst’s Workspace supports

piling window groups and connects entities with visual

links.33 Cambiera34 supports the spatial arrangement

and mutual awareness of opened documents.

Collaborative information linking allows multiple users

to organize windows on a large display and have their

dedicated sets of visual links.35 VisPorter36 combines

spatial document arrangement with a collaborative

concept map, and Savil37 draws visual links between

entities across multiple displays. In summary, the main

feature of most of these environments is to establish

visual links between unstructured evidences,33,35,37 as

well as between structured observations and unstruc-

tured evidence.36 Most of these examples are imple-

mented as a specialized, monolithic software

framework.33,34,36,37 In contrast, our goal was to sup-

port sensemaking with minimal information fragmen-

tation. We therefore sought to design and implement a

minimally invasive standard desktop solution, which

actively ties together evidences in arbitrary informa-

tion sources in native applications.

As it is difficult to directly compare the effectiveness

of monolithic sensemaking environments to a baseline,

most of the previously proposed systems have been

evaluated in isolation.33–37 A notable exception is a

study by Bradel et al.,38 who compared collaborative

sensemaking strategies on a large display between a

visualization-centric environment (using Jigsaw29) and

a document-centric environment using a simple docu-

ment viewer. They could show that, using a

document-centric environment, users make more use
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of the large display to lay out individual document

windows. A major difference between the two com-

pared environments is the way how windows and

visualization views are managed by the underlying sys-

tem. It is unclear whether the observed space usage

difference was caused by the window management or

the way how users structured their observations. In a

study using a similarly large display as Bradel et al.,38

we could confirm the increased display space usage

when having to solve a sensemaking task with just a

simple document viewer.39 In contrast to the study by

Bradel et al.,38 however, our minimally invasive obser-

vation graph could be studied in the same environ-

ment as the baseline. This means that the window

management was consistent across the two conditions.

In this extended paper, we present the core findings of

this study in the context of its larger design process,

including a formative interview study and the design

of the observation graph-centered sensemaking envi-

ronment based on the findings from this study. We

present qualitative, exploratory findings from the pre-

viously presented study39 that give indications how the

sensemaking environment affects the structuring of

observations to qualitatively explain the observed dif-

ferences and guide future research.

Formative interviews

To get a better understanding of possible mechanisms

to structure observations, we conducted formative inter-

views with six knowledge workers from different fields

(an experience strategist, two content-experience

designers, a communication scientist, a video producer,

and a journalist; three females and three males). What

these professionals have in common is that their primary

task is to create a product, such as design guidelines, a

website, a scientific paper, a movie script, or a newspa-

per article. To reach these goals, they need to find and

consume various pieces of information, for instance, to

understand customer needs, to research related work, to

understand the domain of a science movie, or to gather

background information for a newspaper story. These

professionals were recruited through the authors’ profes-

sional and private networks, and received a small mone-

tary compensation for their participation.

In total, we gathered 7 h of interview data, which

was audio-recorded and transcribed. In addition, we

took photos of work items and screenshots of tools

they used. We iteratively coded the interview tran-

scripts along the following questions:

� What kind of data sources are users working with?
� Which tools do they use to collect evidence and

structure observations?

� Which kind of observations do they extract from

their data sources, and how are these observations

enriched by their own reflections?
� How are the (enriched) observations structured?
� What are the shortcomings of their tools?

Summary of findings

While the professions of our interview partners are

quite diverse, there are some commonalities in their

workflows: Every professional has a clearly defined

output format – such as a newspaper article to be

entered into a dedicated layout software – and clearly

defined information sources – such as web search

engines or a press database. All professionals use dedi-

cated tools for collecting and structuring their observa-

tions and ideas. However, none of the professionals

has a clear workflow or fixed set of tools to perform

these steps. Instead, our interview partners reported a

rather opportunistic usage of tools, depending on their

task and data format. We identified three types of

information that are extracted from information

sources:

� All six interview partners extract raw text observa-

tions from their information sources. Five of the

six professionals use a text editor to paste text data

from their information sources, but also to quickly

capture insights or ideas. Two professionals addi-

tionally use a physical notebook, and one often

prints out interesting articles and annotates them

on paper. A video producer, for instance, appreci-

ates the physical notebook, as ‘‘it is difficult to draw

an arrow from here to there digitally.’’1

� Four of the six interview partners store links to

entire web resources. Three professionals use note-

taking software to store and summarize links, two

(additionally) use a text editor, and two often share

interesting links through social media channels.
� Three professionals regularly extract images from

their information sources, which are stored either

in a text editor, in a layout program (together with

textual annotations), or by taking screenshots and

saving them using an elaborate naming scheme to

be able to find them again.

Four interview partners reported that they tend to

keep potentially useful information sources – primarily

web browser tabs – open. This is generally considered

to be a work-around, as these users also sometimes

involuntarily close tabs and are not always able to find

certain tabs again. Two users therefore would prefer

having a multitude of (large) monitors. According to

the communication scientist, for instance, the
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optimum would be to have ‘‘everything visible at the

same time.’’

We observed that the creation of the final product is

often tightly intertwined with collecting observations.

The professionals described this interplay as ‘‘iterative’’

and as a ‘‘fluid process.’’ The creation of the final prod-

uct was also described as applying a structure onto the

gathered information and one’s own thoughts. We

observed different strategies how to structure the gath-

ered evidence:

� The most commonly observed structuring

approach was through text: Four of the six profes-

sionals structure their observations linearly by cre-

ating blocks of text, either in a note-taking

software, in a paper notebook, or directly in a

newspaper layout software.
� Three interviewees also use a mind mapping tool

to hierarchically organize thoughts and extracted

information. Apart from one professional who has

never attempted to use a mind map at all, all others

explained that the hierarchical structure imposed

by the mind map is perceived as too restrictive.
� Three users mentioned that they would like to have

a tool allowing them to build a network instead of

a strict hierarchy.
� Two professionals often switch to analog tools to

perform structuring by spatially arranging labeled

paper cards. One participant explained this choice

as, ‘‘What I am missing [with digital tools] is a way to

visually represent things [...]. You often only have hier-

archical options to organize that data.’’

The professionals reported very little integration

between their tools of choice. Switching between tools

was described as ‘‘stressful,’’ especially between digital

and analog tools. It was mentioned that ‘‘it would ease

the workflow if there were bridges between apps.’’ One con-

sultant mentioned that he would like to have ‘‘links,

kind of anchors in the mind map.’’ Another user stated

that ‘‘I would like to have a true hybrid between [the mind

mapping tool], a graphics program, and the text editor.’’ In

addition, users also reported that the information frag-

mentation across multiple tools makes it hard to relo-

cate original information sources. Professionals

reported that they ‘‘don’t have a good filing system so

far’’ and that they ‘‘use many different tools, [...] so I

don’t know where the things are.’’

Discussion

In summary, the most widely used sensemaking tools

by our users were simple text editors to edit or write

short text passages. This confirms findings from earlier

investigations, which showed that users often create

short textual notes as cognitive support to ‘‘think it

through on paper’’,40 and that users copy or summarize

relevant information more frequently than expressing

it through a concept map.41 We also observed that

many users store links to the original information

sources or keep many information sources open in

browser tabs. The users’ strategy to store URLs has

also been reported by Zhang and Soergel.41

Maintaining multiple open browser tabs is also a

known strategy for multitasking and to create short-

term bookmarks.42

However, the closer to the final product, the more

structure the professionals wish to impose on their

information and ideas. Thus, they sometimes use mind

map tools or physical post-its to spatially structure

their information artifacts, similarly to physical infor-

mation organization strategies observed, for instance,

by Kidd.13 These approaches, however, often lack the

desired flexibility, for instance, to be able to link arti-

facts like analog post-its and nodes in a mind map with

external information sources. In general, the structur-

ing capabilities of digital tools are considered low. To

circumvent these limitations, users employ multiple

tools, which leads to unwanted information fragmenta-

tion. In a study by Kang and Stasko,31 who analyzed

how groups of students perform intelligence analysis

tasks using tools of their choice, fragmentation of the

sensemaking workflow due to the usage of a lot of dif-

ferent tools was perceived as one of the major chal-

lenges in the workflow.

From these observations, we extracted the design

implications listed in Table 1. In the following, we will

describe how these design implications can be trans-

lated to a flexible sensemaking environment.

Observation graph

In the following, we describe the design of the obser-

vation graph guided by the design implications listed

in Table 1. While the basic principle of the observation

graph with links to external evidences (I1, I2, I3) is

similar to some existing tools,10,24,25 it is distinguished

by its visual connection of users’ observations with the

underlying evidence (I4).

Make capturing of observations easy (I1)

The observation graph supports users in the organiza-

tion of their evidence into observations, displayed as a

node-link diagram. Observations can be either created

manually in the observation graph, or directly in a

document opened in a web browser window, based on

mouse selection. In either case, users can assign a label

and node position, as well as an optional color and

comment, to the observation. When generating
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observations from within a document, the observation

automatically attaches a deep link to the selected evi-

dence statement inside the document. Users can gen-

erate edges between observation nodes by selecting

two observation nodes in the graph. Given two

selected nodes, links can either be created from a con-

text menu within the graph, or by designating evi-

dence in a source document as link between two

observations. Such direct capturing of observations

and their relations allows users to easily build an

observation graph expressing the user’s understanding

of the discovered evidence.

Provide deep linking to evidence (I2)

The observation graph lets users link each observation

to multiple pieces of evidence from the source docu-

ments, supporting the observation’s validity. Deep

links are automatically established when creating

observations from document evidence. Deep links to

evidence can also be added to observations and rela-

tions later by dragging a document selection onto a

node or link in the observation graph. Evidence can be

in the form of entire documents, but also individual

phrases or terms inside the documents. Deep links

allow a user to quickly revisit the exact piece of evi-

dence they were previously investigating.

Allow structuring of observations (I3)

To imitate behavior of physical post-its, we allow users

to freely arrange the nodes of the observation graph. In

addition, users can manually create and label edges

between any pair of nodes to express a semantic rela-

tion between the two selected concepts. Observations

can be color-coded to classify nodes. Every observation

can be given a unique name and can be associated with

additional data, such as textual notes (see Figure 1).

Details about a selected observation are provided on

demand in a side-panel.

Visually connect observations and evidence (I4)

The observation graph is designed to allow users to

not only manually externalize their observations

through the graph, but to actively connect this exter-

nalization with evidence in unstructured information

sources. The observation graph provides two function-

alities to fluidly connect these two information struc-

turing strategies:

First, deep links are bidirectional. This means that

users can revisit evidence from observations, or they

can revisit observations from evidence. In the observa-

tion graph, deep links are represented as small glyphs

adjacent to the observations. Upon selection, a corre-

sponding visual link is drawn across the desktop to the

evidence. Following a link results in a window being

opened or brought into focus. The document is auto-

matically scrolled to the location of the evidence. The

evidence itself is highlighted with a colored frame and

connected to the graph with a visual link (see

Figure 1). Conversely, when a document is opened or

receives the focus, all deep links referencing it are

highlighted in the observation graph. This enables

analysts to quickly identify how important it is with

respect to the overall information captured in the the

observation graph.

Second, the observation graph actively manages the

placement of the opened windows, so that their

arrangement reflects the user’s conceptual layout in

the observation graph. If a user opens a window to

review a linked piece of evidence, the layout algorithm

tries to place a window as closely as possible to the

selected evidence’s associated observation node in the

Table 1. Design implications derived from the formative interviews.

Observation Implication

The most widely used tool for gathering and
structuring observations is a text editor or a
physical notebook.

I1 A sensemaking environment should support
easy capturing of text-based observations.

Users often store links to online information
together with their notes.

I2 A sensemaking environment should be able to
link any observation artifact to an external
evidence.

Users wish to gradually apply a network-like
spatial structure onto their observations that
goes beyond linear text lists and strict
hierarchies .

I3 A sensemaking environment should allow
spatial arrangement and arbitrary semantic
connections between casually collected
observations.

Having to switch between tools for storing
information, capturing notes, and structuring
knowledge requires considerable cognitive
effort and leads to loss of overview.

I4 A sensemaking environment should support
fluid switching and maintain clear connections
between structured observations and
unstructured evidence.

Waldner et al. 51



graph. This leads to a dynamic spatial organization,

prioritizing the current working set. Users are free to

arrange their source documents on a display, with or

without attributing meaning to the placement.

Supported sensemaking strategies

Given these features, the observation graph users can

spontaneously adopt one of several work styles: During

initial information gathering, observation graph nodes

can serve as labeled containers (Figure 2, top). Each

node can store a list of deep links to external evidence,

as shown in the left side panel of Figure 1.

Users can also roughly categorize their information

sources by spatially organizing document windows on

the large display. In this case, cross-application visual

links43 maintain the connection of the evidence in

open windows to the structured observations in the

graph (Figure 2, bottom). When the users wish to

apply more structure to their gathered observations,

they can carefully organize the observation graph

through a spatial node layout, labeled edges, and node

color (Figure 2, bottom).

Implementation

The observation graph is implemented using a mini-

mally invasive web-based approach. It enhances a stan-

dard desktop interface, while letting the users work

with their native applications instead of proprietary

ones. It consists of three main components, which

communicate through WebSockets:

First, the observation graph itself is a simple web-

application using HTML5 and D344 for rendering.

The second component is a plug-in for the Firefox web

browser, which allows users to extract evidence from

Figure 1. Observation graph with manually color-coded concepts. Details of the selected node ‘‘POK’’ are shown on the
detail panel on the left (user notes and deep links to all attached evidence). Visual links connect an observation graph
node (‘‘Jeroen Karel’’) with a referenced piece of evidence in an open document window on the right.

Figure 2. Overview of the observation graph workflow:
Users can quickly capture text-based observations (I1),
which maintain a deep link to the original evidence (I2).
They can then organize and semantically connect their
observations (I3) and visually relate their observations to
the original evidence (I4).

52 Information Visualization 20(1)



online documents and re-open evidence from the

observation graph. Using this plug-in, users can select

observations, such as a text passage on a website, and

image, or other DOM elements. Users can add obser-

vations to the graph via a context menu for the

selected content. The selection is stored in a record

consisting of the document’s URL and two XPath

pointers, bounding a section of the DOM. To revisit

evidence from the observation graph, the plug-in

accepts remote control commands to open new win-

dows or tabs and scroll the contents of a displayed

website to the given selection. If the user requests

visual links to stored evidence, the plug-in reports

window-relative coordinates of the bounding rectangle

around the text selection. This approach works for sta-

tic web pages and many dynamic web applications, as

long as the DOM does not change in a way that invali-

dates the XPath pointers.

Third, the embedding of the observation graph and

its associated online information sources on a large

display is enabled by a service process, which controls

the window layout and renders cross-application visual

links. The service process is a C+ + native applica-

tion, which runs in the background and accepts con-

nections from other applications. These can be web

applications or other native applications, for example,

office applications that have been extended with a

plug-in. The service process optimizes placement of

windows containing links to the graph, so that they are

close to their referring node. The service process also

draws visual links between a node shown in the obser-

vation graph viewer and its source section in a web

browser window using visual links for hidden con-

tent.43 These visual links are rendered using OpenGL

on a full-screen transparent Qt window, covering the

entire desktop.

Experiment

We conducted a user study to validate whether the

central observation graph indeed leads to a less frag-

mented workflow and a more compact representation

of user observations. We therefore compared users’

sensemaking processes while conducting an intelli-

gence analysis task – supported either by the observa-

tion graph or by a plain document in a text editor to

collect findings as a baseline condition. In both cases,

users were situated on a large display, supporting spa-

tial organization of document windows and linking

these evidences in these documents using visual

links.43 Similarly to many classic note-taking studies,45

our focus lies on the analysis of the process of the users’

sensemaking rather than its product. Therefore, we

asked users to perform a complex sensemaking task

with several thousands of short articles to be investi-

gated without dedicated computational analysis sup-

port. In such a setting, the expected success rate is

diminishing within a reasonable time frame (and

therefore not comparable), but the complex process

requires creative sensemaking strategies.

Hypotheses and research questions

The goal of the observation graph is to make the sen-

semaking process less fragmented, yet let users create

more compact representations of their observations

compared to using standard tools. In other words,

users should be enabled to structure their observations

in an expressive and effective way without having to

use any complimentary sensemaking methods.

The compactness of the representation can be mea-

sured by coding the amount of observations in the

observation graph and notes document, respectively.

In the field of educational psychology, it has also been

reported that students tend to create verbatim textual

notes; but despite the extensiveness of the notes, they

sometimes fail to capture the essential information.46

In contrast, an exploratory analysis of mind maps cre-

ated by tens of thousands of users revealed that most

mind maps have a small number of nodes, which

mostly consist only of a single word.47 Davies argues

that concept maps or mind maps represent observa-

tions in a more ‘‘usable’’ way and therefore also facili-

tate learning.48 This would imply that, with the

observation graph, users can create a more condensed

representation of their observations than expressing

their observations through text, yet without losing

quality. With a complex task like ours, measuring the

quality of sensemaking process is difficult, yet we can

measure the amount of investigated documents to get

an impression of how much evidence could have been

discovered. Indeed, in a pilot study with 10 users, we

could confirm that the number of noted observations

in a text editor by users of the baseline condition was

higher than the number of nodes created by users of

the observation graph condition. In contrast, the num-

ber of opened text files was fairly similar. Therefore,

our first hypothesis H1 was that users’ text notes in the

baseline will be more detailed (i.e. containing more obser-

vations) than the created observation graphs. However, the

amount of analyzed data (i.e. the number of investigated

source documents) will be comparable.

Fragmentation of the sensemaking workflow can be

measured by comparing how much complimentary

sensemaking strategies were employed by the user. In

our study environment, sensemaking is also facilitated

by a large ‘‘space to think’’33 on the multi-monitor dis-

play, in addition to the observation graph and the

notes document. In their comparative study, Bradel
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et al.38 could confirm their hypothesis that ‘‘a higher

percentage of screen space [...] would be used in a dynamic

way to represent semantics in [the users’] findings.’’ An

alternative explanation could be that the simple docu-

ment viewer alone is not sufficient as cognitive sup-

port, so that the large display space was utilized as

complimentary vehicle to structure observations. The

utilization of the display space can be measured by the

number of concurrently open document windows and

the amount of display space covered by these win-

dows, as well as subjective user reports about their dis-

play space usage strategies. Indeed, in our pilot study,

users only utilized a small fraction of the available dis-

play space when provided with the observation graph,

while users provided with a notes document applied

various spatial organization on document windows,

using the entire available display space. Therefore, our

second hypothesis H2 was that more users would spa-

tially organize document windows containing evidences in

the baseline, while users of the observation graph condition

would rather organize their structured observations inside

the observation graph.

Due to the complexity of sensemaking tasks, such

as the one tested in our study, it is usually not possible

to directly assess the effectiveness of the users’ organi-

zation strategies. We therefore perform a qualitative

exploration of the users’ structuring approaches to bet-

ter understand their sensemaking process with respect

to the following three research questions:

RQ1: How do users structure their observations?

RQ2: How does the sensemaking environment affect the

structuring of observations?

RQ3: How do observation graph and deep linking affect

display space usage?

It has been observed that users’ externalizations,

such as mind maps, can differ considerably between

users.47 Kinchin and Hay49 described student concept

maps qualitatively and could identify three broad types

of concept maps: spoke (hierarchical), chain (sequen-

tial, describing a logical order), and net (graph struc-

ture with cycles). They argue that the net type requires

the deepest understanding of the underlying topic dur-

ing learning. On a large display, Endert et al.50

observed that most users spatially cluster document

windows topic-wise when solving an intelligence analy-

sis task. We qualitatively analyze if we can observe sim-

ilar topic-wise window structures, and whether such

structures are also reflected in the observation graph

or the users’ text document. In case display usage dif-

fers between the two experimental conditions (H2),

we qualitatively analyze complimentary spatial struc-

turing approaches using document windows and nodes

of the observation graph.

Apparatus

The study was conducted on a multi-display setup

consisting of 332 monitors (22", 192031080 resolu-

tion). The user was sitting approximately 70 cm from

the central display (Figure 3). The display setup was

about 155 cm wide, hence the displays covered about

95� of visual angle.

To search through the data, we provided users with

Recoll,2 a full-text search tool operating in the web

browser. Selecting a document in Recoll opened it in a

new window using cascading window placement. At

the beginning of the session, the Recoll window was

placed in the middle of the lower central monitor. On

the top central monitor, the empty observation graph

tool or the empty text editor was shown.

Data and task

We used the task descriptions and data from the 2011

VAST MiniChallenge 3.3 The data comprised around

4500 articles, of which 13 contained news regarding

an imminent terrorism threat in the fictious Vastopolis

metropolitan area. The remaining documents were

modified from existing news. In our study, the users’

task was to identify any terrorist threats in Vastopolis

and to provide detailed information on the threat, such

as who is planning what kind of threat, at which loca-

tion, at what time, and by which means.

Design

We used a between-subjects design, splitting 20 users

equally among two groups:

In the observation graph condition, participants

(denoted as PGn) could use the observation graph tool

in combination with deep linking between the graph

Figure 3. A user solving the sensemaking task on a large
display with the observation graph. The heat maps show
the display space usages of all the users in the two study
conditions overlaid (left: observation graph, right:
baseline).
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and document windows. Users could record informa-

tion by creating nodes and edges in the graph, as well

as by adding notes to the nodes and edges.

In the baseline condition, users (denoted as PBn)

were provided with an empty word processor docu-

ment to take notes.

In both conditions, users worked alone. They were

provided with visual links to synchronize keyword

search across open document windows. This means

that every participant had two complementary possibi-

lities to structure the information: (1) by annotating

and structuring the observation graph (or the text doc-

ument in the baseline) and (2) by organizing the docu-

ment windows on the large display and visually linking

mutual pieces of evidence.

We chose a between-subjects design, as this allowed

us to use the same task for all subjects, limit the length

of the analysis session per user, and avoid learning

effects. On the downside, between-subjects designs can

distort the results due to individual variability. We will

therefore not only report quantitative results, but also

qualitatively analyze the artifacts created by the partici-

pants and their observed and self-reported workflows.

Procedure

Users first were introduced to the tools using an unre-

lated data set. The search tool and the use of visual

links were introduced for both conditions; the observa-

tion graph was introduced only for participants in the

graph condition. After the introduction, users were

asked to replay the demonstrated actions and encour-

aged to ask questions about the setup. They were free

to test the system as long as they needed to familiarize

themselves with it. The subsequent analysis session

was limited to an hour, after which users were asked

to present their intermediate results. In a pilot study,

we observed that studies extending 1 h tended to get

exhausting for our volunteer users, but 1 h was suffi-

cient to observe a variety of structuring approaches.

The study was concluded by a semi-structured inter-

view. In this interview, we first asked users to answer

the task questions. Afterwards, we encouraged users to

describe, on a high level, their task solving strategy,

how they liked the display setup, and whether they had

a particular strategy how to use the available display

space and how to position the document windows.

Users of the observation graph were additionally asked

to explain all nodes and edges in the graph, and how

they came up with these concepts and their relations.

Logging and analysis

All sessions were video-recorded, and all graph activi-

ties (concept or edge creation, adding or removing

references), visual link activities (creation and dele-

tion), window activities (opening, closing, moving,

resizing), and keyword searches were logged. In addi-

tion, we transcribed the post-experiment interviews.

For each observation graph user, we counted the

number of nodes and edges created in the observation

graph and coded whether nodes represent entities,

such as names or places, or containers, such as ‘‘per-

sons’’ or ‘‘committed crimes.’’ Additionally, for each

graph, we counted the connected components, the

number of labeled edges, the number of colored nodes,

and the number of deep links associated with the

nodes and edges, respectively. For the documents cre-

ated in the baseline condition, we counted the number

of words, we coded and counted the entities (i.e. per-

sons, places, organizations, etc.) in the documents, the

number of paragraphs, as well as the number of manu-

ally added references to associated documents. Within

all coded entities in the observation graphs and the text

documents, we also counted how many entities are

considered ground truth entities, as provided as solu-

tion to the VAST Challenge 2011. The ground truth

solution contains a list of 28 entities, categorized into

suspected threats, events, people, organizations,

places, and others. In addition, we analyzed all post-

experiment interview transcripts and noted if users

report on the bioterrorism event, which represents the

ground truth solution of the challenge. We performed

statistical comparisons between the two groups using

Mann-Whitney U tests.

Participants

We performed a power analysis using the results for

the number of noted entities (for H1) and maximum

number of open windows (for H2) obtained from the

pilot study, where 10 users participated in total. The

power analysis revealed that a sample size of N = 10

per group is sufficient to achieve a power of 0.85 and

0.94, respectively, for a= :05.

We therefore recruited 20 knowledge workers from

an academic environment – either students, research-

ers, or administrators. Sixteen users had a background

in computer science. The other four had a medical,

linguistics, psychology, or mechanical engineering

background. Ten users were female, 10 male, aged 22

to 49. Nine users usually work with a single monitor,

ranging from a 13" laptop to a 24" monitor. The

remaining users work with two monitors up to 27". By

working in an academic environment, users were

familiar with sensemaking tasks, such as literature

research. Some users reported to have experience with

dedicated tools for information management, such as

Evernote, Mendeley, OneNote, or Trello.
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Results

To test our hypotheses, we first analyzed activities of

the two groups concerning task and information retrie-

val performance and display space management.

Afterwards, we qualitatively assessed users’ sensemak-

ing strategies by analyzing the created observation

graphs, documents, and the subjective reports about

the users’ window management strategies.

Sensemaking process

We first report on the quantitative comparisons

between the activity logs of the two groups with

respect to the amount of information consumed and

extracted, as visualized in Figure 4, row one to four.

Queries and files. Users of the baseline condition con-

ducted a significantly higher number of queries for

files (35.2 vs 18.2 average queries in the observation

graph condition, U = 90; p= :002, Figure 4, first

row). However, the number of queries conducted by a

user does not correlate with the number of opened

files (r = :33; p= :89). The number of opened files

was similar in the observation graph condition (31.1)

and in the baseline (29.3, U = 44; p= :650). The

number of distinct files that were opened was almost

equal (21.5 in the observation graph condition and

21.3 in the baseline, on average, see Figure 4, second

row). This implies that both groups consumed approx-

imately the same amount of provided text information,

as also observed in the pilot study. On average,

though, users of the observation graph had a lower

fraction of files that were opened only once (74% vs

81%), but this difference is not statistically significant

(U = 34; p= :247). The average number of file revi-

sits was 8.4 for the observation graph and 5.6 for the

baseline. This means that, using the observation

graphs, users had a slightly higher tendency to re-open

files that had already been closed.

Entities. In total, we counted more entities noted by

baseline users in the text document (28 on average)

than nodes created by observation graph users (15.7

on average, Figure 4, third row). This difference was

expected, but it did not reach statistical significance

(U = 73, p= :082). Users of the baseline noted

slightly more ground truth entities, but this difference

is not significant (U =42:5; p= :267). As visualized

in Figure 4, fourth row, most users of either condition

did not note any ground truth entities at all. As shown

in Figure 6, the number of noted ground truth entities

contained in the graph or noted in the text editor does

not necessarily depend on the overall number of noted

entities.

Plot. Two users of the observation graph condition

and three users of the baseline condition mentioned

parts of the ground truth plot in the post-experiment

interview. Note, however, that only around 0.3% of

the provided documents contained information related

to the ground truth solution. On average, users opened

30 files during the study, which is around 0.6% of all

provided documents. We therefore do not have suffi-

cient evidence to conclude whether the sensemaking

environment had an influence on the ability to reveal

the ground truth plot. This was expected, since 1 h

per participant is not sufficient to genuinely judge the

plot understanding. To explore potential alternative

success criteria, we performed an a-posterior explora-

tory analysis of the measures in Figure 4 between the

five users that revealed parts of the ground truth plot

and to the remaining 15 users. The largest mean dif-

ference between these two groups was found for the

number of opened documents (41.2 documents

opened on average by successful users compared to

26.6 by unsuccessful users). This difference is not sta-

tistically significant (U = 57:5; p= :081), but it can be

considered as indication that the participants’ success

was primarily determined by how much information

they managed to consume.

We therefore cannot confirm our first hypothesis

H1: There is only an insignificant tendency by participants

of the baseline condition to note more observation entities.

Baseline users conducted significantly more keyword

queries, but did not consume more information than users

of the observation graph condition.

Display space management

To verify our second hypothesis, we analyzed the activ-

ity logs related to window management, display space

usage, and visual links usage (see Figure 4, rows five to

seven).

Document windows. As expected, we found a signifi-

cant difference between the groups with respect to the

number of document windows the users kept open on

the display. As shown in Figure 4, fifth row, the maxi-

mum number of open windows was significantly

higher for the baseline (10.3 on average) than for the

observation graph group (5.9 on average;

U = 83; p= :012). As the number of opened files was

similar between the groups, we can conclude that

baseline users tended to keep their documents open

and visible for a considerably longer period of time

compared to users of the observation graph. Indeed,
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in the post-experiment interview, baseline users

reported more frequently that they did not close any

file windows at all (PB4 and PB9) or closed windows

only when the content was clearly irrelevant (PB1,

PB5, PB7, PB8). As an example of such a workspace,

the final window arrangement of PB7 is shown in

Figure 5. In contrast, the majority of observation

graph users reported that they closed documents ‘‘right

after usage’’ (PG1, PG4, PG5, PG6, PG7, PG9).

Display space. The maximum number of open win-

dows positively correlates with the maximum used dis-

play space (r = :699; p \ :001, Figure 4, sixth row):

while the observation graph users covered no more

than 49% of display space, on average, the baseline

users had an average peak display coverage of 71%.

This difference is also statistically significant

(U = 82:5; p= :014). This indicates that baseline

users did not just leave the windows open in the

Figure 4. Histograms of the number of conducted queries, the number of unique documents opened, the number of
coded entities in the observation graph or document, the number of ground truth entities, the maximum number of
concurrently open windows, the maximum fraction of available display space covered by windows, and the number of
visual links initiated for the 10 observation graph users (left) and the 10 baseline users (right) in the experiment.
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original cascaded structure, but positioned them

to increase the content visibility (see heatmaps in

Figure 3).

Visual links. In accordance with the higher number of

open document windows, visual links were utilized sig-

nificantly more often in the baseline condition (5–34

times) than in the observation graph condition, where

half of the users did not use visual links at all

(U = 90:5; p= :002). Visual link usage is shown in

Figure 4, last row. There is a weak positive correlation

between the maximum number of concurrently open

windows and the frequency of visual link usage

(r = :447; p= :048). Indeed, many baseline users

explained that they kept windows open to be able to

find related information (again) using visual links. For

instance, user PB6 stated: ‘‘Especially for finding words

again in a large text it was very important. [...] Because

you don’t have time to read everything.’’ PB4 especially

appreciated linking to hidden content: ‘‘[Links were

helpful] especially when documents were overlapping, so

that you could see that there is something hidden behind.’’

This also confirms our second hypothesis H2: Even

though baseline participants did not open more text files,

they tended to keep the document windows open and visible

unless the content was really irrelevant. The number of open

windows correlates with the amount of used display space

and the usage of visual links, which were both significantly

higher for the baseline users.

Graph structure

The average observation graph created during the

study had around 20 nodes and 16 edges with 15 deep

links to text files associated with nodes and just one

deep link attached to edges. As expected from prior

work,47 there were considerable differences in the way

users structured their observation graphs. However,

the observation graphs created by the users did not

necessarily correspond to the three concept map types

reported by Kinchin and Hay,49 that is, spoke, chain,

and net. We observed no instance of a chain structure.

Only three users (PG5, PG9, and PG10 created

graphs with cycles, that is, net graphs. PG9 and PG10

manually created multiple high-level nodes at the very

beginning of the task. PG9 explained: ‘‘First, I created

who, what, where, how, when, why.’’ Then, sub-nodes

were added as new text files were investigated: ‘‘The

main nodes, I created manually [...]. But whenever there

were keywords in the text, I took them directly out of the

document (PG10).’’ Edges and references were also gra-

dually added: ‘‘When I found, for instance, a super-group,

like a terrorist group, then I created a node for it. As soon

as I found more information about the different groups, I

added nodes to them, which are more special [...], and they

get connections on the fly, during the research (PG5).’’ In

Figure 6, it is illustrated that two of these three users

had mapped some ground truth entities, which may

indicate that they had already obtained a solid under-

standing of the potential plot. This would support the

speculation by Kinchin and Hay49 that a ‘‘net-like’’

structure in a concept map may be an indication of a

deep understanding of the topic.

Only two graphs were organized strictly hierarchi-

cally (PG2 and PG3), similarly to the previously

described spoke structure49 of concept maps. PG2

described this approach as follows: ‘‘I created a big node

‘potential attacks’, and from there on, I abstracted it.’’

Figure 5. Final window arrangement of PB7 with windows partitioned into four different topics and visual links
highlighting all occurrences of the term ‘‘Vastopolis’’ from the search window.
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Unexpectedly, more than half of users (PG1, PG4,

PG6, PG7, PG8, PG10) created observation graphs

that were fragmented into up to 13 connected compo-

nents. Five of these graphs contained at least one iso-

lated node. For example, PG6 created isolated trees

for questions like ‘‘who,’’ ‘‘where,’’ ‘‘when,’’ etc. (see

Figure 7(a)). He described his strategy as follows:

‘‘nodes for basic questions, roughly structured what you sus-

pect where and when [...] If I found an interest keyword

during my search, I roughly put them [the file references]

inside, so that I can browse them later.’’ This implies that

the observation graphs were, at least partially, struc-

tured rather casually and abstract.

To systematically categorize the characteristics of

the user-created observation graphs, we obtained six

graph features: the number of nodes, the number of

edges, the number of deep links attached to nodes, the

number of deep links attached to edges, the number of

connected components, and the percentage of con-

tainer nodes, that is, nodes that do not refer to an

observation but describe a general topic, such as ‘‘peo-

ple.’’ The graph features were standardized by remov-

ing the mean and scaling them to unit variance. In this

standardized feature space, we clustered the 10 obser-

vation graphs using k-means. We obtained the best

clustering resulting in a silhouette coefficient of 0.55

with k= 5 clusters. A qualitative description of these

clusters is provided below:

� fragmented graphs (users PG4, PG6, PG7) with a

relatively high number of nodes (;25), few edges

(;13), and therefore many isolated sub-graphs

(;11),
� small graphs (users PG2, PG3, PG8) with very few

nodes (;9), a very low number of edges (;7), and

few deep links (;9),
� one container ‘‘graph’’ (user PG1) with only five

container nodes, two edges, but 14 deep links,
� large graphs (users PG9, PG10) with a large num-

ber of nodes (;35), a lot of edges (;33), and

many deep links attached to nodes (;27), and

� one dense graph (user PG5) with a lot of edges

(29) and a high number of deep links attached to

edges (6).

Examples for each graph type are given in Figure 7.

As illustrated by the examples in Figure 7, observation

graphs were structured topic-wise – often along multi-

ple orthogonal aspects, such as persons, places, or

events.

Document structure

The text editor we provided offered standard features

to structure text-based information, such as font size,

font color, font style, background color, etc. However,

none of the participants used any of these text struc-

turing features. What all users mainly relied on was to

structure the collected observations through para-

graphs. The documents were primarily structured into

topic-wise paragraphs – either person-wise (PB1), by

potential terrorist targets (PB8, as shown in Figure

8(a)), by a larger variety of topics (PB6 and PB9), or

by a mixture of topic- and document-wise structuring

(PB2 and PB10). In contrast, the remaining docu-

ments were structured into paragraphs summarizing

the individual investigated source files (PB3, PB4,

PB5, PB7).

Except for one user, every participant added file

references into their document. Being able to more

easily return to the original documents was explicitly

mentioned as a desirable feature by user PB10: ‘‘That

you are really able to access the file from your note docu-

ment. That would be a hit!’’

To qualitatively describe the finally created docu-

ment structures, we therefore considered the following

four document features: the number of coded entities

in the document, the number of paragraphs, the num-

ber of file references in the document (either by docu-

ment title or document name, which was a four digit

number in this study), and the number of words. The

best silhouette coefficient was reached with k=3

Figure 6. Number of entities per participant in the observation graph condition (left) and in the baseline (right).
The green portion of the bar shows the fraction of ground truth entities. The asterisk indicates participants that reported parts of the
ground truth plot in the post-experiment interview.
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(0.66) in the standardized feature space, leading to the

following clusters:

� short documents (users PB1, PB2, PB3, PB6,

PB7, PB8 shown in Figure 8(a), PB9, PB10) with

;170 words, ;27 entities, little structure (;6

paragraphs), and few file references (;7),
� one long document (user PB4) with almost 500

words, 18 paragraphs, 99 entities (see Figure 6),

and 20 file references,
� one container document (user PB5, Figure 8(b))

containing ;1600 words copied from four text

files.

In summary, a major difference to the observation

graph users was that almost half of the baseline users

did not structure their observations topic-wise, but

rather created short summaries of the source evidence

files. In addition, text documents only contained

around eight references to source files – compared to

an average number of 15 deep links per observation

graph.

Window structure

To finally characterize how users structured their doc-

ument windows on the large display, we analyzed their

strategies described in the post-experiment interviews.

The reported strategies could be grouped into three

categories:

� topic-wise window organization (as employed by

users PG2, PG8, PG9, PB1, PB4, PB7; see Figure

5), where windows of text files with similar content

(e.g. the same terrorist group, a similar threat, or

the same people) were spatially grouped together,

sometimes also using a similar spatial arrangement

as in the observation graph (see Figure 9) or a sim-

ilar topic-wise grouping as in the document (cf.,

Figure 8(a)),
� function-wise window organization (as employed

by users PB2, PB6, PB10), such as highly impor-

tant documents on one side of the display and tem-

porarily relevant documents on the other side, and
� unstructured window arrangement (as employed

by users PG1, PG3, PG4, PG5, PG6, PG7, PG10,

PB3, PB5, PB8, PB9), where windows were placed

only for collision avoidance or closed after reading.

This shows that more than half of the baseline users

organized their file windows either according to their

content or function. For instance, PB4 grouped win-

dows according to the potential terror groups: ‘‘The left

upper part is this Mr. Eldred and his terror stories. Right

Figure 7. Examples of user-created graphs for each cluster: (a) fragmented graph (PG6), (b) small graph (PG3), (c)
container (PG1), (d) large graph (PG9), and (e) dense graph (PG5).
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bottom is this Afghanistan connection with the different

war lords. Left bottom is the Asia group and right top were

connections between the different things – not possible to

categorize after discovery.’’ This is similar to previously

reported topic-wise window clustering strategies on

large displays.50

PB10, on the other hand side, distinguished

between different types of window functions: ‘‘Left

side: storage, always open, important. right side: more tem-

porary.’’ This is comparable to findings by Bi and

Balakrishnan,20 who found that users tend to separate

their large display space into a central focus region for

primary tasks and a peripheral region for secondary

application windows.

Note that most observation graph users did not

report any structured approach towards window man-

agement. PG6, for instance, closed the windows ‘‘right

after usage to keep the space tidy,’’ and PG1, ‘‘when I

believed that I had extracted the relevant information.’’ In

particular, no observation graph user employed

function-wise window organization. This can partially

explain the lower number of open windows and used

display space by the observation graph users.

Discussion

With this study, we could partially confirm our two

initial hypotheses: Using text notes, users have only a

weak tendency to record more observations than using

an observation graph, but users utilize significantly less

display space if they structure their observations in a

graph. From our qualitative, exploratory analysis, we

derive possible answers for our three open-ended

research questions. We present these observations as

hypotheses for further research, shown as italic text, in

the following sections.

RQ1: How do users structure their
observations?

One commonality between the two groups of users

was that no user of the baseline and only a single

observation graph user employed the option to color-

code the text-based observations, to change the font,

or font size. Both groups relied almost exclusively on

linear structuring of the notes in the text document or

spatial organization and connection of observation

graph nodes. This corresponds to the information

structuring strategies our users reported in the forma-

tive interviews, where highlighting, colors or fonts

played a negligible role. We conclude that users rarely

use any structuring methods beyond linear text structuring

or spatially arranging concepts and connecting them.

Observation graph users employed a variety of ways

to structure their graphs. Contrary to structures

observed in concept maps,49 observation graphs were

often only casually organized and fragmented into dis-

connected sub-graphs (Figure 7(a)). This observation

Figure 8. A short document and the container document created by two baseline users in the study: (a) short document
(PB8), and (b) container [excerpt] (PB5).
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is also supported by our interviews, where users

explained that the hierarchical structure of mind maps

is too restrictive. We therefore speculate that many

users expect to connect their observations into a rather

casual graph structure.

From our study, it is not possible to determine if the

degree of structure in the observation graph is benefi-

cial for solving a sensemaking task. We have a weak

indication that users that created a well-structured

graph (i.e. strictly hierarchical, dense, or large) had a

higher fraction of ground truth entities as nodes com-

pared to users creating more unstructured small or frag-

mented graphs. Reports from the formative interview

support this assumption as users explained that they

wish to apply more detailed structure on their informa-

tion and ideas the closer they are to reaching the end of

their task. It therefore seems that the better the users’

understanding of the information, the more structured

they wish to organize their observations in the graph.

RQ2: How does the sensemaking environment
affect the structuring of observations?

A considerable, yet statistically insignificant, difference

between the two groups was the number of entities

noted by the users, which was higher in the baseline

(see Figure 6). One explanation could be that structur-

ing the observation graph requires more effort than

making textual notes. This explanation is supported by

the higher number of queries conducted by the base-

line users. It is also supported by some user feedback,

such as PG7 who stated that creating edges was a bit

tedious. This is an indication that design implication

I1 was not sufficiently supported by our prototype.

Future work should investigate how observations can

be recorded more effortlessly without compromising

the ability to apply rich structure.

However, the amount of information consumed was

comparable. Therefore, another explanation is that the

observations are indeed more condensed in a graph

than in a text document. This assumption is also sup-

ported by prior work, which has shown that mind maps

are often surprisingly small.47 In contrast to the obser-

vation graphs, text documents were often less abstract,

with individual paragraphs merely summarizing the

content of dedicated source files. We see this as indica-

tion that an observation graph facilitates a more abstract,

compact reporting of observations compared to textual notes.

RQ3: How do observation graph and deep
linking affect display space usage?

Users of the observation graph employed the large

workspace much less than the baseline users. There

are several possible explanations for this behavior:

First, Bradel et al.48 argue that it depends on the

window management approaches of the employed sen-

semaking tools how display space is utilized. In our

Figure 9. Screenshot of the display of PG2 after the study: This user spatially arranged document windows similarly as
the nodes in the small observation graph according to the topics ‘‘rebel attack’’ (left), ‘‘computer hackers’’ (top right),
and ‘‘kurds’’ (bottom right).
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study, however, we observed a significant difference

between the two experimental conditions in terms of

display space usage despite identical window manage-

ment of source documents. We therefore conclude that

the window management is not the only factor influencing

users’ display space usage strategies.

Second, it might be that observation graph users

already express their knowledge spatially by placing

nodes in the graph, while, for baseline users, spatially

arranging document windows is the only option to

apply spatial organization to the information. It seems

that users prefer to spatially organize their observations on

a high level of abstraction.

An alternative explanation is that users had a stron-

ger tendency to keep file windows open, if there was

no easy option to re-open them. This is supported by

ample positive feedback about the ability to return to

the original evidences from graph nodes, as well as by

the fact that nine out of ten 10 baseline users manually

entered the names of the files containing evidence

related to a noted observation. Note that, in the forma-

tive interview, users also reported that they often store

links to online resources to be able to find information

again. Finding the relevant evidence again was clearly

easier in the observation graph by virtue of the deep

links. Therefore, we believe that deep links to source evi-

dence reduce the need to keep information sources open.

In addition to the reduced display space require-

ment, users of the observation graph also used visual

links across the document windows much less fre-

quently. It may be that the need to determine connec-

tions between pieces of evidence via visual links was

not required in the observation graph, where observa-

tions could be connected manually. Even though our

visual links also reveal hidden content, users tried to

maximize content visibility: The more frequently users

employed visual links, the more display space they

seemed to require. Visual links are appreciated to visua-

lize connections between pieces of evidence, but only if no

other way to reveal connections (e.g. through edges in an

observation graph) is provided – and they require a lot of

display space.

Conclusion and future work

Through a user-centered design approach, we

designed and validated an observation graph to cap-

ture and structure observations during information-

rich tasks. In formative interview, users reported that

taking text-based notes is most effortless and that

dedicated sensemaking methods, like mind maps, are

often too restrictive, even though spatial structuring is

considered powerful. In contrast to more rigid mind

maps and concept maps, it seems that users prefer to

gradually construct a spatial observation structure,

where entities can be spatially organized, sparsely con-

nected with each other, and linked to their respective

source information. Indeed, our study has shown that

users structure their findings primarily within the

observation graph, leading to a less fragmented and

more compact structure of their observations com-

pared to users taking textural notes. This shows that

spatial organization strategies previously observed on

physical desks12,13 or large displays15,50 can also be

supported on considerably smaller display space

through flexible observation graphs.
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Notes

1. User quotes partially translated from German to English.

2. http://www.recoll.org/

3. http://www.cs.umd.edu/hcil/varepository/benchmarks.php#

VAST2011
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