Pacific Graphics 2021

Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

Johannes Unterguggenberger, Bernhard Kerbl, Jakob Pernsteiner, and Michael Wimmer

> TU Wien, Institute of Visual Computing & Human-Centered Technology, Austria

Clusters!

Skinned Meshes

Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

- Skinned, animated models
- Underlying skeleton
 - Bone hierarchy
 - Hierarchical transformation

"Gawain" model © by Unity Technologies, provided through their "The Heretic: Digital Human" package.

Skinned Mesh...lets

Conservative Meshlet Bounds for Robust Culling of **Skinned Meshes**

- Skinned, animated models
- Underlying skeleton
 - Bone hierarchy
 - Hierarchical transformation
- Vertices (the skin)
 - Assigned to one or multiple bones
 - Transformed by bones (weighted)

"Gawain" model © by Unity Technologies, provided through their "The Heretic: Digital Human" package.

Meshlets!

Fragment

Shader

a meshlet **Classical graphics pipeline:** Vertex Tess.Ctrl. Tess.Eval. Input Tessellator Shader Shader Assembly Shader

Conservative Meshlet Bounds for **Robust Culling of Skinned Meshes**

- **Meshlets**
 - Small clusters of geometry
 - E.g., small patch of indexed geometry
- New shader stages (task and mesh) for efficient processing
 - within rasterization pipelines

Geometry

Shader

- Using Vulkan with Nvidia extension
 - Max. 64 vertices and 126 triangles

Rasterizer

Meshlets!

Conservative **Meshlet** Bounds for Robust Culling of Skinned Meshes

- Meshlets
 - Small clusters of geometry
 - E.g., small patch of indexed geometry
- New shader stages (task and mesh) for efficient processing
 - within rasterization pipelines
 - Using Vulkan with Nvidia extension
 - Max. 64 vertices and 126 triangles

a meshlet

Classical graphics pipeline:

Vertex

Shader

Tess.Ctrl.

Shader

Mesh Shader-Based Graphics Pipeline

Conservative **Meshlet** Bounds for Robust Culling of Skinned Meshes

- Meshlets
 - Small clusters of geometry
 - E.g., small patch of indexed geometry
- New shader stages (task and mesh) for efficient processing
 - within rasterization pipelines
 - Using Vulkan with Nvidia extension
 - Max. 64 vertices and 126 triangles

a meshlet

WIEN

a meshlet

Conservative Meshlet Bounds for **Robust Culling** of Skinned Meshes

Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

Fine-Grained Culling of Meshlets

Fine-Grained Culling of Meshlets

Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

Meshlet Under Animation

Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

What happens to our meshlet under animation?

Meshlet Under Animation

Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

What happens to our meshlet under animation? Let's animate that bone, which in turn transforms the meshlet's vertices.

Meshlet Under Animation

Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

The meshlet's **shape** changed...

Johannes Unterguggenberger et al.

Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

The meshlet's original bounding box...

...which is a problem in terms of its bounds.

Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

...no longer encompasses all vertex positions in the transformed state.

Also, the face normals distribution has changed under animation.

Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

Meshlet Bounds Algorithm:

- 1. Compute all vertex bounds
- 2. Combine into *meshlet bounds*

Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

Meshlet Bounds Algorithm:

- 1. Compute all vertex bounds
- 2. Combine into *meshlet bounds*

Initialize: Bounds at t=0

Johannes Unterguggenberger et al.

Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

Calculate: 1. Bounds from t=0 to t=1 per vertex

Johannes Unterguggenberger et al.

Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

- 1. Bounds from **t=0** to **t=1** per vertex
- 2. Meshlet bounds = min and max bounds

Normals distribution based on vertex bounds, too

Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

Choice of **space** where to store/calculate vertex/meshlet bounds

Bounds from t=0 to t=1

Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

Choice of space: Space of the **most influential bone** Bounds from t=0 to t=1

Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

<u>Choice of space:</u> Space of the **most influential bone**

We are going to:

- Compute initial bounds in that space
- Transform bounds with that space

Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

Transform bounds **with** that space

Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

Calculate bounds for all animation intervals of interest!

Transform bounds with that space

Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

Calculate bounds for all animation intervals of interest! from t=0 to t=1 from t=1 to t=2

Johannes Unterguggenberger et al.

Calculate bounds for all animation intervals of interest! from t=0 to t=1 from t=1 to t=2

Calculate bounds for all animation intervals of interest! from t=0 to t=1 from t=1 to t=2

Calculate bounds for all animation intervals of interest! from t=0 to t=1 from t=1 to t=2

Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

Calculate bounds for all animation intervals of interest!

from **t=0** to **t=1** from **t=1** to **t=2** from **t=2** to **t=3**

for each meshlet in a **precomputation step**

- Low-overhead culling in task shaders
 - Low memory consumption
 - Low memory bandwidth

for each meshlet in an adaptive precomputation step

for each meshlet in an adaptive precomputation step

for each meshlet in an adaptive precomputation step

for each meshlet in an adaptive precomputation step

Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

from **t=0** to **t=1** from **t=1** to **t=2** from **t=2** to **t=3**

for each meshlet in an adaptive precomputation step

Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

from t=0 to t=0.5 and t=0.5 to t=1 from t=1 to t=1.5 and t=1.5 to t=2 from t=2 to t=2.5 and t=2.5 to t=3

for each meshlet in an adaptive precomputation step

Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

from t=0 to t=0.3 and t=0.3 to t=0.6 and t=0.6 to t=1 from t=1 to t=1.3 and t=1.3 to t=1.6 and t=1.6 to t=2 from t=2 to t=2.3 and t=2.3 to t=2.6 and t=2.6 to t=3

Trade precomputation effort for better runtime performance, due to better bounds.

- ≥ 94% view frustum cullable
- ~60%–90% backface cullable

In Our Paper...

Please consult our paper for:

- Vertex bounds algorithm
- Conservative rotation bounds extension (Derivative of Rodrigues' Rotation Formula)
- Vertex bounds combination for linear blend skinning
- Conservative normal
 bounds from vertex bounds
- Results, Percentages, ...
- Discussion
- Future work

no culling BFC off, VFC on BFC off, VFC on

GPU	Scene	BFC only	VFC only	BFC+VFC
		Culled Faster	Culled Faster	Culled Faster
RTX 2060			31.3%26.3%31.4%27.1%	
RTX 3070		11.4% 7.8% 11.5% 7.9%	31.3% 26.1% 31.4% 27.2%	39.9% 34.0% 39.7% 35.4%

no culling BFC on, VFC off BFC off, VFC on BFC on, VFC on

GPU	Scene	BFC only	VFC only	BFC+VFC
		Culled Faster	Culled Faster	Culled Faster
RTX 2060			31.3%26.3%31.4%27.1%	
RTX 3070		11.4% 7.8% 11.5% 7.9%	31.3% 26.1% 31.4% 27.2%	39.9% 34.0% 39.7% 35.4%

no culling BFC off, VFC on BFC off, VFC on

GPU	Scene	BFC only	VFC only	BFC+VFC
		Culled Faster	Culled Faster	Culled Faster
RTX 2060			31.3%26.3%31.4%27.1%	
RTX 3070		11.4% 7.8% 11.5% 7.9%	31.3% 26.1% 31.4% 27.2%	39.9% 34.0% 39.7% 35.4%

no culling BFC on, VFC off BFC off, VFC on BFC on, VFC on

GPU	Scene	BFC only	VFC only	BFC+VFC
		Culled Faster	Culled Faster	Culled Faster
RTX 2060			31.3%26.3%31.4%27.1%	
RTX 3070		11.4% 7.8% 11.5% 7.9%	31.3% 26.1% 31.4% 27.2%	39.9%34.0%39.7%35.4%

no culling BFC off, VFC on BFC off, VFC on

GPU	Scene	BFC only	VFC only	BFC+VFC
		Culled Faster	Culled Faster	Culled Faster
RTX 2060		11.4%8.1%11.5%8.5%		39.9% 33.8% 39.7% 35.4%
RTX 3070		11.4% 7.8% 11.5% 7.9%	31.3% 26.1% 31.4% 27.2%	39.9%34.0%39.7%35.4%

Pacific Graphics 2021

Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

"Gawain" model © by Unity Technologies, provided through their "The Heretic: Digital Human" package.

Johannes Unterguggenberger, Bernhard Kerbl, Jakob Pernsteiner, and Michael Wimmer TU Wien, Institute of Visual Computing & Human-Centered Technology, Austria

Conservative Rotation Bounds

Rodrigues' Rotation Formula

Rotating a vector in space, given axis and angle of rotation.

Quaternions can be converted into that form.

Conservative Rotation Bounds

Conservative Rotation Bounds

$$\mathbf{v'} = \mathbf{v}\cos\theta + (\mathbf{n} \times \mathbf{v})\sin\theta + \mathbf{n}(\mathbf{n} \cdot \mathbf{v})(1 - \cos\theta). \tag{3}$$

We use its first-order derivative by θ to find those angles that lead to maximum extents in each of the principal axes' directions. Setting that first-order derivative of Equation (3) by θ to zero in order to find the extrema results in Equation (4)

$$\mathbf{x}_{\mathbf{\theta}} = -\tan^{-1} \frac{\mathbf{n} \times \mathbf{v}}{\mathbf{n}(\mathbf{n} \cdot \mathbf{v}) - \mathbf{v}},\tag{4}$$

which yields a vector of angles x_{θ} in radians that represents the rotation angles which lead to maximum extents in each principal axis direction. Please note that the operations in Equation (4) mean component-wise application of the division and tan⁻¹.

Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

Johannes Unterguggenberger, Bernhard Kerbl, Jakob Pernsteiner, and Michael Wimmer TU Wien, Institute of Visual Computing & Human-Centered Technology, Austria

Vertex Bounds

Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

Key Distinction to Previous Work: Our algorithm computes **bounds per animation interval**,
i.e., *NOT* at a specific animation time.

Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

Previous approaches:

conservative bounds **at** t=0.5

Because if we know

across all animation states

=> very efficient culling in task shader

no computation/memory fetch for different animation states per meshlet with **constant scaling factor**

Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

Our approach: conservative bounds from t=0 to t=1

Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

Our approach: conservative bounds from t=0 to t=1

Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

Our approach: conservative bounds from t=0 to t=1

Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

Our approach: conservative bounds from t=0 to t=1

Our approach: conservative bounds from t=0 to t=1

Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

Our approach: conservative bounds **from t=0 to t=1**

Vertex Bounds Algorithm:

- Compute bounds of *all* **individual bones** of influence (weight != 0) as if they had weight 1

 a) Initial bounds
 - b) Step-wise towards target bone
 - c) Conservatively extend
- 2. Combine weighted into **vertex bounds** according to the skinning method used (LBS)

Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

Our approach: conservative bounds from t=0 to t=1

Contribution:

Conservative extension by maximum rotations in x, y, z through a derivative of Rodrigues' Rotation Formula

Vertex Bounds Algorithm:

- Compute bounds of *all* **individual bones** of influence (weight != 0) as if they had weight 1 a) Initial bounds
 - b) Step-wise towards target bonec) Conservatively extend
- 2. Combine weighted into **vertex bounds** according to the skinning method used (LBS)

Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

Our approach:

conservative bounds from t=0 to t=1

as precomputation step

Vertex Bounds Algorithm:

- Compute bounds of *all* individual bones of influence (weight != 0) as if they had weight 1 a) Initial bounds
 - b) Step-wise towards target bone
 - c) Conservatively extend
- 2. Combine weighted into vertex bounds
 - according to the skinning method used (LBS)

Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

Our approach: conservative bounds from t=0 to t=1

Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

Our approach:

conservative bounds **from t=0** to **t=1**

from t=0 to 0.5 and t=0.5 to 1

Adaptive precomputation step for arbitrarily narrow bounds.

Johannes Unterguggenberger et al.

Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

Our approach: conservative bounds **from t=0** to **t=1**

> from t=0 to 0.5 and t=0.5 to 1 from t=0 to 0.3 and t=0.3 to 0.6 and and t=0.6 to 1

Adaptive precomputation step for arbitrarily narrow bounds.

Trading precomputation effort for better runtime performance, due to better bounds.

Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

- **High memory** consumption
- **Increased memory** bandwidth
- More cache misses

Calculate bounds for all animation intervals of interest!

from **t=0** to **t=1** from **t=1** to **t=2** from **t=2** to **t=3**

