
Pacific Graphics 2021
E. Eisemann, K. Singh, and F.-L Zhang
(Guest Editors)

Volume 40 (2021), Number 7

Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

J. Unterguggenberger , B. Kerbl , J. Pernsteiner and M. Wimmer

TU Wien, Institute of Visual Computing & Human-Centered Technology

Abstract
Following recent advances in GPU hardware development and newly introduced rendering pipeline extensions, the segmentation
of input geometry into small geometry clusters—so-called meshlets—has emerged as an important practice for efficient rendering
of complex 3D models. Meshlets can be processed efficiently using mesh shaders on modern graphics processing units, in order to
achieve streamlined geometry processing in just two tightly coupled shader stages that allow for dynamic workload manipulation
in-between. The additional granularity layer between entire models and individual triangles enables new opportunities for
fine-grained visibility culling methods. However, in contrast to static models, view frustum and backface culling on a per-meshlet
basis for skinned, animated models are difficult to achieve while respecting the conservative spatio-temporal bounds that are
required for robust rendering results. In this paper, we describe a solution for computing and exploiting relevant conservative
bounds for culling meshlets of models that are animated using linear blend skinning. By enabling visibility culling for animated
meshlets, our approach can help to improve rendering performance and alleviate bottlenecks in the notoriously performance-
and memory-intensive skeletal animation pipelines of modern real-time graphics applications.

1. Introduction

Recently, a strong trend towards extremely high geometric detail
and dividing meshes into primitive clusters has emerged in the
field of real-time rendering. Technologies like Epic Games’ Nanite
[KSW21] enable extremely high geometric detail for static meshes,
using cluster culling to minimize frame times. The same level of
detail is bound to become relevant for animated models in the near
future to match the static environment. To this end, we propose a
novel approach to help realize this goal: we describe an algorithm
for calculating conservative spatio-temporal bounds for positions
and normal orientations of primitive clusters. The so precomputed
information can be used for efficient view frustum culling (VFC),
backface culling (BFC), and rendering in compute-based pipelines,
but also applies to hardware rasterization on modern graphics pro-
cessing units (GPUs) with support for task and mesh shaders.

Task and mesh shaders (named amplification and mesh shaders in
DirectX [Mic21], respectively) have been introduced as new shader
stages with Nvidia’s Turing microarchitecture to replace the multi-
layered geometry processing of a conventional graphics pipeline
with a more streamlined alternative [NVI18]. The key point of task
and mesh shaders is to allow more fine-grained control over primi-
tive processing and dynamic workload distribution via two tightly
coupled compute shader-style geometry processing stages within
rasterization-based graphics pipelines, while still utilizing their later
hardware-accelerated fixed-function stages. The new setup encour-
ages the division of geometry workload into smaller packages that
can be efficiently processed by the GPU. For Nvidida’s Turing
microarchitecture, optimal efficiency can be achieved by dividing

Figure 1: Skinned models GAWAIN (198k vertices, 261k triangles,
136 bones, 9044 meshlets), GIANT WORM (169k vertices, 329k
triangles, 80 bones, 10382 meshlets), BUTCHER (287k vertices,
477k triangles, 224 bones, 14915 meshlets), and WYVERN (267k
vertices, 512k triangles, 88 bones, 16015 meshlets), divided into
color-coded meshlets, fit for rendering with task and mesh shaders.

indexed triangle meshes into parts that consist of no more than 64
vertices and 126 triangles [Kub18a]. Each one of these small geom-
etry packets is referred to as a meshlet. Since the new shader stages
and meshlet-based rendering see wide-spread support in recently
released GPUs—including the GPUs utilized in the consoles of the
latest generation: PlayStation 5, and Xbox Series S and X, which are
based on AMD’s RDNA 2 microarchitecture [Bla20]—we expect
developer adoption and research interest in task and mesh shader-
based solutions to rise considerably. The task shader runs early in
the graphics pipeline and can serve as a work scheduler for the mesh

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

https://orcid.org/0000-0001-6453-8158
https://orcid.org/0000-0002-5168-8648
https://orcid.org/0000-0003-2365-7876
https://orcid.org/0000-0002-9370-2663


J. Unterguggenberger et al. / Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

(a) On the borders of the screen, the effect of premature frustum culling can
be observed during animations of GIANT WORM and BUTCHER (cyan rect-
angles). Inside the GIANT WORM’s mouth, some meshlets are prematurely
backface-culled as a result of disregarding how the normals of triangles
assigned to meshlets change through animation (marked in magenta).

x

y

Bone 1 Bone 2 Bone 3

Bo
ne

2

Bone 3

Bo
ne

1

Bone 2Bo
ne

3

vvv
0 2 4 6 8 10 12

0

0.5

1

1.5

2

2.5

t

x coordinates of bone-transformed vvv
y coordinates of bone-transformed vvv

(b) The path of a single vertex vvv, animated via LBS from one keyframe to the
next. The vertex is strongly weighted toward Bone 3. Sampling intermediate
positions underestimates the spatial bounds (orange box: start and end,
magenta box: two intermediate samples). As multiple rotations are chained,
the path of vvv can become arbitrary and coordinate extrema difficult to predict.

Figure 2: Premature culling can result in very noticeable visual artifacts, as shown in Figure 2a. Through animation, the shape of a meshlet
can change significantly. Underestimating the vertex bounds can lead to premature view frustum culling, while not taking into account the
possible changes in surface normals of a meshlet’s triangles can lead to erroneous backface culling. For both, vertex positions and surface
normals, merely sampling along an animation interval can be insufficient for calculating conservative bounds, as illustrated in Figure 2b.

shader, similar to the dynamic work generation performed by tessel-
lation control shaders in a conventional pipeline. Only meshlets that
are not culled by the task shader are processed in the later shader
stages. Precomputation of positional and normal bounds for static
models can be achieved easily [Wih16]. However, generation and
usage of such information are significantly more difficult to achieve
for animated models, since a meshlet’s shape can change under
animation. Dividing modern skinned 3D models into meshlets can
yield results like those shown in Figure 1.

Vertex skinning is one of the most popular and widely used ani-
mation methods for 3D models. With vertex skinning, vertices are
assigned to one or multiple bones of a skeleton in a weighted manner.
When the skeleton’s bones move into different positions over the
course of an animation, assigned vertices move according to their
weighting. With respect to meshlets—each of which represents a
part of the skin—this means that geometry primitives associated
with a meshlet can change their shape since the referenced vertices
will have different bone assignments and weights in general. For
example, a meshlet could be stretched in one or multiple directions,
thus increasing its bounds w.r.t. a resting or configuration pose. Also,
since bone assignment and weighting can differ between the vertices
of a triangle, animation can produce face normal directions that
were not present in the initial pose. Figure 2 visualizes artifacts of
VFC and BFC that can occur if these bounds are underestimated.

In this paper, we describe and evaluate a solution for computing
conservative spatio-temporal vertex bounds under animation for
arbitrary animation clips. We show how conservative bounds for
a meshlet’s extents and also for its face normals distribution can
be computed from the vertex bounds of its associated vertices in a
CPU-based precomputation step. Evaluating the precomputed data
in task shaders allows for robust VFC and BFC on a per-meshlet
basis, extending the advantages of the additional visibility culling
granularity of task shaders in rasterization-based graphics pipelines

from static meshes to models with skeletal animation. Exploiting the
computed bounds to perform robust culling can accelerate rendering
and reduce bottlenecks in skeletal animation pipelines on modern
GPU architectures while preserving the fidelity of the rendered
scenes. Hence, this paper describes the following contributions:

• We derive an adaptive procedure to compute spatio-temporal axis-
aligned bounding boxes (AABBs) on a per-meshlet basis for a
given interval of an animation clip that are suitable for linear
blend skinning (LBS). Our approach yields conservative bounds
over all continuous joint orientations within a given animation
and can be parameterized to produce arbitrarily tight bounds.
• We describe a method for efficiently computing the maximum

extents described by a given rotation quaternion, based on a
derivative of Rodrigues’ rotation formula.
• Given spatial bounds for individual mesh vertices, we show that

we can obtain a conservative estimate on the maximum deviation
of a triangle’s surface normal from an initial state during a given
animation interval. We apply this concept to entire meshlets to
obtain normal cones for robust backface culling with LBS.
• We evaluate our spatio-temporal meshlet bounds for animated

models in task and mesh shader-based rasterization, enabling
VFC and BFC on a per-meshlet basis. The assessed methods incur
negligible memory overhead and improve run-time performance.

The remainder of this paper is structured as follows: in Section 2,
we discuss relevant background and related work our approach
builds on. In Section 3, we derive our solution for the adaptive com-
putation of arbitrarily tight vertex bounds. In Section 4, we show
how this information can be exploited to compute conservative
surface normals distributions of animation intervals. Implementa-
tion details are described in Section 6. Sections 5 and 7 assess the
usage of the computed bounds for visibility culling and resulting
performance impact. Finally, we discuss possible extensions of the
presented approach as well as open problems in Section 8.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



J. Unterguggenberger et al. / Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

2. Related Work

Vertex skinning plays an integral role in the animation of charac-
ters in visual applications. The fundamental concept of connecting
vertices with manually or automatically defined weights to an un-
derlying skeleton can be implemented in a variety of ways [MLT89;
BP07]. Arguably, one of the most widespread methods to this day is
LBS, in which the final animated position of each vertex is the result
of a linear combination of independently computed results. Obvi-
ous shortcomings and frequent artifacts (e.g., the "candy-wrapper"
effect) gave rise to alternative approaches, such as spherical blend
skinning [KŽ05b] and log-matrix skinning [CM04], which manage
to eliminate some of these artifacts, but introduce others and exhibit
a higher performance penalty. In contrast, dual-quaternion skinning
is comparable to LBS in terms of performance, while resolving
most of its issues [KCŽO07]. Instead of opting for mathematically
involved solutions at runtime, the selection of optimized centers
of rotation as an isolated preparatory step for animation has been
recently suggested [LH16]. While pursuing either of these methods
would be worthwhile, we will only consider the fastest of these
methods, LBS, for the derivation of our conservative bounds.

The task of computing conservative spatio-temporal bounds for
meshes—or more generally the vertices and faces of its meshlets—
undergoing skeletal animation is more challenging than it may seem
at first glance. A key requirement for conservative bounds which
are suitable for visibility culling is that they encompass all possible
positions that vertices can occupy, as well as all possible face normal
orientations that can emerge during an animation clip or subintervals
thereof. Clearly, these challenges are related to the field of collision
detection. A wide range of efficient solutions exists for this topic,
which requires computing positional bounds for particular instants or
ranges. Reduced deformation solutions effectively decouple bound
computations from the geometry and perform them on influencing
factors only (e.g., bones) before applying them to entire clusters
of primitives. Several such approaches present solutions that target
individual animation frames [KŽ05a; SBT06; SOG08], but not the
interval in-between. Furthermore, their application usually entails
a non-negligible run-time cost for computing and updating bound
information, which impedes complex animated scenes with many
differently animated (e.g., temporally offset) models. The same is
true for established reduced deformation approaches for bounding
normals, such as normal trees [SGO09]. Temporally continuous
collision detection (e.g., swept volume approaches) have been ap-
plied to rigid objects [AA00; KVLM03; RLM04], but remain a
challenging problem for deformable meshes, which we target in our
work. Specialized methods for reduced deformable models, such as
BD-Trees [JP04] provide excellent opportunities to accelerate bound
queries for entire primitive groups. However, they require precom-
puted displacement fields and imply the creation and maintenance
of hierarchical data structures, which we strive to avoid in order to
minimize run-time overhead in complex animated scenes. Although
spatial bounds may be approximated from analysis of the model
data, available proprietary solutions make no claim about computed
bounds being conservative [Uni21], while sampling-based methods
can easily miss extreme positions and orientations and provide no
guarantee for robustness [GFSS06], so that they can still lead to
undesirable artifacts such as those described in Figure 2a.

Task and mesh shaders were first introduced with the Nvidia Tur-
ing architecture [NVI18]. The new shader stages can be used as alter-
native geometry processing stages within rasterization-based graph-
ics pipelines. Consequently, the usage of task and mesh shaders,
and the usage of classical geometry processing shaders (vertex, tes-
sellation, and geometry shaders) are mutually exclusive. The data
structures of uniforms and buffers to be used with task and mesh
shaders can be freely defined. It is common practice to prepare auxil-
iary information about a meshlet’s bounds and normals distribution,
and evaluate that information in task shaders for visibility culling.
The standard usage conventions and restrictions regarding possible
input geometry clusters (meshlets) are defined by the corresponding
Khronos conventions [Kub18b; KB19]. Similar mechanisms and
rule sets are set to become adapted by competing hardware vendors
in the near future.

With Turing, Nvidia also introduced GPU acceleration structures
and real-time ray tracing pipelines (meanwhile standardized and
defined by the Khronos conventions [Koc20a]). While task and
mesh shaders are strictly limited to rasterization-based graphics
pipelines and hence not usable with ray tracing pipelines, the usage
of acceleration structures (enabled for usage in any shader stage
through Khronos convention [Koc20b]) might appear as a possible
option. Current real-time graphics APIs, however, only support ray-
based access to the hardware-accelerated ray tracing data structures
[Koc21] and hence do not suit rasterization.

Although meshlets as input for the hardware rendering pipeline
have only been recently introduced as a topic for computer graphics,
similar concepts have been proposed previously. The idea of cluster-
ing geometry is a fundamental theme in high-performance rendering
of complex scenes, along with possible opportunities for optimiza-
tion of their visualization at runtime [Ura19; HA15; SBOT08]. Be-
fore the introduction of mesh shaders, Kerbl et al. documented the
exact rule sets used by modern GPUs to partition triangle meshes
into batches before processing them in bulk [KKI*18]. In addition
to rendering, the generation of meshlets ahead of time is a relevant
topic in itself. Common solutions include the application of mesh
optimizers, which can be easily adapted to produce basic meshlets
instead [LY06; HS17; Hop99; Kap21; Wal21]. While these can ac-
count for basic qualities of meshlets, such as high connectivity and
spatial compactness, they cannot ensure specialized target criteria,
such as tight bounds under animation, which is one of the targeted
characteristics in this paper. The idea of using geometry clusters
to perform efficient visibility culling has been previously pursued,
though usually with a clear focus on static geometry and applica-
tions in industry [AHA15; HC11]. Position bounds for view frustum
and occlusion culling are trivially derived from the extrema found
in the set of vertices in each meshlet. For backface culling, a normal
cone is required, which can easily be built from the set of surface
normals present in the meshlet, although finding the optimal cone is
a more challenging task. Recently, Wihlidal proposed methods for
generating static geometry clusters to maximize their likelihood of
getting culled for visibility [Wih16]. In this paper, we will expand
on this concept to enable high-performance visibility culling for
meshlets of animated models.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



J. Unterguggenberger et al. / Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

z
x

y Bvvv1

Bvvv2

Bvvv3

Bm

Figure 3: Individual per-vertex AABBs Bvvv1 , Bvvv2 , and Bvvv3 are com-
bined into a common bounding box Bm by taking the minimum and
maximum coordinates from all AABBs’ corners. Bm represents the
conservative bounds of meshlet m.

3. Meshlet Bounds Computation

In this section, we describe an algorithm to analytically compute
conservative bounds per meshlet. At first, vertex bounds are calcu-
lated. Subsequently, the bounds of a meshlet can be easily computed
by combining all its associated vertices’ bounds into a common
bounding box, which is exemplarily shown in Figure 3.

Vertex skinning transforms a vertex vvv according to its weighted
assignment to the bones of an underlying skeleton. As multiple
bones can have influence on vvv, we first compute one AABB Bvvvbi

per influencing bone bi and combine them in a second step into an
AABB Bvvv which represents conservative spatio-temporal bounds
for vvv under LBS. The temporal aspect of Bvvv refers to the anima-
tion time interval that we compute it for. One natural choice for
the animation time interval is the span between two keyframes. We
assume the transformation between two successive keyframes to be
specified with a triple of translation, rotation, and scaling values
which are interpolated in-between. The skeleton depicted in Fig-
ures 4a and 4b shall serve as an example for two different keyframe
times. In Figure 4b, Bone 4 has rotated 45° clockwise (CW) w.r.t. its
parent bone, and Bone 5 has rotated 45° counter-clockwise (CCW)
w.r.t. Bone 4 compared to the state in Figure 4a. All child bones of
Bone 5 inherit their parent’s transformation and therefore change
their global position, too. Their local transformations, however, stay
constant between the two keyframes. Furthermore, Figure 4 shows
meshlet m which has several vertices assigned to it. Each vertex has
weighted assignments to one or multiple bones. Whenever the skele-
ton is animated into a certain position, the vertices get transformed
accordingly, leading to different shapes of m in Figures 4a and 4b.

We propose to compute and store the bounding box Bm of mesh-
let m in the space of the most influential bone. We find this bone on
a per-meshlet basis by summing all the normalized weightings of
all vertices that are assigned to m per bone. The bone with the high-
est sum of normalized weights is deemed to be the most influential
bone and thus we assign it to m as its principal bone. The reasoning
behind this approach is that Bm can be assumed to be of minimal
extent if it is computed in the space that has the most influence on
the assigned vertices. Relative to the principal bone’s space (PBS),
the bounds of the majority of the associated vertices can be assumed
to be smaller than in other spaces. This is illustrated in Figure 4
where it can be observed that the bounds in m’s PBS (depicted in
Figure 4d) are smaller than the bounds computed relative to mesh
space or world space (depicted in Figure 4b).

3.1. Vertex Bounds Computation

The most computation-intensive part of our algorithm is conser-
vative vertex bounds calculation in a given target bone space—
referring to the PBS of a meshlet, which is the most influential
bone’s coordinate system as described in Section 3. Our algorithm
consists of the following major steps for computing the bounds
of a specific vertex vvv in the target bone’s coordinate system (re-
ferred to by bone bt ) between two animation times t1 and t2. Ani-
mation times must not stretch over keyframe time boundaries but
must be limited to keyframe bounds, otherwise sudden changes in
transformations—which must be expected for subsequent keyframed
intervals—run the risk of missing extreme positions and thus, fail
to remain conservative. For sub-keyframe intervals, t1 and t2 can
be chosen arbitrarily narrow. Furthermore, vvv has a list of associ-
ated bones Ivvv = {b0, . . . ,bn}, where each one of these mappings has
a respective weight Wvvv = {w0, . . . ,wn} assigned. They satisfy the
conditions wi ∈ [0,1] and ∑w∈Wvvv

w = 1.

1. For each bone bi ∈ Ivvv, compute vvv’s conservative spatio-temporal
bounding box Bvvvbi between t1 and t2 with full weight (i.e., as if
wi = 1) in the coordinate system of bt .
In more detail, for each bone bi 6= bt the procedure is like follows:

a. Transform vvv into the coordinate system of bi and apply bi’s
local scale, rotation, and translation transformations at an-
imation time t1. Initialize Bvvvbi by setting its minimum and
maximum coordinates to the result, yielding an AABB with
zero volume in the local space of bi.

b. Extend Bvvvbi by the bi-local scale, rotation, and translation
transformation differences between t1 and t2.

c. Traverse to node b j which is one node closer towards bt from
bi. Break if bt has been reached, otherwise loop as follows:

i. Transform every corner of Bvvvbi into the coordinate system
of b j, and construct a new AABB Bvvvb j there.

ii. Apply b j’s local scale, rotation, and translation transfor-
mations at animation time t1 to every corner of Bvvvb j . Use
the transformed corners to construct a new AABB Bvvv

′
b j

.
iii. Extend Bvvv

′
b j

by the b j-local scale, rotation, and translation
transformation differences between t1 and t2.

iv. Assign bi = b j and Bvvvbi = Bvvv
′
b j

, let b j refer to the next
node which is one step closer towards bt . Break if bt has
been reached, otherwise loop.

2. Combine all Bvvvbi based on their respective weights wi into the ver-
tex’ conservative spatio-temporal bounding box Bvvv that represents
all positions that vvv can occupy between t1 and t2.

Traversing the bone hierarchy step-wise is a crucial property of
our algorithm and a necessity for computing conservative vertex
bounds for an animation interval. Decomposition of a global, affine
bone matrix would not be a viable solution since extreme positions
and orientations from intermediate steps could be missed. Care must
be taken regarding the skeleton traversal direction when moving
bone-by-bone towards bt as illustrated in Figure 5. If Equation (1)

vvv′ = PPPbi TTT RRR SSS vvv (1)

transforms from a child’s bone space into its parent’s bone space
(with TTT referring to the translation, RRR to the rotation, SSS to the scaling,
and PPPbi being a constant matrix that positions bone bi relative to

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



J. Unterguggenberger et al. / Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

Bone 1

Bone 2
Bone 3

Bone 4 Bone 5
vvv111vvv222

vvv333 vvv444
vvv555

vvv666
vvv777

vvv888

m

(a) The vertices of a skinned mesh are assigned to one or multiple bones
with different individual weightings each. Vertices vvv111 . . .vvv888 are combined to
form meshlet m.

Bone 1

Bone 2

Bone 3

Bone 4

Bone 5

vvv111vvv222

vvv333

vvv444

vvv555 vvv666

vvv777

vvv888

m

(b) Bones are transformed by an animation (Bone 4 rotated by 45° CW, Bone
5 by 45° CCW w.r.t. 4a), associated vertices are transformed according to
their weights. As vertex weights vary, the shape of m changes. The cyan box
encompasses all vertex positions between the poses in 4a and 4b.

Bone 1

Bone 2

Bone 3

Bone 4

Bone 5

vvv111vvv222

vvv333

vvv444

vvv555
vvv666

vvv777

vvv888

m

(c) Each vertex’ bounding box encompasses all vertex positions between
the two different poses, relative to the coordinate system defined by Bone 4.
The boxes of vertices vvv111, vvv444, vvv777, and vvv888 are infinitely small, which indicates
that their weight w.r.t. Bone 4 is one. Vertices vvv555 and vvv666 are influenced by
Bones 4 and 5 (blue bounding boxes). Bone 3 influences the position of vvv222
and vvv333, and Bone 2 has minor influence on vvv333 (red and purple boxes).

Bm

Bone 1

Bone 2

Bone 3

Bone 4

Bone 5

vvv111vvv222

vvv333

vvv444

vvv555 vvv666

vvv777

vvv888

m

(d) Combining all vertex bounding boxes which are axis-aligned w.r.t. the
coordinate system of Bone 4 to a common bounding box can be trivially
computed like described in Figure 3. Performing this procedure yields
conservative spatio-temporal bounds Bm of meshlet m for the animation
between the two different skeleton poses when animated from 4a to 4b.

Figure 4: In this example, meshlet m represents a part of a skinned mesh’s skin. It consists of vertices vvv111 . . .vvv888 each of which has one or
multiple weighted bone assignments. According to those, vertices are moved when the skeleton’s pose changes between the state in Figure 4a
and the state in Figures 4b to 4d. The final bounding box Bm is computed relative to the coordinate system of the bone which has the highest
combined influence on the vertices—which is Bone 4 in this case, the principal bone of meshlet m.

Bone 1

Bone 2
Bone 3

Bone 4 Bone 5
Bone 6

vvv Skeleton traversal:
child → parent

Skeleton traversal:
parent → child

Figure 5: Assume a vertex vvv with non-zero weights w.r.t. four bones:
Bone 1, Bone 4, Bone 5, and Bone 6. To compute the combined
bounds of vvv w.r.t. a given target bone (Bone 4), we compute a
bounding box for each bone that influences vvv during our algorithm’s
first step, accumulating transformations along the bone hierarchy
towards the target bone. To compute bounds w.r.t. a single bone,
we start at that bone and traverse the skeleton until we reach the
target. When computing the bounds of Bone 1, we must regard the
transformations of Bones 2 and 3 in the given animation interval,
even if they have no direct influence on vvv. Similarly, when computing
the bounds of Bone 6, we must include the transformations of Bone 5.
Even though Bone 5 is contained in the path from Bone 6 to Bone 4,
separate bounding boxes for Bone 5 and Bone 6 must be computed.

its parent bone), the transformation in the inverse direction must be
reformulated as stated in Equation (2)

vvv′ = (PPPbi TTT RRR SSS)−1 vvv = SSS−1 RRR−1 TTT−1 PPP−1
bi

vvv (2)

to correctly apply the separate transformations step-wise. We chose
matrix notation for the sake of brevity and clarity, but different forms
are practicable as well—most notably using unit quaternions for
applying rotations.

If an AABB Bvvvb j is represented by two vectors—one for its
minimum coordinates and the second for its maximum coordinates—
it can be transformed conservatively as follows:

• Bvvvb j is translated by adding the translation vector to its minimum
and maximum coordinates.

• Bvvvb j is rotated by rotating each of its corners and constructing a
new AABB Bvvv

′
b j

from the results.
• Bvvvb j is scaled by component-wise multiplication of its minimum

and maximum coordinates with the scaling vector.
• Bvvvb j is transformed by a matrix by constructing a new AABB

Bvvv
′
b j

from the matrix-transformed corners.

Extending the bounds by translation, rotation, and scale values as
required in steps 1.b. and 1.(c.)iii. of our algorithm can be trivially
computed for translation and scaling, but not for rotations:

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



J. Unterguggenberger et al. / Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

z
x

y

CW

CCW

ppp222

ppp111

Bone 1 Bone 2

(a) When rotating a certain point from an initial
position ppp111 to its target position ppp222, the rotation
can be performed either in CW direction or in
CCW direction about the axis along Bone 1.

z
x

y

ppp222

ppp111

Bone 1 Bone 2

(b) To compute a conservative bounding box that
encompasses all possible positions that the ro-
tated point can take along the rotation path, it is
insufficient to consider its initial/final positions.

z
x

y

ppp222

ppp111

Bone 1 Bone 2

(c) If an animation is defined s.t. ppp111 is rotated to
ppp222 in CCW rotation direction, its actual conserva-
tive spatio-temporal bounding box is much larger
than the incorrect one depicted in Figure 6b.

Figure 6: These illustrations show that it is essential to regard the actual rotation paths for computing conservative spatio-temporal AABBs. It
is insufficient to only consider initial and final positions since the maximum rotation extents might occur elsewhere.

x

y

b1

bt

b2

BvvvbtBvvvb1 Bvvvb2

(a) All AABBs have been transformed into the
coordinate system of bone bt . The arrows indi-
cate that the bounding boxes were created based
on a certain rotation relative to bt . Bvvvbt is an
AABB with zero volume.

x

y

b1

bt

b2

Bvvv
′
btBvvv

′
b1

Bvvv
′
b2

(b) Based on bone weights w1 =
1
2 , wt =

1
3 , and

w2 = 1
6 , intermediate AABBs Bvvv

′
b1

, Bvvv
′
bt

, and
Bvvv

′
b2

are calculated by multiplying each original
AABB’s minimum and maximum coordinates by
its respective weight.

x

y

b1

bt

b2

Bvvv

(c) For an AABB that represents the combined
conservative spatio-temporal bounds Bvvv for ver-
tex vvv under LBS, all the intermediate bounds’
(Bvvv

′
b1

, Bvvv
′
bt

, and Bvvv
′
b2

) respective minimum and
maximum coordinates are summed up.

Figure 7: Three bone-specific spatio-temporal AABBs are shown which were created by our algorithm to include all possible positions vertex vvv
can occupy between two animation times. Bone-specific vertex AABBs Bvvvb1 , Bvvvbt , and Bvvvb2 are combined into AABB Bvvv by taking the bone
weights of vertex vvv into account and following the steps described in 7a, 7b, and 7c in that order. Bvvv represents conservative bounds for LBS.

• Bvvvb j is extended by translation through extending the bounding
box by both, the translated minimum and maximum coordinates.
• Bvvvb j is extended by scaling through extending the bounding box

by both, the scaled minimum and maximum coordinates.
• Bvvvb j is extended by rotation through the method described in

Section 3.2.

3.2. Computing the Maximum Rotation Extents

For rotations, we need to take situations like depicted in Figure 2b
into consideration and prevent missing any possible location that a
rotated point could occupy. Figure 6 illustrates this problem with a
different example: Rotating Bone 2 about the axis described by its
parent Bone 1 lets a rotated point ppp111 end up in a certain end position
ppp222. Spanning a bounding box only over the initial and final positions,
ppp111 and ppp222, can lead to incorrect boundaries. Figure 6c shows the
correct bounding box for the given scenario which can only be
computed by regarding all possible locations along the circular
segment described by the rotation, or—in the case of axis-aligned
data structures—by considering those particular rotations that lead
to maximum extents in each of the principal axes’ directions.

To find and efficiently compute the maximum extents of a given

rotation, we present a solution based on Rodrigues’ rotation formula
[Rod40], which computes the result vvv′ of rotating a vector vvv by a
given angle θ about a given (normalized) axis of rotation nnn. Rotation
transforms within a skeleton are often specified via unit quaternions
which can be converted into angle-axis representation [Sho85]. Thus,
Rodrigues’ rotation formula is applicable. It is stated in Equation (3):

vvv′ = vvvcosθ+(nnn× vvv)sinθ+nnn(nnn · vvv)(1− cosθ). (3)

We use its first-order derivative by θ to find those angles that lead
to maximum extents in each of the principal axes’ directions. Setting
that first-order derivative of Equation (3) by θ to zero in order to
find the extrema results in Equation (4)

xxxθ =− tan−1 nnn× vvv
nnn(nnn · vvv)− vvv

, (4)

which yields a vector of angles xxxθ in radians that represents the
rotation angles which lead to maximum extents in each principal
axis direction. Please note that the operations in Equation (4) mean
component-wise application of the division and tan−1.

An AABB Bvvv can be extended to encompass all the possible
positions of vvv rotated by angle θ about axis nnn by calculating nine
rotation angles:

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



J. Unterguggenberger et al. / Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

• φ1 = clamp(xxxθx ,min(θ,0),max(0,θ))
• φ2 = clamp(xxxθx−π ,min(θ,0),max(0,θ))
• φ3 = clamp(xxxθx +π ,min(θ,0),max(0,θ))
• φ4 = clamp(xxxθy ,min(θ,0),max(0,θ))
• φ5 = clamp(xxxθy−π ,min(θ,0),max(0,θ))
• φ6 = clamp(xxxθy +π ,min(θ,0),max(0,θ))
• φ7 = clamp(xxxθz ,min(θ,0),max(0,θ))
• φ8 = clamp(xxxθz−π ,min(θ,0),max(0,θ))
• φ9 = clamp(xxxθz +π ,min(θ,0),max(0,θ))

and extending Bvvv by the results of Equation (3), calculated with
vector vvv, (normalized) axis of rotation nnn, and each of these nine
rotation angles. The angles are clamped to the range [θ,0] or [0,θ],
depending on the sign of θ, to keep the resulting bounding box as
tight as possible—yet conservative—around the original position vvv.

3.3. Vertex Bounds Combination for LBS

The steps described in Section 3.1 yield a number of conservative
spatio-temporal vertex bounds Bvvvbi . . .Bvvvbn , each representing all
possible positions between two animation times t1 and t2 as if the
respective bone was the single bone of influence (i.e., if it had a
weighting of 1) on vvv. Each Bvvvbi is given in the same space, namely
the coordinate system of a uniformly selected principal bone for all
the vertices associated to meshlet m, which we called PBS.

We propose the approach depicted in Figure 7 for computing the
combined, weighted vertex bounds Bvvv that are suitable for LBS:

1. For each vertex’ AABB Bvvvbi , multiply its minimum and maxi-
mum coordinates with its corresponding bone-weighting wi.

2. Add the resulting minimum and maximum coordinates of all
Bvvvbi . . .Bvvvbn as computed in step 1., which yields Bvvv.

The final step in our algorithm for computing conservative spatio-
temporal meshlet bounds Bm is the combination of its associated
vertices’ AABBs Bvvv1 . . .Bvvvn as illustrated in Figure 3.

4. Normals Distribution of Meshlets

In the previous Sections 3.1 to 3.3, we have addressed the computa-
tion of conservative spatio-temporal meshlet bounds which can be
used to enable view frustum culling. In this section, we describe how
these bounds can be utilized to compute a conservative estimation
for a meshlet’s normals distribution to ultimately enable backface
culling. Our algorithm consists of the following steps:

1. Determine an initial normal nnnm and an initial normals distribution
angle α w.r.t. nnnm for meshlet m.

2. For each triangle associated to m, consider its vertices’ conserva-
tive spatio-temporal AABBs Bvvv1 , Bvvv2 , and Bvvv3 .

3. Optionally: Test if a plane can be found which divides space s.t.
Bvvvi and the respective other two AABBs lie on opposite sides
of it. If such a plane cannot be found, abort normals distribution
calculation for m, otherwise continue.

4. For each combination of corners cvvv1 ∈ Bvvv1 , cvvv2 ∈ Bvvv2 , cvvv3 ∈ Bvvv3 :

a. Compute nnni = (cvvv2 i− cvvv1 i)× (cvvv3 i− cvvv2 i)
b. Compute the angle between nnni and nnnm, and store the maximum

angle αmax from all combinations of corners.

5. Store αmax and use it for backface culling computations for m.

Initial nnnm and α values (step 1.) are computed from a resting or
configuration pose. By taking the maximum angle during step 4.b., a
conservative normals distribution is calculated for a given animation
interval. As an optional, potentially performance-improving step 3.,
we propose the approach outlined in Figure 8: If a set of Bvvv1 , Bvvv2 ,
and Bvvv3 does not fulfill the requirement described in Figure 8a, their
normals distribution might encompass the whole sphere of normals.
If the requirement is fulfilled, we can be sure that a useful αmax can
be found like illustrated in Figure 8d.

5. Rendering Strategies Using Meshlet Bounds for Culling

Computing meshlet bounds as described in the previous sections is
a computationally elaborate task that requires computation times
in the order of milliseconds to seconds per time interval for mod-
els of similar detail to our test models. It is parallelizable well
and suitable for multithreaded CPU implementations as well as
GPU implementations. The following list shows the average com-
putation times for computing AABBs for all meshlets for a given
time interval. The computations were performed with 24 paral-
lel threads on an AMD Zen 2 CPU at 3.8 GHz. Times are re-
ported in seconds for the creation of vertex and normal bounds:

Model Spatial Extents Orientations Total Time

GAWAIN 0.25s 0.19s 0.44s
GIANT WORM 0.37s 0.28s 0.65s
BUTCHER 0.19s 0.40s 0.59s
WYVERN 0.56s 0.45s 1.00s

Hence, we propose using a precomputation step for computing
the meshlet bounds. However, another essential question is how the
precomputed bounds (defined per meshlet, animation clip, and time
interval) shall be used during rendering. One possible application
is storing the AABBs in GPU buffers and computing the correct
lookup index in a task shader. Taking the current animation time
into account, we may then read the AABB from the buffer and
evaluate the bounds against the current view frustum. While this
might appear like a feasible idea at first glance, it is a strategy that
we advise against for several reasons: Animated models can contain
a large number of keyframes, easily ranging in the hundreds or
thousands. Since memory consumption would be in linear relation
with the number of keyframes, this would lead to extensive memory
usage and incur additional delays in task shader executions for the
memory transfer.

As a better strategy, we propose to use a precomputation step to
answer a simple question for each meshlet, namely: "Across the
entirety of an animation clip, what is the maximum deviation of a
meshlet’s bounds w.r.t. certain predefined reference bounds?". This
approach is illustrated in Figure 9 for spatial bounds. We choose the
bounding sphere that encompasses all of a meshlet’s vertices in its
initial "bind pose" or "T-pose" as the fixed reference per meshlet.
When bone-animated, the sphere’s center and radius are transformed
with the principal bone’s transformation matrix, which in general
can lead to states where the transformed bounding sphere no longer
encompasses all its assigned vertices as illustrated in Figure 9b.
Based on our conservative spatio-temporal AABB Bm for that spe-
cific animation state (computed as described in Figure 4), we can
compute a factor by how much the transformed reference bounding

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



J. Unterguggenberger et al. / Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

z
x

y Bvvv3

Bvvv1

Bvvv2

(a) We can compute a useful normals
distribution if, for each AABB, we
can find a plane so that it lies on one
side of the plane, and the other two
AABBs lie on the other side.

z
x

y Bvvv3

Bvvv2

Bvvv1

(b) If vertex AABBs are positioned in
an unfavorable way w.r.t. each other,
we cannot find a useful normals dis-
tribution (compare with Figure 8c).

z
x

y Bvvv3

Bvvv2

Bvvv1

(c) For suboptimally positioned
bounding boxes, different combina-
tions of Bvvv1 ’s, Bvvv2 ’s, and Bvvv3 ’s cor-
ners lead to normals pointing in op-
posite directions.

z
x

y Bvvv3

Bvvv2

Bvvv1

(d) If AABBs are positioned favor-
ably, we can use the 83 combinations
of Bvvv1 ’s, Bvvv2 ’s, and Bvvv3 ’s corners to
compute extreme normal deviations
for conservative meshlet bounds.

Figure 8: A conservative normals distribution of a meshlet can be found by analyzing each of its triangles separately. For each triangle, a
total number of 83 possible normal directions are created by computing the face normals of each triangle that can be constructed from a
combination of the bounding box corners from the vertices that describe the triangle, as illustrated in Figure 8d. In this way, extreme normal
deviations are computed and put in relation to a reference normal nnnm. The triangle-specific order among Bvvv1 , Bvvv2 , and Bvvv3 must be maintained
for these computations. A conservative test of whether a useful normals distribution can be calculated is presented in Figure 8a. If the vertices’
AABBs are positioned in an unfavorable manner w.r.t. each other, the normals distribution might encompass the whole sphere of directions as
described in Figures 8b and 8c.

sphere’s radius has to be extended in order to also encompass all
positions of Bm. Having computed the maximum required radius
across all time intervals of an animation clip, it suffices to store a
meshlet’s initial bounding sphere’s center point ccc and the extended
radius per meshlet.

During rendering, very little computational overhead is required:
ccc and its extended radius are transformed by the meshlet’s principal
bone matrix for the current animation state, further transformed
into the same space of the view frustum’s planes, and tested against
the frustum planes. We might also use AABBs for spatial bounds
during rendering, but spheres incur significantly less computational
overhead when culling against a view frustum. Using spheres, only
six plane-to-point distance computations (one for each of the six
view frustum planes) have to be performed in a task shader, whereas
bounding boxes demand computation of 6× 8 plane-to-point dis-
tances.

The quality of the radius extension factor can be further improved
by analyzing ever-smaller time intervals. The largest possible time
interval to evaluate is from one keyframe time t1 within a certain
animation clip to its subsequent keyframe time t2, because we may
not jump over diverging transformations in order to remain conser-
vative. If we determine that the spatio-temporal bounds between the
two keyframes do not satisfy our quality requirements, we can start
to adaptively subdivide the time interval for bounds computation. In
general, we can assume that if a meshlet contains vertices that are
influenced by bones other than the meshlet’s principal bone, subdi-
viding the time intervals between t1 and t2 leads to smaller vertex
bounds and consequently to tighter meshlet bounds. The maxim
of our algorithm is to compute conservative bounds, which is why
we cannot disregard the temporal influence of an animation on the
bounds. The subdivision approach allows to close in on the theoreti-
cal minimum bounds, while constantly staying conservative. This
way, the generation of vertex bounds naturally adapts to the shape

of the position function of seemingly arbitrarily moving vertices,
such as the one illustrated in Figure 2b, placing more emphasis on
ranges with a strong variation.

For the normals distribution (as described in Section 4), a similar
strategy can be employed: The mean normal direction of an initial
"bind pose" or "T-pose" serves as the reference normal nnnm for mesh-
let m. In the same vein of finding a maximum radius extension factor,
for the normals distribution a maximum angle-deviation αmax can
be determined by analyzing all keyframe or sub-keyframe intervals.
Smaller animation time intervals generally lead to smaller values
for αmax. During rendering, the computation of whether or not m
can be conservatively backface culled can be evaluated using ccc, the
extended radius, nnnm, αmax, and the camera’s position.

A variation of the strategy described above is to not store indi-
vidual values for the extended radius and αmax per meshlet but to
define constant values for them, and determine in a precomputation
step which meshlets satisfy these quality requirements. I.e., this
strategy would answer the questions: "Which meshlets satisfy the
requirement that their bounding sphere’s radius does not have to
be extended by more than a constant scaling factor sr s.t. all of its
vertices stay within the extended bounding sphere?", and regarding
the normals distribution: "Which meshlets satisfy the requirement
that their αmax is smaller than a constant αT ?" This approach has
the advantage that constant values are used for sr and αT and do
not have to be read per meshlet, thus helping to reduce the required
memory bandwidth. Low-overhead shaders can be used to render
those meshlets which do not fulfill any of the two criteria. Meshlets
that fulfill one criterion can be rendered with the appropriate culling
code. Shaders including both, BFC and VFC code, can be used for
meshlets that fulfill both requirements. The subdivision approach
described above can be used to determine more meshlets as being of
sufficient quality for both or either of the criteria. We employed this
approach for the setup of our benchmarks presented in Section 7.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



J. Unterguggenberger et al. / Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

Bone 1

Bone 2
Bone 3

Bone 4 Bone 5
vvv111vvv222

vvv333 vvv444
vvv555

vvv666
vvv777

vvv888

mccc

(a) An initial bounding sphere (with center ccc and radius r) is computed s.t.
it encompasses all vertices that are assigned to meshlet m and represents
the bounds for one specific initial pose only.

Bone 1

Bone 2

Bone 3

Bone 4

Bone 5

vvv111vvv222

vvv333

vvv444

vvv555 vvv666

vvv777

vvv888

m
ccc

(b) Transforming ccc and r with m’s principal bone (Bone 4) at a certain
animation state reveals that the transformed initial bounding sphere not
necessarily encompasses all of m’s vertices any longer.

Bm

Bone 1

Bone 2

Bone 3

Bone 4

Bone 5

vvv111vvv222

vvv333

vvv444

vvv555 vvv666

vvv777

vvv888

m
ccc

(c) By using m’s conservative spatio-temporal bounds Bm—computed as
described in Figure 4—we compute a factor by how much r must be extended
to also encompass the entirety of Bm.

Bone 1

Bone 2

Bone 3

Bone 4

Bone 5

vvv111vvv222

vvv333

vvv444

vvv555 vvv666

vvv777

vvv888

m
ccc

(d) By computing m’s extended radii for all animation intervals and storing
the maximum radius together with the original ccc, a conservative spatio-
temporal bounding sphere can be computed for m.

Figure 9: In order to minimize computational overhead during rendering, we propose to use a meshlet m’s spatio-temporal AABB Bm for
computing a scaling factor which tells how much Bm’s extents w.r.t. an initially created reference bounding sphere has grown or shrunk. The
maximum scaling factor across all possible poses represents the conservative bounding sphere of meshlet m.

6. Implementation Details

We have implemented the algorithms presented in the previous
sections using C++ and Vulkan. Computing conservative vertex
bounds, combining them into conservative meshlet bounds, and
computing conservative normal bounds per meshlet are implemented
in a CPU-based precomputation step. Our current implementation
uses the same amount of parallel threads for this step as the number
of logical processors reported by the operating system.

During our precomputation step, we evaluate each meshlet mi
against predefined maximum values sr (referring to a maximum
scaling factor w.r.t. mi’s initial radius ri as described in Figure 9)
and αT (referring to a maximal threshold for mi’s αmax, which is
computed as described in Section 4). Based on this evaluation, we
assign mi to one of the following three categories:

• mi is both, view-frustum cullable and backface cullable, if it
satisfies both limits for all animation intervals of interest.
• mi is view-frustum cullable but not backface cullable, if it satisfies

the requirements w.r.t. sr for all animation intervals of interest,
but not the requirements w.r.t. αT .
• mi is neither view-frustum cullable nor backface cullable if it

does not fulfill at least the requirement w.r.t. sr.

Based on these categorizations, we issue a total number of three
draw calls using different pipeline configurations for each of the
three categories: Meshlets that are suitable for culling are rendered
with pipelines that include culling code. The meshlets that have
been deemed to not be cullable are rendered with a pipeline that
does not include culling code, thus not suffering from the potential

computational overhead caused by the additional culling instructions.
In trying to minimize runtime overhead of our culling code we chose
to go for the approach with constant values for sr and αT instead of
storing and evaluating individual thresholds per meshlet.

Our GPU implementation is based on Vulkan [Kub18b] and GLSL
[KB19]. Both types of culling are performed in task shaders. Task
shaders operate in groups of 32 threads per warp [NVI18], where
each of these threads tests a different meshlet in parallel. We use
ballot shader instructions to synchronize the threads before passing
on the information of how many and which meshlets have not been
culled and are to be further processed by later shader stages. In the
subsequent mesh shader stage, vertex skinning is performed for the
meshlets that have survived culling. The vertices assigned to such
meshlets are transformed with 32 parallel threads per meshlet. The
mesh shader constitutes the final geometry processing stage, which
means that its output is forwarded to the fixed-function rasterizer
stage in graphics pipelines for further processing.

7. Results

We have evaluated the performance characteristics of our implemen-
tation (as described in Section 6) with different scene compositions
consisting of multiple instances of the models shown in Figure 1
and arranged according to the scheme presented in Figure 10a. For
all performance benchmarks, we measure the milliseconds of the
relevant draw calls with GPU timer queries for 1000 frames af-
ter a warmup phase of 100 frames. The query results of the 1000
measured frames are averaged for the results. The camera remains

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



J. Unterguggenberger et al. / Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

(a) Overview of our benchmark scene (b) Camera setup during our benchmarks (c) Impact of VFC (d) Impact of BFC

Figure 10: In the test scene that we are using for our benchmarks, we position multiple instances of our test models, three of which are
duplicated along the frustum planes of our camera, which is positioned as shown in 10b. We benchmark different geometry loads according to
the model duplication scheme indicated in 10a. Benchmarks with view frustum culling enabled produce effects as shown in 10c along the
frustum planes. 10d shows the effects of enabled backface culling on a per-meshlet basis (same camera positioning as in 10b).

12M
/ 6M

/ 400k

24M
/ 12M

/ 849k

12M
/ 6M

/ 400k

24M
/ 12M

/ 849k
0ms

3ms

6ms

9ms

12ms

15ms

18ms
RTX 2060 RTX 3070

no culling BFC on, VFC off
BFC off, VFC on BFC on, VFC on

Figure 11: GPU performance measurements (average milliseconds
from GPU timer queries) are shown for two different GPUs and four
different scene configurations. The x axis labels represent triples of
number of vertices, number of triangles, and number of meshlets in
that order. Each set of bars compares the results of a pipeline without
culling code to the results of shader pipelines that include code for
BFC only, VFC only, or both in their respective task shaders.

stationary during our benchmarks at the position that Figure 10b
has been captured from, while the models constantly animate, thus
constantly varying positions and orientations of meshlets.

Figure 11 presents the general picture of the performance charac-
teristics from our benchmarks, comparing culling-enabled pipelines
to pipelines without culling code. Including culling code in task
shaders constitutes a certain computational overhead compared to
pipelines that do not include such code. The additional overhead
can be more than made up for across all of our test cases and across
different GPUs. Table 1 lists the average performance increases
for the different benchmarks and shows the percentages of mesh-
lets that could be culled. Assuming that the maximum reduction in
render time is bounded by the percentage of culled meshlets, we
can state that the pipelines implementing our technique stay within
a margin of only a few percent to the theoretical optimum in our
tests. With BFC and VFC enabled, we measured a culling ratio of

GPU Scene BFC only VFC only BFC+VFC

Culled Faster Culled Faster Culled Faster

RTX
2060

400k 11.4% 8.1% 31.3% 26.3% 39.9% 33.8%
849k 11.5% 8.5% 31.4% 27.1% 39.7% 35.4%

RTX
3070

400k 11.4% 7.8% 31.3% 26.1% 39.9% 34.0%
849k 11.5% 7.9% 31.4% 27.2% 39.7% 35.4%

Table 1: This table shows the average percentage of culled meshlets
(columns headed "Culled") during the benchmarked scene configura-
tions from Figure 11 and the performance increase that resulted from
culling them, which means the reduction of render time in percent
(columns headed "Faster"). "400k" refers to the 12M / 6M / 400k
config, and "849k" refers to the 24M / 12M / 849k config (numbers
of vertices, triangles, and meshlets, respectively).

approximately 40% for the scene described in Figure 10, achieving
reductions of render times of up to 35.4%. Consistent performance
patterns can be observed across both tested GPUs. To generate the
data for the results presented in Figure 11, we employed a precompu-
tation step which we configured with a run-time limit of 15 minutes
per model. It gradually refines the bounds within the given time
limit, starting with keyframe boundaries and subdividing them until
the time limit has been reached. The resulting meshlet classification
details per model are shown in Table 2. The data that we used for
our benchmarks are stated under the columns to αT = 20°, listing
the amounts of meshlets which were rendered with the "BFC on,
VFC on" pipeline ("both"), with the "BFC off, VFC on" pipeline
(sr), and with a "no culling" pipeline ("none").

Performance analyses of backface culling only are presented in
Table 3. The performance increase rises with the number of mesh-
lets that are classified to be backface-cullable. If only as little as
approximately 20% of meshlets are backface cullable, the addi-
tional overhead of the included culling code counteracts its potential
benefits. Backface culling in task shaders has shown to have the
potential of an additional reduction of render times by 11.4% in our
test scenes. In Section 5 we have described that our precomputation
step can be used for gradual refinement of meshlet classification.
By evaluating smaller animation subintervals, steadily tighter con-

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



J. Unterguggenberger et al. / Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

αT = 10° αT = 20° αT = 30°
Model both sr both sr both sr none

GAWAIN 82% 17% 89% 10% 92% 7% 1%
GIANT WORM 66% 29% 71% 24% 74% 21% 5%
BUTCHER 88% 6% 90% 4% 91% 3% 6%
WYVERN 52% 42% 60% 34% 65% 29% 6%

Table 2: Classification percentages from different models using a
15 minute time limit for each. The percentage values in columns la-
beled with "both" refer to meshlets that fulfill the requirements to be
both, view-frustum cullable and backface cullable—i.e., stay below
a radius scale factor sr and within a normal deviation threshold of
αT . The values in "sr" columns represent the number of meshlets
that only fulfill the requirement of staying below the radius scale
factor. The number of meshlets that do not fulfill the requirements
are listed in column "none". Using higher values for the normal
deviation threshold αT results in more meshlets satisfying "both" re-
quirements at the cost of less optimal backface culling performance
during rendering. sr = 3 was used for generating this classification.

servative bounds can be found for meshlets, eventually leading to a
higher number of meshlets being cullable during run time. As our
results in Tables 1 and 3 attest, performance increases proportion-
ally to the number of meshlets that could be culled in task shaders.
Therefore, increasing the number of meshlets that can be culled
benefits render times accordingly. The trade-offs between precom-
putation time and resulting meshlet classification percentages are
shown in Figure 12. It can be seen that different outcomes must be
expected from different animated models and their animation clips.
While the initial classification values of the BUTCHER model show
high percentages of cullable meshlets already after relatively short
precomputation times (i.e., small to no subdivisions of keyframe
intervals), different characteristics can be observed for the GIANT

WORM model. Increased computational effort in the precomputa-
tion step leads to significantly higher numbers of backface cullable
meshlets for GIANT WORM. Tighter target bounds for sr and αT
have been chosen to emphasize the effects of gradual refinement
during precomputation.

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

minutes

%
cu

lla
bl

e

VF- and BF-cullable
VF-cullable only

(a) Effect of gradual bounds refine-
ment for GIANT WORM clips.

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

minutes

%
cu

lla
bl

e

VF- and BF-cullable
VF-cullable only

(b) Effect of gradual bounds refine-
ment for BUTCHER clips.

Figure 12: Effect of different time targets for our precomputation
step on the classification into meshlets that are both view-frustum
cullable and backface cullable, view-frustum cullable only, or nei-
ther. sr = 2 and αT = 10° were chosen for these measurements.

Cullable BFC off BFC on Culled Faster

100% 7.79ms 6.90ms 15.7% 11.4%
80% 7.80ms 7.12ms 12.5% 8.7%
60% 7.80ms 7.35ms 9.2% 5.7%
40% 7.79ms 7.51ms 7.0% 3.6%
20% 7.79ms 7.77ms 3.8% 0.3%

0% 7.80ms 8.07ms 0.0% -3.4%

Table 3: Average render times of scenes composed of different ra-
tios of meshlets which are backface-cullable to meshlets that do
not satisfy that requirement. For these measurements, view frustum
culling was disabled. Only backface culling code is active in task
shaders, producing the results listed under the "BFC on" column,
while the pipeline used to create the results found under the "BFC
off" column does not include any culling code. The average percent-
age of meshlets that were culled by BFC code is listed in the column
"Culled" and the resulting reduction of render time in percent is
listed under "Faster". A scene setup with 731k meshlets was used.

We further evaluate the effects of added culling for animated
meshlets in a scenario that also includes static models. Figure 13
shows a scene configuration where in addition to 400k animated
meshlets, 399k static-geometry meshlets are rendered. In these tests,
static meshes are also drawn via task and mesh shaders and always
culled with established VFC and BFC methods. The resulting per-
formance measurements of the combined render times are shown
in Figure 13b. The additional static meshlets raise the total render
time on an RTX 3070 from 4.66ms to 7.23ms if animated meshlets
are not culled. The same scene configuration with VFC and BFC en-
abled for animated meshlets reduces the total render time to 5.69ms,
which constitutes an average reduction of combined render time by
21.3%. Culling percentages remain the same as stated in Table 1
for 400k animated meshlets. While we kept vertex processing effort
at the minimum for both types of geometry, animated models still
require significantly more vertex processing than static models due
to skinning code in mesh shaders, highlighting the benefit of our
approach for scenes with moderate to high amounts of animation.

(a) Additional static-geometry
meshlets (terrain, meshlets colored)
are rendered for this benchmark.

400k 400k+399k
0ms

3ms

6ms

9ms

no culling BFC only
VFC only VFC+BFC

(b) Render times of 400k animated
meshlets compared to render times of
400k animated + 399k static meshlets.

Figure 13: Mixed static/animated scenario. 13b shows average
render times in milliseconds, comparing the results of the 400k
measurement on RTX 3070 from Figure 11 with the measurements
of the same setup, plus additional 399k static-geometry meshlets.
Again, our technique leads to significant render time reductions.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



J. Unterguggenberger et al. / Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

8. Discussion and Future Work

We have presented an algorithm to compute conservative spatio-
temporal bounds on a per-meshlet basis. Using the spatio-temporal
vertex bounds of its assigned vertices, also a conservative estimate
for a meshlet’s normals distribution can be computed. Bounds and
normals distributions are intended to be computed during a flexible
precomputation step which allows to trade tighter bounds or normal
deviation angles for reduced precomputation time. In all cases, our
algorithm ensures conservative results.

Adding culling to task shaders incurs some additional computa-
tional overhead of a few percent during rendering. This disadvantage
can in general be more than made up for in our tests. VFC on a per-
meshlet basis enables fine-grained culling of meshlets outside of the
view frustum and can lead to significant reductions of render time.
The benefit of including BFC in task shaders depends on the quality
of meshlets insofar as many of them should be backface cullable. If
the precomputation step manages to compute conservative normals
distributions for close to 100% of meshlets, render time reductions
of up to 11.4% are possible through BFC in graphics pipelines with
very light vertex processing load and can be expected to be signif-
icantly higher with graphics pipelines that feature complex vertex
processing load. The benefit of combined BFC and VFC was close
to the theoretical optimum in our tests when comparing the relative
reduction of render time to the percentage of culled meshlets.

Naturally, model animation is a far-reaching and complex appli-
cation field. In this work, we have derived and presented a solution
suitable for bounding individual animation clips. However, we note
that our basic approach may easily be extended for use with a variety
of techniques. For example, inverse kinematics (IK) is a common
method in modern real-time animation. For pipelines that involve IK,
we can reuse the same techniques presented in this paper, but instead
of subdividing and bounding vertex motion across time intervals,
we can instead bound a different parameter space, such as the solid
angles representing ranges of possible orientations for a set of joints.
Other important techniques, such as the blending of animation clips,
can be addressed by not computing bounds for individual clips, but
instead for the full repertoire of possible animations. If intermediate
vertex states are produced from linearly blending between anima-
tions, conservative vertex bounds are then easily obtained from the
union of all animations, and the bounding of the normal cone can
be performed as previously described.

With the addition and ongoing development of hardware-
accelerated ray-tracing, the use of already-computed spatial accel-
eration structures for ray-tracing might be considered as a viable,
hierarchical alternative in the future. In contrast to currently avail-
able data structures, our approach serves to compute conservative
bounds over arbitrary time intervals and does not require random ac-
cess to meshlet data, as it must be expected with ray tracing. Instead,
meshlet data is accessed in a strictly contiguous manner, not dissim-
ilar to vertex attribute streaming in conventional rasterization-based
graphics pipelines, hence the available data structures with loga-
rithmic access times are unfavorable in this case. In a similar vein,
hierarchical data structures such as bounding sphere trees [JP04;
KŽ05a; SBT06] could represent a possible avenue for increasing the
performance of our precomputation step by decreasing its compu-
tational cost from #vertices×# joints down to #meshlets×# joints.

However, since bounding spheres are a less accurate representation
than bounding boxes, and since the meshlet-focused approach would
overestimate bounds even more, we decided on sticking with the
more accurate approach of computing bounding boxes per vertex.

In the future, we will investigate further options for accelerating
the precomputation step and allow further tradeoff options. We also
aim to support further skinning methods—such as dual-quaternion
skinning—with our conservative bounds besides LBS. However,
we note that the dependency on a particular skinning method is
comparably small with our presented approach: the only missing
piece for enabling different skinning techniques is the derivation
of conservative positional bounds for a single vertex between two
successive keyframes. Once derived, the corresponding methods
can be supplied as a drop-in replacement for the current solution for
LBS. Our approach for robust meshlet bounds can therefore work
with any skinning technique for which such bounds can be found.

Acknowledgements

We thank Unity Technologies for providing the GAWAIN model
through their "The Heretic: Digital Human" package. We would like
to thank the anonymous reviewers of this paper and Lukas Geyer for
their valuable feedback, as well as Thorsten Korpitsch for his help
with 3D modelling and implementation. This work was supported by
the Research Cluster “Smart Communities and Technologies (Smart
CT)” at TU Wien.

References
[AA00] ABRAMS, STEVEN and ALLEN, PETER K. “Computing swept

volumes”. The Journal of Visualization and Computer Animation 11.2
(2000), 69–82 3.

[AHA15] ANDERSSON, MAGNUS, HASSELGREN, JON, and AKENINE-
MÖLLER, TOMAS. “Masked Depth Culling for Graphics Hardware”.
ACM Trans. Graph. 34.6 (Oct. 2015). ISSN: 0730-0301. DOI: 10.1145/
2816795.2818138 3.

[Bla20] BLAKE-DAVIES, ALEXANDER. Next-Generation Gaming with
AMD RDNA 2 and DirectX 12 Ultimate. https://community.
amd.com/t5/blogs/next- generation- gaming- with-
amd-rdna-2-and-directx-12-ultimate/ba-p/427032.
[Accessed 12-April-2021]. 2020 1.

[BP07] BARAN, ILYA and POPOVIĆ, JOVAN. “Automatic Rigging and
Animation of 3D Characters”. ACM Trans. Graph. 26.3 (July 2007), 72–
es. ISSN: 0730-0301. DOI: 10.1145/1276377.1276467 3.

[CM04] CORDIER, FREDERIC and MAGNENAT-THALMANN, NADIA. “A
Data-Driven Approach for Real-Time Clothes Simulation”. Proceedings
of the Computer Graphics and Applications, 12th Pacific Conference. PG
’04. USA: IEEE Computer Society, 2004, 257–266. ISBN: 0769522343 3.

[GFSS06] GÜNTHER, JOHANNES, FRIEDRICH, HEIKO, SEIDEL, HANS-
PETER, and SLUSALLEK, PHILIPP. “Interactive ray tracing of skinned
animations”. The Visual Computer 22.9 (Sept. 2006), 785–792. ISSN:
1432-2315. DOI: 10.1007/s00371-006-0063-x 3.

[HA15] HAAR, ULRICH and AALTONEN, SEBASTIAN. “GPU-Driven Ren-
dering Pipelines”. Siggraph 2015: Advances in Real-Time Rendering in
Games. 2015 3.

[HC11] HILL, STEPHEN and COLLIN, DANIEL. Practical, Dynamic
Visibility for Games. https : / / blog . selfshadow . com /
publications/practical-visibility/. 2011 3.

[Hop99] HOPPE, HUGUES. “Optimization of Mesh Locality for Transparent
Vertex Caching”. Proceedings of the 26th Annual Conference on Com-
puter Graphics and Interactive Techniques. SIGGRAPH ’99. 1999, 269–
276. ISBN: 0201485605. DOI: 10.1145/311535.311565 3.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10.1145/2816795.2818138
https://doi.org/10.1145/2816795.2818138
https://community.amd.com/t5/blogs/next-generation-gaming-with-amd-rdna-2-and-directx-12-ultimate/ba-p/427032
https://community.amd.com/t5/blogs/next-generation-gaming-with-amd-rdna-2-and-directx-12-ultimate/ba-p/427032
https://community.amd.com/t5/blogs/next-generation-gaming-with-amd-rdna-2-and-directx-12-ultimate/ba-p/427032
https://doi.org/10.1145/1276377.1276467
https://doi.org/10.1007/s00371-006-0063-x
https://blog.selfshadow.com/publications/practical-visibility/
https://blog.selfshadow.com/publications/practical-visibility/
https://doi.org/10.1145/311535.311565


J. Unterguggenberger et al. / Conservative Meshlet Bounds for Robust Culling of Skinned Meshes

[HS17] HAN, SONGFANG and SANDER, PEDRO. “Triangle Reordering for
Efficient Rendering in Complex Scenes”. Journal of Computer Graphics
Techniques (JCGT) 6.3 (Sept. 2017), 38–52. ISSN: 2331-7418 3.

[JP04] JAMES, DOUG L. and PAI, DINESH K. “BD-Tree: Output-Sensitive
Collision Detection for Reduced Deformable Models”. ACM Transactions
on Graphics (SIGGRAPH 2004) 23.3 (Aug. 2004) 3, 12.

[Kap21] KAPOULKINE, ARSENY. meshoptimizer, Mesh optimization li-
brary. https://github.com/zeux/meshoptimizer. [Ac-
cessed: 13-April-2021]. 2016-2021 3.

[KB19] KUBISCH, CHRISTOPH and BROWN, PAT. GLSL Mesh Shader
Extension. https://www.khronos.org/registry/OpenGL/
extensions/NV/NV_mesh_shader.txt. [Accessed 2-June-
2021]. 2019 3, 9.

[KCŽO07] KAVAN, LADISLAV, COLLINS, STEVEN, ŽÁRA, JIŘÍ, and
O’SULLIVAN, CAROL. “Skinning with Dual Quaternions”. Proceedings
of the 2007 Symposium on Interactive 3D Graphics and Games. I3D ’07.
Seattle, Washington: Association for Computing Machinery, 2007, 39–46.
ISBN: 9781595936288. DOI: 10.1145/1230100.1230107 3.

[KKI*18] KERBL, BERNHARD, KENZEL, MICHAEL, IVANCHENKO,
ELENA, et al. “Revisiting The Vertex Cache: Understanding and Op-
timizing Vertex Processing on the Modern GPU”. Proc. ACM Comput.
Graph. Interact. Tech. 1.2 (Aug. 2018). DOI: 10.1145/3233302 3.

[Koc20a] KOCH, DANIEL. Vulkan Acceleration Structure Device Extension.
https://www.khronos.org/registry/vulkan/specs/
1.2- extensions/man/html/VK_KHR_acceleration_
structure.html. [Accessed 2-August-2021]. 2020 3.

[Koc20b] KOCH, DANIEL. Vulkan Ray Query Device Extension. https:
//www.khronos.org/registry/vulkan/specs/1.2-ex
tensions/man/html/VK_KHR_ray_query.html. [Accessed
2-August-2021]. 2020 3.

[Koc21] KOCH, DANIEL. GLSL Ray Query Extension. https://gith
ub.com/KhronosGroup/GLSL/blob/master/extensions/
ext/GLSL_EXT_ray_query.txt. [Accessed 2-August-2021].
2021 3.

[KSW21] KARIS, BRIAN, STUBBE, RUNE, and WIHLIDAL, GRAHAM. “A
Deep Dive into Nanite Virtualized Geometry”. ACM SIGGRAPH 2021
Courses, Advances in Real-Time Rendering in Games, Part 1. https://
advances.realtimerendering.com/s2021/index.html
[Accessed 10-September-2021]. 2021 1.

[Kub18a] KUBISCH, CHRISTOPH. Introduction to Turing Mesh Shaders.
https://developer.nvidia.com/blog/introduction-
turing-mesh-shaders. [Accessed 12-April-2021]. 2018 1.

[Kub18b] KUBISCH, CHRISTOPH. Vulkan Mesh Shader Device Extension.
https://www.khronos.org/registry/vulkan/specs/
1.2-extensions/man/html/VK_NV_mesh_shader.html.
[Accessed 2-June-2021]. 2018 3, 9.

[KVLM03] KIM, YOUNG, VARADHAN, GOKUL, LIN, MING, and
MANOCHA, DINESH. “Fast swept volume approximation of complex
polyhedral models”. Jan. 2003, 11–22. DOI: 10 . 1145 / 781611 .
781613 3.

[KŽ05a] KAVAN, LADISLAV and ŽÁRA, JIŘÍ. “Fast Collision Detection
for Skeletally Deformable Models”. Computer Graphics Forum 24.3
(2005), 363–372 3, 12.

[KŽ05b] KAVAN, LADISLAV and ŽÁRA, JIŘÍ. “Spherical Blend Skin-
ning: A Real-Time Deformation of Articulated Models”. Proceedings
of the 2005 Symposium on Interactive 3D Graphics and Games. I3D
’05. Washington, District of Columbia: Association for Computing Ma-
chinery, 2005, 9–16. ISBN: 1595930132. DOI: 10.1145/1053427.
1053429 3.

[LH16] LE, BINH HUY and HODGINS, JESSICA K. “Real-Time Skeletal
Skinning with Optimized Centers of Rotation”. ACM Trans. Graph. 35.4
(July 2016). ISSN: 0730-0301. DOI: 10.1145/2897824.2925959 3.

[LY06] LIN, GANG and YU, THOMAS P. -Y. “An Improved Vertex Caching
Scheme for 3D Mesh Rendering”. IEEE Transactions on Visualization
and Computer Graphics 12.4 (July 2006), 640–648. ISSN: 1077-2626.
DOI: 10.1109/TVCG.2006.59 3.

[Mic21] MICROSOFT CORPORATION. DirectX-Specs. https://micro
soft.github.io/DirectX-Specs. [Accessed 02-August-2021].
2021 1.

[MLT89] MAGNENAT-THALMANN, N., LAPERRIÈRE, R., and THAL-
MANN, D. “Joint-Dependent Local Deformations for Hand Animation
and Object Grasping”. Proceedings on Graphics Interface ’88. Edmonton,
Alberta, Canada: Canadian Information Processing Society, 1989, 26–
33 3.

[NVI18] NVIDIA CORPORATION. NVIDIA Turing GPU Architecture. h
ttps://images.nvidia.com/aem-dam/Solutions/de
sign-visualization/technologies/turing-architec
ture/NVIDIA-Turing-Architecture-Whitepaper.pdf.
[Accessed 12-April-2021]. 2018 1, 3, 9.

[RLM04] REDON, S., LIN, M. C., and MANOCHA, D. “Fast Continuous
Collision Detection for Articulated Models”. Solid Modeling. Ed. by
ELBER, GERSHON, PATRIKALAKIS, NICHOLAS, and BRUNET, PERE.
The Eurographics Association, 2004. ISBN: 3-905673-55-X. DOI: 10.
2312/sm.20041385 3.

[Rod40] RODRIGUES, OLINDE. “Des lois géométriques qui régissent les
déplacements d’un système solide dans l’espace, et de la variation des
coordonnées provenant de ces déplacements considérés indépendants des
causes qui peuvent les produire”. Journal de Mathématiques Pures et
Appliquées. 1st ser. 5 (1840), 380–440 6.

[SBOT08] SHOPF, JEREMY, BARCZAK, JOSHUA, OAT, CHRISTOPHER,
and TATARCHUK, NATALYA. “March of the Froblins: Simulation and
Rendering Massive Crowds of Intelligent and Detailed Creatures on
GPU”. ACM SIGGRAPH 2008 Games. SIGGRAPH ’08. Los Angeles,
California: Association for Computing Machinery, 2008, 52–101. ISBN:
9781450378499. DOI: 10.1145/1404435.1404439 3.

[SBT06] SPILLMANN, J., BECKER, M., and TESCHNER, M. “Efficient
Updates of Bounding Sphere Hierarchies for Geometrically Deformable
Models”. Vriphys: 3rd Workshop in Virtual Realitiy, Interactions, and
Physical Simulation. Ed. by MENDOZA, CESAR and NAVAZO, ISABEL.
The Eurographics Association, 2006. ISBN: 3-905673-61-4. DOI: 10.
2312/PE/vriphys/vriphys06/053-060 3, 12.

[SGO09] SCHVARTZMAN, SARA C., GASCÓN, JORGE, and OTADUY,
MIGUEL A. “Bounded Normal Trees for Reduced Deformations
of Triangulated Surfaces”. Proceedings of the 2009 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. SCA ’09.
New Orleans, Louisiana: Association for Computing Machinery,
2009, 75–82. ISBN: 9781605586106. DOI: 10 . 1145 / 1599470 .
1599480 3.

[Sho85] SHOEMAKE, KEN. “Animating rotation with quaternion curves”.
Proceedings of the 12th annual conference on Computer graphics and
interactive techniques. 1985, 245–254 6.

[SOG08] STEINEMANN, DENIS, OTADUY, M., and GROSS, M. “Tight
and efficient surface bounds in meshless animation”. Comput. Graph. 32
(2008), 235–245 3.

[Uni21] UNITY TECHNOLOGIES. “Unity Documentation”. https://
docs.unity3d.com/ScriptReference/AnimationClip-
localBounds.html. Animation Clip Local Bounds. 2021 3.

[Ura19] URALSKI, YURY. Mesh Shading: Towards Greater Efficiency of
Geometry Processing, Advances in Real-time Rendering. Siggraph Course.
2019 3.

[Wal21] WALBOURN, CHUCK. DirectXMesh geometry processing library.
https://github.com/microsoft/DirectXMesh. [Accessed:
13-April-2021"]. 2014-2021 3.

[Wih16] WIHLIDAL, GRAHAM. “Optimizing the Graphics Pipeline with
Compute”. Game Developers Conference. 2016 2, 3.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

https://github.com/zeux/meshoptimizer
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_mesh_shader.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_mesh_shader.txt
https://doi.org/10.1145/1230100.1230107
https://doi.org/10.1145/3233302
https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VK_KHR_acceleration_structure.html
https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VK_KHR_acceleration_structure.html
https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VK_KHR_acceleration_structure.html
https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VK_KHR_ray_query.html
https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VK_KHR_ray_query.html
https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VK_KHR_ray_query.html
https://github.com/KhronosGroup/GLSL/blob/master/extensions/ext/GLSL_EXT_ray_query.txt
https://github.com/KhronosGroup/GLSL/blob/master/extensions/ext/GLSL_EXT_ray_query.txt
https://github.com/KhronosGroup/GLSL/blob/master/extensions/ext/GLSL_EXT_ray_query.txt
https://advances.realtimerendering.com/s2021/index.html
https://advances.realtimerendering.com/s2021/index.html
https://developer.nvidia.com/blog/introduction-turing-mesh-shaders
https://developer.nvidia.com/blog/introduction-turing-mesh-shaders
https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VK_NV_mesh_shader.html
https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VK_NV_mesh_shader.html
https://doi.org/10.1145/781611.781613
https://doi.org/10.1145/781611.781613
https://doi.org/10.1145/1053427.1053429
https://doi.org/10.1145/1053427.1053429
https://doi.org/10.1145/2897824.2925959
https://doi.org/10.1109/TVCG.2006.59
https://microsoft.github.io/DirectX-Specs
https://microsoft.github.io/DirectX-Specs
https://images.nvidia.com/aem-dam/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://doi.org/10.2312/sm.20041385
https://doi.org/10.2312/sm.20041385
https://doi.org/10.1145/1404435.1404439
https://doi.org/10.2312/PE/vriphys/vriphys06/053-060
https://doi.org/10.2312/PE/vriphys/vriphys06/053-060
https://doi.org/10.1145/1599470.1599480
https://doi.org/10.1145/1599470.1599480
https://docs.unity3d.com/ScriptReference/AnimationClip-localBounds.html
https://docs.unity3d.com/ScriptReference/AnimationClip-localBounds.html
https://docs.unity3d.com/ScriptReference/AnimationClip-localBounds.html
https://github.com/microsoft/DirectXMesh

