
Concept Map Mining als
Browserweiterung

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Medieninformatik und Visual Computing

eingereicht von

Mario Stoff
Matrikelnummer 11777706

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Ass. Dr.techn. Manuela Waldner, MSc

Wien, 22. Oktober 2021
Mario Stoff Manuela Waldner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Concept Map Mining as Browser
Extension

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Media Informatics and Visual Computing

by

Mario Stoff
Registration Number 11777706

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Ass. Dr.techn. Manuela Waldner, MSc

Vienna, 22nd October, 2021
Mario Stoff Manuela Waldner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Mario Stoff

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 22. Oktober 2021
Mario Stoff

v

Kurzfassung

Concept Maps sind ein wohlbekanntes Mittel um vorhandenes Wissen strukturiert darzu-
stellen. Sie werden durch ein Node-Link-Diagramm repräsentiert, welches verschiedene
Konzepte und ihre Verbindungen zueinander aufzeigt. Diese Elemente werden meist
aus unstrukturierten Texten gewonnen. Eine Concept Map händisch herzustellen kann
mühsam sein, aber vollständig automatisierte Lösungen erlangen oftmals nicht die ge-
wünschte Qualität. Halb-automatische Herangehensweisen hingegen haben sich oftmals
als günstigen Kompromiss zwischen diesen beiden Ansätzen herausgestellt. Bei diesen
halb-automatischen Ansätzen ist es besonders wichtig, dass der manuelle Aspekt der
Erstellung möglichst einfach und intuitiv gestaltet ist, um den effizienten Arbeitsfluss
der Benutzerinnen und Benutzer nicht zu unterbrechen. Aus diesem Grund spielt die
grafische Nutzeroberfläche eine entscheidende Rolle wenn es darum geht eine effiziente
Arbeitsweise und befriedigende Ergebnisse zu ermöglichen.
Es ist daher das Ziel dieser Arbeit, eine Umgebung zu erschaffen, in der Benutzerinnen
und Benutzer die Möglichkeit haben, sinnvolle Konzepte aus beliebigen Webseiten zu
extrahieren und diese Konzepte mit bestehenden Wissensstrukturen zu verbinden. Mit
anderen Worten, es soll visuell hervorgehoben werden, wie neue, unbekannte Information
mit einem bestehenden Wissensstand zusammenhängt. Zu diesem Zweck wird hier eine
Browsererweiterung vorgestellt, welche Benutzerinnen und Benutzern ermöglicht den
Textinhalt beliebiger Webseiten mit einer Software zur natürlichen Sprachverarbeitung
zu analysieren. Konzepte und Relationen werden dann direkt im originalen Text hervor-
gehoben. Den Benutzerinnen und Benutzern steht es dann frei, diese neuen Konzepte und
Relationen zu einer bestehenden Concept Map hinzuzufügen. Concept Maps können auch
automatisch als Node-Link-Diagramm dargestellt werden. Mit der Hilfe einer kleinen
Benutzeruntersuchung kommen wir zu dem Schluss, dass diese Anwendung definitives
Potenzial aufweist, aber aufgrund von einigen Mängeln, vor Allem im Bereich der auto-
matischen Textverarbeitung und der Konzept Erkennung, noch nicht für einen realen
Anwendungsfall geeignet ist.

vii

Abstract

Concept maps are a well-known method of structured representation of knowledge. They
are represented as a node-link diagram that showcases different concepts and their
relations to each other, which are often extracted from unstructured text. Manual
generation of such concept maps can be a tedious task, but fully automated approaches
are often not able to satisfy qualitative expectations. Semi-automated methods have
shown to be a satisfying compromise between these two. It is especially important that
the manual aspect of creating a concept map is as intuitive and easy as possible so that
the user’s workflow is not interrupted, and tasks can be completed efficiently. Therefore,
it is the graphical user interface that plays a critical role in guaranteeing a satisfying
experience and swift completion of tasks.
It is therefore the aim of this thesis to create an environment, in which users are able
to extract meaningful concepts from arbitrary websites and connect these concepts to
existing knowledge structures. In other words, it should visually convey how new, unseen
information fits to the knowledge they already have. For this purpose, an extension to
the Google Chrome browser is presented in this thesis, that allows the user to analyze
the text on any website on the internet with a provided natural language processing
software. Concepts and relations can then be highlighted in the original text to visualize
their connection to existing knowledge. At the user’s choice, new concepts, relations, and
combinations of the two can be added to existing concept maps. These concept maps
can be automatically visualized as a node-link diagram.
With the help of a small user evaluation, we conclude that the approach has definite
potential but still lacks the reliability, especially with the automatic text processing and
concept extraction, for real-world use-cases.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1
1.1 Aim of the Work . 1
1.2 Methodology . 2
1.3 Structure . 2

2 Background 3
2.1 Concept Map . 3
2.2 Concept Map Mining . 6

3 Related Work 9
3.1 Concept Map User Interfaces . 9
3.2 Highlighting . 15
3.3 Visual Links . 15

4 Method 19
4.1 Interface . 20
4.2 Interaction . 21

5 Implementation 27
5.1 Server . 27
5.2 Chrome Extension . 28
5.3 Graph . 31

6 Limitations 33

7 Discussion & Results 37
7.1 An Example Walkthrough . 37
7.2 Usability Inspection . 39

xi

7.3 Performance . 42
7.4 Discussion of Results . 43

8 Conclusion 45
8.1 Summary . 45
8.2 Future Work . 45

List of Figures 47

Bibliography 49

CHAPTER 1
Introduction

In many professions, workers are required to conduct thorough research on diverse topics
- for example, investigative journalists, researching and fact-checking their latest piece,
or criminal investigators, trying to find connections between evidence. Their goal is
most of the time to gain new knowledge and connect the newly learned information to
already known facts. These tasks often require reading many different sources, as the
required knowledge is often scattered across many places on the Internet or other digital
media. Sometimes, connections between ideas are not always obvious across different
documents and they could easily be overlooked. When reading a lot of sources on one
topic, researchers will often encounter redundant information which is time-consuming
and does not yield any real benefit to the task of making sense of the topic. There exists
a need to quickly and visually link information in an online text to already explored
knowledge domains and to make permanent connections.

Concept maps have been proven many times to be very useful in representing someone’s
knowledge of a certain topic or focus question and to help with tying new evidence
to existing knowledge structures. But the manual construction of a concept map can
be tedious and is often not as easy as it might appear. Technical solutions have been
developed to aid in the construction of these maps, but most of them only facilitate
the mechanical part of creating the map. Only a few provide actual help by offering
meaningful suggestions as to what further concepts might be included to extend the
concept map. And if these functionalities are available, it is often only in dedicated
software clients, where an input text needs to be fed to an application in order to be
analyzed.

1.1 Aim of the Work
With this thesis, we aim to find out if we can apply a semi-automatic concept map
mining approach on the text of arbitrary web pages in the user’s browser. We want to

1

1. Introduction

explore whether concept and relation suggestions received from a text processing tool
can be easily highlighted within the source page itself, and whether the connections
between them can be visualized in a satisfying manner. Users should be able to create
sophisticated concept maps directly in their browser without the need to leave the website
they are researching on and without the need of any external tool or software. We want
to enable them to quickly identify redundant information, as well as any new information
that relates to to their previously acquired knowledge. With this approach, we aim to
make the process of analyzing source material and generating valuable suggestions fully
automatic. Users should be able to make use of these suggestions and create concept
maps without much manual interference.

1.2 Methodology
To achieve this aim, the contribution of this thesis is a browser-embedded User Interface
that can analyze online text and extract concepts and relations through Natural Language
Processing and Concept Map Mining. After the text analysis, the tool presents the user
with the results. It shows the user what concepts within the text are already contained
in their existing concept map. It can also highlight new concept suggestions that directly
relate to the already known concepts, or present the user with entirely new concepts
that it extracted from the text. All these possible indications are highlighted through
differently colored background boxes around the concept words or phrases directly in the
text. Through hover and click interaction, a user can discover new relations and make
additions to their existing concept map.

1.3 Structure
In Chapters 2 and 3 we visit the theoretical background of concept maps and concept map
mining, and related work on user interfaces and used techniques. Chapter 4 describes the
user interface and functionalities developed for this application. Chapter 5 deals with
the implementation of the suggested solution. In Chapter 6, we address the weaknesses
and limitations of our approach. In Chapter 7, a use-case is described as a walkthrough
example and a user evaluation is conducted and discussed. Finally, in Chapter 8, we
summarize this thesis and discuss possible future work on this topic.

2

CHAPTER 2
Background

In the Background chapter, we explain the basic concepts that are essential foundations to
this work but are not directly related to the work itself. Section 2.1 covers the definition
of Concept Maps and their most prominent use-cases. Section 2.2 focuses on the process
of Concept Map Mining (CMM), with a special focus on the semi-automatic CMM
software developed by Presch [Pre20].

2.1 Concept Map
The idea of a concept map originated in a 1972 research program by J.D. Novak and
Dismas Musonda [NM91]. In this 12-year program, the researchers tried to follow
children’s understanding and knowledge of science. The program was based on the
cognitive learning theory by David Ausubel [Aus63], which describes the structure of
knowledge in human brains as a combination of concepts and propositions. New concepts
and propositions need to have connections to the learner’s existing knowledge framework
in order to be learned efficiently. To better represent the children’s knowledge in his
program, Novak developed concept maps.

In a later report [NC06], Novak and Cañas defined a set of guidelines on “Constructing
Good Concept Maps”.

1. They start the process of constructing a concept map by establishing a context.
This is best accomplished by defining a Focus Question. The focus question should
set clear boundaries for what the concept map contains and limit the scope to the
problem or issue that the concept map should help to resolve [NC06].

2. Once the domain and focus question are established, about 15 - 25 key concepts
for this question can be identified. These concepts are then ranked from the most
general/inclusive at the top of the list to the most specific concept at the bottom.

3

2. Background

This list should only function as an approximation, as concepts will or will not be
added to the concept map later on.

3. After that, concepts can be gradually added to a preliminary concept map and
relations can be formed. Concepts can be placed at the level of hierarchy where
they seem to fit best in the current context. Novak and Cañas [NC06] recommend
the use of post-it notes or a software tool, as that makes it easier to move concepts
around.

4. The next step is to identify cross links. These connect different sub-domains of the
concept map to each other and show the creator’s understanding of the domain.
This understanding is important to avoid unwanted phenomenons like full sentences
as concepts or “string maps”, i.e. long chains of concepts and relations where only
one always follows another.

5. As a final step, it is important to realize that a good concept map needs multiple
revisions. Concepts can be rearranged to increase clarity. New concepts can be
added and unnecessary ones removed. Novak and Cañas write that a good concept
map usually needs at least three revisions.

As we will be described later on, the process to construct a concept map used in this
thesis diverts from this model method. For a start, this is due to the fact that the purpose
of the map creation itself is a little different. Novak and Cañas want to visualize a fixed
amount of knowledge in a well constructed concept map. The aim of our approach, on
the other hand, is to expand existing knowledge through research and exploration of
text. It is therefore not feasible for us to start out with defining a set amount of key
concepts, as that would defeat the entire purpose of our application. Relations and cross
links should also arise naturally throughout the research process with our procedure. We
do, however, also strongly encourage to revise and edit the concept maps in progress, as
the unstructured expansion that comes with our approach can easily lead to obsolete
concepts or double mentions of relations.

2.1.1 Definition

Based on Novak’s definition and quality measures [NGB84], Villalon and Calvo formally
described a concept map as follows [VC08]:

Concept Maps are a triplet CM = {C, R, G}, where C is a set of concepts C =
{c1, c2, ..., cn} each being a noun or phrase that is unique in C. R describes a set of
relations R = {r1, r2, ..., rn} where each relation is again a triplet ri = {cp, cq, li} with cp

and cq being concepts from C and li being a label phrase. The generalization levels in G
each correspond to a distinct set of concepts from C. gi = {c1, c2, ..., cs}. Generalization
levels are ordered in the way that for two levels gi and gj , gi is more general than gj only
if i < j.

4

2.1. Concept Map

2.1.2 Applications of Concept Maps

In his Diploma Thesis “Semi-Automatic Creation of Concept Maps”[Pre20], Presch
describes several different use cases for concept maps. He states that this list is “not to
be seen as a complete enumeration of all existing applications, but rather give a brief
overview of what is possible.” [Pre20]

Education: As already mentioned, education is the field that concept maps originated
from as a method of representing the knowledge of students over a certain topic [NM91].
They can be used as either material for studying or a means of evaluation of a student’s
knowledge, where a teacher can compare a student’s concept map to one created by an
expert [NC07].

Visualizing Expert Knowledge: In expert systems, concept maps can be a powerful
tool to visualize the detailed knowledge an expert has on a certain topic. As one example
of such expert level concept maps, Hoffman et al.[HCFC01] utilized concept maps to
“create a knowledge model of weather forecasts in the gulf coast region” [Pre20].

Storytelling: Under the guise of “Storytelling” many applications can be summarized.
These can include use cases, where a concept map is used to show certain connections
in a topic in a visual manner [Pre20]. One such example is the use of concept maps by
The International Consortium of Investigative Journalists to visualize the connections
between leaked documents of offshore companies and the individuals involved in the
affairs [PAN].

Organization and Planning: Another way to use concept maps is for planning and
collaborating on shared knowledge [Pre20]. In the context of project planning in libraries,
Colosimo and Fitzgibbons [CF12] use concept maps for a workshop where they organize
files and access resources. Resources are directly attached to concepts and can be accessed
from the concept map.

Information Retrieval and Summarization: Other than visually representing tex-
tual data, concept maps can also be used as a basis to retrieve information and sum up
the results. Taking advantage of the propositional and hierarchical nature of concept
maps, Carvalho et al. [CHC01] developed algorithms that could filter and rank the
relevance of results of search engines based on the structure of the concept map.

The solution that we have developed could potentially be utilized in more than one of
these application areas. Our tool could be used by students in the education field to
create concept maps while they are exploring and gathering information on a subject.
They could then show their teachers that they have dealt with different materials and
understood the subject with their resulting concept map. For concept maps that classify
as “storytelling”, there is potentially a lot of research and exploration of unknown sources
involved in the process. That is where the proposed application particularly shines. On
the other hand, it would probably find less use for visualizing expert knowledge. That
kind of task would not entail much gathering of new ideas, but rather portraying what

5

2. Background

the expert already knows. While this would still be possible with our application, it is
not tailored to that task and there would be other programs that better fit their needs.

2.2 Concept Map Mining

Concept Map Mining describes the extraction of concepts, relations, and levels of
generality from text. There are different approaches and classifications of those approaches.
The term “concept map mining” has first been introduced by Villalon and Calvo [VC08]
in 2008 and further classified by Kowata et al.[KCB10] in 2010.

This thesis is built on the semi-automatic concept map mining application developed
by Presch [Pre20] for his master thesis. His application uses a state-of-the-art Natural
Language Processing pipeline to analyze an input text and derives possible concept and
relation suggestions. In his work, he simplify the mentioned definition of a concept map by
omitting the generalization level requirement and declaring a concept map CM = {C, R},
consisting only of concepts and relations, as a valid result. Therefore, the resulting
concept maps of this thesis’ application also do not provide a hierarchical structure.

Presch’s semi-automatic concept map mining process [Pre20] consists of two distinct
parts:

1. Automatic text processing takes care of generating concept and relation sug-
gestions. It takes a simple, clean text string (i.e. without any special characters) as
input and through the subsequent execution of multiple algorithms, it reaches the
desired result.
It starts with a “Linguistic Pre-Processing” step, where typical steps of a Natural
Language Processing pipeline are applied to annotate the input text. Figure 2.1
shows the structure of such a typical pipeline.
The process starts with “tokenization” of the text, which is the process of splitting
a text into its most basic components, like words, punctuation marks, numbers and
other symbols [HHL19]. After that, “sentence segmentation” is applied, where a text
is split into individual sentences or chunks of information [HHL19]. These sentences
are usually sufficiently detailed to form subject-verb-object triples [HHL19]. With
“part-of-speech tagging” the previously segmented parts of sentences are annotated
with their grammatical role in these sentences. Words are, for example, tagged as
nouns, adjectives or verbs. This can be seen in Figure 2.2. An important part for
this CMM approach is the processing step of “named entity recognition”. With
this step, previously annotated tokens are tagged with additional categories that
relate them to things in the real world. These categories can classify a token
as representing a person, location, organization, a date, or others. This extra
classification helps with extracting concepts later on. In the next steps “Coreference
Resolution” is applied, which is a process that detects anaphora (i.e. usage of the
same phrase in subsequent sentences) (see Figure 2.3).

6

2.2. Concept Map Mining

Figure 2.1: A state-of-the-art NLP pipeline from The Stanford CoreNLP [MSB+14].

Figure 2.2: Part-of-speech tagged text with Stanford CoreNLP [MSB+14].

Figure 2.3: Coreference Resolution with Stanford CoreNLP [MSB+14].

7

2. Background

This makes it easier to detect multiple occurrences of the same concept. After that,
similar concept-mentions are put into groups. Finally, concepts are extracted from
the previously generated concept mention groups and relations are generated from
verb phrases identified in the text.

2. For his Manual Concept Map Construction, Presch created a prototype web
application that displays the concept and relation suggestions from the previous step
to the user. The user can then select desired concepts to add them to a visual graph
representation of a concept map. Suggested relations and related concepts can be
automatically shown by selecting any concept in the concept map and subsequently
also included in the concept map graph. Used concepts are highlighted in the “text
area”, where the submitted text is presented.

The work in this thesis makes use of Presch’s automatic text processing as a first step to
analyze the page text of arbitrary sites on the World Wide Web before further processing
the results.

8

CHAPTER 3
Related Work

The Related Work chapter focuses on other available concept map user interfaces and
what they can or cannot do in comparison to our implementation. We also take a look at
common highlighting techniques and visual linking and how they are used in visualization
literature.

3.1 Concept Map User Interfaces
The construction of concept maps has, over the last couple of decades, evolved from
simple pen and paper drawings to the use of elaborate digital tools. Today, there are
many tools available that allow users to create concept maps from scratch, redesign and
rearrange them, and also connect them to further resources to maximize the information
they represent. Different tools have different capabilities. The following section gives an
overview of different tools and what they are capable of.

3.1.1 CmapTools

In their guidelines for constructing good concept maps, Novak and Cañas [NC07] also
recommend a software toolkit called CmapTools [CHC+04]. This program was designed
as a client-server based software kit at the Institute for Human and Machine Cognition
(IHMC) in Florida to create concept maps and share and collaborate during that process.
It is designed with the use in education and the scientific field in mind. CmapTools is
still being developed and extended to this day.

CmapTools aims to provide a low threshold for creating concept maps while at the same
time maintaining a high ceiling of functionality. In other words, it should be easy for
even a child to construct a basic concept map, but it should also be possible for experts
to create elaborate and graphically more sophisticated maps. With CmapTools, users
can connect their concept maps with many types of resources all across the internet, be it

9

3. Related Work

Figure 3.1: Concept Map about CmapTools in CmapTools [CHC+04].

images, videos, sound clips, texts, etc., or even other concept maps. Like this, it is possible
to establish large knowledge models across many interlinked concept maps. Using this
system, it has been found that concept maps are quite efficient for browsing large domains
of knowledge compared to the page-based approach on the World Wide Web [CDC+01].
CMapTools allows its users to display multiple linked resources at the same time, making
it easy to investigate related materials. Everything can be drag-and-dropped around, all
the while maintaining or updating established links.

One very interesting feature the program offers is a concept suggester that mines the
web for relevant concepts [LMR04]. It analyses the concept map under construction and
provides the user with concept suggestions it deems relevant to the context of the map.
Due to the fact that the tool is mining the Internet without an actual understanding of
the map, it is understandable that not all suggestions are relevant, but the developers
argue that even two or three meaningful suggestions can trigger further ideas in the
creator of the map. A similar phenomenon can be seen with the concept map mining
applied in our project. Although our approach extracts concepts from a single source at
a time, it still is likely to produce irrelevant suggestions.

Another big aspect of CmapTools is the public sharing of knowledge. Everything can be
published to public servers all across the world where maps and resources can be shared
and linked to each other. The open public server approach of this toolkit was very unique
at the time of its creation.

10

3.1. Concept Map User Interfaces

As part of the CmapTools software suite Cañas et al. [CCL18] have developed a web
embeddable concept map editor that brings the functionality of CmapTools to the Browser.
Apart from a number of advanced features, this new tool, called eCmap, works similar to
the desktop client. In contrast to this web app approach, our work is implemented as a
browser plugin and can therefore analyze any content the user is currently visiting.

Other than this very specific and sophisticated solution, there are numerous applications
available for free on the Internet. These are, however, in most cases not tailored to creating
concept maps, but rather general tools for drawing graphs and diagrams. Nonetheless,
all upcoming tools have the capability to create concept maps that fulfill the definition’s
requirements.

3.1.2 Basic Editors

Some tools can be very simple, yet quite effective when it comes to creating concept
maps. Such basic editors, like the Visual Paradigm Editor [VPE] or MindMup [MIN], do
not offer many extras, but they are practical enough when a user only wants to create a
simple concept map quickly and easily. Both these tools allow to place boxes in different
shapes (Visual Paradigm) or just one default shape (MindMup) for concepts, and to link
these concept boxes with labeled lines. That is enough to form a basic concept map.
Visual Paradigm has a lot of options to style nodes and links.

3.1.3 Collaborative Tools

Apart from the bare basics that are needed to design a concept map it can be very
useful in many use-cases to work together with other people on the same concept map.
Fortunately, there are quite a few online tools available that fully operate on the cloud
and are built for collaborative work. Most of the following pieces of software are not
specifically developed for creating concept maps but rather for many different kinds of
diagrams and charts. But they all offer decent capabilities to design diagrams that adhere
to the definition of concept maps.

Creately, Lucidchart, Miro

Creately [CRE], Lucidchart [LUC], and Miro [MIR] are one step up of basic editors.
For concept mapping, they offer everything the previous tools had as well as attaching
hyperlinks to concepts. But the bigger distinction is the ability to invite other people
to work on the same document in real-time (however, this is a premium feature with
Lucidchart). With all three of them, users are able to post comments for collaborators to
see and discuss. When using a Miro whiteboard, users can also communicate directly via
an integrated text chat feature. For even better collaboration, Miro and also Creately
(beta) offer live video conferences among team members.

Mindomo

Mindomo [DOM] is another application where users can create concept maps with little
effort and work together (premium feature). But one thing distinguishes this tool from

11

3. Related Work

the previous ones. Like CmapTools [CHC+04], Mindomo allows to attach a variety of
media elements to the concept boxes. All these attachments (videos, images, audio) can
either be embedded from other websites, or uploaded directly from the user’s computer
or their cloud storage like Google Drive or Dropbox. It does, however, not have any easy,
built-in means of communication with other users.

(a) (b)

(c) (d)

Figure 3.2: Concept Maps created with (a) Creately (b) Lucidchart (c) Miro and (d)
Mindomo.

CLIP Tool

The CLIP tool, described by Mahyar and Tory [MT14], is a Java-based tool that has its
focus less on merely creating a visual graph, but is focused specifically on supporting a
collaborative sensemaking task. With this tool, multiple users researching the same case
can share and discuss their individual findings in a shared space. Each user can create
their individual concept graph, where they visualize their own evidence as nodes and
add relations between them. A user gets notified if another user has similar or related
evidence in their concept graph. At any point of their investigation, users have the
opportunity to merge other user’s graphs with their own to incorporate their findings into
their own. Any nodes or edges in these graphs can be attached with text notes, references
to the original source, time stamps, and others. Nodes created by different collaborators
appear in different colors to easily distinguish between who provided what evidence. This
also visualizes what evidence has been found by multiple users. A time-line feature is
also incorporated in the tool to make it possible to later retrace the expansion of the

12

3.1. Concept Map User Interfaces

Figure 3.3: Example of annotated concepts and relation with KTGraph [ZGI+17].

concept graphs.

Knowledge-Transfer Graph (KTGraph)

The knowledge-transfer graph by Zhao et al [ZGI+17] is also a tool that is intended for
collaborating in investigative sensemaking tasks. But in contrast to the CLIP tool, it
is not designed for real-time collaboration and merging user’s individual graphs, but
rather handing off one user’s partial findings to another person in an asynchronous type
of collaboration. With this tool, a user can create a standard concept graph, where
different concepts are connected with relation phrases. These concepts and relations
can then be annotated with many different assets that should accentuate the user’s
reasoning, ideas, and train of thought. These include embedded references to source
material, comments, and visual tags that signify different meanings like open questions,
to-dos, importance, or posed hypotheses (Fig 3.3). Every step of the graph’s creation is
recorded to a timeline panel that can be used to play back the evolution of the graph
step by step. All these accessories to the concept graph are intended to make it easier
for subsequent investigators to follow the previous user’s thoughts and findings and to
quickly catch up to the current state of the investigation and to find anchor points where
they themselves can push the investigation forward.

3.1.4 Browser-based Sensemaking Tools

The following tools are not equipped to create concept maps per se, but they are in their
essence very similar to the application that was developed for this thesis. Both these
tools aim to improve the sensemaking process for users by representing websites and web
resources as elements in a graph and signifying relation between them with directed links.

ScratchPad

The “ScratchPad” by David Gotz [Got07] is also an extension to a browser interface. It is
integrated as a sidebar next to the main browser display area (Fig. 3.4). With it, a user
can “snapshot” the page currently active in the browser and put a graphical representation
of that website into their ScratchPad. They can also drag-and-drop information of a finer

13

3. Related Work

Figure 3.4: A ScratchPad-enhanced web browser and a close-up of the ScratchPad sidebar
[Got07].

granularity from a web page onto the ScratchPad, or create new object nodes directly
on the ScratchPad itself. These objects can be modified any time. Object nodes can
also be linked together to express relationships. Unlike concept maps, these relations are
not labeled and bear no distinct, additional meaning other than a relation of any kind
between these objects.

SenseMap

(a) (b)

Figure 3.5: (a) History Map and (b) Knowledge Map with SenseMap [NXB+16].

The “SenseMap” application by Nguyen et al. [NXB+16] has its main use in visualizing
the sequential steps taken throughout a sensemaking task. Browser actions, like entering
search terms and following links, are automatically recorded to a “History Map” (Fig.
3.5a). While doing their research, users have the ability to add highlights and written
notes to any website they visit. This additional information gets automatically attached
to the page’s representation in the history map. This history map can be viewed as a
node-link graph, where search terms and visited pages are represented as nodes and the

14

3.2. Highlighting

links between them signify the path a user has taken to get to a certain page. The user
can also access a different representation of this map, called a “Knowledge Map”, where
the information from the history map can be curated to better suite the users needs (Fig.
3.5b). Nodes can be spatially organized and links can be manually added or removed.

3.2 Highlighting
There are many well-known ways to highlight certain words or phrases in a text e.g. bold
typeface, underlining, italics, or background coloring [SOK+15]. Different highlighting
techniques work better for certain types of data. For example, categorical data can be
highlighted well with hues of text or background color, underline styles, borderline styles,
or font families [SOK+15]. Quantitative data on the other hand is better emphasized
through font size, luminance, thickness, or degree of letter spacing [SOK+15]. In their
user studies, Strobelt et al. found out that highlighting with background color lies in the
top three techniques in regard to detectability (or popping out) for all their scenarios.

Perception theory shows that multiple visual low-level features can interfere with each
other [HE99]. This was also observed in the user studies [SOK+15]. The strongest
distractors for background coloring were identified as underlines and italics.

Strobelt et al. [SOK+15] write in their paper that most text analysis systems employ
background coloring as a highlighting technique and that this approach creates problems
once multiple overlapping annotations occur. This can also be observed in this work and
will be further addressed in a later chapter.

An example application that uses span elements with different background colors to mark
concepts and relations is the web-based text annotation tool called “Anafora” [CS13].
With this tool, users can annotate a text with special highlights, whose properties are
predefined in XML-schemas. These highlights can represent different types of entities (or
concepts) and relations between those entities.

Another tool where concepts and relations can be highlighted in a text document is
called “Egas” [CLN+13]. It is a web-based platform designed to annotate biomedical
text. Concepts and relations can be manually annotated or received through calling an
automatic document annotation service. With this tool, concepts are also highlighted as
colored boxes and relations as lines between them, tagged with the type of relation (Fig.
3.6).

3.3 Visual Links
Visual links have been used in numerous applications and research papers in order to
show that two or more entities share a connection. Studies have shown that connecting
entities with visual links generates an even stronger grouping effect than other design
principles like similarity, color, shape, or size. Ziemkiewicz and Kosara [ZK10] describe
in their study the perceived attracting force that different grouping methods have on

15

3. Related Work

Figure 3.6: Egas main user interface [CLN+13].

the remembered position of elements. They found that connecting lines, along with
outlines around elements, let test participants remember two elements closer together
than they actually were. Palmer and Rock present in their study [PR94] the role of
uniform connectedness. In one experiment they show how two targets that are connected
with a straight line appear to be grouped together, even though each target is either
closer in position, more similar in size, or a combination of both to another disconnected
target.

Visual links show particular effectiveness over mere color highlighting when connected
items are outside of the active visual field [HBW08]. That is why they are often used
in applications that involve connecting information across multiple windows and large
displays.

In a paper by Waldner et al. [WPL+10], visual links are utilised to connect pieces
of information that are selected by the user across multiple windows with the help
of a central window management application. This application is targeted to help
information workers analyze information across multiple sources. A similar visualization,
specifically created for collaborative information exploration, is presented in a paper
titled “Collaborative information linking: Bridging knowledge gaps between users by
linking across applications” [WS11]. Information is once again connected across multiple
application windows with the additional feature of user-specific visual links. In “Context-
preserving visual links” by Steinberger et al. [SWS+11], an improved process of linking
related elements across windows is presented. Connecting lines are rendered in a way to
minimize occlusion of relevant data and to make them very distinct from the elements

16

3.3. Visual Links

they cover. Analyst’s Workspace [AN12] is a sensemaking environment which is designed
to utilize the available space on large displays to perform an investigative data analysis.
This application encourages an entity-centric approach to data analysis. Visual links are
employed to connect entity occurrences in multiple displayed documents. An approach
that is a little different is presented in a paper by Geymayer et al. [GSL+14]. Here, visual
links are used not only to show connected information that is visible on large screens, but
also related information that is occluded by other windows or otherwise outside the user’s
viewport. Finally, visual links are used in a 2021 article by Waldner et al. [WGSS21] to
connect evidence in another visible window to concepts in an observation graph.

In our thesis, we do not have items of interest across multiple frames or applications.
Our entities are most likely positioned in each others proximity, but we still want to
make use of the strong connective property that visual links provide. The links that
are generated with our tool represent relations between entities that were automatically
extracted from the text and are therefore used to immediately draw the user’s attention
to related entities that might be of interest.

17

CHAPTER 4
Method

As mentioned before, this thesis uses the work by Presch [Pre20], specifically, the
automatic text processing software that produces concept and relation suggestions from
input text. The aim of this thesis is to create a Front-End Interface that can apply
this automatic text processing on arbitrary text on the Internet and present the user
with potentially meaningful extensions to their existing knowledge. We want to take the
concept and relation suggestions from the server and display them right in the place
where they originate from, on a website on the Internet. From there, the user should
be able to pick the concepts and relations they like and permanently add these new
propositions to an existing concept map. We want to highlight concepts that are known,
i.e. contained in an existing concept map, as well as entirely new concepts contained in a
website’s text, and mark relations between known and new concepts in a prominent way.

Figure 4.1: Schematic of the text analysis process.

19

4. Method

Figure 4.2: The extension popup window.

For this purpose, we have built an extension to the Google Chrome browser. This
extension manages the connection to Presch’s Concept Map Mining Back-End and all
the highlighting that is produced through interaction (Fig. 4.1).

There are three distinct components, or areas of interaction, to this application:

• The Chrome extension popup,
• the target website, and
• the concept map graph.

The extension popup functions as the main hub from which the application is controlled
(Fig. 4.2). The website that the application is used on works as a carrier for all the
highlights and for interactions that extend the concept map. Finally, the concept map
graph, available through the extension popup, visualizes the acquired knowledge in the
form of a node-link-diagram and allows for manual adjustments to the concept map.

4.1 Interface

After the successful installation of the extension, an icon for the application becomes
available in the browser’s extension menu. Clicking this icon opens the extension’s popup
window (Fig. 4.2) from which all functionalities of the application are controlled. On the
initial activation, there are seven buttons and an empty text field available. At startup,
only three of the seven buttons can perform their action as no concept map is loaded into
the application and the website’s text has not yet been analyzed. The button labeled
“load” reveals all the different concept maps that are available in the browser’s storage.
Selecting one of the available options will load that map into the application and all
future interaction will affect this loaded concept map. The name of the loaded map
appears next to the load button so that the user always knows which of their concept
maps they are working with at the time.

20

4.2. Interaction

If no existing concept maps are available, or if the user wants to create an entirely new
map, the button labeled “new Map” produces an input field where a name for the new
map needs to be entered. This creates a completely blank concept map ready to be filled
with new concepts and relations.

The third button that works right away is labeled “analyze site”. Clicking this button
will take all the text paragraphs on the current web page and send them to the automatic
text processing back-end server. After the back-end server finishes processing the text
and returns the results, immediate change is visible. On the popup window, a list of
concepts appears below the line of buttons (Fig. 4.2). It shows the concepts that are
either contained in the loaded map itself or that are related within the text of this
page to a concept contained in the loaded map. At the same time, concepts that are
already contained in the loaded map are highlighted with a green background color within
the website’s text. Hovering the mouse over these highlights reveals relations to target
concepts that the highlighted concept might have. Clicking target concepts results in
the relation being added to the loaded concept map. Otherwise, if no concepts from the
analyzed text are contained in the loaded map, no concepts are immediately highlighted.
The user could then switch to a different display mode, where new, unrelated concepts
appear in the list on the popup window.

The buttons with the labels “known”, “interesting” and “unknown” let the user switch
between different display modes. These control what kind of information is emphasized
on the website and what concepts are shown in the list on the popup window. The
different display modes are described in detail in the following Section 4.2.

The final button on the popup window, labeled “show graph”, redirects the user to a
new tab in the browser. On this new tab, the concept map that has been loaded into
the application is visualized as a node-link diagram. All the concepts in the map are
represented by a purple ellipse with the concept’s label written inside. Relations are
labeled and represented as directional lines between two concepts.

4.2 Interaction

Depending on the state of a concept map, whether it is rather new and comparatively
empty or nearly complete and containing a large number of concepts, the requirements for
this highlighting tool might be quite different. Whether the user wants to extend existing
branches in their concept map or discover new ideas that relate to the overarching topic
of the map, the information and suggestions they want from the text can vary. Because
of that, we have contrived multiple display modes that all cater to different needs one
might have for this application. They range from only showing what is already known,
over emphasizing interesting and related bits, to presenting entirely new ideas contained
within a text.

21

4. Method

(a) (b)

Figure 4.3: (a) Highlights in the “known” display mode and (b) corresponding concept
map.

4.2.1 Known

By clicking the button labeled “known” on the popup window, after loading a concept
map and analyzing the text, the user gets presented with all the concepts that appear
in both the loaded map and the text. These concepts are highlighted with a green
background color. Should both the source and the target concept of a relation in the
loaded map occur within the same paragraph of the analyzed text, the two highlights are
visually connected with a pink line. Hovering the mouse over a highlighted concept that
is the target of a relation reveals a tooltip box that emphasizes the relation by displaying
the whole proposition (source concept - linking phrase - target concept) (Fig. 4.3).

This display mode is supposed to serve as an overview of what is already known. It shows
only what is already contained in the loaded concept map. This can be helpful when
establishing whether a text is related enough to the ideas that are addressed within the
concept map to examine it in more detail. For this reason, this is the default display
mode that is applied when a text is analyzed. As no new information is highlighted,
and therefore nothing new can be added to the map, none of the highlights provide any
click-interaction.

4.2.2 Interesting

The button labeled “interesting” activates the key feature intended to extend an existing
base of knowledge captured in a concept map. With this selection, the concepts that
match between the loaded map and the analyzed text get filtered so that only those
concepts remain that provide further relations to other concepts. All concepts that fulfill
this requirement are then highlighted with a green background color. Upon hovering
a highlighted concept, all its outgoing relations in the same paragraph are revealed by
highlighting them with a yellow background color (Fig. 4.4). All of these target concepts
are visually connected to the source concept by a pink link. Hovering the yellow highlight
of a target concept reveals a hidden tooltip that alerts the user of a possible interaction.
It tells the user that clicking on this highlight results in permanently adding the targeted

22

4.2. Interaction

Figure 4.4: Example of the “interesting” display mode. Known concepts are highlighted
in green and suggested relations for “Spotlightor Interactive” are shown in yellow.

relation to the concept map. This includes both the concepts themselves as well as
the relation between them. When another green concept is hovered, the targets and
relations of the previously hovered concept disappear and the new concept’s relations are
displayed.

This display mode is supposed to encourage extending the existing knowledge captured
in the concept map. It shows where new ideas relate to known concepts and enables a
quick and easy expansion of the map.

4.2.3 Unknown

The button labeled “unknown” will show the user new concepts that are not yet contained
in their loaded concept map. Clicking this button will identify the ten concepts from the
analyzed text that are not in the concept map and occur the most within the entire text.
These ten concepts get highlighted with a yellow background color. Hovering the mouse
over a highlighted concept once again shows a tooltip that indicates the click-interaction,
which will add the targeted concept to the concept map.

This display mode is supposed to serve as an overview of the most important unknown
concepts in the text (as these appear the most). They might or might not be useful for
building the concept map since they only represent the context of the website but are
not necessarily related to the topic of the concept map. It is still possible that some
of these ten concepts are related to something in the concept map, or they might be
entirely unrelated. These highlights only signify that these concepts themselves are not
yet contained in the concept map. This selection can be useful if many other concepts on
the website are already contained in the concept map, and therefore the context of the
website has something in common with the topic of the map.

But showing the ten most occurring, unknown concepts is not the only way this display
mode enables the user to explore unknown concepts. While the “unknown” display mode

23

4. Method

Figure 4.5: A concept (The game) is selected from the list (blue highlight). All its
relations are shown in yellow. Tooltips that indicate interaction are revealed by hovering
elements.

is selected, the list of concepts on the popup window changes from only showing concepts
that are related to the loaded map to containing all concepts that were extracted from
the web page. All the concepts in this list are sorted by occurrence so that the concepts
that appear the most in the text show up at the top of the list. Clicking on an entry
of this list results in the respective concept being highlighted in the text with a blue
background color (Fig. 4.5). At the same time, should this concept have any outgoing
relations, the targets of those relations are also highlighted with a yellow background
color. All target concepts (yellow) are visually linked to the source concept (blue) by a
pink line. The user can then either click the blue source concept to add only this one to
the map, or they can click on any yellow target concept to include the entire relation in
their concept map. Both these interactions are once again indicated by a tooltip box,
revealed by hovering the mouse cursor over the respective highlight (Fig. 4.5).

Choosing concepts from the list can be a useful way to create new sub-branches for a
concept map, taking concepts from a text on the same topic as the map, that are not yet
directly connected to the previous contents of the concept map.

4.2.4 The Graph

Clicking the “show graph” button on the popup window opens a new tab in the browser.
On this new tab, the currently loaded concept map automatically gets visualized as a
node-link diagram (Fig. 4.6). On this page, concepts can be re-arranged by dragging and
dropping them around. This might be necessary to bring the graph in a more appealing
form, as the automatic layout might contain a few overlaps and edge crossings. In the
top-left corner of the screen, an interaction area is located. There, manual changes to
the concept map can be made. This area shows the name of the displayed concept map
and multiple buttons. These buttons allow to create new concepts and relations that
were not found through the extraction from a website. Clicking either the button for

24

4.2. Interaction

Figure 4.6: A concept map graph created with this application. A tooltip shows where a
hovered edge originates from.

“new Concept” or “new Relation” reveals an additional area where the concept’s name or
the parts of a relation can be entered into text fields. Submitting these new additions
automatically adds them to the graph and to the displayed concept map. Clicking a
concept bubble makes that concept’s name appear on the interaction area and two new
buttons are revealed. Using those buttons, the user is able to edit the clicked concept’s
name or delete the concept from the display and permanently remove it from the concept
map.

Relations can be edited or removed in the same way by selecting the linking line between
two concepts. When a relation is removed, source and target concepts remain in the
concept map, regardless of whether this creates disconnected components. Removing a
concept, on the other hand, also removes all relations that originate from or lead to that
concept. In order to provide more context, each relation link is equipped with a tooltip,
revealed by hovering the relation (Fig. 4.6), which shows a paragraph of the original
source text from which the proposition has been added. A link to the original website is
also included. Relations that have been manually added state this in their tooltip and
their source is given as unknown. To make these tooltips appear, the user only needs to
hover the mouse cursor over the respective relation link.

The last available button on the interaction area is labeled “fit Map”. This button can
be clicked to re-fit the concept map graph on the available display space. It can be used
in case the user zoomed or scrolled the map out of focus and all elements should be
re-positioned in the users’ field of view.

25

CHAPTER 5
Implementation

This chapter describes the technical details of the implementation, the frameworks and
libraries that are used. Section 5.1 gives a rudimentary explanation of the provided
backend server. In section 5.2, the details on the developed extension to the Chrome
browser are described. This includes the extension itself, as well as the highlighting and
the storage used to persist concept maps. Finally, in Section 5.3, the technology behind
the rendered concept map graph is presented.

5.1 Server
The server side of this application was developed by Christoph Presch for his Diploma
Thesis “Semi-Automatic Creation of Concept Maps” [Pre20]. This program was written
in Python, specifically Python 3.7. It can receive the input text for the text analysis via
a single Http-POST method that is implemented in a REST-API interface. The natural
language processing pipeline uses a framework called spaCy [SPA], which uses neural
networks to perform the different tasks of Natural Language Processing. As spaCy does
not have built-in coreference resolution, another module had to be included for that
purpose. To perform this task, Presch chose NeuralCoref [NEU], a pipeline extension for
spaCy [SPA] that can annotate and resolve coreference clusters with the use of neural
networks. For further detail on the implementation of the server, we refer to Presch’s
original thesis [Pre20].

Although the automatic text processing has been left untouched, we have introduced
a small pre-processing step to the server. Since the application is now supposed to
process the text of web pages, we need a processing step that can convert the input
from HMTL chunks to plain text for the NLP pipeline to process. After receiving a
String of HTML elements as an input on the Http-POST method, we use Beautiful Soup
[BEA], a Python library that traverses HTML document trees and extracts all kinds
of information from them. For our server, we use the stripped_strings method, which

27

5. Implementation

Figure 5.1: The Chrome extension manifest.

Figure 5.2: Involved scripts and their interaction.

removes any HTML-tags and other accessories from the input and returns only the text
content of the given HTML. This stripped input string is then fed to the automatic text
processing pipeline, where no further adjustments have been made.

5.2 Chrome Extension

The user interface part of this application is written as an extension for the Google
Chrome browser. Extensions are small software programs that allow a user to personalize
their browsing experience by adding extra functionality to their browser. We have
implemented it using Manifest V3 [MV3], a new generation of Chrome extensions with
enhancements in security, privacy, and performance. Every Chrome extension must
contain a manifest file (Fig. 5.1). This is the backbone of every browser extension, a
sort of settings file, so to speak. It contains information on the extension, like a name, a
version, access permissions, and so forth. It is also specified in this manifest which scripts

28

5.2. Chrome Extension

are included with this extension. This includes declaring a “service worker”, which is the
core script of the application that gets executed when the extension is launched. Most of
our application is written in JavaScript. Different scripts and components communicate
via the Chrome runtime API. This API provides methods for sending and receiving
messages that can carry any JSON-serializable payload. We use this to pass information
between the service worker, which functions as a background page for the application,
and the scripts controlling the popup window and the highlighting. Like this, the popup
can request information from the database (Section 5.2.2), which is controlled by the
service worker, and new entities can be sent to be permanently stored (Fig. 5.2).

In order to manipulate any website the application is applied on, we use the chrome.scripting
API. This API allows the extension to inject JavaScript and CSS code into a website at
runtime. Unlike the similar content scripts, which are loaded into the target website on
the launch of the site, this method hands over more control to the extension’s developer,
as the extension can make decisions on injected scripts as it is being executed.

5.2.1 Highlights

When a user selects a highlighting method by clicking one of the display mode buttons on
the popup, a new JavaScript file gets injected into and executed on the target website (Fig.
5.2). These different highlight scripts receive the keywords (i.e. names of concepts) that
need to be highlighted and use them to identify the parts of the text on the website that
they should target. The keywords arrive as Strings but are then converted into regular
expressions before highlighting them in order to escape potentially harmful characters.
Depending on the display mode, not only the concepts received through keywords are
highlighted, but their related concepts are also calculated and marked on demand. For
annotating all the concepts with their different background colors, a JavaScript package
called mark.js [MJS] is used. The mark.js script is included in the manifest file (Fig. 5.1)
as a content script. This means it gets automatically included into specified websites
whenever they are accessed. By declaring “matches :< all − urls >” in the manifest file,
it will be included on any website.vis Mark.js always operates on a given context, which
can be any single HTML-element (or collection thereof). Within this context, it matches
any search term or custom regular expression in the text and wraps the matching parts
in a custom tag. By default, the <mark> tag is used. Like any other elements, these
mark elements can then be queried by the highlight script.

When marking a keyword or regular expression, a lot of options can be specified. In
this case the acrossElements option is used, which allows the program to mark search
terms even if they are split by other HTML-tags, like an <a> tag when part of the
search term is contained in a link. Within these options it is also possible to give each
marked element a class label and to exclude certain parts of the page from being marked.
This concerns, for example, the custom tooltip boxes that are added throughout the
highlighting process. These typically contain concept names, but the phrases should not
be marked in those places.

29

5. Implementation

Once a concept and a related target are marked, the visual connecting lines are calculated
by by comparing the bounding boxes of the marked elements. These bounding boxes are
received with the help of the Element.getBouningClientRect function, which returns the
smallest rectangle that contains the entire marked element. The edges of these bounding
boxes serve as anchor points for the lines connecting marked elements. For rendering
the lines the “CanvasRenderingContext2D” interface of the Canvas API is used. This
interface provides a 2D rendering context for a drawing surface on an HTML <canvas>
element. There, one can draw shapes, in this case a path, by programmatically specifying
points on the surface and connecting them with a stroke. The paths always stretch all
the way from one end of the canvas to the other, as the size of the canvas always matches
the distance between the concepts’ bounding boxes. Quadratic Bézier curves are drawn
to produce a clean arc between source and target concepts. Control points are always
positioned at the beginning and the end of the path with one extra control point at the
half-way point and offset by a fixed amount. The canvases with the rendered lines are
then positioned in between the calculated bounding boxes with a negative z-index. This
results in them being drawn behind the other elements on the page, like other text, so as
not to occlude any important information.

5.2.2 Storage

When new concepts and relations are created/saved, a representation of them needs to
be placed in a permanent storage. A concept map is represented as a JSON object that
has three attributes: 1) A name that preferably describes the topic or the focus question
of the map, 2) a list of nodes, and 3) a list of edges. Nodes (i.e. concepts) have only two
attributes to themselves: 1) A unique id that identifies them and 2) a label that serves
as the display name of the concept. Edges (i.e. relations), on the other hand, consist of
five attributes. They also have a label that contains the text that is displayed for this
relation. They have a source and a target attribute, which contain the unique ids of
their respective source and target concepts. Finally, they have two attributes that give
information on the relation’s origin. The sourceText attribute contains a paragraph of
the text from which the relation was extracted and the url attribute gives the website
where the relation was found.

These representations of concept maps are stored in the client’s web storage. This
application uses the IndexedDB API [IDB] to store, read, and update its concept maps.
This API allows for storage of significant amounts of structured data. It works similar to
an SQL-based database system with the key difference that IndexedDB uses JavaScript
objects instead of fixed column tables. Any actions on the database are performed
through transactions. This ensures thread safety and that all operations of a transaction
succeed. Upon installation of the extension, a single database is created in which all
future concept maps will be stored. Within this database, the name attribute of the
concept maps serves as the unique key, which means that one user may not have multiple
concept maps of the same name.

30

5.3. Graph

Figure 5.3: A concept map in the database.

In addition to the IndexedDB, Chrome’s storage API [STO], another object based storage,
is also employed to save any information that needs to be passed between different scripts.
This API is specifically optimized for the storage needs of extensions. It provides local
storage and synced storage properties. Synced meaning that objects put in this storage
are available to the user across devices. In this application, however, only the local
storage property is used. Any content script (including scripts injected at runtime) have
immediate access to this storage which is of particular use because no function arguments
can be passed to a script that is injected at runtime. With this method it is possible to
pass, for example, the keywords that need to be highlighted from the extension’s main
script to the different highlighting scripts. This is achieved by first saving these keywords
to the local storage and receiving them again during the execution of the highlighting
script. The entries that are saved to this local storage are all of temporary use for this
application. Nonetheless they are permanently saved in the browser’s storage. In case
a user wants to clear this storage space, there is the possibility to clear all of it on the
extension’s options page. This page is available via “options” in the right-click context
menu on the extension icon.

5.3 Graph

The graph page is also written in pure JavaScript. In order to display a concept map as a
node-link diagram, the open-source graph theory library Cytoscape.js [FLH+16] is used.
This library makes creating and interacting with a graph quite easy. Nodes and edges
(concepts and relations) can be integrated into the cytoscape instance in the same format
as they are stored in the concept maps from storage. The program then automatically
positions them according to a specified layout algorithm. In Cytoscape.js, layouts are
considered extensions. These algorithms need to be imported into the application and
called upon. Some basic layouts, however, are already integrated in the default cystoscape

31

5. Implementation

package. There are geometric layouts like grids and circle layouts, hierarchical layouts,
force-directed layouts, and more. For this application the “cola” layout algorithm [CYC]
is applied. This is a force-directed layout that allows for some extra custom constraints
to be placed on the physics simulation that places nodes and edges, like node spacing,
avoiding overlap, or a specific edge length.

All targets (nodes, edges, background, ..) within the cytoscape instance are equipped
with event handlers, which makes it possible to put different interactions on all of them.
This is used to provide different interaction possibilities when e.g. nodes or edges get
clicked or hovered over. When nodes or edges are manually added or deleted they are
automatically placed in/removed from the graph. New nodes are initially positioned at
a fixed location in the center of the screen, edges automatically connect their source
and target nodes. At the same time, a message with the appropriate request is sent
to the extension service worker to execute an update transaction on the database and
permanently add/delete the respective item.

32

CHAPTER 6
Limitations

Even though the application works as intended in most cases, there are a number of
factors that limit the use in a real-case scenario. In this chapter we try to explain a
few different situations where some parts of the application cannot work properly or the
results might not look exactly as expected. Examples that showcase how the application
is functioning correctly are shown later in Chapter 7. Problems that arise include the
following:

Only certain content can be analyzed

The application is intended to be applicable on arbitrary web pages. This entails the
problem that we have no clue about the structure of these web pages. We need to
determine somehow what parts of the pages are relevant for analysis and which are not.
The backend server expects a collection of HTML elements that contain the text it is
supposed to process. One possibility would have been to simply select all the contents of
the <body> tag, but that would in most cases include distracting page elements like
menus, side bars, tables, and site notice at the bottom of the page. All these are elements
that typically contain text that is not a coherent part of the text content of the page and
they would interfere with meaningful concept extraction. This meant we needed a more
restrictive selection of elements to submit for analysis. In the end we decided to consider
only the contents of paragraph elements <p>. In most cases, these are the elements that
contain the bulk of the relevant text. Similar to the text analysis, only these paragraph
elements are considered a valid context where highlights can occur. We decided to do
this, because only these elements are analyzed in the first place and we do not want any
misplaced highlights in some menu or side bar. Unfortunately, this can be too restrictive
in some cases. There are web pages that omit the use of <p> elements and put text
e.g. directly into container elements (<div>). On such pages the application can not be
properly used as neither the text can be analyzed, nor concepts highlighted.

Highlights can appear in places where they make little sense

33

6. Limitations

(a)

(b)

Figure 6.1: (a) and (b) both show paragraphs from the same text. But the relation
between “Candleman” and “a prototype” should only exist in (b).

Due to the fact that the web page’s text can be fragmented and is pre-processed before
entering the automatic text processing software, the exact places of occurrence for
concepts and relations are not able to be determined. Presch’s software [Pre20] does
provide exact occurrence indices for concepts and relations (i.e. the index of the first and
last character of the word or phrase in the text), but because the arrangement and length
of the analysed text might not always match the text on the web page exactly these
occurrences cannot be used to determine where a concept or relation comes up on the web
page. Because of this, all occurrences of a concept are highlighted on the page regardless
of whether it is part of a relation in that exact spot. This means that sometimes concepts
are highlighted even though they most likely do not serve any direct purpose in the
context of the user’s task. In addition, there is the possibility that two concepts that form
a relation in some part of the text also appear close to each other in another part but
without the explicit relation between them. In this case, the relation would be emphasized
in both parts although it does not exist in one of them. An example of this behaviour
can be seen in Figure 6.1. The relation “‘was originally created” between “Candleman”
and “a prototype” is highlighted in both 6.1a and 6.1b. This relation, however, only
really exists in the context of Fig. 6.1b. In the paragraph on Fig. 6.1a “Candleman” and
“a prototype” do not actually have a direct relation in the meaning of the sentence. A
user can still add this relation to their concept map from both parts of the text. But
if they choose to add it from the part where it does not occur, the source text passage
shown later in the concept map graph will show a text passage where the relation might
not come up at all.

The length of text influences the performance

Like Presch has already discussed in his thesis [Pre20], the performance of the program
degrades continuously with increasing length of input text. As no part of the NLP
pipeline has been altered, the same issues still exist with this version of the software. The

34

automatic analysis step takes increasingly more time the more text is presented on the
target web page. Presch describes that the system provides good performance for texts
with up to 750 words. Depending on the target web page, this performance limit can be
exceeded by potentially thousands of words which would increase the computation time
from seconds to possibly minutes. (Details follow in Section 7.3 Performance). With
more text the quality of the highlights also potentially reduces. The longer the text, the
more likely it can be that some concepts might co-appear in multiple paragraphs, and
relations might get marked in places where they do not actually exist (as described in
the previous paragraph).

Regular Expressions and illegal characters

While highlighting concepts on the web page, the concept’s label is converted into a
regular expression for the mark.js framework [MJS] to match it with the text on the page.
In some occasions the concepts returned by the automatic text processing software can
contain characters that cause this regular expression to result in an error. This is mainly
the case when the label contains an opening parenthesis but the closing parenthesis is
not included in the concept’s label. This appears to be one flaw of the automatic text
processing software, as this case occurs more often than not when a text contains phrases
in brackets. This error leads to a halt in the execution of all further functions and
therefore no more concepts beyond this point in the text get highlighted. The application
will resume as normal once a new highlight script gets executed by selecting a different
concept or switching display modes.

Highlights are strongly tied to the server output

The highlighting and suggesting features of this extension are strongly restricted by what
the automatic text processing software puts out. This means that only those concepts
that the NLP algorithms detect can be emphasized in the “interesting” display mode.
Concepts that were manually added to a concept map by the user will never receive any
highlights under this mode, much less be connected to any new suggestions. This is a
result of the program comparing the concept map loaded by the user with the concepts
and relations extracted by the backend, and only regarding those concepts further that
appear in both of those maps. This is one way the program’s usefulness could be limited
if e.g. a user wanted to revolve their concept map around an acronym or other uncommon
word or phrase that does not get classified as a concept entity by the NLP pipeline. This
also means that the application can cease to provide interesting suggestions for concept
maps where many concepts have been added by hand. Manually added concepts and
relations are, however, highlighted in the “known” display mode, as this mode only takes
the concept map loaded by the user into account when marking parts of the text.

Multiple links are drawn for one relation

There are also situations where the connecting lines between a concept and its suggested
relations appear to produce a visual bug. On some occasions, multiple links are drawn
between two concepts where only one relation should exist. Although this looks like a
bug, it is the program doing everything it is supposed to do. Multiple lines can happen

35

6. Limitations

Figure 6.2: Multiple links are drawn for what seems to be one target.

when e.g. a phrase consisting of multiple words is recognized by the automatic text
processing as a concept, but one or more of the phrases’ words are also concepts on their
own. In this case, the program creates each its own mark element, possibly stacking
multiple marks. Then, lines are drawn from the source concept to each of the target
mark elements resulting in multiple lines reaching to what appears to be only one target.
This can be seen in Figure 6.2, where “Chinese”, “Spotlightor Interactive” and “Chinese
studio Spotlightor Interactive” are all target concepts. A similar result appears when
parts of a target phrase are contained in different HTML elements. E.g. when part of
the phrase is a hyperlink and therefore enclosed in an <a> tag. Like before, multiple
mark elements are created, one for the part of the phrase that is inside the link tag, and
one for the part that is not.

36

CHAPTER 7
Discussion & Results

In this chapter, we describe an example walkthrough which showcases how a typical
use-case could look like for this application. We have also conducted a usability inspection
by presenting that walkthrough to three test users and receiving their feedback. Finally,
we discuss that feedback.

7.1 An Example Walkthrough

As with any new task, we start at the beginning by creating a new concept map. For this,
the “new map” button on the opened extension popup can be clicked and a name for
the new concept map is entered into the text field. For this example, we want to create
a concept map that deals with Signal Processing. Submitting the name automatically
loads the empty map as currently active (Fig. 7.1a). To start building the Concept Map,
we do a Google search for “Signal Processing”, the key phrase of the map, and choose the
Wikipedia article on Signal Processing [WT1] as a starting point. Opening the extension
popup and clicking the “analyze site” button yields, for the moment, nothing at all. As it
is still an empty map, no concepts on the site are yet related to it. Therefore, we click the
“unknown” button on the extension popup to reveal all concepts extracted from the text
in a list on the popup, as well as highlights in the text for the ten concepts that appear
the most throughout the text (Fig. 7.1b). We can immediately see that our key phrase,
Signal Processing, is an identified concept. A click on the yellow highlight prompts an
alert that “Signal processing has been added to the map”. Re-opening the extension
popup now marks the phrase Signal Processing in green, signifying that it is contained in
the currently loaded concept map. We can now hover the mouse cursor over these green
highlights to see what other concepts directly relate to the phrase “Signal Processing”.
For example, we find that “Signal Processing” is “an electrical engineering subfield”, or
that it can be found in “the classical numerical analysis techniques”. The first one we add
to the concept map by clicking the yellow highlight on the target concept. At this time,

37

7. Discussion & Results

no more interesting relations appear automatically, but we see that “Signal Processing”
still appears in more places on the website. The text lists different categories of signal
processing, which could be useful. As these categories are not directly linked to the
phrase “Signal Processing” by the automatic text processor, we go back to highlighting
unknown concepts and find “digital signal processing”, and a little further down the list
“analog signal processing”. Both these concepts can be added to the map by selecting
them from the list and then clicking the blue highlight that marks them in the text.

(a) creating a new map

(b) First concepts with the “unknown” display mode.

Figure 7.1

At this point, we are done with Wikipedia. Since we want to extend the map at the
two new sub-categories of signal processing we added, we now do another Google search,
this time for “analog signal processing”. A few results in, a headline reads “Analog vs.
Digital Signals: Uses, Advantages and ...”. Visiting this website [WT2] and analyzing the
text shows that, although the phrases analog-, and digital signal processing are present
on the site, they do not have any outgoing relations in this context. But looking at
the extension popup we see recommendations for “Analog signals” and “digital signals”.
We select “Analog signals” to find out that e.g. “Analog signals are often calculated
responses to changes in light, sound, temperature, ...”. The relation extracted by the text
processing software only links “Analog signals” to “responses”, but we add it regardless
and come back to it later. Looking at “digital signals” gives us “Digital signals are used
in all digital electronics”, and following that “all digital electronics, including computing”.
The second part of the phrase “computing equipment” is omitted by the program, and
the second concept, “data transmission devices”, related to “all digital electronics” is not
recognised at all.

At this point we have a look at the graph view of this concept map. There we can
manually add some of these missing concepts an edit the relations we got so far. We get

38

7.2. Usability Inspection

there by clicking the “show graph” button on the extension popup. On the graph page
we see all the concepts and relations we have added this far (Fig. 7.2a). To clean things
up, we first link the disconnected components of the graph by adding new relations.
We specify that “Signal processing” includes “Analog signal processing” and “digital
signal processing”. “Analog signal processing” uses “Analog signals“ and “digital signal
processing” uses “digital signals”. We refresh the page to let the layout algorithm consider
all the new relations. Now we can rename some concepts and relations slightly to make
them more understandable. For example, we change “are used” to “are used in”. We
can also add the concepts we found in the text earlier that were not recognized by the
program. We change the concept “computing” to “computing equipment” and add the
extra relation “all digital electronics” including “data transmission devices”. On the other
end of the graph we remove the word “calcualted” from the relation and add it to the
target concept “responses”. We also extend this thought by adding the examples from
the text that were not automatically related to “responses”. We add the new relations
“calculated responses to changes” and then “changes in light”, “changes in sound”, and
“changes in temperature”.

(a) first set of disconnected components (b) a lot of green highlights already show up

Figure 7.2

After this cleaning, we return one more time to the Google search engine. This time,
looking for digital signals eventually brings us to another website [WT3]. Analyzing
this site immediately yields several green highlights (Fig. 7.2b). We can quickly extract
that “Analog signals are continuous wave signals” and further down the page “digital
signals include a limited variety“ (of values which lie among 0-to-1). We add both these
relations and return once more to the graph view. To finalize this example concept map,
we specify that it is “a limited variety of values” and add to it the relation “between 0
and 1”. the final product of this walkthrough can be seen in Figure 7.3.

7.2 Usability Inspection
In order to evaluate the usability and detect possible shortcomings of the whole application,
the above example has been presented to three independent experts in the computer

39

7. Discussion & Results

Figure 7.3: The final product of the Walkthrough

science field. They were led through the whole process of creating and extending a
concept map on the topic of signal processing from scratch. On the way, they were
repeatedly asked to evaluate the usability and clarity of the presented elements of the
application.

The findings from these inspections were mostly unanimous. Three main concerns could
be identified as follows:

1. Not enough (usable) suggestions,
2. interaction with certain elements is not always clear, and
3. manual interaction is tedious.

But we did not only receive this negative feedback. All test users did come to the
conclusion that:

4. The application can be useful for research tasks.

Not enough (usable) suggestions

In the current state of the application, the creation of a satisfying concept map solely
off the given suggestions that can be highlighted in the text seems rarely possible. The
test users all recognized the fact that concept suggestions many times do not cover the
entirety of a phrase that clearly belongs as a unit to the human reader. They also noted
that oftentimes some relation between phrases was obvious to them but the application
would not suggest it. Due to this lack of suitable suggestions, one user doubted that
the application as it is would reduce the effort compared to a fully manual concept map
creation. She based this observation on the fact that a lot of concepts and relations had
to be manually added and/or edited in this example in order to capture the intended
ideas from the source text.

40

7.2. Usability Inspection

Interaction can be unclear

Two of our test users explicitly noted that not all functions of the various interactive
elements on the extension popup would be immediately clear to them without the
explanation included in this example walkthrough. One user explained that a button
labeled “load” to her does not mean getting another map from the storage. She was
wondering what would load if that button was clicked. Similarly, a second user exclaimed
that she would rather have used some kind of drop-down list instead of a button for this
purpose. The same user also suggested to distinctively separate the buttons for analyzing
the site text and switching to the graph view from the buttons for the three display
modes. The reason for this being that they serve a completely different purpose from
switching between different displays. One more feature that was suggested by one user
was some sort of information bubble icon where optional instructions and explanations
to all the interactable elements could be found.

Manual interaction is tedious

While all users saw the need for manual adaptations to the concept map, they also pointed
out several features that they would like improved/added before the application became
usable in a satisfying way to them. The most critique was given to the manual creation
of new relations. Although the process of adding a relation seemed self-explanatory to
them, all three addressed that having to type out the names of the source and target
concepts was inconvenient. Two users explained they would rather have the possibility
to select existing concepts from somewhere or add relations between existing concepts
through a point and click interaction. One user also asked whether it was possible to
quickly move relations from one concept to another. An additional feature that was
explicitly asked for by one user was to be able to give different colors to concept bubbles.
She explained that, when using tools like mindmaps, she needed to visually categorize
concepts. The same user also suggested that the interaction area in the top-left corner of
the graph view could be minimized and only extended to its full size on demand in order
to maximize the available space for the graph.

Useful for research tasks

All these problems aside, all three test users could definitely see the potential of this
application. In an ideal world, where all the program’s suggestions were accurately
representing the meaning of the text and no concepts got omitted, they would all have
found use-cases to apply this concept map extractor. Even one user, who described herself
as “not particularly a mindmap person”, said that she could definitely see the advantages
that the automatic highlighting and easy addition of concepts and relations would bring.
Another user gave the example of a student having to prepare a presentation. He believed
that he would have liked such a tool in that scenario. Two users immediately pointed
out the overview aspect of the application as a positive effect. They named that as one
of the strengths, with one of them explaining that when researching a topic, it can be
very useful to see at one glance whether or not a new text deals with similar concepts to
what has been read before.

41

7. Discussion & Results

Overall, it can be said that all test users liked the idea and that it has the potential to be
used to assist in research and summarizing efforts. However, they also pointed out many
of the existing flaws that prevent the application form being used in a real use-case in its
current state. All of them had useful insights suggestions for possible improvements.

7.3 Performance

We have also conducted a basic evaluation of the application’s performance in regards to
processing time when analyzing texts of different lengths. As stated in the limitations
chapter 6, text on the internet can come in various lengths and the usefulness of the
application will inevitably decrease with increasing text length. For this evaluation
we have chosen to compare the time needed to process the page text of four different
Wikipedia articles:

1. Candleman [Wika], length approx. 600 words,
2. The Shining (Novel) [Wikb], length approx. 2450 words,
3. Daniel Radcliffe [Wikc], length approx. 3950 words, and
4. Elephant [Wikd], length approx. 10800 words.

Figure 7.4: Performance benchmarks for different online text.

This comparison yielded that the time to process an online text grows relative to the
document’s number of words. Analyzing Candleman took the application 1.54 seconds,

42

7.4. Discussion of Results

for The Shining it took 4.52 seconds, Daniel Radcliffe took 8.08 seconds, and Elephant
was done processing after 24.48 seconds. These results are visualized in Figure 7.4.

All the tests were run on a Laptop with an Intel Core i7-7500U CPU and 12GB of RAM.

7.4 Discussion of Results
The feedback received through the usability inspection mostly reaffirms what we have
also observed throughout the development and testing process. The user interface works
as intended in most cases. Exceptions to this are outlined in the limitations Chapter 6.
It is far from perfect, but manages to portray the suggestions received from the concept
map mining software to the user and allows them to create a custom concept map from
these suggestions.

In the end, it could be shown that it is possible to apply the results of an automatic
concept map mining software on arbitrary web pages using a browser extension written in
pure JavaScript. It has, however, also shown that relying solely on the suggestions given
by this software does not result in a satisfying research process nor a suitable concept
map. We have found that there is still a need for manual intervention where concepts and
relations can be created and edited without being suggested by the software. Without
this, most concept maps created with this tool would fall short in terms of readability
and usability overall. This shows that the best way to improve the whole application
would be to try and improve the natural language processing aspect of the software. The
usability would probably increase drastically with more accurate concept and relation
suggestions that capture the precise meaning of the text they come from.

The user interface of course also still has a lot of potential for improvement. As the user
evaluations show, not all possible interaction is self-explanatory and some elements have
initially confused participants.

43

CHAPTER 8
Conclusion

In this final chapter there is a brief summary of what has been done for this thesis. We
also outline at what points future work could tie on and improve this application.

8.1 Summary

For this thesis, we created an extension to the Google Chrome browser that extracts
the active website’s text and forwards it to an automatic text processing software. This
software applies natural language processing procedures to perform concept map mining.
The result of this is a set of concepts and relations that form propositions in the form
of subject-verb-object triples. The browser extension receives these suggestions and, by
executing different script files, highlights a subset of the suggestions based on different
display modes. Users can select highlighted suggestions and add them to a concept map
structure. This concept map is visualized on-demand as a node-link diagram.

The development process, the creation of a detailed example, and the ensuing user
evaluation revealed the strengths and weaknesses of the application. It showed that the
goal of creating an interface that presents the results of the automatic concept map
mining directly in the place of text’s origin is achievable. But it also showed that more
effort needs to be put into both the automatic text processor, as well as the user interface
to produce a universally useful application.

8.2 Future Work

Many of the application’s shortcomings could be tackled in future projects. This includes
work on both the text processing server and the user interface. With the automatic text
processing, the employed natural language processing steps need to better handle longer
text. At the moment, the processing time the server needs to provide its suggestions

45

8. Conclusion

is one major limiting factor for the application. Depending on the topic, websites tend
to contain quite a bit more text than the 700 words Presch pointed out in their thesis
[Pre20] as a threshold for good computation time. The concept- and relation extraction
also need improvements regarding the quality of output. As it is, too few propositions
are actually meaningful for the user.

Regarding the user interface, many useful suggestions were made during the user eval-
uation on how to improve the interaction design. This includes improvements to the
extension popup and also the graph view and manipulation. Both these areas could
receive a welcome upgrade through a creative design process. An example sketch for an
improved extension popup, with user suggestions from our evaluation, can be seen in
Figure 8.1.

Figure 8.1: Example for an improved popup window.

46

List of Figures

2.1 A state-of-the-art NLP pipeline from The Stanford CoreNLP [MSB+14]. . 7
2.2 Part-of-speech tagged text with Stanford CoreNLP [MSB+14]. 7
2.3 Coreference Resolution with Stanford CoreNLP [MSB+14]. 7

3.1 Concept Map about CmapTools in CmapTools [CHC+04]. 10
3.2 Concept Maps created with different editors 12
3.3 Example of annotated concepts and relation with KTGraph [ZGI+17]. . . 13
3.4 A ScratchPad-enhanced web browser and a close-up of the ScratchPad sidebar

[Got07]. 14
3.5 History Map and Knowlede Map with SenseMap 14
3.6 Egas main user interface [CLN+13]. 16

4.1 Schematic of the text analysis process. 19
4.2 The extension popup window. 20
4.3 Example of the “known” display mode. 22
4.4 Example of the “interesting” display mode. 23
4.5 Highlights of a manually selected concept. 24
4.6 A concept map graph created with this application. 25

5.1 The Chrome extension manifest. 28
5.2 Involved scripts and their interaction. 28
5.3 A concept map in the database. 31

6.1 Example of highlights where they should not exist. 34
6.2 Multiple links are drawn for what seems to be one target. 36

7.1 Walkthrough Illustrations 1 . 38
7.2 Walkthrough Illustrations 2 . 39
7.3 Walkthrough Illustrations 3 . 40
7.4 Performance benchmarks for different online text. 42

8.1 Example for an improved popup window. 46

47

Bibliography

[AN12] Christopher Andrews and Chris North. Analyst’s workspace: An embodied
sensemaking environment for large, high-resolution displays. In 2012 IEEE
Conference on Visual Analytics Science and Technology (VAST), pages 123–
131. IEEE, 2012.

[Aus63] David P Ausubel. The psychology of meaningful verbal learning. 1963.

[BEA] Beautiful Soup - Python library for quick screen-scraping. https://github.
com/huggingface/neuralcoref. Accessed: 03.08.2021.

[CCL18] Alberto J Cañas, Roger Carff, and James Lott. ecmap: An embeddable
web-based concept map editor. In Proceedings of the Eighth International
Conference on Concept Mapping, Medellín, Colombia, 2018.

[CDC+01] Mary J Carnot, Bruce Dunn, Alberto J Cañas, P Graham, and Ja-
son Muldoon. Concept maps vs. web pages for information search-
ing and browsing. https://www.researchgate.net/profile/
Alberto_Canas/publication/266489427_Concept_Maps_vs_
Web_Pages_for_Information_Searching_and_Browsing/links/
543546300cf2bf1f1f28662f.pdf, 2001. Retrieved from the World
Wide Web: last accessed 22.10.2021.

[CF12] April Colosimo and Megan Fitzgibbons. Teaching, designing, and organizing:
Concept mapping for librarians. Partnership: The Canadian Journal of
Library and Information Practice and Research, 7(1), Jun. 2012.

[CHC01] MR Carvalho, Rattikorn Hewett, and Alberto J Cañas. Enhancing web
searches from concept map-based knowledge models. In Proceedings of SCI
2001: Fifth multiconference on systems, cybernetics and informatics, pages
69–73, 2001.

[CHC+04] Alberto Cañas, Greg Hill, R. Carff, Niranjan Suri, James Lott, Thomas
Eskridge, Gloria Gomez, Mario Arroyo, and Rodrigo Carvajal. Cmaptools:
A knowledge modeling and sharing environment. Concept Maps: Theory,
Methodology, Technology Proceedings of the First International Conference
on Concept Mapping, 2004.

49

https://github.com/huggingface/neuralcoref
https://github.com/huggingface/neuralcoref
https://www.researchgate.net/profile/Alberto_Canas/publication/266489427_Concept_Maps_vs_Web_Pages_for_Information_Searching_and_Browsing/links/543546300cf2bf1f1f28662f.pdf
https://www.researchgate.net/profile/Alberto_Canas/publication/266489427_Concept_Maps_vs_Web_Pages_for_Information_Searching_and_Browsing/links/543546300cf2bf1f1f28662f.pdf
https://www.researchgate.net/profile/Alberto_Canas/publication/266489427_Concept_Maps_vs_Web_Pages_for_Information_Searching_and_Browsing/links/543546300cf2bf1f1f28662f.pdf
https://www.researchgate.net/profile/Alberto_Canas/publication/266489427_Concept_Maps_vs_Web_Pages_for_Information_Searching_and_Browsing/links/543546300cf2bf1f1f28662f.pdf

[CLN+13] David Campos, J Lourencço, Tiago Nunes, Rui Vitorino, Pedro Domingues,
Sérgio Matos, and José Luís Oliveira. Egas–collaborative biomedical an-
notation as a service. In Proceedings of the Fourth BioCreative Challenge
Evaluation Workshop, volume 1, pages 254–259, 2013.

[CRE] Creately, visual workspace for collaborative work. https://www.
creately.com/. Accessed: 17.07.2021.

[CS13] Wei-Te Chen and Will Styler. Anafora: a web-based general purpose annota-
tion tool. In Proceedings of the conference. Association for Computational
Linguistics. North American Chapter. Meeting, volume 2013, page 14. NIH
Public Access, 2013.

[CYC] The Cola.js physics simulation layout for Cytoscape.js. https://github.
com/cytoscape/cytoscape.js-cola. Accessed: 08.08.2021.

[DOM] Mindomo, collaborative mind maps, concept maps, outlines, and gantt charts.
https://www.mindomo.com/. Accessed: 18.07.2021.

[FLH+16] Max Franz, Christian T Lopes, Gerardo Huck, Yue Dong, Onur Sumer, and
Gary D Bader. Cytoscape. js: a graph theory library for visualisation and
analysis. Bioinformatics, 32(2):309–311, 2016.

[Got07] David Gotz. The scratchpad: sensemaking support for the web. In Proceedings
of the 16th international conference on World Wide Web, pages 1329–1330,
2007.

[GSL+14] Thomas Geymayer, Markus Steinberger, Alexander Lex, Marc Streit, and
Dieter Schmalstieg. Show me the invisible: visualizing hidden content. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 3705–3714, 2014.

[HBW08] Raphael Hoffmann, Patrick Baudisch, and Daniel S Weld. Evaluating visual
cues for window switching on large screens. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 929–938, 2008.

[HCFC01] Robert R Hoffman, John W Coffey, Kenneth M Ford, and Mary Jo Carnot.
Storm-lk: A human-centered knowledge model for weather forecasting. In
Proceedings of the Human Factors and Ergonomics Society Annual Meeting,
volume 1, pages 752–752, 2001.

[HE99] Christopher G Healey and James T Enns. Large datasets at a glance: Com-
bining textures and colors in scientific visualization. IEEE transactions on
visualization and computer graphics, 5(2):145–167, 1999.

[HHL19] Hannes Hapke, Cole Howard, and Hobson Lane. Natural Language Processing
in Action: Understanding, analyzing, and generating text with Python. Simon
and Schuster, 2019.

50

https://www.creately.com/
https://www.creately.com/
https://github.com/cytoscape/cytoscape.js-cola
https://github.com/cytoscape/cytoscape.js-cola
https://www.mindomo.com/

[IDB] IndexedDB - a Low-Level API for Client-Side Storage. https://
developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API.
Accessed: 08.08.2021.

[KCB10] Juliana H Kowata, Davidson Cury, and M Boeres. A review of semi-automatic
approaches to build concept maps. In Proc. 4th International Conference on
Concept Mapping, pages 40–48. Citeseer, 2010.

[LMR04] David B Leake, Ana Maguitman, and Thomas Reichherzer. Mining the web
to suggest concepts during concept map construction. Concept Maps: Theory,
Methodology, Technology, Vol. 1, page 135, 2004.

[LUC] Lucidchart, intelligent diagramming application. https://www.
lucidchart.com/. Accessed: 17.07.2021.

[MIN] Mindmup, free online mind mapping. https://www.mindmup.com/. Ac-
cessed: 17.07.2021.

[MIR] Miro, the online collaborative whiteboard platform. https://www.miro.
com/. Accessed: 18.07.2021.

[MJS] Mark.js - JavaScript keyword highlighter. https://markjs.io/. Accessed:
05.08.2021.

[MSB+14] Christopher D Manning, Mihai Surdeanu, John Bauer, Jenny Rose Finkel,
Steven Bethard, and David McClosky. The stanford corenlp natural language
processing toolkit. In Proceedings of 52nd annual meeting of the association
for computational linguistics: system demonstrations, pages 55–60, 2014.

[MT14] Narges Mahyar and Melanie Tory. Supporting communication and coordina-
tion in collaborative sensemaking. IEEE transactions on visualization and
computer graphics, 20(12):1633–1642, 2014.

[MV3] Manifest V3 - A step in the direction of security, privacy, and perfor-
mance. https://developer.chrome.com/docs/extensions/mv3/
intro/. Accessed: 04.08.2021.

[NC06] Joseph D Novak and Alberto J Cañas. The theory underlying concept maps
and how to construct them. Florida Institute for Human and Machine
Cognition, 1(1):1–31, 2006.

[NC07] Joseph D Novak and Alberto J Cañas. Theoretical origins of concept maps,
how to construct them, and uses in education. Reflecting education, 3(1):29–42,
2007.

[NEU] NeuralCoref 4.0: Coreference Resolution in spaCy with Neural Networks.
https://www.crummy.com/software/BeautifulSoup/. Accessed:
03.08.2021.

[NGB84] Joseph D Novak, D Bob Gowin, and Gowin D Bob. Learning how to learn.
cambridge University press, 1984.

51

https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://www.lucidchart.com/
https://www.lucidchart.com/
https://www.mindmup.com/
https://www.miro.com/
https://www.miro.com/
https://markjs.io/
https://developer.chrome.com/docs/extensions/mv3/intro/
https://developer.chrome.com/docs/extensions/mv3/intro/
https://www.crummy.com/software/BeautifulSoup/

[NM91] Joseph D. Novak and Dismas Musonda. A twelve-year longitudinal study of
science concept learning. American Educational Research Journal, 28(1):117–
153, 1991.

[NXB+16] Phong H Nguyen, Kai Xu, Andy Bardill, Betul Salman, Kate Herd, and
BL William Wong. Sensemap: Supporting browser-based online sensemaking
through analytic provenance. In 2016 IEEE Conference on Visual Analytics
Science and Technology (VAST), pages 91–100. IEEE, 2016.

[PAN] Panama Papers - The Power Players / Visualizations of Off-
shore Leaks database. https://www.icij.org/investigations/
panama-papers/the-power-players/. Accessed: 09.07.2021.

[PR94] Stephen Palmer and Irvin Rock. Rethinking perceptual organization: The
role of uniform connectedness. Psychonomic bulletin & review, 1(1):29–55,
1994.

[Pre20] Christoph Presch. Halbautomatisches erstellen von concept maps. 2020.

[SOK+15] Hendrik Strobelt, Daniela Oelke, Bum Chul Kwon, Tobias Schreck, and
Hanspeter Pfister. Guidelines for effective usage of text highlighting techniques.
IEEE transactions on visualization and computer graphics, 22(1):489–498,
2015.

[SPA] spaCy - Industrial-Strength Natural Language Processing. https://spacy.
io/. Accessed: 03.08.2021.

[STO] Chrome Storage - an API to store, retrieve, and track changes to
user data. https://developer.chrome.com/docs/extensions/
reference/storage/. Accessed: 08.08.2021.

[SWS+11] Markus Steinberger, Manuela Waldner, Marc Streit, Alexander Lex, and
Dieter Schmalstieg. Context-preserving visual links. IEEE Transactions on
Visualization and Computer Graphics, 17(12):2249–2258, 2011.

[VC08] Jorge J Villalon and Rafael A Calvo. Concept map mining: A definition
and a framework for its evaluation. In 2008 IEEE/WIC/ACM International
Conference on Web Intelligence and Intelligent Agent Technology, volume 3,
pages 357–360. IEEE, 2008.

[VPE] Visual paradigm online, editor for a variety of technical and business di-
agrams. https://online.visual-paradigm.com/diagrams/. Ac-
cessed: 17.07.2021.

[WGSS21] Manuela Waldner, Thomas Geymayer, Dieter Schmalstieg, and Michael Sedl-
mair. Linking unstructured evidence to structured observations. Information
Visualization, 20(1):47–65, 2021.

[Wika] Candleman. From Wikipedia, the Free Encyclopedia. https://en.
wikipedia.org/wiki/Candleman. Accessed: 21.10.2021.

52

https://www.icij.org/investigations/panama-papers/the-power-players/
https://www.icij.org/investigations/panama-papers/the-power-players/
https://spacy.io/
https://spacy.io/
https://developer.chrome.com/docs/extensions/reference/storage/
https://developer.chrome.com/docs/extensions/reference/storage/
https://online.visual-paradigm.com/diagrams/
https://en.wikipedia.org/wiki/Candleman
https://en.wikipedia.org/wiki/Candleman

[Wikb] The Shining (novel). From Wikipedia, the Free Encyclopedia. https://en.
wikipedia.org/wiki/The_Shining_(novel). Accessed: 21.10.2021.

[Wikc] Daniel Radcliffe. From Wikipedia, the Free Encyclopedia. https://en.
wikipedia.org/wiki/Daniel_Radcliffe. Accessed: 21.10.2021.

[Wikd] Elephant. From Wikipedia, the Free Encyclopedia. https://en.
wikipedia.org/wiki/Elephant. Accessed: 21.10.2021.

[WPL+10] Manuela Waldner, Werner Puff, Alexander Lex, Marc Streit, and Dieter
Schmalstieg. Visual links across applications. In Proceedings of Graphics
Interface 2010, pages 129–136. 2010.

[WS11] Manuela Waldner and Dieter Schmalstieg. Collaborative information linking:
Bridging knowledge gaps between users by linking across applications. In
2011 IEEE Pacific Visualization Symposium, pages 115–122. IEEE, 2011.

[WT1] Signal Processing. From Wikipedia, the Free Encyclopedia. https://en.
wikipedia.org/wiki/Signal_processing. Accessed: 07.09.2021.

[WT2] Analog Signals vs. Digital Signals. https://www.monolithicpower.
com/en/analog-vs-digital-signal. Accessed: 07.09.2021.

[WT3] Difference between Analog Signal and Digi-
tal Signal. https://www.elprocus.com/
differences-between-analog-signal-and-digital-signal/.
Accessed: 07.09.2021.

[ZGI+17] Jian Zhao, Michael Glueck, Petra Isenberg, Fanny Chevalier, and Azam
Khan. Supporting handoff in asynchronous collaborative sensemaking using
knowledge-transfer graphs. IEEE transactions on visualization and computer
graphics, 24(1):340–350, 2017.

[ZK10] Caroline Ziemkiewicz and Robert Kosara. Laws of attraction: From perceptual
forces to conceptual similarity. IEEE Transactions on Visualization and
Computer Graphics, 16(6):1009–1016, 2010.

53

https://en.wikipedia.org/wiki/The_Shining_(novel)
https://en.wikipedia.org/wiki/The_Shining_(novel)
https://en.wikipedia.org/wiki/Daniel_Radcliffe
https://en.wikipedia.org/wiki/Daniel_Radcliffe
https://en.wikipedia.org/wiki/Elephant
https://en.wikipedia.org/wiki/Elephant
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Signal_processing
https://www.monolithicpower.com/en/analog-vs-digital-signal
https://www.monolithicpower.com/en/analog-vs-digital-signal
https://www.elprocus.com/differences-between-analog-signal-and-digital-signal/
https://www.elprocus.com/differences-between-analog-signal-and-digital-signal/

	Kurzfassung
	Abstract
	Contents
	Introduction
	Aim of the Work
	Methodology
	Structure

	Background
	Concept Map
	Concept Map Mining

	Related Work
	Concept Map User Interfaces
	Highlighting
	Visual Links

	Method
	Interface
	Interaction

	Implementation
	Server
	Chrome Extension
	Graph

	Limitations
	Discussion & Results
	An Example Walkthrough
	Usability Inspection
	Performance
	Discussion of Results

	Conclusion
	Summary
	Future Work

	List of Figures
	Bibliography

