
Exploratives Visuelles System für
prädiktives Machine Learning von

Eventorganisationsdaten

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Visual Computing

eingereicht von

Maximilian Sbardellati, B.Sc.
Matrikelnummer 01526262

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Dr.techn. Manuela Waldner, M.Sc.
Mitwirkung: Dipl.Ing. Sophie Grünbacher

Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller

Wien, 1. Oktober 2021
Maximilian Sbardellati Manuela Waldner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Exploratory Visual System for
Predictive Machine Learning of

Event-Organisation Data

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Visual Computing

by

Maximilian Sbardellati, B.Sc.
Registration Number 01526262

to the Faculty of Informatics

at the TU Wien

Advisor: Dr.techn. Manuela Waldner, M.Sc.
Assistance: Dipl.Ing. Sophie Grünbacher

Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller

Vienna, 1st October, 2021
Maximilian Sbardellati Manuela Waldner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Maximilian Sbardellati, B.Sc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. Oktober 2021
Maximilian Sbardellati

v

Danksagung

Ich möchte meiner Familie und meinen Freunden dafür danken, dass sie mich während
meiner Studienzeit unterstützt haben. Ihr seit eine große Stütze in meinem Leben und
ohne sie wäre der Abschluss dieser Arbeit nicht möglich gewesen.

Ich möchte mich auch bei meiner Betreuerin Manuela Waldner bedanken, die mir in
schwierigen Situationen immer mit Rat und Tat zur Seite stand und mir half, andere
Perspektiven als meine eigene zu sehen. Außerdem danke ich Meister Eduard Gröller für
die Beratung in der Endphase dieser Arbeit.

Ein großes Dankeschön geht auch an meine Kollegen von der DatenVorsprung und Absolut
Ticket, die mir ein Umfeld geboten haben, das die Arbeit an diesem Projekt zu einer
angenehmen Erfahrung gemacht hat. Ein besonderer Dank geht an Zahra Babaiee und
Sophie Grünbacher, die mit mir an diesem Projekt gearbeitet haben.

Diese Arbeit wurde von DatenVorsprung und AbsolutTicket finanziell unterstützt.

vii

Acknowledgements

I would like to thank my family and friends for supporting me during my years of study.
A special thanks goes to Luise. You all are big pillar in my life and finishing this thesis
would not have been possible without you.

I also want to thank my supervisor Manuela Waldner for always giving great advice in
difficult situations and helping me to see other perspectives than my own. Additionally,
I am thankful to Meister Eduard Gröller for providing counselling during the final stages
of this thesis.

A big thank you also to my colleagues from DatenVorsprung and Absolut Ticket for
providing me with an environment that made working on this project an enjoyable
experience. A special thanks goes to Zahra Babaiee and Sophie Grünbacher for working
on this project with me.

This thesis was financially supported by DatenVorsprung and AbsolutTicket.

ix

Kurzfassung

In den letzten Jahren hat die Verwendung von Modellen des maschinellen Lernens (ML-
Modelle) und insbesondere von tiefen neuronalen Netzen außerhalb der Forschungswelt
stark zugenommen. Eine der größten Herausforderungen bei der Arbeit mit ML-Modellen
ist die korrekte und effiziente Interpretation der von einem Modell gelieferten Ergebnisse.
Außerdem ist das Verständnis wie das Modell zu Schlussfolgerungen gekommen ist selbst
für Experten auf dem Gebiet des maschinellen Lernens eine sehr komplizierte Aufgabe.
Für Laien sind ML-Modelle oft nur Black-Boxes, die nicht nachvollziehbare Ergebnisse
liefern. Das mangelnde Verständnis eines Modells und seiner Argumentation führt dazu,
dass Benutzer den Modellvorhersagen oft nicht vertrauen.

In dieser Arbeit arbeiten wir mit einem ML-Modell, das auf Eventorganisationsdaten
trainiert wurde. Das Ziel ist es, ein exploratives visuelles Eventorganisationssystem zu
erstellen, das es Event-Organisatoren ermöglicht, effizient mit dem Modell zu arbei-
ten. Die Hauptziele des Benutzers in diesem Szenario sind die Gewinnmaximierung
und die Möglichkeit, sich auf die vorhergesagte Besucherzahl vorzubereiten. Um diese
Ziele zu erreichen, müssen Nutzer in der Lage sein, Aufgaben, wie das Interpretieren
der aktuellen Vorhersage und das Durchführen von was-wäre-wenn Analysen um
die Auswirkungen von Parameteränderungen zu verstehen, zu erfüllen. Das vorgeschla-
gene System beinhaltet angepasste Versionen mehrerer moderner modell-agnostischer
Interpretationsmethoden wie Partial Dependency Plots und Case-based Reasoning. Da
modell-agnostische Methoden unabhängig vom ML-Modell sind, bieten sie eine hohe
Flexibilität.

Viele State-of-the-Art Ansätze zur Erklärung von ML-Modellen sind oftmals zu komplex
um von Laien verstanden zu werden. Bei unserer Zielgruppe, den Event-Organisatoren,
kann nicht davon ausgegangen werden, dass sie über außreichendes technisches Wissen
im Bereich des maschinellen Lernens verfügen. In dieser Arbeit wollen wir Antworten
auf die folgenden Fragen finden: Wie können wir ML-Vorhersagen für Laien verständlich
visualisieren? Wie können die Vorhersagen miteinander verglichen werden? Wie können
wir Nutzer dabei unterstützen, Vertrauen in das ML-Modell zu gewinnen? Unser Event-
organisationssystem wird mit Hilfe eines Human-Centred Design Ansatzes erstellt,
wobei während des gesamten Entwicklungszyklus mehrere Fallstudien mit potenziellen
Nutzern durchgeführt wurden.

xi

Abstract

In recent years, the usage of machine learning (ML) models and especially deep neural
networks in many different domains has increased rapidly. One of the major challenges
when working with ML models is to correctly and efficiently interpret the results given
by a model. Additionally, understanding how the model came to its conclusions can be
a very complicated task even for domain experts in the field of machine learning. For
laypeople, ML models are often just black-boxes. The lack of understanding of a model
and its reasoning often leads to users not trusting the model’s predictions.

In this thesis, we work with an ML model trained on event-organisation data. The
goal is to create an exploratory visual event-organisation system that enables event
organisers to efficiently work with the model. The main user goals in this scenario are
to maximise profits and to be able to prepare for the predicted number of visitors. To
achieve these goals users need to be able to perform tasks like: interpreting the prediction
of the current input and performing what-if analyses to understand the effects of
changing parameters. The proposed system incorporates adapted versions of multiple
state-of-the-art model-agnostic interpretation methods like partial dependence plots and
case-based reasoning. Since model-agnostic methods are independent of the ML model,
they provide high flexibility.

Many state-of-the-art approaches to explain ML models are too complex to be understood
by laypeople. Our target group of event organisers cannot be expected to have a sufficient
amount of technical knowledge in the field of machine learning. In this thesis, we want
to find answers to the questions: How can we visualise ML predictions to laypeople in a
comprehensible way? How can predictions be compared against each other? How can
we support users in gaining trust in the ML model? Our event-organisation system is
created using a human-centred design approach performing multiple case studies with
potential users during the whole development circle.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Aim of the Thesis . 3
1.2 Methodological Approach . 4
1.3 Outline . 6

2 Background and Related Work 7
2.1 User-Centred Design . 7
2.2 Interacting with User Interfaces . 13
2.3 Machine Learning Model Analysis and Interpretability 16

3 Predictive Machine Learning 25
3.1 Data . 25
3.2 Data Exploration . 27
3.3 Model Training Pipeline . 31
3.4 Model API . 32

4 Paper Prototype 35
4.1 Data Types . 35
4.2 General Layout . 37
4.3 Result View . 39
4.4 Input View . 41
4.5 Evaluation . 46

5 Interactive Prototype 49
5.1 General Layout . 49
5.2 Implementation . 51
5.3 Result View . 55
5.4 Input View . 58

xv

5.5 Interaction History . 64
5.6 Case-based Reasoning Table . 65
5.7 Evaluation . 66

6 Final Prototype 71
6.1 General Layout . 71
6.2 Model API . 75
6.3 Result View . 77
6.4 Input View . 78
6.5 Interaction History . 84
6.6 Case-based Reasoning Table . 84
6.7 Evaluation . 86

7 Conclusion 91
7.1 Discussion . 91
7.2 Summary . 95
7.3 Limitations and Future Work . 97

List of Figures 99

List of Tables 101

Glossary 103

Bibliography 105

CHAPTER 1
Introduction

With the accessibility of data rising year by year, the usage of machine learning (ML)
models in day to day business is gaining importance. In this thesis, we are focusing on
predictive machine learning using event-organisation data. When organising events like
concerts or theatre shows, the goal of the event organiser is to maximise profit. Profit
depends on a multitude of parameters including: ticket sales, the occupancy rate of the
venue, costs for renting a venue, personnel costs, the artist’s salary and more. When
organising an event, one has to make several decisions that can influence the profit, such
as: Which venue do I choose? What is a good name for the event? At which date should
the event happen? How much are the tickets? How do I advertise the event?

To optimise these decisions and set ideal event parameters is a complicated task and event
organisers can often only rely on their experience and domain knowledge. This leaves
a lot of room for improvement since it is not possible to know if the right parameters
were chosen until the event is over. Early ticket sales can indicate trends but it could
be too late to change parameters at this time. Additionally, it is often difficult to
single out the parameters that lead to low ticket sales. We propose an exploratory
visual event-organisation system (EVEOS) that allows event organisers to compare
different parameter settings and guides them to optimized solutions. The EVEOS is built
on top of a predictive machine learning model whose purpose is to predict the number of
tickets sold for several given event parameters.

Working in an ML environment is not easy. The most important task for users in such an
environment is arguably the interpretation of the ML model results [76, 80]. This raises
questions like: What is the objective of the prediction of this model? What information
can I gather from the prediction result? Additionally, for the user group event organisers,
it is most likely the often first time that they are working with data that is the result of
an intelligent model and therefore does not necessarily reflect reality. This could lead
to the user exaggeratedly mistrusting the results. Or, as Lim [44] states, the following
questions could arise: Why did X happen?, Why not Y?, What happens if I do Z? and

1

1. Introduction

How do I make X happen?. Hohman et al. [32] state in their survey that visualisation is
one of the best concepts to understand why and how machine learning models come to
their decisions, which leads to increased trust in them.

Building trust in the results of predictive machine learning is a task well known to
the visualisation community. Zhao et al. [80] use the example of how doctors who
use the output of ML models in their diagnosis can’t simply trust the model without
understanding the reason for a given result. It is especially hard to design visualisation
systems that are understandable to a broad audience. In recent work, Wexler et al. [76]
state that they tried to achieve this but realised that their approach needs at least some
knowledge in data science. Ribeiro et al. [64] discuss that the users’ trust in a model
depends heavily on how well they understand model predictions. So what makes gaining
trust in a model and interpreting it so difficult?

As Lipton [45] states, in the real world, humans usually expect an explanation from their
counterpart for why certain decisions were made. In general, we want to understand the
reasoning behind them. To get such reasoning from ML models, it is necessary to be
able to interpret them. Lipton criticises that model interpretability is an ambiguous
term and is often not properly defined by authors. One definition that is often proposed
is that interpretability is a means to gain trust, with trust again being a subjective
feeling [36, 63]. When talking about interpreting an ML model, it is also important
to differentiate between what Lipton calls transparency and post-hoc explanations.
A transparent model enables us to understand how the model works while post-hoc
explanations like explanation by example aim to extract additional information about
the model which does not necessarily explain precisely how the model works. Lipton
argues that this is similar to humans, since the process of how we make decisions can
be distinct from how we explain them. One of the advantages of post-hoc explanations
is that developers do not have to sacrifice model complexity or output quality just to
keep the model interpretable. Goldstein et al. [27], for example, discuss interpretability
of black-box models. Although such models can be very precise, it is very hard to
comprehend how the model uses the input to compute the prediction. When looking for
transparency in this example, the only way would be to reduce the complexity of the
model which in turn would most likely result in a loss of precision.

Doshi and Kim [23] state that there is little consensus on what interpretability in machine
learning is. They define it as: “the ability to explain or to present in understandable terms
to a human”. Doshi and Kim argue that problem formalisations are often incomplete
because of e.g.: lack of training data, insufficient scientific understanding of the problem,
or multi-objective trade-offs. Interpretability or explanations are one way to help us
overcome this incompleteness. In contrast to Lipton [45], Doshi and Kim differentiate
between global and local interpretability. Global interpretability is about understanding
the general structure and patterns of a model, while local interpretability aims to explain
why a single decision was made. They also point out that the context in which the model
is used is important. Time constraints and user knowledge can be important factors in
how detailed an explanation can or has to be.

2

1.1. Aim of the Thesis

One big aspect of being able to interpret ML models is to gain trust in them. Caruana
et al. [21] state that for being able to trust a model, it needs to be able to explain its
reasoning. If that is not the case, user acceptance is very likely to be low. They also raise
the point, that modern (in 1999) models, like neural networks (NN) or large decision
trees, are becoming increasingly more complex and therefore harder to comprehend. With
the emergence of deep NN and convolutional NN, the complexity has only increased in
recent years. To overcome this, Caruana et al. suggest not to focus on understanding the
model itself but try to understand the predictions using case-base reasoning where
one investigates which collection of inputs leads to equal or similar outputs.

In summary, the interpretability of ML models is a broadly discussed topic in the field of
ML. Many different definitions are floating around in the community, but most of them
boil down to the following three tasks that interpretability needs to serve:

T1 Visualise the prediction result of an ML model in a comprehensible way.

T2 Explain to users why an ML model converts a given input into an output so they
understand, to a certain extent, how they relate to each other.

T3 Generating trust in the model to such a degree that the user can work with it with
good conscience.

1.1 Aim of the Thesis
The goal of this thesis is to develop an exploratory visual event-organisation system
(EVEOS). It allows event organisers without any prerequisite knowledge in computer
science to efficiently work with the results of an ML model that predicts how many
tickets will be sold given a set of event parameters, which comprise several different data
types. Organisers deal with categorical data like the venue and genre as well as with
ordered data of different kinds: ordinal data like event dates and quantitative data like
ticket prices and venue capacities. The different types of data are described more closely
in the Sections 3.1 and 4.1. Additionally, parameters can be directly linked to other
parameters. For example, when selecting a date for an event, it directly dictates if the
event will happen on the weekend or not. Another example would be the selection of
an event venue, which determines the country and city of the event as well. Between
all these different types of data, the goal of event organisers is to find a combination of
parameters that maximise profit.

Therefore, we strive to implement an EVEOS that allows us to work with all these data
types and visually encodes them in a way that fits their specific characteristics. The
resulting system should provide possibilities for users to compare the model outputs of
different parameter configurations in the sense of what-if analysis and case-based
reasoning. In general, this approach should lead to users being able to interpret the
output of the underlying predictive ML model and therefore enable them to build trust
in using this system. We also have to always keep in mind that the target group of our

3

1. Introduction

exploration system are mostly laypeople in the field of ML, which influences the set of
possibilities we have when striving for model interpretability.

The design of our EVEOS was greatly influenced by the following questions which are
based on finding optimal parameters for a future event and therefore maximising ticket
sales:

• For a given set of input parameters, how many tickets will be sold for the event?

• What is the probability of selling a given amount of tickets? - The model predicts
that 500 tickets will be sold, but what is the probability of 600 tickets being sold?

• How does changing a single parameter influence the ticket sale? - For example, how
does the ticket price affect sales, or does not matter which day of the week the
event is happening?

• Which parameters should be changed to increase the number of sold tickets? - Are
there parameters that have a greater impact than others?

To help event organisers get answers to these questions, we developed our EVEOS
accordingly. To provide a certain level of generality and to avoid tailoring our work too
much towards the use case of event organisation, we defined four general questions that
our system should be able to display answers to:

Q1 What is the prediction of a model with the current input?

Q2 How certain is a prediction?

Q3 Which effect does changing parameters have?

Q4 Which parameters cause the biggest change in the result?

1.2 Methodological Approach

The questions we aim to answer from an information visualisation point of view to
perform the presented tasks T1-T3 of interpretable ML models are:

V1 How can we visualise the results of predictive machine learning models so that they
are useful and comprehensible to non-expert users?

V2 How can we make multiple predictions comparable against each other?

V3 How can we support users in gaining trust in the predictions using model interpreta-
tion methods?

4

1.2. Methodological Approach

Analysis

Core

Precondition

Interactive
Prototype

Final
Prototype

Problem
Definition

Data
Exploration

Paper
Prototype Reflection

Evaluation Evaluation Evaluation

Research

Include ML
Model & DB

Figure 1.1: Design Timeline.

To achieve a visualisation design that is as comprehensible as possible, we employ the
what-why-how analysis framework introduced by Munzner [52]. This framework helps
us to find the appropriate visual encoding for each of the incorporated data types.

To answer the second and third questions, we incorporate interactive analysis features
allowing the user to interact with the model and thereby gaining a better understanding
of and more trust in the model. Specifically, the relationship between the input features
and the resulting prediction is highlighted. To increase the generality of our work, we
use model-agnostic methods, which fall into the category of post-hoc explanations [46],
wherever we can. This way, we are independent of the model structure, which allows us
to update the model rather easily. As described by multiple works [76, 66, 80, 40], the
measurement of partial dependence is a model-agnostic method that is suited well for
what-if analyses. By allowing the user to test their hypothesis by changing the input
parameters in a graphical user interface, we can answer questions like: How is the result
influenced if I change a certain parameter? By how much does an input value have to
change to provoke a change in the prediction? This also includes providing the means to
quickly identify the local influence of parameters on the current prediction. In general,
we focus on providing local interpretability of the model as discussed by Doshi and Kim
[23]. Additionally, showing the user historical ground truth results and corresponding
input data of similar instances provides case-based reasoning. As described by Zhao et
al. [80], this is a well-known concept in decision making. By connecting the predictive
machine learning models with this familiar method, we aim to generate more trust in
our models.

To achieve the implementation of an EVEOS that satisfies the needs of our target group, we
loosely follow Sedlmair et al.’s [67] nine-stage framework for design studies. As illustrated
in Figure 1.1, the nine stages are grouped into three parent-stages: precondition, core
and analysis. The precondition phase deals with learning about the problem and
state-of-the-art solution in the problem domain (see Section 2.3). We also perform a set
of data exploration tasks to get a better understanding of the data we are working with.

In the core phase, the work of implementing a solution for the problem is handled.
Here, we deploy the strategy of the user-centred design cycle, the methodology of which
is discussed in Section 2.1. In our project, we perform three iterations of the design cycle.
Each step is evaluated by multiple potential users in a case study environment. First, we

5

1. Introduction

derive a paper prototype according to the given use case and data types (Chapter 4).
The main focus here lies on finding the best visual encodings for different tasks at hand
and finding a first layout for the system that allows users to fulfil the tasks they need
to perform. Next, an interactive horizontal prototype that gives a first complete view
of the EVEOS is developed (Chapter 5). This prototype is not connected to real data
but only uses sample data with interactions producing mock results. The evaluation at
this stage aims to verify the correct implementation of the given user stories. Finally, a
vertical prototype is developed that connects the previous one with a database and the
ML model to show actual predictions. In this last step, the overall performance of the
system is evaluated (Chapter 6). In the analysis stage in Chapter 7, we reflect on the
results of our work. This stage of the framework also includes writing down the findings
of the design study.

The main contribution of this thesis is the conception, development and
evaluation of an exploratory visual event-organisation system on top of a
predictive ML model for event organisers who, until now, have not been able
to perform such analyses with their domain-specific data. Within the iterative
design process, we aim to learn more about the needs of laypeople in the field of machine
learning in regards to model interpretability. We strive to grasp which concepts in the field
of user interface design work well in the proposed use case and which do not. Additionally,
our work can hopefully serve as a best practice example on how to deal with different
data types during predictive machine learning and post-hoc model analyses. Special
challenges that distinguish our work from other state-of-the-art approaches include the
diversity of the data types at hand and the usage of directly linked parameters.

1.3 Outline
To get a better understanding of the topics relevant to this thesis, we discuss related
work in Chapter 2. This includes the topics: user-centred design, interacting with user
interfaces and ML model analysis. In Chapter 3, the creation process of the used DNN is
described. First, we discuss data gathering and exploration, followed by the architecture
and training pipeline of the model. Finally, the API that handles communication between
the front-end and the model is presented. The three stages of the human-centred design
process to develop the proposed exploratory visual event-organisation system are described
in the Chapters 4, 5 and 6. In each of these chapters, we discuss the current state of the
prototype and the hypothesis we have of the development of the particular stage. Next,
we show the general layout of the prototype and, following that, take a more detailed
look into its components. Additionally, for Chapter 5 and 6, the changes respective to
the previous stage are discussed. As the last step, each prototype stage is evaluated
by multiple users in a qualitative user study. We conclude this thesis with Chapter 7,
reflecting and summarizing our approach and discussing potential future work.

6

CHAPTER 2
Background and Related Work

In this chapter, we dive into basic concepts and related work relevant to this thesis. First,
we discuss the basic concepts of user-centred design, which serve as a framework for the
development process. Next, we discuss what performance requirements are common for
interacting with user interfaces (UI). Finally, an overview of various works in the field of
ML model analysis is given.

2.1 User-Centred Design
In this section, we describe why it is beneficial to use user-centred design approaches and
what basic principles are deployed in such approaches. Our elaborations are based on
the work by Kulyk et al. [41] from where we pick the most relevant points relating to
our work. First, we need to define what user-centred design is. User-centred design or
human-centred design evolved from the field of HCI. Stone et al. [70] define it as:

“An approach to user interface design and development that views the knowledge about
intended users of a system as a central concern, including, for example, knowledge about
user’s abilities and needs, their task(s), and the environment(s) within which they work.
These users would also be actively involved in the design process.” [70] page 628

In general, the main goal of user-centred design approaches is to heavily involve the user
in the development process and adapt to their needs. The International Organization
for Standardization (ISO) mentions among others the following elements of user-centred
design in ISO 13407 [33]:

• The users, their tasks and requirements are clearly understood and they are actively
involved in the project.

• The users play a critical part in giving feedback during the iterations of the
development.

7

2. Background and Related Work

Figure 2.1: Design triangle showing the major factors that need to be considered when
designing interactive visual analytics methods. From Miksch and Aigner [48].

The ISO 13407 additionally lists several benefits of user-centred design when applied
correctly. First and foremost, they state that the quality, aesthetics and impact of the
final product, as well as the productivity of the users working with the system, can be
improved. Furthermore, since the users actively contribute during development, their
discomfort in transferring from an old to a new system can be drastically reduced. But
when can one say that a design strategy was a success? Often the answer is that when
the software project is usable. But what is usability?

Usability is a broadly discussed term and several works elaborate on its main aspects [62],
[70]. Bennet [15], for example, mentions four points: learnability, throughput, flexibility
and attitude. Nielsen [57] formulates these points a little differently and adds a fifth
aspect: learnability, efficiency, memorability, errors and satisfaction. The ISO standard
9241 [34] combines all the different points into three distinct aspects: effectiveness,
efficiency and satisfaction (see Figure 2.1). Effectiveness shows how accurate a user is
in completing a given task. Efficiency describes the ratio between effectiveness and the
amount of work needed to complete the task. Satisfaction is a rather ambiguous aspect
that deals with the user’s level of comfort and their feelings towards using a system. The
importance of each axis depends on the domain of the project. For example, for some
tasks, it could be of high importance that they are solved with the utmost precision and
the associated workload can be neglected. In this case, efficiency is less important.

Talking to domain experts, we get the impression that, in our case, the most important
axes are effectiveness followed by satisfaction. The goal of the users is to find the best
parameters for an event and they need to be able to precisely evaluate the parameters.
Users satisfaction also plays an important part in our system. The domain experts need
to feel comfortable when working with the ML model. In our opinion, the comfort level

8

2.1. User-Centred Design

Figure 2.2: The visualisation design cycle as defined by Shneiderman and Plaisant [69].
The four stages of this iterative approach are repeated multiple times until a satisfactory
sate is reached.

is greatly influenced by how well the users can interpret the model predictions and how
much they trust them.

2.1.1 User-Centred Design Circle

As stated in Section 2.1, we now know that a user-centred design approach is beneficial,
aims to let the users contribute during development and the goal is to have a usable
product. But how can we structure the project development to achieve all of this?
In the past, a lot of work has been put into developing workflows for user interface
design. Notable examples of approaches are the do’s and don’ts of Johnson [35] and the
comprehensive strategies of Mayhew [47], Shneiderman and Plaisant [69], or Lauesen
[42]. Kulyk et al. [41] state that user interface design and visualisation design are two
closely related fields and therefore it stands to reason that the same strategies can be
used in both fields. Our work developing an exploratory visual event-organisation system
is located somewhere between those two since it combines a novel user interface with
multiple visualisations.

The approach by Shneiderman and Plaisant [69] introduces the so-called visualisation
design cycle (see Figure 2.2). It features four stages, which are repeated until the result
is satisfactory:

1. A thorough analysis of the users and their aims and requirements is conducted
(user analysis).

2. The method of visualisation is derived (visualisation design)

3. and implemented (prototyping).

9

2. Background and Related Work

(a) The four nested layers. (b) Threads and validations for each of the four
layers.

Figure 2.3: Nested model for visualisation creation by Munzner [51].

4. The visualisation is evaluated (evaluation).

In his work, Fallman [25] groups the design and implementation steps into a one-step
synthesis. He also argues that steps can overlap and are sometimes not clearly separable.
Munzner [51], proposes a nested model for the design process of visualisations (see Figure
2.3a). She states that the output from a level above serves as the input for the level
below. This also has the effect that errors made in upper levels propagate downwards.
In the following sections, we will briefly discuss the main aspects of the stages defined by
Shneiderman and Plaisant [69].

User Analysis

The first step in the design cycle represents a thorough user analysis. The goal is to collect
as much data as possible about the users that will work with the product. This includes
investigating who the users are, the goals the users have, the requirements that the
system needs to fulfil, understanding the underlying data and also considering external
factors like the available hardware or workplace conditions. Often these questions are
summarized as [41, 42, 69]:

• Who are the users of the system?

• What kind of data are they working with?

• What are the general tasks of the users?

These questions also are the basis for the data-users-tasks triangle proposed by Miksch and
Aigner [48] shown in Figure 2.1. Sometimes users already have some kind of visualisation
tool to show the data they use. In this case, it can be better to enhance what they are
already used to instead of coming up with new designs that are unfamiliar to the users

10

2.1. User-Centred Design

[72]. When establishing user requirements, it is essential to categorise them by relevance
so it is evident what is most important to the users. Benyon et al. [16] suggest using the
MoSCoW schema: Must have, Sould have, Could have, Won’t have. Performing a task
analysis determines what features need to be available for the users to fulfil their tasks.
Zhang et al. [79] state that a system should always have exactly the features needed by
the users, not more, not less. There are multiple methods to gather users tasks, including
interviews or task demonstrations, both of which have their pros and cons. Interviewing,
which is the most commonly used method, is very time-consuming. Since this leads to a
rather small quantity of users being consulted, it is important to do a good selection of
users to keep the interviews representative [69].

Answering these questions should lead to a better understanding of the problem domain
and helps the developer team create a better visualisation design [24]. As stated by
Carroll et al. [20], a user study is an interchanging activity between the developers
and the users. For this thesis, we organised a focus group meeting with several event
organisers to talk about their expectations and needs regarding the proposed EVEOS.

Visualisation Design

When creating a visualisation design, it is important to first decide what purpose it
serves. Usually, visualisations can either be used for presentation or analysis. A visual
presentation of data is used to communicate the properties of the data to the viewer. In
our work, we strive to present the predictions of an ML model. Here, the most important
thing is that the data is presented in a way that is understandable by all viewers since
interaction and exploration to gain additional insight is limited. Visualisation for analysis
allows the user to interact with the data more deeply. By allowing data exploration and
manipulation, users gain a deeper insight into data that helps them solve the tasks they
have [41].

Prototyping

Since the user-centred design cycle includes multiple iterations of analysis, design and
implementation, the artefacts that resolve from one iteration can be viewed as a prototype.
A prototype is an intermediate version of the product that can only present a subset
of the features of the final product. Prototypes often are used in usability testing and
evaluation of the current project status [41]. Depending on how advanced the project is,
different types of prototypes can be used [42].

In the early stages of a project, sketches and paper prototypes can be of much use.
By simply drawing on paper or creating paper models, designers can quickly try multiple
ideas without having to implement anything. Screen prototypes can already consist
of real software components but are still not functional. Interaction is in most cases not
possible, but the prototype can give the users a first impression of how the final product
might look. There are two types of functional prototypes: Horizontal prototypes
focus on providing interactivity for as many components as possible, but the processing

11

2. Background and Related Work

Figure 2.4: Human centred design cycle by Kulyk et al. [41]. In comparison to the design
cycle proposed by Shneiderman et al. [69] in Figure 2.2, evaluation is moved to the centre
of the circle and is repeated whenever necessary.

behind them might not be fully functional yet. Depending on the grade of functionality,
a similarity to screen prototypes can be observed. Vertical prototypes on the other
hand, provide full functionality for selected features.

During the design process of the EVEOS, we first develop a digital paper prototype. Next,
we implement a horizontal prototype that shows all components but is not connected to
the database or ML model. Finally, we connect the back-end to provide a fully functioning
prototype. Each of these stages is evaluated by several domain experts in a round of
interviews.

Evaluation

One of the key features of user-centred design is to involve users and evaluate completed
steps as early as possible. For example, once the first paper prototypes are developed, they
should already be subject to evaluation. This way, mistakes and misunderstandings can
be eliminated early on and the relevance of the project can be ensured [30]. To highlight
the importance of evaluation, Kulyk et al. [41] changes the design cycle proposed by
Shneiderman et al. [69] and moves the point of evaluation into the centre, with it being
connected to all other stages as shown in Figure 2.4.

There are multiple ways to conduct evaluations. Analytical methods, for example, are
used mostly in the early stages of development and are often conducted by usability experts
and not the users. Techniques like cognitive walkthroughs, early concept evaluations with
focus group meetings or interviews are used to validate the first concepts [50]. The most
commonly used types of evaluation are empirical methods. They are often performed

12

2.2. Interacting with User Interfaces

as experiments that try to measure usability data (see Section 2.1). Kulyk et al. [41]
criticise that such experiments are often conducted in artificial settings and the tasks
performed by the users are highly engineered. This leads to the results being more
focused on the visual representation and less on the user experience when working with
the provided interface.

In her nested model, Munzner [51] suggests that each of the layers has its threats that
need to be considered in its validation. As illustrated by red lines in Figure 2.3b, some
threats of outer levels are connected to validations in inner layers, meaning that they
can only be properly evaluated once the inner layer is reached. Munzner also states that,
usually, in a single work one focuses only on a subset of the layers. We see our work to
be in the orange and yellow layer of the nested model. Munzner [51] suggests employing
more qualitative validation methods for these layers rather than empirical experiments.

When conducting evaluations, Kulyk et al. [41] state that it is important to plan them.
On the one hand, the content of the evaluation needs to be defined, so it is evident what
the questions are that are supposed to be answered. According to the selected questions,
the developer team then needs to decide what to show the users. Do they get to see a
preliminary prototype, just sketches, or a combination of multiple artefacts? Sometimes
artefacts are not in a state where they can be used for proper evaluation and need to be
adjusted before the experiment. Additionally, the time frame and workload need to be
discussed to allow the team to create a budget and decide if the evaluation is feasible.

During a validation round, interviews or questionnaires can be used to collect feedback.
Questionnaires are easy to evaluate, but often do not go into much detail. Performing
interviews allows the gathering of more qualitative data since they can be in a semi-
structured format. The downside of this is that the answers can be hard to analyse and
interpret [41].

2.2 Interacting with User Interfaces

In this section, we discuss the impact that waiting time (or response time) has on user
satisfaction when working with interactive UIs. Waiting time is defined as the time
between a user action like clicking on a button and the result of the action being shown
e.g. a graphic is computed and then displayed. Research on acceptable response times in
HCI has been done for over 50 years, with first studies being published as soon as 1968
[49].

Depending on the type of ML algorithm used and the number of predictions that need to
be made simultaneously, the time needed to compute results can vary. Especially when
using post-hoc explanation approaches, like partial dependence [26] or feature importance
[71], where measurements are computed by comparing multiple predictions, the response
time often is a few seconds. Therefore, we investigate the influence that waiting time has
on the user experience and how we can deal with it properly.

13

2. Background and Related Work

Figure 2.5: Elapsed Solution Time (TEL) against the SRT. The tasks were solved with
set SRTs of 0.16, 0.72 and 1.49 seconds. [28]

In their work in 1978, Goodman and Spence [28] discuss how system response time (SRT)
affects users productivity. They performed experiments in the field of computer-aided
engineering where enhancing productivity is one of the driving factors of using computers.
Users had to adjust multiple parameters to solve a task. When performing these actions,
the SRT was fixed to either 0.16, 0.72 or 1.49 seconds and the total time of solving the
task was used to measure the impact of the SRT. To get genuine results, the total waiting
time was subtracted from the solution time. As shown in Figure 2.5, the results of the
experiment suggest that users take relatively longer to solve a task when the individual
SRT for actions during the task is longer.

In his work, Shneiderman [68] asks the question: How long will users wait for the
computer to respond before they become annoyed? He argues that the time
until users are frustrated waiting for the system response is highly dependent on multiple
factors. One important factor is if the user expects to be waiting for a result after acting.
The expected waiting time for the action “go to next page” is likely to be much lower than
for “download 100GB of data”. If the user has experience performing a certain action,
established expectations can also be a big factor in how long it takes for the user to be
annoyed. Shneiderman reviewed several studies on this topic [28, 75, 31, 74, 17] and they
all support the statement by Goodman and Spence [28] that, in general, productivity
increases with lower response times.

Nielsen talks about the importance of response time in user interface design in various
works [56, 58]. He also raises the argument that for some actions the response time should
be artificially slowed down because the users cannot cope with the speed. When scrolling
through a list, for example, the scrolling speed should be slow enough for the user to be
able to recognise when the wanted element is found. In general, Nielsen defined three

14

2.2. Interacting with User Interfaces

stages of waiting time [56]:

• 0.1 seconds: If the response for an action is available in 0.1 seconds or faster, the
user feels he is directly manipulating objects in the UI.

• 1 second: The user realizes that there is a delay. There is no feedback necessary
because the user still feels in control. Navigation actions in an interface should
always take a maximum of 1 second.

• 10 seconds: In a UI, no common action should take longer than this, because the
users start to feel bored.

Nielsen also states that when waiting for more than 10 seconds, a percent-done indicator
[53] should be used. If it is not possible to compute a percentage of work already done
(e.g. 20 out of 100 files loaded), one should at least try to show the total amount of work
(e.g. 20 files loaded . . .). If that information is also not available, Nielsen suggests using
repetitive loading symbols like spinning balls. He states that loading symbols give users
something to look at, which is a factor that should not be underestimated when talking
about perceived waiting time. Additionally, when waiting between 2 and 10 seconds it is
often not necessary to show a true percent-done indicator, because the user cannot read
the information in the time available.

Loading symbols are the main focus of the work of Kim et al. [37], where they investigate
how different symbols and progress functions affect the perceived waiting time. First,
they state that the best and obvious way is to reduce the actual waiting time. In their
experiments they tested 48 different symbols options derived from (see Figure 2.6): 3
durations (5, 10, 20 seconds) × 4 progress functions (repetitive, linear, power, inverse
power) × 2 shapes (bar, circle) × 2 embellishments (none, bike with flag). Waiting
durations below 5 seconds were not tested since they are considered too short, which
aligns with Nielsen’s work [56]. The results of their work indicate that the duration
and progress functions have the highest impact on perceived response time. Using a
repetitive progress function that does not give any indication about the progress being
made performs the worst, followed by a linear progress function. The power (start slow,
then fast) and inverse power (start fast, then slow) functions resulted in the lowest
perceived waiting time. The shape of the symbol and the use of embellishments did not
have a significant effect. Kim et al. state that the repetitive circle that is used in a vast
majority of online video players performed the worst of all options.

All operations in our work that require the usage of a loading symbol are calls to external
APIs where we cannot get any information about how long the response time is. We
also cannot get intermediate results so we could display how much of the total work
is already done. Therefore, we cannot employ percent-done indicators as suggested by
Nielsen [56, 58] or the power functions used by Kim et al. [37]. In this case, Nielsen
advises using repetitive loading symbols. Even though they are not the optimal choice
in general, users at least know that the system is waiting for a response and did not

15

2. Background and Related Work

Figure 2.6: The different loading symbols tested by Kim et al. [37].

crash. As discussed in Chapter 6, we employ repetitive circles when we are waiting for
the response of an API call.

2.3 Machine Learning Model Analysis and
Interpretability

In recent years, a lot of research has been done in the area of visually analysing machine
learning models and parameters as shown in the surveys by Hohman et al. [32] and
Sedlmair et al. [66]. Hohman et al. focus on answering the questions Why?, Who?,
What?, How?, When? and Where? in the context of visual analytics in deep learning. A
prominent answer to the question Why? is Interpretability & Explainability.

The work by Sedlmair et al. [66] concentrates on answering the questions What? and
How? regarding visual parameter space analysis. The tasks they describe include:

16

2.3. Machine Learning Model Analysis and Interpretability

interactive parameter optimisation, output uncertainty and parameter sensitivity. A
notable point they present is that the visualisation of uncertainty often overwhelms users
and is therefore only shown when explicitly requested. They propose several techniques
to enable the user to perform these tasks, including local-to-global, global-to-local
and informed trial and error. Informed trial and error allows the user to refine the
input parameters until a satisfactory result is achieved.

When talking about machine learning model analyses and making them interpretable,
we need to differentiate between two types: interpretable models and model-agnostic
explanations. Interpretable models are models that are constructed in a way that one
can understand how the model derives an output from a given input by simply looking
at its structure. A good example of that are small decision trees, where investigating the
decision rules at the nodes is usually enough to understand the model. Model-agnostic
explanations on the other hand, treat the ML model as a black box and try to achieve
interpretability by showing diverse measurements only computed by the model output.
In their work, Ribeiro et al. [64] discuss the benefits and drawbacks of these types.
An evident benefit of model-agnostic approaches is the separation between the model
structure and the visualisation. This makes it possible to use different visualisations for
the same model. Additionally, treating the model as a black-box makes changing the
model trivial. Another benefit of model-agnostic approaches is that the complexity of
the model does not influence its explainability as strongly as for interpretable models.
For example, if a decision tree grows larger, it gradually gets harder to interpret it. If
one relies on model-agnostic measurements, the size of the tree is irrelevant for its degree
of interpretability. Therefore, model designers do not have to sacrifice complexity and
accuracy for the sake of interpretability. On the other hand, there is still a trade-off
between model complexity and interpretability, so it may be hard to gain a global
understanding of the model using model-agnostic methods if the model is complex.
Interpretable models are preferred when accuracy is not as important as interpretability
or when designers can create a small interpretable model that has the same accuracy as
a complex black-box model.

The following approaches use a model-agnostic method called partial dependence (PD)
plot, which was first introduced by Friedman [26] in 2001. Partial dependence plots
show how changing the value of a single feature x changes the prediction on average. To
compute this, a representative sample sx of the values of feature x and a set of samples
sy of the complete feature space without x are taken. Then, for each sx all samples of
sy are completed with the current value of x and fed to the model. The average of the
results is the partial dependence value of the current x. Krause et al. [40] introduce the
measurement of local partial dependence. Here, instead of getting multiple samples
sy, only the currently selected parameter combination is used and combined with all
values of sx. This way, the partial dependence of x is computed only for the current
selection.

17

2. Background and Related Work

Figure 2.7: Partial Dependence (PD) plots comparing two ML models. Top: categorical
PD plot. Bottom: numerical PD plot. [76]

Wexler et al. [76] present an approach called the What-if Tool, used to interactively
test multiple hypotheses that users might have. Data point editing allows users to
test how the model output changes by making changes in the input. To allow for a better
comparison, the user can duplicate the original input and output. They also introduce
counterfactual reasoning, which answers questions like: What ground truth input
is most similar to the current input that achieves the wanted result? They also point
out that to answer this question, numerical features and categorical features need to be
treated slightly differently. To show how a single input parameter affects the result, they
use partial dependence plots as shown in Figure 2.7. The presented task solutions by
Wexler et al. can be applied to our tasks in some ways, but the visual representation does
not align with the data we are using. Also, as stated by themselves, the incorporated
visualisation interface requires at least some knowledge in working with machine learning
models, which our users do not have.

In their tool called IForest, Zhao et al. [80] define similar tasks as Wexler et al. [76] but
focus on analysing random forest models. They also describe the problem of revealing
the influence of input parameters on the resulting prediction, which they too solve using
partial dependence information. Additionally, they compute and show so-called split
points to show how much an input parameter needs to change to lead to a change in
the prediction. Using case-based reasoning, they show a collection of ground truth
data that corresponds to the current input and the corresponding prediction, giving the
user a better understanding of why the model made the current prediction. Since their
computation and visualisation is tailored towards random forests, we can only incorporate
abstract solution ideas into our work.

18

2.3. Machine Learning Model Analysis and Interpretability

Figure 2.8: A partial dependence plot encoded as partial dependence bar. The values are
colour-coded [40].

Krause et al. [40] present a novel encoding for partial dependence plots in their
tool Prospector. First, they describe how they optimise the sampling of the partial
dependence measurement by adapting the sampling to the used machine learning approach
and the characteristics of the input data. Then, they introduce local partial dependence
LPD encoded as partial dependence bars, which are interactive sliders showing the
range of the input value on the x-axis and the corresponding change in the prediction
using colour coding on the slider as shown in Figure 2.8. This encoding allows users to
investigate which change in a feature leads to which change in the prediction, while all
other features are fixated. Their approach only works if the prediction is a 1D value.
Krause et al. only use numerical input values in the partial dependence bars, whereas we
want to extend the usage to also incorporate categorical data.

Encoding LPD information on an partial dependence bar as suggested by Krause et
al. [40] can also be seen as a type of scented widgets as proposed by Willet et al.
[77]. They define scented widgets to be: “graphical user interface controls enhanced
with embedded visualisations that facilitate navigation in information spaces”. Adding
visual cues to user interface controls can help users in exploration tasks, according to
the authors. In their work, Willet et al. state that to add visual cues one has to first
select which data should be shown in the cue. In our case, this data would be, for
example, LPD information of a feature value. Additionally, it is important to use the
correct visual variables to encode the given information. Since interface controls cannot

19

2. Background and Related Work

Figure 2.9: Scent encodings supported by the work by Willet et al. [77].

be manipulated arbitrarily, one can only apply the following visual variables directly
on a widget: hue, saturation, lightness and texture. On the other hand, these are not
the best visual variables to encode quantitative data. To enable the usage of variables
like position and length, Willet et al. suggest adding small visualisations to the widgets,
as shown in Figure 2.9. This approach is similar to how we visualise LPD information
for categorical variables, with our small visualisations being more sophisticated than a
simple bar or line charts. Willet et al. also propose several guidelines when working
with scented widgets. One of them mentions the usage of identifiers like icons, tooltips
or legends to add additional information to the cues. We adopt this idea by showing
tooltips for LPD information that give details information about the underlying ML
model prediction.

A different approach on how to investigate local properties of features is presented by
Strumbelj and Kononenko [71]. They propose the measurement of global and local feature
importance. This is also a model-agnostic approach, which limits all interactions to
changing the input and evaluating the result. To define feature importance, they use an
adapted version of the Shapely value [78] usually used in the field of game theory. The
idea behind feature importance is to compute a value between -1 and 1 that indicates
the impact a feature has on the prediction. Global feature importance (see Algorithm 2
of Figure 2.10) computes this value for a value j of feature i by first taking m random
samples from the input space. Next, two predictions are made for each sample: One with
the original sample and one with the value of feature i being set to j. These predictions
are then subtracted and accumulated to finally compute the average of the differences.

20

2.3. Machine Learning Model Analysis and Interpretability

Figure 2.10: Algorithms by Strumbelj and Kononenko [71] to compute local and global
feature importance.

21

2. Background and Related Work

Computing the local feature importance of the i-th feature value of the current input x
is done in the following way. The general idea is the same as for the global case: take m
samples, make two predictions, subtract them and compute the average of the differences.
How the input for the predictions is created makes the difference here. First, a random
permutation O of the features is created to then check which features precede i in O.
According to this (see Algorithm 1 of Figure 2.10), the input for the two predictions is
formed by combining the values of x with the value of the current random sample. The
complexity of computing local feature importance is O(m × T (f(x)) with T (x) being
the time it takes the model to compute one prediction. Local feature importance is a
measurement that fits our task very well. We could use it to show users which parameters
they should change because they have a negative impact on the prediction.

WeightLifter is an approach by Pajer et al. [59] to help users in complicated multi-
criteria decision-making processes. It differs from the previously mentioned approaches
and this thesis in the sense that it does not incorporate standard machine learning models.
Instead, it uses weighted criteria to filter the result set and presents the user with the
best solutions. The authors state that the main goal of their approach is to show how a
change in criteria weight affects the result set, which is a similar task as described by
Wexler et al. [76], Zhao et al. [80] and Krause et al. [40]. To achieve this goal, they colour
code the region in which a change in weight does not influence the result a technique
also used by Zhao et al. and their split points [80]. Additionally, Pajer et al. allow the
user to constrain the weight space, which helps filter results even further. The major
drawback of their visualisation is that it is limited to three trade-off parameters. They
state that it is possible to combine several parameters into one trade-off. This is not
applicable in our case, as we want to investigate the importance and influence of single
parameters.

Goldstein et al. [27] criticise the usage of PD plots. They argue that by taking the average
of all the sample predictions, important information can get lost if the dependence of
the feature x to the other features is strong. In their work, they propose individual
conditional expectation (ICE) plots. Instead of plotting the average of the predictions,
each prediction curve is plotted separately. An example of such behaviour is shown in
the Figures 2.11a, 2.11b and 2.11c. An ICE plot can also be viewed as a collection of all
local PD plots. Goldstein et al. also introduce multiple variations of ICE. The centred
ICE plot (see Figure 2.11d), for example, picks a curve x∗ and centres the plot around it
by showing only the difference to x∗ for all other curves. According to Goldstein et al.,
this helps in the detection of outlier curves.

Case-based reasoning is another model-agnostic approach to make models more under-
standable. The general idea is to show the user input combinations that are similar to
the current one. This way, the user can compare predictions between these inputs and
derive information about the model behaviour. Caruana et al. [21] apply this concept
to NN. They argue that, instead of computing the similarities in the input space, it is
better to investigate what the NN thinks are similar inputs. During the training phase
of an NN, an activation pattern for each training input is created. Caruana et al. save

22

2.3. Machine Learning Model Analysis and Interpretability

(a) Scatterplot of y versus x
(b) PD plot

(c) ICE (d) centred ICE (different dataset)

Figure 2.11: The PD plot (b) suggests, that there is no meaningful relationship between
feature x2 and the predicted value y. When looking at the scatterplot of the predictions
(a), it is obvious that this is not a correct statement. By using ICE plots (c), the data
loss by approximation is omitted. To better find an outlier, a centred ICE plot (d) can
be used. From Goldstein et al. [27]

23

2. Background and Related Work

these patterns. When a new input is fed to the NN, its activation pattern is also saved.
Afterwards, the k-nearest neighbours (k-NNs) [61] of the training patterns to the current
pattern are fetched. The k-NNs represent the most similar inputs as regarded by the NN.
Caruana et al. argue that this approach explains the predictions better than computing
similarities in the input space because when using the input space, only the training
dataset and not the NN’s behaviour is explained.

24

CHAPTER 3
Predictive Machine Learning

The proposed EVEOS is developed as a front-end on top of a predictive machine learning
model. The used model is a deep neural network (DNN) that was developed by our
colleague Zahra Babaiee 1. In this chapter, the machine learning process is discussed
roughly, so that the methodology of the underlying data analysis can be understood. We
first discuss the dataset used for machine learning and perform some data exploration
tasks to get a better feeling of the data and remove potential outliers. Next, we take a look
at the model training pipeline before discussing the API we develop for communication
with the front-end. The programs used in the machine learning process are implemented
in Python using the Keras [6] framework for developing neural networks.

3.1 Data

To feed the models, we use historical sales data provided by AbsolutTicket [1]. The
dataset contains 1.5 million bookings of 300000 events. To avoid working with data from
the production database, it is copied into a separate database that contains only the
needed data. We use a service that retrieves new data from the production database
every day to keep our dataset up to date.

When working with data, it is important to know which type of data the features belong
to. First, we need to understand what types of data there are in general and what
their differences are. According to Munzner [52], data can usually be assigned to one of
two main types: categorical or ordered. Categorical data is grouped into categories
according to its characteristics. It is important to state that these categories are mutually
exclusive, so each element can only belong to a single category. For example, if we had a
dataset of colour names “blue, blue, red, red-blue”, it would feature the three categories
“blue(2), red(1), red-blue(1)”. Categorical data can also include numerical values if they

1Zahra Babaiee, TU Wien, https://informatics.tuwien.ac.at/people/zahra-babaiee

25

3. Predictive Machine Learning

Data

Ordered

Discrete

Ticket price

Day of Month

Categorical

Ordinal

Venue
Capacity

Artist
Popularity

Venue

Artist

Event Name
Genre Continuous

Number of
Sold TicketsCountry City

Day of Week

Month

Year

Weekend

Artist
Bookings

Numerical

Figure 3.1: Categorisation of the used data types. Purple data is used as the ML model
input. The Number of Sold Tickets (green) is the ground truth for model predictions.
The ground truth consists of discrete values but we categorise it as continuous because
the prediction of the model is continuous.

are not measured and sortable but simply used as a category label. The values assigned
to a category do not provide any additional information.

Ordered data on the other hand is always sortable. It can be further divided into two
types: ordinal and numerical. Ordinal data is similar to categorical data but introduces
a ranking to the categories. School grades for example can feature six categories from
A to F . If we know that grade A is better than grade F , we can rank the categories
accordingly. It is important to mention that even though ordinal data can contain
numerical values, they are still ordinal since they cannot be mathematically measured.
Numerical data, on the other hand, can always be measured. As the name suggests,
it can only represent numbers and one can carry out mathematical operations on it.
Numerical data can be divided into two groups: discrete and continuous. Discrete
data consists of countable elements meaning a mapping with the natural numbers exists.
Continuous data is uncountable and in general, represents a set of real numbers. Both
discrete and continuous data can be either finite or infinite.

The dataset we are using contains categorical as well as numerical features. In Figure 3.1
we present a categorisation of the available features. The features that are used as inputs
for the ML model are either categorical or discrete. Categorical features include: artist
name, event name, genre, city, etc. Discrete features contain: artist popularity, venue

26

3.2. Data Exploration

artist_popularity

n
u

m
b

er
 o

f
ev

en
ts

1500

50

2000

1000

2500

3000

500

0 10 20 30 40 60 70 80 90

(a) Artist Popularity
average_basket_value

n
u

m
b

er
 o

f
ev

en
ts

1500

250

2000

1000

2500

3000

500

0 50 100 150 200 300 350 400

(b) Ticket Price

month

n
u

m
b

er
 o

f
ev

en
ts

6k

8k

4k

10k

12k

2k

0
11 1210987654321

(c) Month
day of the week

n
u

m
b

er
 o

f
ev

en
ts

15k

10k

20k

25k

5k

0
7654321

(d) Day of Week

Figure 3.2: Selection of training data histograms grouped by events.

capacity, ticket price, etc. This differentiation is important to make because it affects
how the data needs to be encoded for the model. The number of sold tickets is the value
we want to predict with the model. Since one can not sell half a ticket, for example,
this is a discrete value. The employed ML model, on the other hand, returns continuous
values when predicting the number of sold tickets, which is why we categorise it as such.
A convenient circumstance is that the dataset is complete and does not feature any Null
or NaN values.

3.2 Data Exploration

Before using a dataset for machine learning, it is always important to know what data one
is using. In this section, we discuss what data exploration tasks we perform to become
familiar with the data at hand. The aim is to find criteria for filtering outliers that would
reduce the quality of the ML model. The graphics presented in this section are computed
using the Plotly [8] package for Python.

As a first step, we compute histograms and scatter plot matrices of all features. This
helps us understand how the data is distributed and if any irregularities cannot be
explained with the domain knowledge we gained until now. A row of data in our dataset
represents an event with all its parameters, which is why the histograms are computed by
counting the number of events that fulfil a given characteristic. As shown in Figure 3.2,
investigating the histograms gives us some interesting information. Grouping the events
by month, we see that more events happen during the winter season than in summer. We

27

3. Predictive Machine Learning

principal component 1

p
ri

n
ci

p
al

 c
o

m
p

o
n

en
t

2

-5 0 5 10

0

10

20

30

40
artist p

o
p

u
larity

10

30

50

70

90

(a) Artist Popularity

principal component 1

p
ri

n
ci

p
al

 c
o

m
p

o
n

en
t

2

-5 0 5 10

0

10

20

30

40

ven
u

e
 cap

acity

10k

30k

50k

70k

90k

(b) Venue Capacity

Figure 3.3: PCA of numerical features a) colour coding according to the artist popularity
and b) according to the venue capacity.

also find that, when looking at separate days, most events are scheduled on Saturdays.
Grouping the events by weekend and working days, there are fewer events on weekends
than on all working days combined. Other findings include that the ticket price is usually
between AC15 and AC150. Additionally, the artist popularity seems to be evenly distributed
with two outliers and only a few artists with a popularity of over 90, with 0 being the
minimum and 100 the maximum popularity.

To further explore our dataset, we use the data dimensionality reduction methods
employing the Scikit-learn framework [60]: PCA (principal component analysis), t-SNE
(t-distributed stochastic neighbour embedding) and MDS (multidimensional scaling).
The goal of all these methods is to reduce the dimensionality of a dataset to achieve a
simpler representation of the data, such as creating a 2D version of a 10D dataset. This
can help to visualise the data for data analysis purposes. Sometimes in machine learning,

28

3.2. Data Exploration

(a) Weekend

artist_p
o

p
u

larity

10

30

50

70

90

(b) Artist Popularity

(c) Country (d) City

Figure 3.4: MDS using Gower’s distance with different colour codings. a), c), d) encode
categorical features. b) encodes a numerical feature. The line in a) and the ellipses in b),
c), d) show clusters of interest.

better results can be achieved when using a lower dimensionality representation of the
data. Showing these visualisations to domain experts helped us define rules for filtering
data in the training pipeline described in Section 3.3.

To perform PCA [14], the principal components need to be derived first. These are
defined as the eigenvectors of the data covariance matrix. The first principal component
represents the direction in which the dataset shows the highest variance, the second
one the direction with the second-highest variance while being orthogonal to the first
component, etc. The principal components can then be used to perform a change of basis
on the data. One can choose how many components are used for this.
In our case, we decided to transform our data into 2D, using the first and second principal
components. It is noteworthy that PCA only works with numerical values, which is why
we only transformed the numerical features of the dataset (see Figure 3.1). As shown in
Figure 3.3, the PCA reveals a few outlier points but does not provide us with a lot of
new findings otherwise. One interesting insight we gained when colour coding the plot
according to different features is that in the provided dataset it seems that large venues
with a capacity of more than 40.000 are almost always booked by popular artists.

Both t-SNE [73] and MDS [18] aim to reduce dimensionality while preserving the distances
between data points, meaning that if points are close in x-dimensional space, they should
also be close in 2D space for example. To achieve this, we need to compute a distance
matrix that includes the distances between the points in x-dimensional space before we
can deploy these dimensionality reduction methods. Since we also want to be able to

29

3. Predictive Machine Learning

(a) City (b) Country

(c) Genre (d) Venue

artist p
o

p
u

larity

10

30

50

70

90

(e) Artist Popularity (f) Weekend

Figure 3.5: t-SNE using Gower’s distance with different colour codings. a), b), c), d), f)
encode categorical features, e) encodes a numerical feature. The ellipses in a), b) show
clusters of interest.

explore categorical data, we decided to employ the Gower distance [29, 22], which works
for categorical and numerical data, as the metric for the matrix. Since the distance
matrix would be too large for the RAM of our machine and t-SNE and MDS are both
computationally very expensive, we use a random sample of 5000 data points for the
analysis. Our goal in using these methods was to find clusters in our dataset and gain
insight into which features seem to influence the creation of these clusters.

Starting with MDS (see Figure 3.4), we see that the dataset is split horizontally into
two clusters. Additionally, we see three elliptical-shaped clusters. Colouring the plots
according to the features, we found that the horizontally divided clusters stem from
events being either on the weekend or not. The elliptical clusters are related to the city
and country of the event. The two inner ellipses all belong to the same country, with

30

3.3. Model Training Pipeline

Model Training

Database

Model Live

User Interface

Data-Fetching Data-Filtering Data-Encoding

Figure 3.6: Stages of the model training pipeline.

the innermost one representing a single city in this country. The outer ellipse is divided
roughly into two other countries, one right and one left, with the left one also containing
a city cluster. This city cluster can also be found when looking at the artist popularity.
There we find an additional cluster that relates to a single venue.

Looking at the result of the t-SNE in Figure 3.5, we can see that there is what seems to
be a randomly distributed and rather sparse cluster in the middle of the plot and some
distinct clusters around that. The distinct clusters relate to events that happen in the
same venue, in the same genre and the same artist popularity. This suggests that the
dataset contains a few event clusters that could be some kind of event series where the
same artist performs multiple times in the same venue. The three country clusters we see
in the MDS are also present here, but not as separated. The cluster of the green country
and the purple city on the top right of the plots shows us that this combination belongs
to a distinct group of events. In contrast to the MDS visualisation, not the whole dataset
but only distinct clusters are separated by weekend and weekday.

3.3 Model Training Pipeline
In this section, we discuss the steps of the model training pipeline shown in Figure 3.6. As
described in Section 3.1, the data provided by Absolut Ticket [1] is stored in a database.
The first step of the pipeline is to fetch the data from the database. The training set
has the same cardinality as the number of events in the dataset. To avoid overfitting,
we simply do not use all events but fetch the training data in numerous batches, each
batch containing 128 random events. Next, the data is filtered according to our findings
described in Section 3.2 and domain knowledge provided by colleagues from Absolut
Ticket. For example, we remove events where the ticket price is over AC1200 or events in
rural cities where almost no tickets were sold online. These are outliers as found in the
data exploration and confirmed by domain experts. The filtered dataset is then saved for
later processing.

Before the model can be trained, the data needs to be encoded accordingly. Depending
on the data type of a feature, it is encoded using commonly known encoding techniques
like min-max encoding or binary encoding. The metadata of the encoding is saved so
we can use it later to correctly encode the input provided by the user interface. As
mentioned before, the ML model we are using was developed by our colleague Zahra

31

3. Predictive Machine Learning

{

numberOfPredictions: 3,

data:{

artistPopularity:[80,55,95],

month:[11,11,0],

date:[30,31,1]

}

}

[

[0.8,0.91,0.96],

[0.55,0.91,1],

[0.95,0,0.03]

]

Request Data Encoded Data

Figure 3.7: Data-transformation of the encoding process using dummy data.

Babiee using the Keras [6] framework. It is a DNN consisting of more than 20 layers.
The model is trained to predict the number of sold tickets for an input representing a
new event. The last layer of the network provides us with nine strictly monotonically
increasing values for the predicted number of sold tickets. According to the probability
density function used in the model setup, the probabilities for each of these values can
then be computed. Finally, the trained model is saved locally so it can be loaded and
used in the model API described in Section 3.4.

3.4 Model API
After the ML model is trained as described in Section 3.3, it needs to be hosted on a
server to make it accessible for a web front-end. In this section, we discuss the structure
of the API that serves this purpose. The API is developed using the Flask [5] framework
for Python.

When starting the API, the trained model and the encoding metadata are loaded. The
API provides a single endpoint that accepts a POST request containing the data needed
to make one or more predictions. The data contains the number of predictions that need
to be made and the raw input data entered by the user in the front-end. Additionally,
the data is expected to be structured in the right way. As shown in Figure 3.7, each
feature has to be represented by an array with index i of the arrays being the combined
input for prediction i. By structuring the data this way, we can encode the values of each
feature all at once. This minimizes the time needed for encoding because we can exploit
the parallelisation capabilities of Numpy [7]. As described in Section 3.3, each feature is
encoded according to its data type using the metadata saved during the training process.
Finally, the encoded matrix is transposed so each row represents a complete event for
which we want to predict the number of sold tickets (see Figure 3.7).

Once the raw data is encoded, the resulting matrix can be passed to the DNN at once,
which provides a big boost in performance in comparison to performing each prediction
separately. As described in Section 3.3, the model returns nine values per prediction.
Using the probability density function that was also used when training the model, we
can now map these values to their probabilities. To do so, we compute the intervals

32

3.4. Model API

w = 12
p = 0.25 / 14 * 12 = 0.214

0 10 20 30
6

40

w = 14
p = 0.5 / 14 * 14 = 0.5

18

w = 16
p = 0.25 / 14 * 16 = 0.286

34

1

0.5

0.25

0.75

a = (12 x 0.25) + (14 x 0.5) + (16 x 0.25) = 14

Number Of Sold Tickets

D
en

si
ty

Figure 3.8: Computation of value probabilities.

between the values including their start, mid and endpoints. Given this information, we
can derive the width wi of each interval i. The height hi of each interval is given by the
density function. Next, we compute the area a of all intervals combined, summing up all
nine individual areas: a =

∑9
i=0(wi × hi). To then get the probability pi of each interval

we use the equation: pi = hi
a × wi. The resulting probabilities are returned to the caller

of the API request together with the predicted values.

An example of this computation is illustrated in Figure 3.8. Assuming that the model
returns the three values [6, 18, 34] and a discrete probability density function with the
values [0.25, 0.5, 0.25], first the interval widths are computed: [12, 14, 16]. Following the
proposed formula, a is computed to be 14. Using this information, we now can derive
the probabilities for each of the values: [0.214, 0.5, 0.286]

Formatting the result so that it can be used in the visualisations of the front-end is not
done on the server because it can be done much more efficiently in JavaScript than in
Python. We describe the formatting in more detail in Section 6.2.

To optimize the performance of the server, we exploited the parallelisation capabilities of
Numpy [7] wherever possible to avoid the use of standard Python loops, which are rather
slow. There are five steps from sending a request to the API and having the complete
result that could potentially be performance bottlenecks: encoding the data, making the
prediction, computing the probabilities, decoding in the front-end and sending the data
back and forth. As shown in Table 3.1, the total time ttotal of an API call only rises
slowly with the number of predictions being requested. As expected, the time needed
for the single steps also increases accordingly, with the time needed for communication
being stable until the amount of data sent reaches significant levels.

33

3. Predictive Machine Learning

#predictions tencoding tprediction tprobabilities tdecoding tcommunication ttotal

95 24 53 1 2 334 414
327 51 74 2 12 361 500
790 68 87 1 11 380 547
1477 133 138 1 37 373 682
3809 275 583 1 75 677 1611

Table 3.1: Performance measurements of the ML API in milliseconds.

As we discuss in Section 5.4.3, we make 50 predictions for each numerical value, which is
only the ticket price as shown in Figure 4.1. The other feature that has a strong impact
on the number of predictions is the event date. We need to make a prediction for each
date in the range set by the user. Talking to domain experts, they stated that they would
usually not search for a time span larger than 3-6 months. Including the categorical
samples, users request between 50 and 300 predictions at once under normal use. For
this amount and more, ttotal is below 1 second most of the time, which, as discussed in
Section 2.2, is long enough for users to realise that they are waiting for something, but is
fast enough for them to not feel frustrated by this, even without the use of any kind of
loading symbol.

34

CHAPTER 4
Paper Prototype

When creating the proposed exploratory visual event-organisation system (EVEOS),
our main focus was on developing a system that is usable by our target group of event
organisers. We opted to deploy a user-centred design process as described in Section 2.1.
Involving the users regularly and early helps us to better understand their needs and also
provides us with domain knowledge that would otherwise not have been acquired. As
described in Section 1.1, we aim to develop an EVEOS that helps organisers optimise their
choices regarding event parameters. The EVEOS should provide them with possibilities to
compare different parameter settings and make the underlying ML model understandable
in order to build trust in the system.

Knowing about the users, their tasks and requirements, the next step in the user-centred
design process is the development of a first conceptual design. In this chapter, we discuss
the creation of a paper prototype that evolves from simple sketches to a complete view of
the system with multiple alternatives for layout and visualisations. First, the data that
needs to be shown is discussed. We then consider potential overall layouts of the interface
before going into detail on the separate components. For each component, we discuss
its purpose and multiple layouts and visualisations that could be fitting. In the end, we
evaluate the prototype with two domain experts, which allows us to filter inappropriate
ideas of ours and to come one step closer to a final product that fulfils the needs of our
users.

4.1 Data Types
In Section 3.1 we discussed the dataset the employed DNN is using. To generate valid
inputs from the user interface, users need to be able to select all features present in this
dataset. As illustrated in Figure 4.1, some input features are grouped together. The
reason for this is that they are directly dependent on each other. The event date, for
example, is used by the model as distinct features for the year, month, day of month

35

4. Paper Prototype

Data

Categorical Ordered

Discrete

Ticket price

Ordinal

Venue

Artist

Event Name
Genre

Continuous

Number of
Sold Tickets

Date

Used Venue
Capacity

Probability of
Prediction

Numerical

Aritst
Popularity

Artist
Bookings

Country
City

Venue
Capacity

Year

Month
Day of Month

Day of Week

Ordered

Figure 4.1: Data Categorisation by input parameters. Purple data needs to be selected by
the user as input parameters for the model. Green data results from the model prediction.
White data is directly dependent on its parent parameter and is not categorised.

and day of the week. For the users, it does not make sense to select all of these values
separately. They simply select a date and the features are directly defined by this date.
This is echoed by the venue feature with the city and country of the venue being distinct
features but still defined by the venue. This circumstance poses a unique challenge for
dealing with the data.

The nature of the different data types also suggests that the visual encoding of their
input fields can and sometimes has to differ. Our goal is to show the inputs together with
local partial dependence (LPD) information to allow comparisons between input values.
For numerical inputs Krause et al. [40] solve this problem by introducing LPD bars
as shown in Figure 2.8. The bar represents successive samples of the numerical input
with its colour showing the prediction value. Our data only contains a single numerical
feature, the ticket price, for which we can adopt this solution.

Ordinal inputs like dates could also be encoded using this method. One could either
show the discrete numerical values of a date as separate LPD bars or since a date can
be viewed as an ordinal feature, use the whole date as values on the bar. As we argue
more closely in Section 4.4, dates already have a standard input format, date-pickers in
calendar form. Users are accustomed to date-pickers and they can be enhanced with
LPD information. In general, we need to decide if for the grouped features we always
show the LPD information of the whole group or its sub-features separately.

For strictly categorical features it is more difficult to show their inputs and LPD
information in a compact way. The first problem is that the number of possible values
can be very high, depending on the feature. In our case, the selection of venues has
thousands of options and the possibilities to choose an event name are infinite. Numerical

36

4.2. General Layout

data has a vast amount of options as well, but for numerical data, it is easy to take
meaningful samples, which is not the case for categorical data where the only way of
selecting samples is that the user selects them. Additionally, categorical data inputs
cannot be encoded on an LPD bar since one needs to have some kind of drop-down
selection or free text input to select samples.

As discussed in Section 3.3, the DNN gives us a prediction on values for the number
of sold tickets (NT) and a prediction probability (PP) for each of those values. In
preliminary talks with domain experts, they mentioned that often they do not work with
the absolute number of tickets, but rather with a percentage of venue occupancy rate
(OR). The occupancy rate can be computed by dividing the predicted number of sold
tickets by the venue capacity of the chosen venue, which makes it dependent on these two
values: OR = NT

venueCapacity . This leaves us with three continuous values that should be
shown to the user for each prediction.

4.2 General Layout

The first step in designing the proposed EVEOS, is to define which components are
needed so that the users can fulfil the following five tasks:

1. Create inputs for the ML model,

2. filter input values,

3. read and interpret the prediction,

4. compare predictions of different input combinations and

5. compare predictions to ground truth data.

Since all of the tasks are connected, we want to show all components on a single page. On
the other hand, there is a lot of information to show, which poses the risk of information
overload if the components are not structured well. It is also important to consider the
available screen space. In this work, we are focussing on finding a suitable layout for
standard PC screens with a resolution of 1920× 1080 pixels. In the end, we are settling
on the following component structure.

As shown in Figure 4.2, the interface consists of five components. On the left side, we
have the input component, which allows users to manipulate the input data for the
model. Each input feature has its small area and is connected to a measurement of
feature influence, which should indicate the influence the selected value of the feature
has on the current prediction. Additionally, each feature value is connected to LPD
information. We discuss the chosen encodings in greater detail in Section 4.4. This
component contains functionality to perform the tasks 1 and 4.

37

4. Paper Prototype

Figure 4.2: First general layout.

In the top-middle part of the interface, we place the filter component to fulfil task 2.
As discussed in Section 4.1, for categorical data, users have to select the samples they
want to compare themselves. For some features, the domain experts suggested that they
would like to have the possibility to filter them, for example, filtering venues by location
or capacity.

The result of the prediction of the current input is shown in the top-right corner. Aiding
task 3, this component should present the result in a comprehensible way and give
detailed information about it. The idea is that this is a static component for reading only.
The view only gets updated when a new prediction is made and interaction is limited to
showing details on demand. Different solutions for encoding the result are discussed in
Section 4.3.

In the bottom-right corner of the system, we find two tables. The one on top is the
input history table. The idea behind this table is that every time the user changes
an input value, a new row is added to the table representing the current input values.
This way, a change history of the input selection is created. Each row of the table also
features an abstracted version of the prediction result of its values. To have a consistent
design, this abstracted result should have the same encoding as the one used in the input
view for partial dependence information. Different encodings are discussed in Section
4.4. Together with the information presented in the input view, this component should
help the users to compare different input combinations. In the input view, users can
compare different values for a given feature, whereas in the history table they can easily
see the difference between multiple complete input rows. Additionally, one can select a

38

4.3. Result View

configuration from the table and take over its parameters into the input view.

The second table component contains data that allows case-based reasoning (task 5).
It shows training data that is similar to the current input, which are in our case similar
historical events. By inspecting the predictions of historical events and seeing how many
tickets were actually sold, users can validate the prediction for their new event. In this
prototype, the prediction and actual value of the ground truth data is all shown in the
table using again an abstract prediction encoding. We think that it could be helpful to
also superimpose the ground truth prediction with the current one, to allow more detailed
comparison and discussed this idea with domain experts in Section 5.7. In preliminary
talks with domain experts, we realised that for data-privacy reasons it is not allowed to
show the ground truth of an event of organiser A to organiser B. Therefore, the data
available for case-based reasoning always has to be restricted to historical events of the
organiser currently using the system.

4.3 Result View

The goal of the result view is to present the user with the prediction result. As discussed
in Section 4.1, there are three continuous features that comprise a prediction: NT , OR
and PP . At this stage of the design process, the ML model is not developed yet so we do
not know the format in which the result is sent from the model. As shown in the timeline
in Figure 1.1, the model will only be included in the final prototype discussed in Chapter
6. What we know is that the goal of the model is not to predict a single value of how many
tickets are sold, but multiple values leaving us with multiple 3D data points. An example
output could be: [{NT : 100, OR : 0.5, PP : 0.45}, {NT : 150, OR : 0.75, PP : 0.55}].
We, therefore, thought about visual encodings to show a collection of 3D data points.

In Figure 4.3a.a a first sketch of a possible result view is shown. The idea here is to show
the values of NT and PP in some kind of area chart by interpolating between the values.
PP additionally is encoded by a coloured bar above the area chart. The occupancy rate
would be shown separately as seen in Figure 4.3a.b. We show OR with the highest PP
in a categorical pyramid with the categories: low, middle, high, sold out.

In the next iteration of sketches, we disregard the idea of having two separate graphs
and try to combine all information in one graph. We achieve this by using an area graph,
encoding NT and PP on the x- and y-axis. OR is given by the colour beneath the curve.
In Figure 4.3b, we see two sketches, one using a sequential single-hue colour scale and
one using a multi-hue colour scale.

The proposed graphs properly encode the three available features, but we want to highlight
the data point with the highest probability PP even more. The idea is to add visual cues
around this point. In Figure 4.3c we present four more graphs that showcase attempts to
achieve this. All of the presented graphs feature a vertical line reaching from the point
with the highest PP to the x-axis. We also try using the opacity of the area to add an
encoding layer to the probability feature. In Figure 4.3c.a the area is coloured in a single

39

4. Paper Prototype

a

b

(a) Number of tickets and occupancy rate sepa-
rated.

a

b

(b) Number of tickets and occupancy in one graph,
using colour to encode the occupancy.

0%

10%

20%

30%

40%

P
re

d
ic

ti
o

n
 C

er
ta

in
ty

Number of Sold Tickets

Predicted Amount of Sold
Tickets

Color Scale

low high

0%

5%

10%

15%

20%

25%

30%

35%

0,00 20,00 40,00 50,00 80,00 100,00

P
re

d
ic

ti
o

n
 C

er
ta

in
ty

Number of Sold Tickets

Predicted Amount of Sold
Tickets

0%
5%

10%
15%
20%
25%
30%
35%
40%

0% 20% 40% 60% 80% 100%

P
re

d
ic

ti
o

n
 C

er
ta

in
ty

Occupancy

Predicted Occupancy

0%

5%

10%

15%

20%

25%

30%

35%

0,00 20,00 40,00 50,00 80,00 100,00

P
re

d
ic

ti
o

n
 C

er
ta

in
ty

Number of Sold Tickets

Predicted Amount of Sold
Tickets

a) b)

c) d)

(c) Screen prototype. Using colour to encode occupancy and opacity to encode probability.

Figure 4.3: First prototypes of prediction result views.

40

4.4. Input View

colour value representing NT and the opacity of the area is given by PP . Same goes for
Figure 4.3c.b, which shows the occupancy rate. Figure 4.3c.d shows again the number of
sold tickets, but without incorporating opacity. A combination of NT and OR results in
the graph is shown in Figure 4.3c.c. OR is again encoded using the colour of the area
and we also employ opacity.

Our hypothesis is that these additions help users to be faster in finding the point with
the highest PP and in general guide their focus to important regions of the graph. We
later have to realise that manipulating the opacity of the area when using sequential
colour scales changes the perception of the colours in a way that destroys the sequential
properties of the scales as discussed in Section 5.3.

4.4 Input View

The input view represents the point of interaction between the user and the interface.
Here users can set the input parameters for their event and predictions are made accord-
ingly. For each parameter, multiple options should be selectable and the corresponding
predictions comparable using LPD information. Users should also see how the chosen
value affects the prediction using the measurement of feature importance (FI). In the
following sections, we describe the different encodings we develop for input selections,
LPD and FI. A global view of how the input component is structured and the encodings
are placed can be seen in Figure 4.2.

4.4.1 Data Input and Local Partial Dependence

Local partial dependence (LPD) of a feature can be described as showing the prediction
results of multiple values of this feature, assuming that the other features do not change.
It is a great tool to perform what-if analysis on ML inputs. In our case, the prediction
contains multiple values as discussed in Section 3.4. Therefore, we need to decide if we
want to show the complete prediction for LPD or just the value with the highest PP . We
also need to find encodings that allow us to show LPD information while also providing
input fields for all the different data types. Figure 4.4 shows first sketches of how this
could be achieved, which we discuss in this section.

For numerical features, we can use the LPD bar proposed by Krause et al. [40]. As
shown in Figure 4.4a.b and c, the LPD bar allows us to combine input selection and
local partial dependence information into a single encoding. The different colours encode
the prediction value with the highest PP with a sequential multi-hue color scheme (see
Figure 4.4a.a). The range of the bar can be changed using input fields for minimum and
maximum bounds. Since they can be ordered, it is possible to also encode ordinal data
using the LPD bar. We are thinking about employing it for date features in particular.
As shown in Figure 4.4a.b, we also think it could be helpful to add details on demand to
the bar, by showing tooltips giving information about samples on the bar if there is any
additional information to show.

41

4. Paper Prototype

a

b c

d

e

f

g

(a) LPD encodings for numerical and categorical data.

a
b

c

d

f

g

h
i

(b) LPD, probability (uncertainty) and input encodings for categorical data.

a b

c

d

e

f

g

(c) Feature importance encodings.

Figure 4.4: Sketches of visual encodings for different data types.

42

4.4. Input View

Categorical features are more difficult to combine with LPD information since they
do not have an order in which they could be placed on a LPD bar. Since they cannot
be ordered, it would be necessary to add labels for each sample to the bar, which is
difficult for more than a few labels because of the limited space. Additionally, it would be
complicated to add or change input values. We, therefore, decide to think of alternative
solutions for categorical features.

In Figure 4.4a.d, e, f and g we present different types of bar charts that show LPD
information. Each bar encodes the prediction value with the highest PP . Using a
coloured bar we can encode two values at the same time. Figure 4.4a.f, for example,
encodes NT as height and OR as colour of the bars with Figure 4.4a.g being similar
but centring the graph around a selected bar focussing on the difference to the other
bars. We think adding details on demand as shown in Figure 4.4a.d is helpful for the
user to understand the prediction. Thinking about these encodings and showing them to
domain experts, we realise that bar charts like this are not suitable because we cannot
have flexible input fields there. Therefore, we try to define the input fields first and then
think about how we can add LPD information to them. The standard input encodings
for categorical variables are free text inputs or dropdown selections. As shown in Figure
4.4b.a, we added a button (+) that provides the possibility to add additional input fields.
This way users can add multiple values they want to explore to a given feature. Staying
true to our first idea of using bar charts, in the Figures 4.4b.a, b, c and d we show
different versions of bars beside each input value.

All discussed encodings show the prediction value with the highest PP . What they do
not show is the probability of this prediction value and they also omit the other predicted
values. One way to fix this is shown in Figure 4.4b.g where either NT or OR are encoded
using the bar length and the colour showing the PP . Using this approach we would
lose information about NT or OR. Other ideas we have include showing the PP with
transparency as seen in Figure 4.4b.h. Adding this third visual encoding layer we can
show all three values at once. If we want to show all prediction values and not just the
one with the highest PP , we can show a small scale version of the area graph presented
in Section 4.3 instead of bars. The downside of this is that this is not possible for the
LPD bar. What we can do for all input types is to show the graph as a tooltip on demand
as shown in Figure 4.4c.a and b.

Inspired by these sketches, we develop multiple encodings for the screen prototype as
shown in Figure 4.5a, which we then show to the domain experts for evaluation. In all
the alternative graphs, NT is encoded by bar length and OR by the colour. Figure 4.5a.a
is the most basic encoding, simply showing a coloured bar. To make it easier to read the
value of different bars in addition to comparing their relative length and colour, we add
the value of NT as text in Figure 4.5a.b. Alternatively, in Figure 4.5a.c we disregard the
length and show only a coloured area with OR defining the colour and NT being added
as text. Since length is a better encoding for numerical values than colour as stated
by Munzner et al. [52], we think the users will find this encoding to be the hardest to
interpret.

43

4. Paper Prototype

Colour Scale

low high

100

130

40%

30%

100

40

a)

b)

c)

d)

f)

g)

h)

i)

j)

(a) partial dependence

-0,5

0,8

Colour Scale

-1 1

-

-

-

-

a)

b)

c)

d)

e)

f)

(b) feature importance

Figure 4.5: Alternative visualisations for categorical partial dependence information and
feature importance.

Trying to add information about PP to the bars, we show it as text in Figure 4.5a.d.
We are not sure though if the users will understand what this text represents without an
explanation. Since OR is also a percentage, it could be encoded likewise. As discussed
before, we propose to show small versions of the area chart to convey LPD information
for categorical values. In the Figure 4.5a.f, g and h we show multiple versions that we
already discussed in Section 4.3. We think that this type of encoding will be the preferred
choice by the users. It gives the most detailed information and in our opinion, it is still
easily comparable since the vertical line gives the position of the prediction value with
the highest PP . On the other hand, this encoding could also lead to some information
overflow because there is a lot of information packed into a small area. We, therefore,
try to abstract the area chart by removing the curve. In Figure 4.5a.i we show a chart
that encodes the PP values using transparency instead. Reverting back to a bar chart
in Figure 4.5a.j, PP is shown using by fading out the bar. The later the fade starts,
the higher is PP . In our opinion, the last two encodings are probably the hardest to
interpret without a previous description of their meaning. On the other hand, they
provide additional information about PP that is not shown in the bar charts. We are
excited to see what the domain experts think about all these alternatives.

As mentioned before, we can encode the date feature as an LPD bar. Showing the
sketches of this to domain experts, they asked us why we do not use a calendar based
date-picker. This comment is of course valid because date-pickers are the standard input
component for dates and the users are used to them. As shown in Figure 4.6, we find
that a calendar can be used in the same way a LPD bar can by just colouring the fields
of the calendar using the prediction value.

44

4.4. Input View

Figure 4.6: Date input using a calendar and colouring the fields according to the prediction
value.

4.4.2 Feature Importance

Additionally to showing the users LPD information to make different feature values
comparable, we also want to provide some guidance towards the quality of the currently
selected value. This is not so much about giving detailed measurements, but rather
about indicating if a value is good or bad. Inspired by the local feature importance
presented by Strumbelj and Kononenko [71], we image our feature importance (FI) to be
a value between −1 and 1 giving us information about the influence of a value on the
prediction. How this value is computed is discussed in Section 6.4.1 since at this stage of
the design process we have not decided on the approach we want to employ yet. The FI
is a diverging value centred around 0, it seems natural to use a diverging colour scale in
the following encodings.

We start by developing some sketches of FI encodings shown in Figure 4.4c. Adding the
FI information to categorical data inputs, we use bars centred around 0 in the examples
in Figure 4.4c.c and f. In Figure 4.4c.d we try using only a coloured area. Trying to
add FI values to all samples of a LPD bar, in Figure 4.4c.e we aim to show a second bar
below the LPD bar. In retrospect, this would just be a duplicate encoding of the bar
itself. It also suggests only showing a single graph for the currently selected value instead
of showing FI for all samples. Untying the graph from the input fields, in Figure 4.4c.g
we show a separate bar chart comparing the feature importance of the different features
using the FI of the currently selected values.

Preparing the screen prototype for user evaluation, we propose multiple FI encodings in
Figure 4.5b. Figure 4.5b.a simply encodes the FI value as text on a coloured background.
The graph in Figure 4.5b.b consists of a binary coloured bar indicating if the value is
good (yellow) or bad (purple) with the exact value shown using a line. Enhancing this
encoding, we use the complete colour scale instead of the binary encoding in Figure
4.5b.c. Trying to keep the graphs consistent with the LPD encodings presented in Section
4.4.1, we use bars extending either left or right from the center and using the colour of
the bar continuously with the colour scale in Figure 4.5b.d. We think that option d is
the easiest to understand since it gives detailed information in a way where it is easy to
read the current value and allows good comparison.

45

4. Paper Prototype

We also propose the usage of glyphs to encode feature importance. In Figure 4.5b.e a
closed arrow is used where the height and the colour give the value. If the FI is negative
the arrow is pointing downwards, else upwards. Abstracting this encoding, we propose a
separated arrow in Figure 4.5b.f. Here the colour encodes the value continuously, but the
number of arrow parts is discrete. This is not as exact as the closed arrow, but we think
it is visually more pleasing and makes it easier to compare different values since for this
measurement we believe that it does not matter if the value is 0.4 or 0.44, but rather if
it is good or bad. We think that using three arrow parts for positive and negative values
respectively is a reasonable granularity for this task.

4.5 Evaluation

After developing the paper and screen prototype, we now need to evaluate them. We
want to know if the choices we made are good and which of the alternative solutions we
presented in the previous sections are the right ones. Therefore, we perform interviews
with two domain experts. User 1 is working in a managing position and therefore does
not work on creating events in event-administration tools every day. User 2 is dealing
with the task we want to solve in day to day business. The interviews roughly follow the
following structure.

First, we give a short introduction to the topic and talk about the main goal we pursue
with this project: introducing machine learning into the event-organisation business.
Next, we discuss the nature of the predictions that the proposed ML model makes. We
explain to the domain experts, that predictions are not 100% accurate and we show
multiple prediction values with corresponding probabilities. Following that we show
them the visual encodings we developed for showing the prediction result as discussed in
Section 4.3 and ask them to interpret them. We then show them a preview of the input
view so they get the context before discussing the alternative encodings we propose for
handling input parameters and displaying local partial dependence information LPD and
feature importance FI as discussed in Section 4.4. In the end, we present them with the
general layout and talk about the input history table and the case-based reasoning table.

Talking about the result view, both users were able to interpret the proposed area charts
after being explained about the model returning multiple values with corresponding
probabilities. Especially user 2 was fast to explain this even before the introduction
was finished. They both stated that the line highlighting the prediction value with the
highest PP helps them to focus on this area. On the other hand, they suggested that it
would be even more helpful to have a textual legend that gives them the prediction value
and the probability of that point. Discussing the usage of colour, user 1 stated that
they prefer the version shown in Figure 4.3c.c where the colour scale fills the area. They
suggested that this helps them in gaining a better perspective on the result, meaning
that it is easier to grasp if the value with the highest PP is good or bad relative to
what is possible. In contrast the graphs of Figure 4.3c.a and b do not provide them with
this perspective. User 2 found the colours more irritating than helpful, contrary to our

46

4.5. Evaluation

hypothesis. They suggested showing only a line, which indicates to us that they did not
fully understand that the colours encode a different value than the line height. Using
transparency to additionally encode the prediction probability was confusing to both
of the users. After explaining this concept in more detail, user 1 stated that now they
think adding the transparency to Figure 4.3c.c would result in their preferred version.
This aligns with our hypothesis because we think that this combination would present
the most detailed data while highlighting the area around the value with the highest PP .

Discussing the encodings for LPD information, we asked the domain experts which
graph allows them to compare multiple predictions the fastest and where they can read
the most information. User 1 repeatedly stated that they like the small area chart in
Figure 4.5a the most, saying that it gives them the most information and they find it easy
to compare because of the position of the line. As we thought when designing the graphs,
user 1 criticised that the bar charts do not show the uncertainty of the prediction in any
way. The bar chart using transparency and fade-outs proposed in Figure 4.5a.i and j
would solve this, but their semantics were not at all obvious to the users. User 2 on the
other and preferred the most simple of the encodings (see Figure 4.5a.a) using only colour
and text to encode OR and NT . They stated that adding text would strongly suggest
that the number of tickets is predicted with a probability of 100%. They suggested that
showing a small version of the area chart is not necessary because, on this small scale, it
would be hard to interpret. We asked user 2 if they think it is enough information if
we only show the simple bar chart and when selecting the corresponding value, the area
chart is shown in the result view in full scale. They replied that they think that this is a
good solution and even though it would be nice to see information about the probability
already in the LPD information, it is enough to see it in the result view after selecting
the value.

We then discussed the usage of LPD bars for numerical features. For both users, it
was immediately apparent how to use them and that the colour on the bar encodes the
prediction of the corresponding value. When talking about the different encodings for
the date feature, both users stated that they highly prefer a calendar view for selecting
and comparing dates over the LPD bar because they are used to working with this input
component. This confirms our thoughts about this topic.

Next, we discussed the encodings for the feature importance (FI) value. Here the focus
was if the users can explain approximately if the current value is good or if it is bad
and therefore changes should be made to the input selection. User 1 stated that, not
including the glyphs, the encoding using only text and a coloured background (see Figure
4.5b.a) is the easiest to understand because it has the value written in text. On the
other hand, they stated that the bars are visually more pleasing but the semantics of
the encodings are not evident enough. When then showing the glyphs to user 1, they
said that they prefer them over the other graphs. The glyphs are easy to understand and
one can see if the value is good or bad very fast. The version with the separated arrow
parts (see Figure 4.5b.f) is the best encoding according to user 1. User 2 also stated
that the version using only text with coloured background is the easiest to understand.

47

4. Paper Prototype

They still preferred Figure 4.5b.d over it, because it is faster to read once the concept is
understood because one does not have to read a text there. They additionally implied
that using the colour scale and showing the value as a line is confusing because they did
not realise that they have to read the line. Talking about the glyphs, user 2 said that
they still prefer the bar chart over the glyphs because it encodes the FI value more exact.

Wrapping up discussing the alternative encodings, we then showed the users the first
version of the general layout presented in Figure 4.2. Both users stated, that the
provided components would allow them to effectively solve the tasks they want to
perform. User 2 added that they expect the final version to look more “modern” than
what we showed them at this stage. They also both agreed that the interaction history
table helps in keeping an overview of the different parameter combinations that are tried.
In the end, we discussed the case-based reasoning table, which is named “Similar
Events” in this prototype. At the start, user 1 was confused about what data is shown
in this table and after some discussion suggested adding the word “Past” to the table
title to clarify that historical ground truth data is shown. Both users stated that this
feature helps them in gaining trust in the system, assuming that the predictions for the
ground truth events match the actual number of sold tickets of these events.

After reviewing the feedback we got during this first evaluation round, we are now able
to make a lot of design choices which we elaborate on in Chapter 5 where we discuss the
next iteration of our system. In some cases, the users do not agree on visual encodings,
in which cases we decide to continue using both suggested versions and making them
easy to interchange so we can evaluate them again in the next round. Our hypotheses
about which encoding would work best were mostly confirmed by the choices of the users,
but they also made comments that we did not expect at all. For example, we did not
think that the LPD encoding using only a simple coloured bar (see Figure 4.5a.a) would
be liked by the users since one loses a lot of information in comparison to the small area
charts. This helps us in fixing mistakes we made in a very early stage of development
and confirms that using this user-centred approach helps us in designing a better system.

48

CHAPTER 5
Interactive Prototype

After receiving user feedback for the developed paper prototype (see Section 4.5), we
continue with the next iteration of the user-centred design process, which is to develop a
horizontal interactive prototype. This prototype gives a broad view of the final exploratory
visual event-organisation system (EVEOS) but the functionality is not necessarily com-
plete and the data used is only mocked and not provided by the database. The machine
learning model is also not connected to the system at this stage of development. This
prototype should, to a certain extent, allow users to perform their tasks and get a first
feeling of how the complete system could work. The user feedback from this stage can
help us in finding potholes regarding the user’s workflow. Additionally, we see if users
can interpret the used visual encodings in a more realistic setting than the early paper
and screen prototypes. To test if our approach is also applicable to other topics related
to event organisation, we also develop a prototype that could be used to create marketing
campaigns for events.

In this chapter, we first discuss the general layout of the interactive prototype, showing
that it applies to both the tasks of event organisation and marketing campaign creation.
We also go into detail about the technical implementation of the project, discussing the
component architecture and how the data handling process is set up. Similar to Chapter
4, we then discuss the current state of the separate components. For each component, we
elaborate on how users can interact with it and how the feedback of Section 4.5 influences
our design choices. Finally, we conduct an evaluation with four domain experts, which
provides us with essential information about the usability of the prototype.

5.1 General Layout
In this section, we discuss the general layout of the system in the interactive prototype
shown in Figure 5.1a. Overall, the layout is the same as presented in the paper prototype
(see Section 4.2). One noteworthy change is that that filter component does not exist

49

5. Interactive Prototype

(a) Event Update

(b) Marketing

Figure 5.1: Layout Overviews

50

5.2. Implementation

as a single component anymore. During the implementation, we realised that it makes
more sense to move the filter into the input component for the feature that needs to
be filtered as shown in Figure 5.10 and Figure 5.8. Also, since we now encode all three
prediction values (NT , OR, PP) in a single graph (see Section5.3) we only show a single
result view compared to Figure 4.2 where two views are used.

Talking to the domain experts, they stated that they also can imagine using the system to
check the predictions for already set events where they then could update parameters
to optimise the remaining ticket sales. Making only a few changed, we can solve this task
sufficiently. As shown in Figure 5.1a, the parameters that cannot be changed anymore
for an event where ticket sales already started are marked with a lock glyph and their
input field is disabled. Additionally, in the result view, we add a line that shows how
many tickets were already sold. We think that this can help users in getting a feeling of
how well the prediction will match the final ticket sales.

As stated before, we want to try to apply the developed structure and input encodings
to multiple use cases. Therefore, in addition to event organisation, we develop a
prototype for creating marketing campaigns, which is a task our target group is also
performing regularly. As shown in Figure 5.1b, the layout and the encodings fit this task
as well. We only change the input features to the ones needed to create a marketing
campaign and adopt the legend of the result view. To make this prototype functional, we
would have to implement a machine learning model that predicts how well the marketing
campaign will perform, which was not done in the scope of this thesis.

The user feedback given in Section 4.5 led us to disregard most of the proposed encodings
for LPD and FI. As shown in Figure 5.1, we selected two encodings each and integrated
them into the interactive prototype. We can switch between the encodings using URL
parameters, which is useful in testing and presenting the prototype. The chosen encodings
are discussed in detail in Section 5.4.

5.2 Implementation

Our proposed EVEOS is integrated into the ticketing system of Absolut Ticket [1].
It uses a PHP Symphony [9] back-end for communicating with the database. The
front-end is developed using the JavaScript framework Vue.js [10]. To implement the
proposed visualisations, we use D3.js [4]. Following, we give an overview of the front-end
architecture of the EVEOS focusing on data and event handling as well as important
implementation details of the components.

To achieve a high degree of generalisation, we split the application into several components.
Especially for the visual encodings of LPD, FI and the data type-specific input components
(IC), this is important so they can be used in other interfaces as well. As described
in Section 5.1, this allows us to use these components for developing interfaces for
creating events as well as marketing campaigns. In Figure 5.2, we show a diagram of the
component architecture. The blue components are generalised, while the green (event)

51

5. Interactive Prototype

Database

Model API

Event Manager Event Input
Wrapper

Data Sources
(not connected)

Page Entry &
Data Hub

Component
Wrapper

Interactive
Components

Reactive
Visualisations

Filter

Date Input
(LPD Date

Picker)

Categorical
Input

(LPD List)

Numerical Input
(LPD Bar)

Interaction
History

Case-based
Reasoning

Table

Table Wrapper

Prediction
Wrapper

FI Glyph

FI Bar

LPD Prediction
Bar

LPD Prediction
Distribution

Marketing
Manager

Marketing Input
Wrapper

Predition
Distribution

FI Encoding

LPD Encoding

Input Component

Figure 5.2: Diagram of front-end architecture. The direction of the arrows indicates data
and event flow. Blue: general components. Green: event-specific components. Yellow:
marketing specific components. Pink: component groups. One or more components of a
group can be used at the same time.

and yellow (marketing) components are specific for their given use case and handle the
corresponding data. The pink boxes indicate that the included components belong to
the same group and can be used interchangeably depending on data type in case of the
input components or depending on user preferences for the LPD and FI encodings.

The manager component is the entry point to the system and is the highest point in
the components hierarchy. It is responsible for hosting all other components and provides
a central data hub. The main data object that contains all ML model input data is
created in the manager together with all other data needed in the system like the data
object for the interaction history table. Exploiting the reactivity system of Vue.js (see
Figure 5.3) we can manage the main data object by passing it down from the manager
to the other components without having to actively send changes in the data back to
the manager. Each component receives the parts of the main data object it needs and
when data is changed somewhere in a component it automatically changes in all other
components as well. The only thing we need to do is to handle the change event if we
want to perform some additional computation on a change, like making new predictions.
The event flow of this case is illustrated in Figure 5.4. When the model input data is
changed in an IC or a row is selected in the interaction history table, first, the manager
component is notified. The manager component then triggers the computation of a new

52

5.2. Implementation

Figure 5.3: Vue.js data watcher pipeline. Components are re-rendered on change. [11]

Change Input

Triggers
Manager

Input
Component

Predict

Triggers Vis.
UpdateManager

FI Encoding LPD Encoding Prediction
Distribution

Interaction
History

Figure 5.4: Abstract event flow on input change.

prediction. Once the ML model is connected to the EVEOS, an API call will be sent to
the model to make the prediction. At this prototype stage, we simply compute random
values. The change of the prediction result triggers the re-render process in the reactive
visualisations At no point during this event flow, we actively send data. We always only
update the reference object and trigger events.

The components that are directly connected to the manager are diverse component
wrappers. They can host multiple other components and have the job of generalising
data flow. The event and marketing input wrappers host all the input components
for the specific features. Here the main data object is split and only the references to the
corresponding features are passed down to the input components. The event triggers
of the different input components are also collected here and only the general change
event dataChanged is emitted to the manager. The input wrapper additionally hosts
the filters of the ICs if there are any. By not adding feature specific filters to them, we
can keep the ICs general. The filters are implemented in separate components and are
plugged into the ICs using the Vue.js slot API [12]. Applying the filter to the main data
object is also handled in the input wrappers.
Other wrapper components are the prediction wrapper that provides an interface for
the result view and the table wrapper that hosts both the interaction history table
and the case-based reasoning table.

53

5. Interactive Prototype

The next level in the component hierarchy is the layer of interactive components.
These are the components with which the users are directly interacting, for example, by
setting input parameters, filtering data or making selections in the interaction history.
As the name suggests, the input components (ICs) are responsible for handling the
manipulation of ML model input. According to the data types we discussed in Section
4.1, we propose three distinct ICs for: categorical inputs, numerical inputs and date
inputs. For each feature in the corresponding data set, the input wrapper hosts an IC of
the correct type. The ICs all contain the functionality to add and remove data from the
main data object. When adding data, we need to be careful and provide all necessary
data since adding samples is immediately propagated to all other components.

Categorical input components feature the possibility to show one of three input encod-
ings: free, selectable, fixed. They are elaborated on in Section 5.4.2. The numerical
input components implement the LPD bar proposed by Krause et al. [40]. An LPD bar
consists of a rectangle, an x-axis and a draggable circle. The colours of the rectangle
are set according to the prediction value at the samples along the axis. The circle is
also coloured according to the sample it currently shows. Clicking on a position on the
rectangle, the circle is set to this position. Additionally, we listen to value changes from
the outside to reactively update the circle position on change. Numerical data objects
also always contain a minimum and maximum value to properly scale the x-axis. To
implement the date input component, we use the customisable date picker by the Broj
42 group [2]. We enhance the date picker by adding the functionality of colouring the
date fields in the calendar view. The colours are derived using the prediction value for
the given date. Same as for numerical inputs, we listen to changes of the selected date
from the outside to reactively update the component.

The reactive visualisations are at the bottom of the component hierarchy and represent
diverse visualisations of the current predictions, all of them using D3.js [4]. As the name
states, the users cannot directly manipulate them, they only change when the prediction
changes. The prediction distribution component represents the main result view
showing the prediction of the currently selected ML model input. It is implemented as
an area chart, taking the points provided by the prediction and interpolating them using
a D3.js curve function. We provide multiple parameter settings, which are elaborated
on in Section 5.3, to be able to test different configurations and figure out what the
domain experts like the most. The colour of the area is computed by interpolating the
colours of the prediction values according to the used colour scale using an HTML linear
gradient. We develop two potential LPD components. One is a small version of the
prediction distribution component and the other a prediction bar. They, and the two FI
encodings, are further discussed in Section 5.4.

54

5.3. Result View

(a) Event Update (b) Marketing

(c) Event: transparency encodes probability (d) Event: line chart without filled area

Figure 5.5: Main prediction result views

5.3 Result View

As discussed in Section 4.3 the goal of the result view is to present the user with the
prediction result. The feedback provided by the users in Section 4.5 still leaves a lot of
areas open, which is why we implement four different versions of the proposed area chart
as shown in Figure 5.5. We elaborate on them using the previously presented use case
of predicting ticket sales for events but they also can be used to encode the results of a
marketing campaign prediction as shown in Figure 5.5b. For all of them, we encode the
prediction probability PP on the y-axis, the number of sold tickets NT on the x-axis
and the occupancy rate OR using the colour of the area. To interpolate the line between
the prediction points, we choose the D3.js curve MonotoneX [3], which produces a cubic
spline that preserves monotonicity in y, assuming monotonicity in x. This fits our data
because the prediction points are strictly monotonically increasing along the x-axis.

Taking a closer look at the four examples in Figure 5.5, it is apparent that the maximum
value of the x-axis is different for each of them. The computation of the maximum value
heavily depends on the use case, the result view is used for. When predicting ticket sales
for an event, the maximum number of tickets that can be sold depends solely on the
capacity of the venue. We decided to set always set the maximum value to the venue
capacity of the currently selected venue. When working with marketing campaigns, the
maximum value of conversions depends on the customer reach that can be derived from
a combination of target group features.

55

5. Interactive Prototype

Figure 5.6: Perceived lightness of the rainbow (top) and the cube law rainbow (bottom)
[54].

Since OR lies between 0% and 100%, the colour represents a sequential value suggesting
the usage of a sequential colour scale for encoding the values. We create versions with
single-hue (see Figure 5.5b) and multi-hue (see Figure 5.5a) scales. The proposed single-
hue scale uses saturation of the colour green. The multi-hue scale we use is the inverse
scale of the cube law rainbow scale proposed by Niccoli [54]. It is a novel mapping of the
rainbow colour scale that is perceptually sequential.

We are aware of the criticism that the rainbow colour map faces when being used for
encoding sequential data. Numerous works describe that its main problem is that it
cannot be perceptually ordered [19, 65, 43, 52]. Niccoli himself states that, even though
the rainbow map is ordered according to the wavelengths of the colour spectrum, humans
do not perceive it as such [55]. According to Niccoli, humans, when ordering colours,
focus on the perceived lightness of colours. This is echoed by Kovesi [39], who describes
in his work that to achieve uniform perceptual contrast in a colour map, the perceived
lightness of the colours is the most important factor. As shown in Figure 5.6 (top), the
lightness of the rainbow scale is not uniform at all. Inspired by Kindlmann et al.’s [38]
approach on luminance controlled interpolation, Niccoli defines his cube law [54] that he
applies to the rainbow colour scale to generate a perceptually sequential version of it.
The resulting lightness scale is shown in Figure 5.6 (bottom).

56

5.3. Result View

We can imagine that using Niccoli’s scale, it could be easier to distinguish between good
and bad results since they are more distinct on this scale than on a single-hue scale. The
scale goes from purple over pink and orange to green, with purple representing low and
green representing high values (see legend in Figure 5.5a). We think that this allows
the user to quickly categorise in which of these areas the prediction lies. On the other
hand, we believe that perceptually ordering colours is still easier on single-hue scales.
This leads us to think that the single-hue scale could be better suited for our data. In
the following elaborations, we use Niccoli’s scale [54] for colour encodings.

As shown in the examples in Figure 5.5, we add a legend of the colour scale to the result
view. We think that this helps the users to understand what the colours are used for
and it is also necessary to understand the LPD encoding discussed in Section 5.4. In
the previous feedback round the users stated that filling the area chart with the colour
scale was the most apparent solution to them. As shown in Figure 5.5a, this provides
an implicit second x-axis for OR. We think that using this approach it is easier to see
where on the scale the value lies, rather than having to compare the colour of the area to
the scale legend as one would have to do using the version in Figure 4.3c.d.

The users also stated that the line highlighting the prediction value with the highest PP
is helpful but they additionally requested a textual legend, which we add in this iteration.
The combination of line and text provides a connection to LPD prediction bar that we
discuss in Section 5.4. As shown in Figure 5.5a, we also add a line showing how many
tickets were already sold when working with events where the ticket sales already started.

In the paper prototype we propose to use transparency to highlight the important regions
even more (see Section 4.3). User 1 stated in their feedback that they first did not
understand why transparency was used, but after explaining the concept said that it was
their favourite encoding, which is why we decided to implement this version as shown in
Figure 5.5c. To get the correct transparency values t we perform a linear interpolation
between the highest PP and 0. According to t, we set the transparency of the area
beneath the curve. When creating the paper prototype we thought that this approach
would be the best because it guides the focus to important regions of the graph. After
seeing the results produced by using this method, we think that this is still true but also
see the downsides of using transparency. The colours in regions with high transparency
are distorted and in our opinion, it is hard to interpret them.

In their feedback, user 2 stated that the colours were confusing to them and that they
would like to have only a curve. As shown in Figure 5.5d, this completely removes the
information about OR, which is why we disregard this option. We think that user 2 did
not understand the meaning of the colour and that with the added colour scale and the
other mentioned improvements, it will now be more apparent to them.

57

5. Interactive Prototype

5.4 Input View

The input view is placed on the left side of the interface as shown in Figure 5.1. In
this area, the users can interact with the ML model input parameters. We show all
the features corresponding to the model in separate input components according to
their data type, which we discuss in the following sections. The users can select feature
values, add them or remove them. This is also the area where multiple feature values can
be compared using local partial dependence (LPD) information. Additionally, feature
importance (FI) information is shown to guide the user towards features that still can be
optimized as discussed in Section 5.4.1.

Comparing the layout of the input view with the layout of the paper prototype in Figure
4.2, they are almost the same. In the evaluation of the paper prototype in Section 4.5, the
users stated that they are satisfied with the proposed layout and did not have any change
requests. We make two changes that result from realisations during the development.
First, when implementing the input view, we realised that showing all input components
underneath each other needs a lot more space than we thought. To make it more compact,
the components are now implemented as expandable cards that open and close on clicking
on the card header. Since the FI information should always be visible, it is included in
the card header. Additionally, we provide buttons to open and close all cards at once.
The second change concerns the LPD information in the input components. In the paper
prototype, we proposed separate LPD encodings for NT and OR, which now are shown
together in a single graph.

5.4.1 Feature Importance

With the measurement of feature importance (FI), we want to show to users the quality
of the current value selection of a given feature. FI is a value between -1 and 1, with
negative values suggesting that the selected value is bad compared to other possible
values. To visualise this measurement, we use a diverging colour scale that goes from
pink for negative values, over white at zero to green for positive values. We choose this
scale instead of a red, green scale, which are the signal colours for bad and good in the
cultural region of central Europe, to make the interface more accessible for people with
red, green colour blindness. As shown in Figure 5.7, we place a legend of the colour scale
above the input components. Each component then has a graph in its header that is
always visible.

In Section 4.4.2, we propose multiple encodings for FI. The evaluation with the users in
Section 4.5 leads us to implement the two versions shown in Figure4.5b.d and f. Figure
5.7a shows the implementation of version f using arrow glyphs. Depending on the FI
value, the glyph consists of one, two or three arrows either pointing up for positive values
or down for negative values. The threshold for adding arrows are at ±1

3 and ±2
3 while

the colour of the arrows is set continuously according to the FI value. Version d was not
completely apparent to the users at first glance, but user 2 stated it is their favourite
version because it is more exact than the arrow-glyph. As shown in Figure 5.7b, FI

58

5.4. Input View

(a) arrow glyphs (b) Bar graph

Figure 5.7: Feature importance encodings.

is encoded using a bar on a scale from -1 to 1 with the bar being centred at value 0.
The presented value is shown using the bar length and colour. In an effort to make this
encoding more apparent, we add axis labels to the graph.

Comparing these two versions, the bar graph is more exact because it features value
labels and the bar length directly represents the current value. The arrow glyphs abstract
the value a little by only adding new arrows on the given thresholds. Also, they do not
provide labels and even though the colour is exact, colour saturation and colour hue are
worse encodings for quantitative data than length, as stated by Munzner et al. [52]. On
the other hand, we think that for the measurement of FI it is not important to be exact.
It should serve more as a rough indicator of the feature value quality. We think, that
using the arrow glyphs it is easier to quickly spot if the quality is good or bad and also
to compare the quality of different features. If a feature has an arrow more or less than
another, we immediately see this difference. Also, we think the glyphs look visually more
pleasing than the bar graph. On the other hand, we can imagine that users could also
prefer the bar graphs if they like working with numbers and are interested in the exact
values.

5.4.2 Categorical Features

As discussed before, we propose the usage of input encodings that fit the data type of
the feature at hand. In this section, we discuss possible input versions for categorical
features and how we can show their LPD information. Since in the paper prototype we

59

5. Interactive Prototype

(a) Locked input (b) Fixed input

(c) Free changeable input with filter (d) Selectable input

Figure 5.8: Different input types for categorical features.

focussed on the LPD encodings and not so much on the layout of the input fields, we do
not have any feedback from the users regarding this topic.

Categorical data is strictly categorical and does not have any other underlying properties.
The only thing that is important to keep in mind, is the quantity of values a categorical
feature can have. We distinguish between three types of quantity. A feature can have
a small (<= 10) number of possible values, a large (> 10) number of values, or they
can be an open set with an infinite amount of values. Also, a feature can have only a
single value, which in our case happens when users work with events where the ticket
sale already started and therefore a feature is locked to a value that cannot be changed
anymore.

When developing the categorical input components, we realised that these quantity
categories need distinct input selection fields. As shown in Figure 5.8a, when there is only
one locked value, there is nothing else to show, but this value with its LPD information.
For features that have less than 10 possible input values, it is feasible to show all of them

60

5.4. Input View

at the same time. An example for that is the gender feature when creating marketing
campaigns as shown in Figure 5.8b. We define this feature to have five possible values
that are all shown and can be selected using radio buttons. When the number of possible
values gets too big, it becomes impractical to show all of them. We propose the usage of
a drop-down selection as illustrated in Figure 5.8d. Features like the event name have
an infinite amount of possible values since one can define whatever name they want.
To allow the user to properly select such feature values, we provide a text input field
that can be filled with any value the user desires (see Figure 5.8c). Additionally, for
features with open sets and more than 10 values, it is necessary to provide opportunities
to manually add and remove sample input fields. We include an add (+) button that
inserts a new empty selection field and a remove (trash can) button for each field except
the currently selected one. We also add a Select Best Value button that on click selects
the best of the visible samples. This allows users to quickly get the best sample without
having to compare all of them.

As discussed in Section 4.4.1, we suggest showing LPD information besides the selected
samples. The LPD information should enable the users to compare the prediction outcome
of multiple samples of feature values. We think that putting the LPD graph beside the
sample and having them all underneath each other is a good layout to perform that task.
The two encodings that the users suggested to be used in the evaluation of the paper
prototype are the ones shown in Figure 4.5a.a and f. The version in Figure 4.5a.a is
an abstraction of the prediction result using only the prediction value with the highest
probability PP , As shown in Figure 5.8c, we use a bar graph where the length of the
bar encodes NT and its colour encodes OR. Even though user 2 suggested that adding
text labels for NT would suggest that PP of this prediction is 100%, we believe that
having a label helps to connect this abstracted view to the main result view. In Figure
5.8b we present the implementation of version of Figure 4.5a.f. It is a small variant of
the prediction distribution used in the result view (see Section 5.3). Since there is not a
lot of space available in this small scale view, we refrain from using axis and labels in
this view. The line highlighting the point with the highest PP is crucial to make the
area graphs comparable to each other. Without it, it would be difficult to see where each
curve has its highest point on this small scale.

We think that since both versions use the visual variable of position to encode the
prediction value with the highest PP , it is similarly easy for both of them to compare the
prediction values. Still, they are completely different visualisations that focus on particular
aspects of the prediction. The prediction distribution provides complete information
about the prediction including the probability. Users could see in this preview, that for
example there exists a second local maximum in the prediction probability that maybe
would suggest a better prediction than the highest one. The bar does not provide this
information. It focuses completely on the prediction value with the highest PP . This
way, it can provide more information about this specific value. It features the text label
representing NT and the information about OR is more prominent since the whole bar
is coloured accordingly. We hypothesise that users will find the small scale prediction

61

5. Interactive Prototype

Figure 5.9: Numerical Input. Local partial dependence bar for budget

distribution superior to the bar graph because it provides more information and they are
already familiar with it from the main result view.

As stated in Section 5.1, the filter components are moved to their corresponding features.
As shown in Figure 5.8c, the filter is now placed underneath the sample selection of the
feature. In general, we try to use data-type specific input fields for the filter variables.
For numerical range data, for example, we employ a range slider with the possibility to
adjust the slider range using minimum and maximum value fields.

5.4.3 Numerical Features

As mentioned before, we propose the usage of the LPD bar of Krause et al. [40] for the
value selection of numerical features. As shown in Figure 5.9, it is a 1D bar graph where
each value sample is coloured according to its prediction value. In our case, this value is
the occupancy rate OR. The currently selected value is shown in a circle over the bar,
that can be dragged to change the value. When showing the screen prototype of the LPD
bar to the users, they understood it well and did not have any further suggestions towards
it. To make the range of the bar changeable, we add input fields for minimum and
maximum values. Same as for categorical feature inputs, there is a button for selecting
the best value on the scale.

During the implementation of the LPD bar, we had to realise that it is not possible to
get predictions for every single value that is shown in the scale for two reasons. The
first one is screen resolution. When the value range gets too big, one pixel on the screen
represents more than one sample. If these samples have different prediction values, we
cannot show these values accordingly. Secondly, thinking ahead to the incorporation
of the ML model, increasing the value range increases the number of predictions that
need to be made. So when the range becomes too big, this could lead to problems in
the performance of the model. To avoid these problems, we decide to take equidistant
samples from the scale. After a trial and error approach on a screen with a resolution of
1920× 1080 pixels, we decide to take 50 samples if the selected range has more than 50
values.

62

5.4. Input View

Figure 5.10: Filterable Date Input.

One of the key features of the LPD bar is that it can be used for input selection and
displaying LPD information at the same time. This makes this encoding very compact
and easy to use. On the other hand, because our predictions include three distinct values,
we cannot show all of the values encoded as colours on a single bar. To be consistent
with how we handle LPD information at categorical features, we show a detailed LPD
encoding of the currently selected value beside the LPD bar as illustrated in Figure 5.9.
In the paper prototype we also thought about showing this as a tooltip when hovering
over a sample on the bar (see Figure 4.4b.b), but since the proposed solution is almost
the same with the users only having to select the value they are interested in with a click
and it maintains consistency we choose not to use a tooltip.

5.4.4 Date Features

When discussing with domain experts how date variables should be set, they suggested
using a date picker since it is the standard input component for such data. The other
option we proposed in the paper prototype was to use the LPD bar for dates as well
since we can represent ordinal data like dates on this bar. But the users preferred the
date picker over that solution.

As shown in Figure 5.10, we enhance a standard date picker by making the date fields in
the calendar tintable. This allows us to show LPD information for each date in a similar
fashion to the LPD bar. We hypothesise that since the domain experts understood the

63

5. Interactive Prototype

Figure 5.11: Interaction History Table.

LPD bar for numerical features without problem, they will also find this encoding easy
to interpret. To show more detailed information about a date, we again add an LPD
encoding besides the selected date field. The date picker shows a single month and the
user can switch between months. Users therefore can compare the dates within a month,
but not over several months combined.

When organising an event, organisers usually have a rough time range in mind in which
the event should take place. Therefore, we make the date input filterable using a start
and end date as well as a selection of days. When the filter is applied to the date picker,
only the dates fulfilling the filter criteria are filled with their LPD colour, the others stay
white.

5.5 Interaction History

The goal of the interaction history is to enable the comparison of parameter combinations
and allow users to transfer previous settings to the input view. In their feedback, the
users were satisfied with the proposed table shown in Figure 4.2, which is why we do not
make any significant changes to its layout. As shown in Figure 5.11, the proposed table
provides a search field and a column selection where users can choose which fields they
want to see. On the right side of each row, we show a LPD information encoding, in this
case the small version of the prediction distribution graph, using the Vue.js slot API [12]
to integrate the graph into the table.

Whenever the user changes the parameter selection in the input view, a new row is
created in the interaction history. As described in Section 5.2, we add the new row to the
history data object in the manager component and the table is automatically re-rendered
with the new data. The new row is added as the new first row and also is selected
because it represents a collection of the currently selected values. We believe that having
multiple parameter combinations including their prediction underneath each other allows
the users to easily compare them and find the combination that gives the best prediction.
We have to differentiate between the comparisons that can be made in the interaction

64

5.6. Case-based Reasoning Table

Figure 5.12: Similar Events Table.

history and the input view. In the history table, the focus lies on comparing complete
parameter combinations, while in the input view one can compare different value settings
of a single feature. Filtering and sorting the table additionally supports the users in this
task, if the interaction history has many entries.

When a history entry is selected, its parameters are selected in the input view. Since
users can add am remove feature samples for categorical variables, the sample that is
transferred from the history table may be no longer available in the input component. In
this case, the sample is added to the selection. Similarly, for numerical features, the users
can change the value range they want to investigate. If the value from the history table
is outside of the currently selected range, the range settings are automatically changed
to fit the value inside.

5.6 Case-based Reasoning Table

The case-based reasoning (CBR) component should present users with information about
ground truth data that is similar to the current ML model input. In the case of event
organisation, the ground truth data are past events where we know how many tickets
were sold. Same as for the interaction history, the users were satisfied with the table view
we proposed in the paper prototype. The layout of the table is similar to the interaction
history (see Figure 5.11). The idea behind the CBR tables functionality is that users
can fetch input combinations that are similar to the current input using a button. The
button click triggers a call to the database or to a clustering API that then returns the
most similar input combinations. Since this prototype is not fully functional, right now
random data is filled in the table when the button is clicked.

We want to highlight the comparison between the prediction the model makes for the
ground truth data input and the known result. Therefore, we make the corresponding
column names bold and also try to add information to the LPD encoding. As shown in
Figure 5.12, when using the small prediction distribution chart, it now features two lines.
One of them highlights the prediction value with the highest probability and the other

65

5. Interactive Prototype

shows, in our case, how many tickets were sold for this similar historic event.

CBR should allow users to get a feeling if the current prediction is reasonable when
compared to ground truth data. If this is the case, past works [21, 80] show that this leads
to increased trust of the users in the system. In the proposed prototype, the prediction
of the current input and the ground truth data are shown juxtaposed, one in the main
result view, the other in the CBR table. We believe that this type of comparison is
sufficient to let the users perform CBR. Another solution that we propose to the domain
experts in the evaluation of this prototype (see Section 5.7) is to create a superimposed
view where users can select one or more rows in the CBR table and their predictions
are added to the main result view to create a single visualisation for comparison. This
would provide more information in a single spot but we hypothesise that it could lead to
a cramped view that has an information overload.

5.7 Evaluation
Following the user-centred design cycle (see Figure 2.4), we perform an evaluation after
each prototyping iteration. The goal of this evaluation is to finalise the choice of visual
encodings used where there are still multiple options. Likewise, we want to investigate
if users can interpret the proposed visualisations correctly. To test the usability of the
prototype, we ask the users to perform small subtasks without explaining the functionality
of interface components beforehand.

For this evaluation, we perform semi-structured interviews with four domain experts. The
users 1 and 2 are the same as in the evaluation of the paper prototype and both younger
than 35 years of age. To get a broader perspective, we searched for older domain experts.
Users 3 and 4 are both older than 50 years of age and describe themselves as “not so
affine when working with computers”. Due to COVID-19 restrictions, we only could
perform eye-to-eye interviews with users 2 and 3. With users 1 and 4, the interviews
were done via video calls and using a remote desktop application, so the users could
interact with the interface. During the interviews, we first discuss the general concept
of the proposed exploratory visual event-organisation system EVEOS with each user,
explaining that there will be artificial intelligence in the background making predictions
about ticket sales. Then, we go through the separate parts of the EVEOS for both the
event organisation and the marketing use case. We first discuss the result view, talking
about the proposed colour schemes and how it is interpreted in general. We transition to
the input view where we go through the input components for the features. There, the
users are asked to interpret the two proposed LPD and FI encodings. Additionally, they
need to perform simple input and filtering tasks to evaluate their usability. Afterwards,
we discuss the interaction history and ask users to compare different parameter settings
before talking about the case-based reasoning table. Finally, we ask users about their
overall impression of the system and if they have any questions about parts that we did
not mention before.

66

5.7. Evaluation

Talking about the result view presented in Figure 5.5 with user 1, who already knew
about the encoding from the screen prototype, they were able to interpret the graph
without problems. They realized that the x-axis depends on the venue capacity from the
given context. Nonetheless, user 1 suggested that a more detailed legend giving textual
information about all the information encoded in the graph would be useful to them.
User 2 was also able to interpret the view but first thought that the colour represents the
probability. After taking a closer look and reading the colour scale legend, they realised
that it is about the occupancy rate OR and interpreted it correctly. User 3 was initially
confused about the y-axis of the chart, thinking it represents the percentage of OR. They
stated, that the provided text legend for the point with the highest PP mislead them.
After reading the label of the y-axis, they then interpreted the values correctly. Same as
user 1 they suggested a more detailed legend to avoid these confusions. For user 4 the
context of the prediction was not evident when talking about the result view and we had
to explain it a bit more in detail before they realised what they were seeing. After that,
they also stated that it is crucial to have a better legend.

Discussing the proposed variations of the result view, all users favoured the version
shown in Figure 5.5a. Using transparency, user 1 and 3 stated that it could help them
in focussing on the areas with high probabilities but they also agreed with the other
users that the distortion of colours was more confusing than helpful, confirming our
hypothesis about that problem. They all stated that using no colour at all as shown in
Figure 5.5d, they would not be able to read any information about the occupancy rate.
Talking about the usage of the single-hue and multi-hue colour scales, opinions were
more divided. User 3 preferred the single-hue scale because it gives them an obvious
sequential encoding and they were confused about the usage of multiple colour hues. The
other users were also sceptical about the multi-hue scheme at first. When discussing this
topic more closely and also showing the LPD encodings in the input view using the two
colour schemes, focussing on the colour and not so much on the visual variable of position
in the graphs, they stated that using the multi-hue scheme it was easier for them to
quickly categorise the prediction into four groups according to the four prevalent colours
on the scale. With the single-hue scheme, they were only able to distinguish between two
categories, good when the colour was dark and bad when it was bright. This confirms
our hypothesis about the benefits of the multi-hue colour scale. We believe that this is a
very interesting outcome since most of the state-of-the art works on colour scales advises
against the usage of rainbow colour maps. It seems to us that Niccoli’s approach for
creating a perceptually sequential rainbow map [54] is a success.

Going through the input components in the input view (see Section 5.4), we started
with discussing categorical inputs. The users were asked to perform selections and
to add, remove and manipulate samples, which they were able to do without problems.
User 4 pointed out that for features that have additional information connected to them,
like the city and country a venue is placed in, they would like to see this information
somewhere. To evaluate the two proposed LPD encodings for categorical inputs, users
1 and 3 were shown the small prediction distribution first, while users 2 and 4 got to

67

5. Interactive Prototype

LPD Prediction Bar LPD Prediction Distribution FI Glyph FI Bar
User 1 yes no yes no
User 2 no yes yes no
User 3 no yes yes no
User 4 no yes no yes
Total 1 3 3 1

Table 5.1: Evaluation Results

initially see the bar graph encoding. Users 1 and 3 immediately realised that the small
prediction distribution is supposed to be a preview of the prediction result for the feature
samples. Using the bar graph, this connection was not made without a short explanation
first. Afterwards, we showed the second encoding to the users and discussed the positives
and negatives. User 1 stated that they prefer the distribution graph because it provides
more information than the bar graph. They also think that it does not matter that there
is no legend provided because one will see it when selecting the sample anyway. Users 2
and 3 find the bar graph easier to interpret and they state that they can faster compare
the main value of interest, which is the one with the highest probability. While user 3
also articulated that the prediction view is more coherent with the result view and looks
nice, the bar graph is still more useful to them. User 4 deduced by themselves that when
using the bar graph, they cannot see the probability of the result which they can in the
prediction distribution. They still think the bars are better because they are easier to
read and compare. Summing up these findings in Table 5.1, we see that the bar graph is
liked by more domain experts than the distribution graph, proving our hypothesis wrong.
We thought that since the prediction distribution graph provides more information it is
more useful than the bar graph, which seems not to be the case.

The interaction with the date picker for date inputs was immediately apparent for all
users. Also, the encoding of LPD information on the date fields was interpreted correctly
by all of them, except for user 2 who forgot about the colour scale presented in the result
view and was confused about the colours. At this stage of the evaluation, the multi-hue
colour scale was used. They suggested adding the colour legend to all input components
so it is always visible when needed. For numerical input components the users had
to answer the following questions: What is the selected value? How can you change the
value? What do the colours on the bar show? How can you change the range of the bar?
For user 1, 2 and 3 the tasks were solved without problems. User 4 did not initially
realise that the value in the circle represents the currently selected value. They proposed
adding a field where the value is shown explicitly also with additional information about
the semantics of the value, for example, if the value represents a value in AC or kg. We
also asked the users to select the best value at some input components. When it was easy
to see, for example, at categorical inputs with only two or three samples, they selected it
directly, else they search for a few seconds and then saw the Select Best Value button
and used it like intended.

68

5.7. Evaluation

The presented prototype features two input filters, one for venues and one for event dates.
The venue filter presented in Figure 5.8c, provides filter inputs for the venues country,
city and a capacity range. To apply the filter, there is a button called Search For Best
Value. We asked users to search for locations in Berlin, Germany with a capacity between
2000 and 5000. The selection of the country and city was performed without problems
by all users. To get to the correct selection of the capacity, users also had to change
the range of the proposed slider. Users 1 and 2 struggled with this because they were
confused by the additional minimum and maximum fields, stating that it is confusing
to have to adjust a scale using these fields so one can then select the filter range on the
slider. They rather would like to have just a minimum and maximum field where they
can directly enter the search values. All of the users struggled in applying the selected
filter input. None of them connected the provided button to the filter and stated that its
label does not fit the task and since it is placed at the same spot where else the Select
Best Value button is this destroys continuity. User 2 suggested moving the button below
the filter, so the connection to it is more evident. The same problem was apparent at
the date filter. Else the interaction with this filter was apparent to the users. User 2
suggested that when selecting a time range that spans multiple months, it would be nice
to see the months all together without having to switch between them in the date picker.
When mentioning this to the other users, they agreed that this would be helpful to them
as well.

After manipulating some feature values, we drew the attention of the users towards the
FI encodings presented in Figure 5.7. Again users 1 and 3 were shown the arrow
glyphs first and users 2 and 4 the bar graphs. Showing the glyphs first, the semantics of
this visualisation was interpreted correctly by the users. The bar graph was not that
immediately apparent to them. Especially user 4 struggled with the provided legend
stating that they do not understand the meaning of the values −1 and 1 on the scale.
After explaining the concept and also showing them the glyph encoding user 4 stated
that the bar graphs are their preferred version because they are more exact and they
like working with numbers. The other users preferred the arrow glyphs but also were
not content with the provided legend. User 1 suggested adding the word current to the
legend title to clarify that the value is connected to the currently selected value of a
feature, while user 2 stated that when using arrow glyphs it would be helpful to have a
legend based on glyphs and not just a colour scale. The evaluation summary in Table 5.1
shows that the glyphs were overall the preferred encoding of FI.

Since the users changed a lot of inputs during the evaluation process, the interaction
history (see Figure 5.11) was filled with a lot of entries. When pointing out this table,
the users were asked to find the best parameter combination of this session. All of them
were able to perform this task. User 2 pointed out that it would be helpful to somehow
highlight the feature that changed in each row of the table. Overall, the domain experts
stated that this table helps them in comparing different event parameter options.

69

5. Interactive Prototype

We then discussed the case-based reasoning table with the users, which shows historical
events with their prediction and actual value of sold tickets (see Figure 5.12). User 1
and 4 immediately suggested adding the word Past to the component title, to clarify
that these are historical events. The usage of the table was apparent to the users, with
only user 3 struggling to find the button to fill the table with data. Talking about if a
superimposed view would be beneficial for comparing these ground truth events with the
current prediction other than having a juxtaposed view like now, only user 4 stated that
a superimposed view would be better because it would show all information at one place.
The other users thought that a superimposed view would lead to too much information
being displayed in the result view, confirming our hypothesis on this topic.

In the end, we asked users for comments about the proposed EVEOS. Noteworthy
comments from user 1 include that the possibility to generate an initial input is necessary
because if users would see the interface without having set any data first it would be very
confusing to work with. Also, users could try to find a perfect value for a given feature
without having set any meaningful values for other features. User 4 stated that when
using the system they were a little confused by all the dummy data that sometimes did
not behave like expected, but they think that when using real data and real predictions,
this probably will not be a problem anymore. They also confirmed our user story again
by stating that the most important thing they want to get out of the proposed system
would be to find event parameters that optimize ticket sales while also filling a venue to
its maximum capacity. It seemed to us, that especially user 4 began to understand more
and more about how the EVEOS can be used the longer the talk lasted. They started
to deduce connections between fields and projected them to user stories that they were
thinking about during the interview.

This round of gathering domain expert feedback helps us in making a lot of final design
choices. Especially regarding the visual encodings for LPD and FI information, we now
have a well-founded basis for choosing which one to use in the final prototype. The
users also pointed out a lot of details that need changing to end up with a highly usable
interface. Some of our hypotheses of what would be good design choices were confirmed
while in other cases the users reasoning for opposing our theories were not expected,
highlighting the importance of including them in the design process.

70

CHAPTER 6
Final Prototype

The prototype we present in the chapter represents the final iteration of our user-centred
design process. Incorporating the feedback from the domain experts (see Section 5.7), we
aim to create a prototype that is close to a final version of the EVEOS and provides the
complete functionality. This is done for the use case of event organisation since for the
creation of marketing campaigns we do not have a back-end that we could connect to
complete the functionality of the interface. We connect the database and the ML model
API with the front-end. Evaluating this prototype, we want to eliminate final faults
in the system. Additionally, we are interested in investigating if the usage of real data
increases the usability of the EVEOS and how the longer system response times that
arise from communicating with external services influence the user experience.

The structure of this chapter is similar to the previous chapter. We first discuss the
changes in the general layout of the EVEOS and elaborate on how the database and
model API are added to the system architecture. Next, we go over the changes to the
separate components. The input filters are now also connected to the database, so we
describe the data fetching process. The same goes for the case-based reasoning table that
now fetches similar events from the database. We then perform a round of evaluation
with domain experts and adopt their feedback into the final version of the EVEOS.

6.1 General Layout
In Figure 6.1 we present an overview of the final version of the proposed EVEOS for
the task of event organisation. The layout of the interface does not have any significant
changes when compared to the previous iteration presented in Figure 5.1. It can be seen
that we add a missing input component: the artist feature. Additionally, after reviewing
the feedback of the domain experts (see Table 5.1), we commit to the use of the FI
arrows glyphs for encoding feature importance information and to the use of the LPD
prediction bar for LPD encoding information. Using the LPD prediction bar makes the

71

6. Final Prototype

Figure 6.1: Overview EVEOS for event organisation.

72

6.1. General Layout

Database

Model API

Event Manager Event Input
Wrapper

Data Sources Page Entry &
Data Hub

Component
Wrapper

Interactive
Components

Reactive
Visualisations

Filter

Date Input
(LPD Date

Picker)

Categorical
Input

(LPD List)

Numerical Input
(LPD Bar)

Interaction
History

Case-based
Reasoning

Table

Table Wrapper

Prediction
Wrapper

LPD Summary
Glyph

LPD Prediction
Bar

Prediction
Distribution

Marketing
Manager

Marketing Input
Wrapper

Initial Input

Input Component

Figure 6.2: Diagram of final architecture. The direction of the arrows indicates data flow.
Blue: general components. Green: event-specific components. Yellow: marketing specific
components. Pink: component groups. One or more components of a group can be used
at the same time.

EVEOS more model-agnostic since it does not depend on a model that provides multiple
prediction values with corresponding probabilities like the LPD prediction distribution
does.

From the example illustrated in Figure 6.1, we can extract, among other things, the
following information: According to the result view, the organiser would probably sell
around 159 tickets for this event. The probability that more tickets will be sold is also
rather high. Since the selected venue only has a capacity of 300 people, the prediction is
cut off at this value, as discussed in Section 5.3, even though it looks like more tickets
could be sold. According to the LPD information about the event name, the name
Mozart Konzerte - Tour seems to be slightly better than Mozart Konzerte. To investigate
the detailed prediction for the value Mozart Konzerte, one has to select this value or
hover over the LPD prediction bar to see the tooltip showing the detailed prediction
information as presented in Figure 6.7b. The event date in the example is filtered to
show the days Thursday to Sunday for two months. Checking the FI information for the
feature, we see that the currently selected date is suboptimal.

73

6. Final Prototype

Figure 6.3: Initial Input Modal Event

Fixating the components used for LPD and FI information is also reflected in the diagram
of the system architecture presented in Figure 6.2 where we now see that the component
groups for reactive visualisations are removed. We now have definite visualisations for
these two cases. As detailed in Section 6.4.1, we redefine the term feature importance
(FI) to local partial dependence (LPD) summary because of how it is computed.

The diagram in Figure 6.2 also shows how the database and the model API are integrated
into the system. The feature input filters are now connected to the database for features
where this is necessary. Also, the case-based reasoning table communicates with the
database to fetch ground truth data similar to the current input. To get an initial
selection of feature values, we propose the use of an initial input modal. The necessity
of this modal was presented to us in the previous evaluation by a domain expert. As
shown in Figure 6.3, it is a simple form that allows users to select values which they
can continue to work with while creating an event. This modal is also connected to
the database so that users can select available values for the features genre, venue and
artist. Once a user has selected their initial inputs, the data is passed to the manager
component and formatted to be the initial state of the main data object.

74

6.2. Model API

{

price:{

value:5,

min:0,

max:100

},

artists:{

[id:1,

label:Queen,

popularity: 0.95,

bookings: 756,

selected: true

],

[id:2,

label:ACDC,

popularity: 0.85,

bookings: 683,

selected: false

]

}

}

Main Data Object Request Data

{

numberOfPredictions: 53,

data:{

ticket_price: [5, 5, 0, 2, ...,100],

artist_bookings: [756, 683, 756, 756, ...,756],

artist_popularity:[0.95,0.85,0.95,0.95,...,0.95]

}

}

Figure 6.4: Data-mapping of the main data object to structure expected by model API
using dummy data. Orange values represent the current input selection. Green values
represent LPD input data.

6.2 Model API

As described in Section 3.4, the model API provides a single endpoint accepting POST
requests containing the data needed to make one or more predictions. The EVEOS calls
this API at two distinct events, when an input is changed by the users to compute all
LPD information and when the user fetches similar events for the case-based reasoning
table to get the predictions for these events. The API expects the data to be formatted
as presented in Figure 3.7, with each model input feature being represented by an array
with index i of all arrays being the combined input for prediction i. Since the data
structure of the main data object in the interface is optimised for front-end data handling,
we need to perform a pre-processing step to format the data correctly.

In Figure 6.4, the result of this data-mapping for getting LPD information after an
input change is presented. The first step in this mapping process is to set the currently
selected input values, which are marked in orange in Figure 6.4, to index i = 0 in
the corresponding arrays. Then, we need to prepare model inputs to compute the
LPD information for all other samples that are currently available in the diverse input
components. This means that for each value v that is visible but not selected, we set v
as the value of the corresponding model input feature and use the selected values for all
other model input features. In the example in Figure 6.4 at i = 1, the input for artists
with id = 2 is set. We add the corresponding values to the input features artist_bookings
and artist_popularity and use the currently selected ticket_price to complete the model

75

6. Final Prototype

{

predictions:[10,12,15,20,25,30,35,38,40],

densities:[0.01,0.04,0.1,0.15,0.25,0.3,0.1,0.4,0.01]

}

Prediction Result Visualisation Data

{

graphData:[

{x:10,y:0.01},{x:12,y:0.04},{x:15,y:0.1},

{x:20,y:0.15},{x:25,y:0.25},{x:30,y:0.3},

{x:35,y:0.1}, {x:38,y:0.04},{x:40,y:0.01},

],

maxPredictionValue: 30,

maxPredictionProbability: 0.3

}

Figure 6.5: Data-mapping of the prediction result of a single prediction to the format
used in the visualisations using dummy data.

input data. As discussed in Section 5.4.3, to get the LPD predictions of the price, which is
a numerical feature, we take 50 equidistant samples between its minimum and maximum
value. The indices 2 5 i 5 53 of the ticket_price array are filled with these samples while
the artist feature values are chosen from the selected artist with id = 1. In this small
example, we end up with a matrix representing the input for 53 predictions that need to
be made. For each feature in the main data object, we save the indices corresponding to
its LPD predictions so we can then correctly match the prediction results.

When the prediction result is returned from the model API, we first need to format it
so it can be used in the visualisations. As shown in Figure 6.5, we extract the value
with the highest probability. The result values are grouped in an array of x and y values,
which is the format expected by D3.js [4] graphs. Next, the result of the prediction
with i = 0 is saved as the main prediction result which is then shown in the result view
of the EVEOS. The other results are then added to their corresponding feature values
using the previously saved indices. For values that are marked as selected, we do not
generate separate LPD predictions because this would result in the same input as the
one with i = 0. Therefore, these values get assigned the main prediction result as their
LPD prediction result. When assigning a prediction to a value, we always save the
prediction value with the highest probability (PP) separately, so we can use it for the
LPD prediction bar encoding.

The pre and post-processing to get predictions for the case-based reasoning table are
similar but simpler because we do not need to compute LPD predictions. Once similar
events are fetched from the database, the manager component is triggered to send a
request to get their predictions. To prepare the request data, we map the feature values
to model input values for each event. When receiving the results of the predictions, we
assign them to the corresponding events and mirroring what we described before, we
save the prediction value with the highest PP from each result so we can show the LPD
prediction bar for each event.

76

6.3. Result View

6.3 Result View
During the evaluation of the result view presented in Section 5.7, the most common
feedback of the domain experts was that they would like to have a more detailed legend
to make the main prediction graph easier to interpret. As shown in Figure 6.6, we
propose a legend that presents the three prediction values of the point with the highest
PP : number of sold tickets NT , occupancy rate OR and probability PP . Additionally,
it displays the maximum value of the x-axis with a label that gives context about its
semantics. In our case, the x-axis range is defined by the capacity of the currently selected
venue.

In the evaluation interviews, we discussed the usage of single-hue and multi-hue colour
scales with the users. Most of them were able to interpret the single-hue scale faster at
first. The interpretation of the multi-hue scale was not obvious to some users when first
seeing it. When working with it a little longer, they realised that it helps them evaluate
the LPD information more precisely since it provides four distinct hues that allow them
to categorise the result. An example for that is shown in Figure 6.7a where three LPD
predications bars are shown. Using the hue, we can quickly categorise the quality of the
prediction value. We chose to use the multi-hue scale because even though it might be
harder to interpret initially, the benefits in long term usage outweigh this downside. The
details of the chosen colour scale are described in more detail in Section 5.3.

During the development of this final prototype, we realised that even though the domain
experts seem to understand the D3.js [3] curve interpolation that we use on the
prediction points, it distorts the result and is mathematically incorrect. We used
curveMonotoneX which produces a cubic spline that preserves monotonicity in y, assuming
monotonicity in x. This shows a distribution, but the area under the curve does not sum
up to 100%. That is because the probabilities of the prediction values already sum up to
100%, so adding values in between these points automatically adds up to more than that.
We also realised that we do not give any information about prediction values that do not
have the highest probability, as shown in Figure 6.6a. We therefore present alternative
solutions in Figure 6.6 and investigate how they influence the users understanding of the
prediction (see Section 6.7).

First, we add markers in the form of circles for all prediction values as shown in Figure
6.6b. In doing so, we realised that there seems to be a miscalculation happening in the
ML model we employ because the probabilities of the prediction values sometimes exceed
100% which should not be the case. We hypothesise that adding the markers makes it
more evident that the prediction provides multiple values and the curve visualises an
interpolation between those points.

We also propose two more curve interpolations. In Figure 6.6c, we use curveLinear,
which creates a linear interpolation between the points. This solution is still mathemati-
cally incorrect for the same reasons as the curveMonotoneX but we think it could be
easier to understand because it is just a straight line. In our opinion, this does not imply
as strongly that the values between the points are computed using sophisticated methods,

77

6. Final Prototype

(a) curveMonotoneX (b) curveMonotoneX with value markers

(c) curveLinear with value markers (d) curveStep with value markers

Figure 6.6: Main prediction result views using different curve interpolations of D3.js [3].

suggesting that they are important. It rather indicates that there are some points with
given values and the curve just connects them. The curve that is most consistent with
the prediction result is the curveStep shown in Figure 6.6d. It is a step-curve with the
steps centred between two corresponding points. It shows intervals between the points
with constant probability in each interval. These probabilities sum up to 100% which
allows users to interpret this curve in a mathematically correct way. For this reason, we
think that this version should be used in our system but are keen to see how the users
interpret it in comparison to the other proposed solutions.

6.4 Input View

The overall structure of the input view is the same as presented in Section 5.4. We only
change the design of the buttons to open and close all input component cards using
glyphs indicating their functionality as shown in the top left corner of Figure 6.1.

Talking with domain experts about the distinct input components of the input view,
we received the feedback that for some features there is not enough visible information
about the feature value. For the venue feature, for example, there is implicit information

78

6.4. Input View

(a) Tooltip input value. NT as bar value.

(b) Tooltip LPD. OR as bar value.

Figure 6.7: Tooltips and comparison between using NT or OR as primary value in the
LPD prediction bar.

about the venues location and its capacity that is not shown in the input component.
Therefore, as shown in Figure 6.7a, we now display this information as a tooltip when
hovering over the corresponding value. Extending this idea, we also add a tooltip for
the LPD prediction bar as presented in Figure 6.7b. It contains the same information
as the legend of the result view. We think that this is an important addition to this
encoding because it provides information about the probability of the prediction, which
was missing in this visualisation before.

During the evaluation, a domain expert stated that they would rather like to work with
the value of the occupancy rate instead of the number of sold tickets when comparing
LPD information. As shown in Figure 6.7, we implement both versions. We think that
using the OR as the text value is redundant information because it is already given by
the colour and length of the bar. The number of sold tickets on the other hand cannot
be seen without the text value. We think that using NT is the better approach for these

79

6. Final Prototype

reasons and if the occupancy rate needs to be investigated, this is now possible with the
provided tooltips. We are curious to see what the domain experts think about this in the
evaluation.

6.4.1 Local Partial Dependence Summary

As mentioned in Section 6.1, we redefine the term feature importance (FI) to be
local partial dependence (LPD) summary for the following reasons. To complete
the functionality of the final prototype, we have to decide how to compute the value for
the FI graphs. The goal of this value is to indicate to the users how good the quality, in
terms of the resulting prediction, of the currently selected value is.

First, we thought of using the approach presented by Strumbelj and Kononenko [71].
They compute local feature importance, by comparing the prediction results of several
random samples and using the selected value of the investigated feature as described in
Section 2.3. When implementing the algorithm they propose for this, we had to realise
that it is computationally slow when using a reasonable amount of samples, taking up
to 10 seconds for computing the FI value for a single feature when using 500 random
samples. Additionally, when employing this method, the FI value depends on the random
samples, which are not visible to the users. We think that the value changing for reasons
that cannot be observed by users is highly confusing.

To avoid the mentioned problems, we propose to only compare the predictions of
the currently visible feature samples. In Figure 6.8, there are two samples shown
for the event name feature. Since the prediction value shown in the LPD prediction graph
of the selected sample is higher than that of the other sample, the arrow-glyph shows
that out of the visible samples the best one is chosen. Similarly, for the ticket price, the
arrow-glyph indicates that the selected value is on the lower end when comparing the
LPD values of the samples shown on the LPD bar. Using this approach, we in general
compare the LPD information of the visible feature samples and show how good the
quality of the currently selected value is. The quality q is computed by getting the best
pb and worst predictions pw of the current samples and, using these values, mapping the
prediction of the selected sample p to the interval from −1 to 1: q = p−pw

pb−pw
× 2− 1 .

The name LPD summary better represents the resulting value and therefore we decide to
rename it. Since the LPD summary only depends on samples visible to the user and its
computation is straightforward, we think that it is easy to interpret. What this approach
cannot do is to guide users out of local minima or maxima in regards to feature values.
Since we only compare the quality of the currently visible values, we cannot infer if there
are values available outside of these that would result in better or worse predictions. This
would be possible using Strumbelj and Kononenko’s [71] approach because they compare
the current selection to a random sample set of the training data.

To further enhance the usability of the LPD summary graphs, we change their legend.
As shown in Figure 6.8 and suggested by users during the last round of interviews, we

80

6.4. Input View

Figure 6.8: Arrow-glyph legend for LPD summary encoding.

use annotated arrow glyphs to show how this encoding behaves. Additionally, we change
the legend title to Current Quality to better reflect what this value is presenting.

6.4.2 Numerical Features

Evaluating input components of numerical features, the domain experts were satisfied
with the presented layout and functionality. One of the users mentioned that additionally
to the proposed LPD bar it would be supportive if the currently selected value is shown
separately together with a definition of its semantics. As shown in Figure 6.8, we add a
read-only text field to the input component that provides the requested information.

6.4.3 Date Features

For selecting dates and comparing their LPD information, we propose a colour coded
date picker in Section 5.4.4. The date picker shows a single month with the possibility
to switch between months. During the evaluation of this component, a user suggested

81

6. Final Prototype

Figure 6.9: Filterable Date Input.

showing all months that contain selected samples juxtapose. They stated that this would
increase the usability of the date picker because it enables them to better compare dates
over a time range of multiple months. Since we think that this is a reasonable argument,
we realize this idea as shown in Figure 6.9. The only downside of this approach is that
when users select a time range in the filter that spans multiple months, this view takes
up a lot of space and it becomes difficult to compare dates that are far from each other.

Using the filter, users had problems in applying the filter because the corresponding
button was not labelled correctly and placed at a position where users were not expecting
it. In the final prototype, we separate the filter from the date selection using a horizontal
line. We also rename the button to Apply Filter and place it at the bottom of the filter
section as shown in Figure 6.9. We believe that this new layout removes the previous
ambiguities.

82

6.4. Input View

(a) Venue (b) Artist

Figure 6.10: Categorical inputs with filters.

6.4.4 Categorical Features

As mentioned in Section 6.1, we commit to the use of the LPD prediction bar for LPD
information. Similar to the result view, we also need to define the maximum value of the
bar. Looking back to Section 5.3, we discussed that one cannot sell more tickets than
seats are available in the event venue. For the same reason, we decide to scale the LPD
prediction bar according to the capacity of the currently selected venue. The length and
colour of the bar encode OR, while the displayed number shows NT . A bar that is filled,
therefore, suggests that the event will be sold out. In the input component of the venue
feature, on the other hand, the bar is scaled according to each venue distinctively. In
the example shown in Figure 6.10a, the prediction for the venue Hofreitschule is only by
two tickets lower than for the venue Kammerspiele. But since Hofreitschule has a higher
capacity, which can be seen when hovering over the sample to enable the tooltip, the
difference in OR is higher as shown by the bar length and colour.

Same as for the date feature filter, the domain experts had difficulties applying filters
for categorical data. We change the design to be consistent with the new date filter
separating the filter from the input fields and renaming the apply button. As shown in
Figure 6.10a, we also remove the range slider from the venue capacity filter because users
deemed it unnecessary and rather wanted just minimum and maximum fields. Same goes
for the popularity filter for the newly added artist feature presented in Figure 6.10b.

Both the venue and the artist filter are connected to the database and work in the
following way. After a user has set the filter set filter parameters and clicks on the Apply
Filter button, venues or artists fulfilling the filter requirements are fetched from the
database. Since loading this data takes a few seconds, we show a loading animation
on the button while waiting for the result as suggested by Nielsen [56]. Once we get
the response from the database, the results are added to the available samples in the
drop-down selection, and we show the number of found entities in a small text field.

83

6. Final Prototype

6.5 Interaction History

As discussed in Section 5.5, a new entry is added to the interaction history table whenever
a selected value changes in the input view. During the evaluation of the interactive
prototype, one of the domain experts pointed out that for them it is hard to see which
feature changed for a particular row in the table. The only possibility to get this
information in the previous version was to compare all the columns and look for changes.
We thought of highlighting the changed value by changing its font style to bold, which in
our opinion would be the optimal solution.

During the implementation of the final prototype, we have to realise that the Vuetfiy
table component [13] that we use does not provide any possibility to manipulate the style
of a single column value of a row. Since we have to use this particular table component
because of the project structure we are including the EVEOS in, we have to use a different
approach. As shown in Figure 6.11, we add a new column named Change to the start of
each row. In this column, we display the name of the feature, which change triggered the
creation of the corresponding row.

Since we connect the prototype to the database, the data we are handling now contains
not only the feature values but also additional data like database IDs. When creating a
new row in the interaction history, we also have to save this data. On selecting a row,
we use this data to restore the feature value with all its needed information. When a
row different to the first row is selected and afterwards the input is changed by the user,
the change column shows the name of the feature that changed in comparison to the
previously selected row.

6.6 Case-based Reasoning Table

The case-based reasoning table shows ground truth data that is similar to the currently
selected input parameters. In our case, this allows domain experts to compare the
parameters and the sales data of historical events to the one, they are currently organising.
Discussing with them if the comparison should be done in a superimposed view or by
seeing the data juxtapose to the main result view in the proposed table, the domain
experts predominantly stated that the juxtapose view is preferred. As shown in Figure
6.12 we, therefore, keep the proposed table design. To make the context of this component
more straightforward, we change its title to Past Similar Events as suggested by a user.

We can only display events that were created by the organiser currently working with the
system. For data-privacy reasons, it is not allowed to show an organiser the sales details
of events that someone else hosted. We get similar events of the current organiser by
searching for events in the database that have the same genre and are located in the same
city as the event defined by the current input values. This is not the most sophisticated
approach and we plan to improve the method of searching for similar events in future
work (see Section 7.3).

84

6.6. Case-based Reasoning Table

Figure 6.11: Interaction history table

Figure 6.12: Case-based reasoning table

85

6. Final Prototype

6.7 Evaluation

As suggested by the user-centred design cycle (see Figure 2.4), a final evaluation is
performed after implementing the EVEOS. We primarily focus on the parts of the system
that changed since the last iteration. Additionally, we discuss with the domain experts if
they think that they would use the proposed system if it has added value compared to
the systems they use now and how they would define this added value.

Same as in the previous evaluation, we perform roughly structured interviews with four
domain experts. The users 1, 2 and 4 are the same as in the evaluation of the interactive
prototype. User 3 was not available, so we introduce user 5 who works on publishing
events and especially on creating marketing campaigns for events in day-to-day business.
With users 2 and 5 the interviews were conducted eye-to-eye and with users 1 and 4
via a remote desktop application due to COVID-19 restrictions.

Going through the components of the EVEOS we ask the users to perform a set of
tasks. First, we show them the new initial input form and ask them to fill it with
data they seem fit. On arriving at the main view of the system we discuss the different
curve interpolations for the result view presented in Section 6.3 in combination with the
new legend. We continue with the input view, asking users to add feature samples at
categorical features and compare their predictions using the LPD prediction bar. Next,
we focus on the interaction with the provided feature filters. After the users have selected
some samples, we ask them to identify the features that have the potential to be improved
using the LPD summary visualisations. Switching to the interaction history table, the
domain experts are challenged to find the parameter combination that provides the best
prediction. At the case-based reasoning table, the task is to fetch similar events from the
database and evaluate the precision of the predictions of the ground truth data. Finally,
we talk with the users about any general feedback they have.

Discussing the initial input form, the interaction with it was obvious to all users. Only
for the input field of the initial event venue, there was some confusion. When showing
the form in the German language, the label is Ort which led users to enter city names
instead of the name of the venue they wanted to select. On clarification, they stated that
using a label like Veranstaltungsstätte would be more fitting. Additionally, user 2 added
that it could be useful to allow the selection of multiple values for categorical features,
so when entering the main view there are already multiple samples there that can be
compared.

Because all users except user 5 were already familiar with the proposed result view
we started by showing them the curve interpolation, curveMonotoneX, they knew from
previous interviews. In combination with the new, more detailed legend presented in
Figure 6.6, all of them were able to precisely describe what the prediction values with
the highest probability PP are. They also correctly made the connection that the Venue
Capacity in the legend is the reason for the range of the x-axis. User 5, who did not see
this encoding before, called it self-explanatory.

86

6.7. Evaluation

We then directed their attention to the fact that the curve they see is not mathematically
correct and asked them if they can explain why this could be the case. All of them stated
that they did not realise this before, indicating to us that their focus was always centred
on the highlighted prediction value with the highest PP . Users 1 and 2 said that they
interpreted the curve by assuming that where it is lower, the probability of this value is
lower, but did not think that the total probability should be 100%. We then added the
value markers to the curve and presented it to the users (see Figure 6.6b). Asking the
users what the markers are supposed to show, users 1, 2 and 5 realised that one of the
markers coincides with the highlighted prediction value. From this, they derived that
the other markers are additional prediction values that are used to build the curve and
that the marked values together sum up to a probability of 100%. User 4 was not able
to draw that conclusion and we had to explain the semantics of the markers to them.
All of the users then were unsure how the curve values between the markers should be
interpreted. Switching to the view using curveLinear as the interpolation method, as
shown in Figure 6.6c, this did not change. Users 1 and 5 stated that having a straight
line between the markers indicates to them that it is used just as a connection but still
were confused about how to interpret it.

We then presented them with the curveStep interpolation as can be seen in Figure 6.6d.
Based on their knowledge about the markers, the users were able to conclude that here
the height of each plateau corresponds to the probability of its prediction value. Users
1 and 2 stated that, after being made aware of the problem regarding summing up
the probabilities, this version represents the data in the best way since it clarifies that
the sum of the plateau heights sums up to 100%. User 5 added that they would find
this version even more understandable if the distinct intervals would be separated by a
small gap. User 4 was unsure which of the presented visualisations they prefer. They
stated that on the one hand curveStep is mathematically correct and its interpretation is
apparent. On the other hand, curveMonotoneX seemed more realistic to them because it
shows a smooth transition between prediction values. This made more sense to them
than having intervals with a constant probability with steps between them. Overall, the
users seemed to find curveStep to be the most valuable and since it also is the version
that is most consistent with the provided result from the ML model, we decided to use it
in the final version of the EVEOS as shown in Figure 6.13.

We continued the interviews by switching to the input view. The users were asked to
add some additional samples for categorical features as well as compare samples for each
of the features. They were able to perform this task without problems and stated that
especially the newly added tooltip legend for the LPD prediction bar helped them in
the comparison. Also, user 5 who saw the interface for the first time, solved the task
correctly without help from our side. The colour encoding in the date picker and the
usage of the LPD bar for numerical features was also self-explanatory to them. The
changed view of the date picker that shows all selected months juxtapose was appreciated
by all users and they stated it is easier to compare dates like this than before where they
had to switch between the months.

87

6. Final Prototype

We then discussed with the users if they prefer having NT or OR as the value presented
as text in the LPD prediction bar. All of them stated that NT is the preferred version
with user 4 adding that NT is the more important value and having OR encoded using
the colour of the bar and being shown in the tooltip is enough. User 1 argued that overall
it is most important to maximise the number of sold tickets and not the occupancy rate.
User 5 stated that it would be easier to interpret the bar value if it had its semantics
written there as well. They suggest writing, for example, 220 Tickets instead of just 220.

During the task of selecting samples, the users also had to work with the provided feature
filters. For the venue and artist filter, the interaction with the input fields was obvious
to the users. As shown in Figure 6.10, we show a textual hint to how many entities were
found by the filter. User 1, who was the first person we interviewed, needed a few seconds
of thinking to then realise where they can select these entities after the filter found them.
After that interview, we added another textual hint that states that the found entities are
available in the value selection (see Figure 6.13). With this information, the other users
did not have this problem anymore and knew where to select the entities after searching
for them. User 4 stated that changing the range slider for selecting venue capacity and
now using just minimum and maximum fields, makes the selection more apparent.

Filtering dates was also obvious to the users. Only the day of the week selection was
a little confusing to users 2 and 4. As shown in Figure 6.9, we use a multi-select drop
down where the selected days look similar to buttons. Therefore, the users tried to click
on them to select them, which does not work. We change the design of this selection to
eliminate this confusion as shown in Figure 6.13.

After having selected values for each feature, we asked the users what the LPD summary
glyphs represent. Using the improved legend shown in Figure 6.8, all of them were able
to explain that they show the quality of the currently selected values of the features. The
users were also able to point out the features that could be locally improved and which
ones already have the best value selected.

We continued by switching to the interaction history table (see Figure 6.11). There,
we first asked the users to point out which feature changed for some given rows. They all
were able to give the correct answer, but users 2 and 5 did not use the Change column
but just searched for the changed value because they did not see this column. The other
users used the column with user 1 stating that they do not understand why the changed
value was not just highlighted somehow. This confirms our hypothesis that the proposed
solution is not the best one, but as explained in Section 6.5 we are not able to highlight
row values in the table framework we are using. We then asked the users to select the
parameter combination from the table that results in the best prediction. Using the LPD
prediction bar, this task was performed quickly by all users. User 5 first sorted the table
by the predicted number of sold tickets, which made their performance even quicker.

88

6.7. Evaluation

Finally, the users had to fetch similar events from the database for the case-based
reasoning table. As shown in Figure 6.12 we provide a button titled Get Most Similar
Events to perform this task. Interestingly, all users except user 5 did not realise that this
button was supposed to be used to automatically get similar events. They rather wanted
to search for events manually trying to use the search field of the table. After explaining
the concept of automatically searching for events, they stated that since they usually
know what events they have organised in the past and we cannot show them events
of other organisers, they still would find a manual selection more useful. Once similar
events were selected, the users were able to compare the number of sold tickets with the
predictions made for the events. All of them stated that if the prediction and the ground
truth coincide, this would greatly increase their trust in the system and animate them
to try to improve the feature values even more. On the other hand, if this is generally
not the case they would rather use their domain knowledge instead of relying on the
predictions. User 5 pointed out that it is very useful to be able to compare past events
not only with the event they are currently creating but also against each other. This way
they can get a feeling of which parameter settings worked well in the past and which did
not.

After going through all the components of the EVEOS we talked about the thoughts of
the domain experts on the system. Asking about the perceived waiting times, they stated
that at no point they felt that they were waiting unexpectedly long for system responses.
User 1 added that for the filters they would feel annoyed after waiting for more than 10
to 15 seconds and the predictions after two to three seconds. We asked them if this would
be different if while waiting for prediction there were a loading animation which they
affirmed. These statements directly coincide with the research of Nielsen [56] discussed
in Section 2.2. The users also stated that in general, the interaction with the system was
obvious to them with user 4 stating that they think the system is fast and easy to learn.

Asked about where they see the benefits of using our system we got the following answers
from the users. User 1 stated that, for example, for recurring events that have been
organised for some time they already have so much domain knowledge that they would
probably not use our system. For new events with some unknown factors, on the other
hand, it can be very useful assuming that the ML model provides accurate predictions.
User 2 added that some events have rather low flexibility in their parameter settings
with sometimes the ticket price being the only parameter that feasibly can be adjusted.
In general, all users stated that they see the biggest benefit of the proposed EVEOS
in the opportunity to compare parameter settings against each other, both locally for
multiple values of a feature and globally for complete feature value combinations using
the interaction history. They also state that being able to get an idea of how many people
will attend an event is useful in preparing for it.

89

6. Final Prototype

Figure 6.13: Final version of the proposed exploratory visual event-organisation system.

90

CHAPTER 7
Conclusion

Concluding this thesis, we summarise the results of our work and the lessons learned
from it. First, we discuss the feedback we got from domain experts and the conclusions
we can draw from employing a user-centred design approach. We then give a synopsis
on how the research questions we presented in Chapter 1 were answered. Finally, we go
through the current limitations of our work and discuss how it can be enhanced in the
future.

7.1 Discussion

The results of three rounds of implementing and evaluating the proposed exploratory
visual event-organisation system (EVEOS) provided us with several interesting discoveries
regarding the system itself and also regarding the employed user-centred design process.
While the general feedback we got from the participating domain experts was positive,
we also had to realise that some parts of our work were not developed thoroughly enough.

The most apparent of these is the design of the main result view (see Figure 6.6). Here
we proposed using a distribution curve in the early stages of the design process, focussing
only on how this distribution can encode all the provided data in the best way possible.
We did not consider other approaches thoroughly enough, thinking that we had already
found a proper visual encoding. Only when incorporating the real prediction result data
during the implementation of the final prototype did we realise that the proposed solution
was mathematically incorrect and can lead to wrong interpretations. Since making big
changes in the late stages of a project is difficult, we continued to try to improve the
concept of showing the prediction in some kind of distribution chart. When discussing the
proposed alternatives with the domain experts, they gravitated towards using one of the
alternatives but none were completely content with it. If we had realised this oversight
sooner, we could have switched to an entirely different, and more fitting approach.

91

7. Conclusion

Other intriguing findings while reviewing the performed interviews include that it seems
that users are sometimes not interested in being provided with the most detailed in-
formation. It is often more important to them that what they are presented with is
easy to understand and to read. An example of that is the different LPD encodings we
presented in the early stages of the design process. The domain experts predominantly
favoured visualisations they were able to compare the fastest, even if they provided less
information than more sophisticated visualisations. They were mostly content with the
possibility to see the details of a prediction as a tooltip or in the main result view when
selecting the corresponding value. We think that this could be related to the nature of
the domain of event organisation. In other domains, like medical visualisation, we believe
that comparing details could be more important.

Additionally, we found that sometimes users do not like to read explanations or legends.
During the evaluations, it happened a few times that users were not able to interpret a
visualisation correctly. In these cases, they were so focused on the visualisation that it
did not occur to them to search for a guide outside of the immediate perimeters of the
visualisation. An example for that would be the FI bars proposed in Section 5.4.1. The
corresponding legend was placed on top of the input view. Users were not immediately
sure what this visualisation is supposed to show. Instead of looking at the legend, they
tried to find cues in the immediate surroundings, which include the feature name and
LPD information of feature values. Similarly, one user suggested during the evaluation
of the interactive prototype in Section 5.7, that the legend for the colour scale used for
encoding LPD information, should be present in every single feature input component.
We only show it in the result view and the user did not find it there when working with
the LPD information. In general, the feedback we got from the users leads us to the
assumption that if additional information, like legends, is needed to correctly interpret a
visualisation, it should be placed close to the visualisation.

We also found that as developers it is often hard to put ourselves in the position of
domain experts. Many of our hypotheses along the way were correct, but users also
disagreed with us, often using arguments that were not considered during the design
process. It is important to remember that some concepts or specifics of implementation
are only obvious to us as developers because we work with these on a day-to-day basis.
The same aspects could be completely obscure to experts in other domains. This is where
the user-centred design process provided us with a lot of help.

Even though user-centred design processes provide good guidelines and can help to avoid
wrong design choices, they do not guarantee perfect results and are also demanding
to perform correctly. We found it especially hard to be unbiased during the rounds of
evaluation. When developing numerous alternative solutions to a problem, a developer
often has preferences of their own. Sometimes these preferences are not related to the
perceived quality of the result, but rather to the implementation. Thus it can be difficult
to keep an open mind towards the opinions of the user while evaluating the proposed
solutions. Especially when performing interviews, one has to be mindful to not phrase
questions in a way that favours the solution that the interviewer prefers.

92

7.1. Discussion

As developers, we also need to be careful when proposing a feature to users that they
did not explicitly request but, in our opinion, can help solve their tasks. In this case, it
is important to early on explain the intentions the developers pursue in introducing this
feature. Otherwise, it can happen that users do not fully understand the proposed feature
and then are not able to give proper feedback on it. This happened in our work with
the case-based reasoning table, where only in the last round of evaluations we realised
that users would rather search for past similar events on their own instead of using
sophisticated methods to fetch them automatically. To avoid this pitfall, we suggest
conducting focus group meetings, or other qualitative evaluations, where the developers
present their idea and how they think it can beneficial for the users, maybe using a
first rudimentary prototype. It is important that there is an open discussion about the
proposed feature. The domain experts need to understand the idea behind the feature
and the developers need to listen carefully to the provided feedback.

In general, we think that employing a user-centred design process for developing the
EVEOS increased the quality of the final version of the system. It also seemed to raise the
investment of the domain experts in the project and they were always eager to provide
helpful and critical feedback. Because we did not have more than four participants in
each round of evaluation, it was difficult to get broad and diverse views on the proposed
system. We had to realise that firstly, qualitative evaluations are very time-consuming
and secondly, it is hard to find domain experts willing to invest their time into such
a process. This goes along with Seldmair et al.’s [67] work, where they describe the
difficulties of finding the right collaborators for design studies. Nonetheless, the users
provided us with constructive feedback and also criticism that helped us to gradually
improve the proposed EVEOS and develop a well rounded final system.

The main advantage the domain experts saw in using the proposed EVEOS over currently
used systems lies in the possibility to compare multiple parameter values and value
combinations using LPD information visualisations. The final feedback we got for
the data-type specific visual encodings and inputs was positive. The provided case-
based reasoning was especially intriguing to the domain experts. They reported that
it helps them get a new data-driven perspective on their existing domain knowledge.
Furthermore, they stated that they could evaluate the quality of the predictions using
case-based reasoning information. The domain experts also stated that they see great
potential in the proposed system when they want to organise novel events where the
existing domain knowledge is low. On the other hand, planning reoccurring events that
they already hosted multiple times, they would rather trust their existing knowledge. For
such events, they expressed great interest in the possibility to use an adjusted version of
the proposed system to optimize their marketing strategies. Since, most of the proposed
system components are model-agnostic and can be generalised, providing a system for
this use case can easily be done, as shown in Chapter 5.

93

7. Conclusion

The accuracy of the predictions for ground truth data was the main factor to the users
in deciding the usefulness of the whole system. Since their main concern for usability
was the performance of the ML model, which is not the main research part of this thesis,
the proposed EVEOS sufficiently satisfied the domain experts.

Except for the visualisation for the main result view, all of the proposed visual encodings
were designed to be model-agnostic. We, therefore, see big potential for the developed
concepts to be used in a general way. As we have shown by implementing a prototype
for creating marketing campaigns, the LPD and LPD summary encodings can be used
for data other than event-organisation data with only minor adjustments. We believe
that especially the proposed LPD encodings for categorical and date data can serve as
best practice examples for other works.

As discussed in Chapter 1, many state-of-the-art approaches to make ML models inter-
pretable are too complex for laypeople in the field of computer science. We believe that
employing a user-centred design approach, we managed to develop a system that for the
most part is simple enough to be used by domain experts in their corresponding field. As
discussed in this Section, for the domain of event organisation, the way to achieve this
was to keep the visual encodings as simple as possible, even if this means that detailed
information is lost. Using the well-known concept of details on demand, we enabled
the users to see the lost details in tooltips. We believe that for non-technical domains,
our proposed approach of keeping visual encodings simple can work well. Nonetheless,
we advise always performing a proper user and task analysis before starting the design
phase of a project so the needs of the users are precisely understood. Especially when
developers bring new ideas to the table, it is important to have early and open discussions
about the proposed ideas with the domain experts.

94

7.2. Summary

7.2 Summary
The main goal of this thesis was to develop an exploratory visual event-organisation
system (EVEOS) on top of an ML model that allows event organisers to find event
parameters that optimise their profits. Assuming our user group has no prerequisite
knowledge in the field of machine learning, we focussed on creating a system that is highly
interpretable and generates trust towards the users. During our extensive research (see
Chapter 2) in the field of machine learning interpretability, we found that the concepts of
what-if analysis and case-based reasoning are commonly used to solve this task. Both are
based on making different input and output combinations of ML model comparable. We
found that many state-of-the-art approaches have issues in making their system usable
for laypeople in the field of machine learning. Taking a closer look a previous work in the
field of HCI, we realised that employing a user-centred design process is often successful
in creating systems that have high usability. Following this process, described in Section
1.2, we developed the proposed EVEOS in three iterations, each consisting of design,
implementation and evaluation of a prototype. In Chapter 1, we defined a set of user and
research specific questions as well as tasks that an interpretable machine learning system
should be able to solve. In the following paragraphs, we describe how we addressed these
questions and tasks in this thesis.

When working with machine learning models in general, one needs to convey information
about prediction results in a comprehensive way (T1). The model we are employing tries
to predict multiple values for how many tickets will be sold for a given event parameter’s
input and provides a probability for each of these values. Additionally, we compute the
prediction occupancy rate from the capacity of the selected venue and the predicted
number of sold tickets, leaving us with a set of multiple triples that need to be visualised.
To do this, we proposed an area chart that uses a step curve to connect the distinct
prediction points (V1). The x-axis of the chart represents the number of sold tickets
and the y-axis the corresponding probability. The colour of the area beneath the step
curve encodes the occupancy rate. To highlight the prediction value with the highest
probability (Q1, Q2), a vertical line reaching down to the x-axis is added at its position.
Additionally, a textual legend presents detailed information about this prediction value.
The results of our evaluation revealed that users were able to quickly interpret the values
and semantics of the highlighted prediction value. On the other hand, we had to realise
that users struggled to describe the meaning of the rest of the presented data, leading
to the assumption that the proposed area chart is not suited for this task as well as we
thought.

We use the concept of what-if analysis to try to explain to users why the model
converts the current input to the presented output (T2). What-if analysis is based on
comparing predictions that result from multiple model inputs. In our research on how
this comparison can be done (V2), we found several works that use partial dependence
to solve this task [76, 66, 80]. Partial dependence is a model-agnostic approach, meaning
that the underlying ML model can be changed without affecting the implementation
of the comparison. Krause et al. [40] present an approach they call local partial

95

7. Conclusion

dependence (LPD) bar where they compare predictions resulting from changing only
a single numerical feature value on a colour coded bar, keeping the other values fixed.
Based on their approach, we develop LPD encodings for the distinct data types present in
the used data set. For categorical data, we propose an LPD prediction bar, showing the
prediction values with the highest probability using the bar size and colour to encode OR
and a textual cue to show NT . For numerical data, we employ Krause et al.’s [40] LPD
bar and propose a colour encoded date-picker for date-based features. To the best of our
knowledge, the LPD prediction bar for numerical features and the scented date-picker
are novel encodings to show LPD information.

Using these visual encodings, our evaluations showed that users were able to perform fast
and precise comparisons between the predictions for multiple values of a feature (Q3).
This way, users can achieve a better understanding of how the values of a feature influence
the prediction. Additionally, we show users the local quality of the currently selected
feature value by computing a summary of the LPD information and encoding it as arrow
glyphs (Q4). Using this visualisation, users were able to detect which features should be
changed and which parameters already had values that lead to a good prediction.

We found that if the comparisons provided by the LPD information in the input com-
ponents coincides with the expectations and domain knowledge of the users, their level
of trust in the predictions is positively influenced. Since this is not always the case, we
need to employ additional approaches to try to convince users of the accuracy of the
used model (T3). Researching this topic, we came across the concept of case-based
reasoning [80, 21]. Case-based reasoning uses ground truth input data and shows a
comparison between the prediction that is made and the known result. Employing this
concept, we provide the users with historical events that are similar to the current model
input in a table view. Using the proposed LPD prediction bar and the known event values,
users can validate the accuracy of the model (V3). During our evaluations, users stated
that if the predictions and the known values of historical events in general correspond,
their level of trust in the model increases. If this is not the case, their trust decreases,
which is reasonable and correct since this would mean that the model is not able to
perform correct predictions.

By doing three rounds of qualitative evaluation at different development stages, we tried
to design a system with high usability. In general, the results of these evaluation rounds
were positive. Especially in the early development stages, the feedback provided by the
domain experts guided us towards better results. In the final evaluation round, users
were satisfied with the proposed EVEOS stating that it provides them with opportunities
they do not have in their currently used systems.

96

7.3. Limitations and Future Work

7.3 Limitations and Future Work

During the evaluation of the proposed EVEOS, the interviewed domain experts pointed
out a few areas where improvements can be made. Additionally, they made suggestions
on how to increase the generality of the system.

When discussing multiple alternative approaches on how information can be encoded
with users, they never voted unanimously for the same approach. In general, there were
mostly two groups of users. One group preferred visualisations that provide a rich level of
detail and were often more complex to interpret. The other group favoured visualisations
that were fast and easy to interpret but had a reduced level of detail. In our work,
we decided to follow the preferences of the second group because they represented the
majority of users. To satisfy both groups, one could provide the possibility to switch
between a basic and an expert view of the system, providing both types of visualisations.

As discussed in Section 7.1, the final version of the proposed area chart for the main
result view did not completely satisfy the users. Even though they were able to interpret
the prediction value with the highest probability using the provided legend, the rest of
the chart was not understood completely. An alternative visual encoding that could
be used for this graph would be a bar chart. Each bar could represent an interval of
values that share the same probability, with the height of all bars summing up to 100%.
The width of the bar could be dependent on the interval size. This way, it would be
more readable than several value ranges are predicted instead of suggesting a continuous
probability distribution as we did in our proposed solution.

As discussed in Section 4.1, there are a lot of input parameters for the ML model that
directly depend on the user input for their parent parameters. In Figure 6.7a, we show
information about these dependent parameters using tooltips. A feature that could
enhance the interpretability of the LPD information of a parent parameter could be
to show the influence, the dependent parameters have on the prediction. An example
for this would be to compute what influence a date being on the weekend has on the
prediction. To do this, one could employ the feature importance approach by Strumbelj
and Kononenko [71]. The feature importance value could be added to the proposed
tooltips.

In Section 5.4.2, we present a Select Best Value button for categorical feature input
components. It selects the best of the currently visible samples. When implementing this
functionality, we did not consider that for features that are connected to a filter, there
usually are more available options than the currently visible ones. In this case, we think
it would be helpful to the users to be able to select the best option that fits the current
filter input instead of just the best visible option. This would also help users in escaping
the local maximum of the currently visible options, especially when the filter returns a
large number of options.

The domain experts also pointed out that they would like to be able to manipulate
the selection of similar events in the course of the case-based reasoning analysis. Right

97

7. Conclusion

now, they are only able to press a button that automatically fetches events from the
database according to a pre-set filter. Future work to improve the handling of this process
could include providing a filter where users can select criteria to choose similar events.
Alternatively, a simple search by event name could be implemented to search for specific
events that the users would want to evaluate. Additionally, we think it could be helpful to
the users to show a measurement of similarity between the fetched events and the current
input. According to this measurement, similar events could also be initially sorted when
they are fetched from the database.

Since the work of this thesis was focussed primarily on the front-end implementation
of the EVEOS, there are some areas of the back-end and ML model implementation
that can be further improved. One additional feature that was suggested by domain
experts was that the model should consider how many tickets were already sold in their
prediction when analysing events where the ticket sales already started.

The mentioned suggestions and current limitations show that is still room for improvement
in our work. Nonetheless, the results of our evaluations show that we successfully provided
our target user group with a system that provides them with possibilities they did not
have before. The proposed exploratory visual event-organisation system could be a
further step in introducing machine learning into various other domains. Evaluations
with experts from these domains would be necessary to confirm this hypothesis.

98

List of Figures

1.1 Design Timeline. 5

2.1 Design triangle showing the major factors that need to be considered when
designing interactive visual analytics methods. From Miksch and Aigner [48]. 8

2.2 Visualisation design cycle . 9
2.3 Nested model for visualisation creation by Munzner [51]. 10
2.4 Human centred design cycle . 12
2.5 Elapsed Solution Time (TEL) against the SRT. The tasks were solved with

set SRTs of 0.16, 0.72 and 1.49 seconds. [28] 14
2.6 The different loading symbols tested by Kim et al. [37]. 16
2.7 Partial Dependence (PD) plots comparing two ML models. Top: categorical

PD plot. Bottom: numerical PD plot. [76] 18
2.8 A partial dependence plot encoded as partial dependence bar. The values are

colour-coded [40]. 19
2.9 Scent encodings supported by the work by Willet et al. [77]. 20
2.10 Algorithms by Strumbelj and Kononenko [71] to compute local and global

feature importance. 21
2.11 ICE plots . 23

3.1 Categorisation of the used data types. 26
3.2 Selection of training data histograms grouped by events. 27
3.3 PCA of numerical features a) colour coding according to the artist popularity

and b) according to the venue capacity. 28
3.4 MDS using Gower’s distance with different colour codings. a), c), d) encode

categorical features. b) encodes a numerical feature. The line in a) and the
ellipses in b), c), d) show clusters of interest. 29

3.5 t-SNE using Gower’s distance with different colour codings. a), b), c), d), f)
encode categorical features, e) encodes a numerical feature. The ellipses in a),
b) show clusters of interest. 30

3.6 Stages of the model training pipeline. 31
3.7 Data-transformation of the encoding process using dummy data. 32
3.8 Computation of value probabilities. 33

4.1 Data Categorisation by input parameters. 36

99

4.2 First general layout. 38
4.3 First prototypes of prediction result views. 40
4.4 Sketches of visual encodings for different data types. 42
4.5 Alternative visualisations for categorical partial dependence information and

feature importance. 44
4.6 Date input using a calendar and colouring the fields according to the prediction

value. 45

5.1 Layout Overviews . 50
5.2 Diagram of front-end architecture. 52
5.3 Vue.js data watcher pipeline. Components are re-rendered on change. [11] 53
5.4 Abstract event flow on input change. 53
5.5 Main prediction result views . 55
5.6 Perceived lightness of the rainbow (top) and the cube law rainbow (bottom)

[54]. 56
5.7 Feature importance encodings. 59
5.8 Different input types for categorical features. 60
5.9 Numerical Input. Local partial dependence bar for budget 62
5.10 Filterable Date Input. 63
5.11 Interaction History Table. 64
5.12 Similar Events Table. 65

6.1 Overview EVEOS for event organisation. 72
6.2 Diagram of final architecture. 73
6.3 Initial Input Modal Event . 74
6.4 Data-mapping of the main data object. 75
6.5 Data-mapping of the prediction result. 76
6.6 Main prediction result views using different curve interpolations of D3.js [3]. 78
6.7 Tooltips and comparison between using NT or OR as primary value in the

LPD prediction bar. 79
6.8 Arrow-glyph legend for LPD summary encoding. 81
6.9 Filterable Date Input. 82
6.10 Categorical inputs with filters. 83
6.11 Interaction history table . 85
6.12 Case-based reasoning table . 85
6.13 Final version of the proposed exploratory visual event-organisation system. 90

100

List of Tables

3.1 Performance measurements of the ML API in milliseconds. 34

5.1 Evaluation Results . 68

101

Glossary

API application programming interface. 6, 15, 16, 25, 32–34, 53, 64, 65, 71, 74–76, 101

CBR case-based reasoning. 65, 66

DNN deep neural network. 6, 25, 32, 35, 37

EVEOS exploratory visual event organisation system. 1, 3–6, 11, 12, 25, 35, 37, 49, 51,
53, 66, 70–73, 75, 76, 84, 86, 87, 89, 91, 93–98, 100

FI feature importance or influence. 41, 45–48, 51, 52, 54, 58, 59, 66, 68–71, 73, 74, 80,
92

HCI human-computer interaction. 13, 95

IC input component. 51–54

ICE individual conditional expectation. 22, 23, 99

ISO international organization for standardization. 7

k-NN k-nearest neighbours. 24

LPD local partial dependence. 19, 20, 36, 37, 41–48, 51, 52, 54, 57–68, 70, 71, 73–77,
79–81, 83, 86–88, 92–94, 96, 97, 100

MDS multidimensional scaling. 28–31, 99

ML machine learning. xi, xiii, 1–4, 6–8, 11–13, 17, 18, 20, 26, 27, 31, 32, 34, 35, 37, 39,
41, 46, 52–54, 58, 62, 65, 71, 77, 87, 89, 94, 95, 97–99, 101

NN neural network. 3, 22, 24

NT predicted number of sold tickets. 37, 39, 41, 43, 47, 51, 55, 58, 61, 77, 79, 83, 88, 96,
100

103

OR predicted venue occupancy rate. 37, 39, 41, 43, 44, 47, 51, 55–58, 61, 62, 67, 77, 79,
83, 88, 96, 100

PC personal computer. 37

PCA principal component analysis. 28, 29, 99

PD partial dependence. 17, 18, 22, 23, 99

PP probability of predicted value. 37, 39, 41, 43, 44, 46, 47, 51, 55, 57, 61, 67, 76, 77,
86, 87

RAM random access memory. 30

SRT system response time. 14, 99

t-SNE t-distributed stochastic neighbour embedding. 28–31, 99

UI user interface. 7, 15

104

Bibliography

[1] Absolut Ticket GmbH. https://www.absolut-ticket.at/. Accessed: 2021-
08-22.

[2] Broj 42 gitlab group: Vue Customizable Datepicker. https://gitlab.com/
broj42/vue-customizable-datepicker. Accessed: 2021-08-22.

[3] D3 Curves. https://github.com/d3/d3-shape#curves. Accessed: 2021-08-
22.

[4] D3.js. https://d3js.org/. Accessed: 2020-10-26.

[5] Flask. https://flask.palletsprojects.com/en/2.0.x/. Accessed: 2021-
08-22.

[6] Keras. https://keras.io/. Accessed: 2021-08-22.

[7] Numpy. https://numpy.org/. Accessed: 2021-08-22.

[8] Plotly. https://plotly.com/. Accessed: 2021-08-22.

[9] Symfony. https://symfony.com/. Accessed: 2020-10-26.

[10] Vue.js. https://vuejs.org/. Accessed: 2021-08-22.

[11] Vue.js: Reactivity in Depth. https://vuejs.org/v2/guide/reactivity.
html. Accessed: 2021-08-22.

[12] Vue.js: Slots. https://vuejs.org/v2/guide/components-slots.html.
Accessed: 2021-08-22.

[13] Vuetify: Data tables. https://vuetifyjs.com/en/components/
data-tables/. Accessed: 2021-08-22.

[14] H. Abdi and L. J. Williams. Principal component analysis. Wiley interdisciplinary
reviews: computational statistics, 2(4):433–459, 2010.

[15] J. L. Bennett. Managing to meet usability requirements: establishing and meeting
software development goals. Visual Display Terminals, Prentice-Hall, pages 161–184,
1984.

105

https://www.absolut-ticket.at/
https://gitlab.com/broj42/vue-customizable-datepicker
https://gitlab.com/broj42/vue-customizable-datepicker
https://github.com/d3/d3-shape#curves
https://d3js.org/
 https://flask.palletsprojects.com/en/2.0.x/
https://keras.io/
https://numpy.org/
https://plotly.com/
https://symfony.com/
https://vuejs.org/
https://vuejs.org/v2/guide/reactivity.html
https://vuejs.org/v2/guide/reactivity.html
https://vuejs.org/v2/guide/components-slots.html
https://vuetifyjs.com/en/components/data-tables/
https://vuetifyjs.com/en/components/data-tables/

[16] D. Benyon, P. Turner, and S. Turner. Designing interactive systems: People,
activities, contexts, technologies. Pearson Education, 2005.

[17] H. Bergman, A. Brinkman, and H. S. Koelega. System response time and problem
solving behavior. In Proceedings of the Human Factors Society Annual Meeting,
volume 25, pages 749–753. SAGE Publications Sage CA: Los Angeles, CA, 1981.

[18] I. Borg and P. J. Groenen. Modern multidimensional scaling: Theory and applications.
Springer Science & Business Media, 2005.

[19] D. Borland and R. M. Taylor II. Rainbow color map (still) considered harmful.
IEEE Computer Architecture Letters, 27(02):14–17, 2007.

[20] J. M. Carroll and M. B. Rosson. Usability specifications as tool in iterative develop-
ment. Technical report, IBM Thomas J Watson Research Center Yorktown Heights
NY, 1984.

[21] R. Caruana, H. Kangarloo, J. D. Dionisio, U. Sinha, and D. Johnson. Case-based
explanation of non-case-based learning methods. Proceedings / AMIA ... Annual
Symposium. AMIA Symposium, pages 212–215, 1999.

[22] A. Divyanshu. Gower’s Distance. https://medium.com/analytics-vidhya/
gowers-distance-899f9c4bd553. Accessed: 2021-08-22.

[23] F. Doshi-Velez and B. Kim. Towards a rigorous science of interpretable machine
learning. arXiv preprint arXiv:1702.08608, 2017.

[24] O. J. Espinosa, C. Hendrickson, and J. Garrett. Domain analysis: a technique to
design a user-centered visualization framework. In Proceedings 1999 IEEE Symposium
on Information Visualization (InfoVis’ 99), pages 44–52. IEEE, 1999.

[25] D. Fallman. Design-oriented human-computer interaction. In Proceedings of the
SIGCHI conference on Human factors in computing systems, pages 225–232, 2003.

[26] J. H. Friedman. Greedy function approximation: a gradient boosting machine.
Annals of statistics, pages 1189–1232, 2001.

[27] A. Goldstein, A. Kapelner, J. Bleich, and E. Pitkin. Peeking inside the black
box: Visualizing statistical learning with plots of individual conditional expectation.
Journal of Computational and Graphical Statistics, 24(1):44–65, 2015.

[28] T. Goodman and R. Spence. The effect of system response time on interactive
computer aided problem solving. ACM SIGGRAPH Computer Graphics, 12(3):100–
104, 1978.

[29] J. Gower. Illustration of a new technique for comparing different distance analyses.
In American Journal of Physical Anthropology, volume 35, page 280. Wiley-Liss div
John Wiley & Sons Inc, 605 Third Ave, New York, NY 10158-0012, 1971.

106

https://medium.com/analytics-vidhya/gowers-distance-899f9c4bd553
https://medium.com/analytics-vidhya/gowers-distance-899f9c4bd553

[30] M. Graham, J. Kennedy, and D. Benyon. Towards a methodology for developing
visualizations. International Journal of Human-Computer Studies, 53(5):789–807,
2000.

[31] M. Grossberg, R. A. Wiesen, and D. B. Yntema. An experiment on problem
solving with delayed computer responses. IEEE Transactions on Systems, Man, and
Cybernetics, (3):219–222, 1976.

[32] F. Hohman and M. Kahng. Visual Analytics in Deep Learning : An Interrogative
Survey for the Next Frontiers. IEEE Transactions on Visualization and Computer
Graphics, 25(8):2674–2693, 2019.

[33] ISO. Iso 13407: Human-centered design processes for interactive systems, 1998.

[34] ISO. Iso 9241: Ergonomic requirements for office work with visual display terminals
(vdts) - part 11: Guidance on usability, 1998.

[35] J. Johnson and J. Jeff. GUI bloopers: don’ts and do’s for software developers and
Web designers. Morgan Kaufmann, 2000.

[36] B. Kim. Interactive and interpretable machine learning models for human machine
collaboration. PhD thesis, Massachusetts Institute of Technology, 2015.

[37] W. Kim, S. Xiong, and Z. Liang. Effect of loading symbol of online video on
perception of waiting time. International Journal of Human–Computer Interaction,
33(12):1001–1009, 2017.

[38] G. Kindlmann, E. Reinhard, and S. Creem. Face-based luminance matching for
perceptual colormap generation. In IEEE Visualization, 2002. VIS 2002., pages
299–306. IEEE, 2002.

[39] P. Kovesi. Good colour maps: How to design them. arXiv preprint arXiv:1509.03700,
2015.

[40] J. Krause, A. Perer, and K. Ng. Interacting with predictions: Visual inspection of
black-box machine learning models. Conference on Human Factors in Computing
Systems - Proceedings, pages 5686–5697, 2016.

[41] O. Kulyk, R. Kosara, J. Urquiza, and I. Wassink. Human-Centered Aspects, pages
13–75. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[42] S. Lauesen. User interface design: a software engineering perspective. Pearson
Education, 2005.

[43] A. Light and P. J. Bartlein. The end of the rainbow? color schemes for improved
data graphics. Eos, Transactions American Geophysical Union, 85(40):385–391,
2004.

107

[44] B. Y. Lim. Improving understanding and trust with intelligibility in context-aware
applications. PhD thesis, Carnegie Mellon University, 2012.

[45] Z. C. Lipton. The mythos of model interpretability. Queue, 16(3):31–57, 2018.

[46] Z. C. Lipton. The mythos of model interpretability: In machine learning, the concept
of interpretability is both important and slippery. Queue, 16(3):1–28, 2018.

[47] D. J. Mayhew. The usability engineering lifecycle. In CHI’99 Extended Abstracts on
Human Factors in Computing Systems, pages 147–148, 1999.

[48] S. Miksch and W. Aigner. A matter of time: Applying a data–users–tasks design
triangle to visual analytics of time-oriented data. Computers & Graphics, 38:286–290,
2014.

[49] R. B. Miller. Response time in man-computer conversational transactions. In
Proceedings of the December 9-11, 1968, fall joint computer conference, part I, pages
267–277, 1968.

[50] D. L. Morgan. Focus groups as qualitative research, volume 16. Sage publications,
1996.

[51] T. Munzner. A nested model for visualization design and validation. IEEE transac-
tions on visualization and computer graphics, 15(6):921–928, 2009.

[52] T. Munzner. Visualization analysis and design. CRC press, 2014.

[53] B. A. Myers. The importance of percent-done progress indicators for computer-
human interfaces. ACM SIGCHI Bulletin, 16(4):11–17, 1985.

[54] M. Niccoli. Perceptual rainbow palette – the
method. https://mycarta.wordpress.com/2013/02/21/
perceptual-rainbow-palette-the-method/. Accessed: 2021-08-22.

[55] M. Niccoli. The rainbow is dead. . . long live the rainbow! –
The rainbow is dead. . . long live the rainbow! – Perceptual
palettes, part 3. https://mycarta.wordpress.com/2012/10/06/
the-rainbow-is-deadlong-live-the-rainbow-part-3/. Accessed:
2021-08-22.

[56] J. Nielsen. Response times: The 3 important limits. https://www.nngroup.
com/articles/response-times-3-important-limits/, 1993. Accessed:
2021-08-19.

[57] J. Nielsen. Usability engineering. Morgan Kaufmann, 1994.

[58] J. Nielsen. Website response times. https://www.nngroup.com/articles/
website-response-times/, 2010. Accessed: 2021-08-19.

108

https://mycarta.wordpress.com/2013/02/21/perceptual-rainbow-palette-the-method/
https://mycarta.wordpress.com/2013/02/21/perceptual-rainbow-palette-the-method/
https://mycarta.wordpress.com/2012/10/06/the-rainbow-is-deadlong-live-the-rainbow-part-3/
https://mycarta.wordpress.com/2012/10/06/the-rainbow-is-deadlong-live-the-rainbow-part-3/
https://www.nngroup.com/articles/response-times-3-important-limits/
https://www.nngroup.com/articles/response-times-3-important-limits/
https://www.nngroup.com/articles/website-response-times/
https://www.nngroup.com/articles/website-response-times/

[59] S. Pajer, M. Streit, T. Torsney-Weir, F. Spechtenhauser, T. Möller, and H. Piringer.
WeightLifter: Visual Weight Space Exploration for Multi-Criteria Decision Making.
IEEE Transactions on Visualization and Computer Graphics, 23(1):611–620, 2017.

[60] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[61] L. E. Peterson. K-nearest neighbor. Scholarpedia, 4(2):1883, 2009.

[62] W. Quesenbery. The five dimensions of usability. In Content and complexity, pages
93–114. Routledge, 2014.

[63] M. T. Ribeiro, S. Singh, and C. Guestrin. " why should i trust you?" explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, pages 1135–1144, 2016.

[64] M. T. Ribeiro, S. Singh, and C. Guestrin. Model-agnostic interpretability of machine
learning. arXiv preprint arXiv:1606.05386, 2016.

[65] B. E. Rogowitz and L. A. Treinish. Data visualization: the end of the rainbow.
IEEE spectrum, 35(12):52–59, 1998.

[66] M. Sedlmair, C. Heinzl, S. Bruckner, H. Piringer, and T. Moller. Visual parameter
space analysis: A conceptual framework. IEEE Transactions on Visualization and
Computer Graphics, 20(12):2161–2170, 2014.

[67] M. Sedlmair, M. Meyer, and T. Munzner. Design study methodology: Reflections
from the trenches and the stacks. IEEE transactions on visualization and computer
graphics, 18(12):2431–2440, 2012.

[68] B. Shneiderman. Response time and display rate in human performance with
computers. ACM Computing Surveys (CSUR), 16(3):265–285, 1984.

[69] B. Shneiderman, C. Plaisant, M. S. Cohen, S. Jacobs, N. Elmqvist, and N. Diakopou-
los. Designing the user interface: strategies for effective human-computer interaction.
Pearson, 2016.

[70] D. Stone, C. Jarrett, M. Woodroffe, and S. Minocha. User interface design and
evaluation. Elsevier, 2005.

[71] E. Štrumbelj and I. Kononenko. A general method for visualizing and explaining
black-box regression models. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6594
LNCS(PART 2):21–30, 2011.

109

[72] M. Tory and T. Moller. Rethinking visualization: A high-level taxonomy. In IEEE
symposium on information visualization, pages 151–158. IEEE, 2004.

[73] L. Van der Maaten and G. Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

[74] S. Weinberg. Learning effectiveness: The impact of response time. In Proceedings of
the Joint Conference on Easier and More Productive Use of Computer Systems.(Part-
II): Human Interface and the User Interface-Volume 1981, page 140, 1981.

[75] S. M. Weiss, G. Boggs, M. Lehto, S. Shodja, and D. J. Martin. Computer system
response time and psychophysiological stress ii. In Proceedings of the Human Factors
Society Annual Meeting, volume 26, pages 698–702. SAGE Publications Sage CA:
Los Angeles, CA, 1982.

[76] J. Wexler, M. Pushkarna, T. Bolukbasi, M. Wattenberg, F. Viegas, and J. Wilson.
The what-if tool: Interactive probing of machine learning models. IEEE Transactions
on Visualization and Computer Graphics, 26(1):56–65, 2020.

[77] W. Willett, J. Heer, and M. Agrawala. Scented widgets: Improving navigation cues
with embedded visualizations. IEEE Transactions on Visualization and Computer
Graphics, 13(6):1129–1136, 2007.

[78] E. Winter. The shapley value. Handbook of game theory with economic applications,
3:2025–2054, 2002.

[79] J. Zhang, K. A. Johnson, J. T. Malin, and J. W. Smith. Human-centered information
visualization. In International workshop on dynamic visualizations and learning,
Tubingen, Germany. Citeseer, 2002.

[80] Q. Zhao and T. Hastie. Causal Interpretations of Black-Box Models. Journal of
business & economic statistics: a publication of the American Statistical Association:
Duplicate, marked for deletion, 2019.

110

	Kurzfassung
	Abstract
	Contents
	Introduction
	Aim of the Thesis
	Methodological Approach
	Outline

	Background and Related Work
	User-Centred Design
	Interacting with User Interfaces
	Machine Learning Model Analysis and Interpretability

	Predictive Machine Learning
	Data
	Data Exploration
	Model Training Pipeline
	Model API

	Paper Prototype
	Data Types
	General Layout
	Result View
	Input View
	Evaluation

	Interactive Prototype
	General Layout
	Implementation
	Result View
	Input View
	Interaction History
	Case-based Reasoning Table
	Evaluation

	Final Prototype
	General Layout
	Model API
	Result View
	Input View
	Interaction History
	Case-based Reasoning Table
	Evaluation

	Conclusion
	Discussion
	Summary
	Limitations and Future Work

	List of Figures
	List of Tables
	Glossary
	Bibliography

