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Exploiting A Priori Information for Filtering Monte
Carlo Renderings

Hiroyuki Sakai∗† Károly Zsolnai∗‡ Thomas Auzinger§ Michael Wimmer¶

Figure 1: Our noise filtering framework is capable of rapidly denoising images rendered with a low
number of samples (2 spp in this example), even in the presence of high-resolution geometry and multiple
refractive materials. Our techniques are compatible with all common high-dimensional filters.

Abstract

Monte Carlo rendering techniques are capable of
rendering photorealistic images by performing ex-
haustive stochastic sampling for each pixel but
suffer from objectionable noise at low sampling
rates. A possible way to mitigate this problem is
to perform high-dimensional filtering on the ren-
dered image. The effectiveness of this approach is
highly dependent on secondary information regard-
ing both the image structure (given as so-called
feature buffers) and the recorded noise. Previous
approaches commonly use positions and normals
as secondary information, and determine the local
noise empirically based on the obtained samples. In
this work, we propose to take a priori information in
the form of scene material descriptions into consid-
eration. We introduce a noise-estimation technique
and a novel feature buffer, based on surface albedos
to assist the noise filtering process based on this
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a priori information. We present an implementa-
tion of our method as an extension of the adaptive
manifold filter and demonstrate the capabilities of
our system by effectively denoising highly under-
sampled scenes with multiple refractive and reflec-
tive materials as well as high-resolution geometry
and textures in only a few seconds.

1 Introduction

The synthesis of photorealistic images has always
been a major challenge in computer graphics, and
rendering methods based on Monte Carlo (MC) in-
tegration have proven to be particularly useful for
this task. However, this approach is susceptible to
objectionable noise inherent to stochastic sampling
and consequently, a substantial amount of samples
and computation time is necessary to generate sat-
isfactory results. A large body of research exists on
how to mitigate MC noise and thus to speed up the
rendering process by harnessing the power of filter-
ing algorithms. Rendering methods that take sam-
ples in a per-pixel fashion, such as path tracing [Ka-
jiya 1986b] or bidirectional path tracing [Lafortune
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and Willems 1993], can profit greatly from the vast
amount of noise-reduction algorithms used in the
image processing and computer vision communities.
The most promising approaches incorporate auxil-
iary information from the renderer in the form of
feature buffers to perform high-dimensional filter-
ing. Common choices for feature buffers are 3D po-
sitions, shading normals, texture colors or depths
saved during the rendering process. They are suit-
able for guiding the filter to avoid the oversmooth-
ing of legitimate features, as they generally exhibit
a high correlation to the true output image. How-
ever, most auxiliary information sources rely on ad
hoc decisions whereas we present a novel feature
buffer based on a mathematical analysis of the fil-
tering process (Section 4). This analysis enables
insights about desirable feature buffer properties,
leading to the utilization of surface albedos and a
recursive evaluation strategy.
Accurate noise estimates are required for this pur-
pose, but cannot be trivially attained. The reason
is that not only the per-pixel radiance samples are
subject to noise, but also their variance, and thus
sample variance is not a reliable estimate for noise.
Still, many previous works rely solely on empiri-
cal information obtained by sampling, whereas our
approach proposes the inclusion of a priori informa-
tion (Section 6). This enables more reliable noise
estimates at low sampling rates and our approach
allows certain aspects of the radiance variance to be
precomputed.
Our main contributions are the following:

• A novel feature buffer deduced from a mathe-
matical investigation of desirable feature-buffer
properties (Section 4). We sample albedo val-
ues from the scene materials during path trac-
ing. For each path, we store the albedo value
of the first encountered material which is ex-
pected to introduce noise. This provides ad-
ditional edge information for the filtering pro-
cess, which can be used to significantly reduce
the oversmoothing effect of all common high-
dimensional filters. We show how to incorpo-
rate empirical information of the radiance sam-
ple to achieve consistency of our approach. Ad-
ditionally, different filter capabilities are sup-
ported (Section 5).

• A new noise-estimation technique that in-
corporates a priori knowledge on the scene ma-
terials (Section 6) and builds the conceptual
basis for the aforementioned contributions. We

demonstrate that this approach outperforms
purely empirical techniques at low sampling
rates and generates only a minimal runtime
overhead. This is accomplished by means of
variance fusion, which combines the merits of
both our a priori and an empirical variance es-
timate.

• A practical implementation of the aforemen-
tioned methods in a noise-reduction frame-
work and its evaluation on a variety of noise
filtering scenarios, including MC renderings of
a range of different materials with very low per-
pixel sample counts in the range of 2-8 samples
(Figure 1 and Section 7).

2 Related Work

We present a brief overview of existing noise-
removal techniques for photorealistic rendering,
mainly focusing on filters using auxiliary informa-
tion and noise estimation. A general overview can
be found in a recent survey on MC noise filter-
ing [Zwicker et al. 2015]. We also provide a brief
overview on the basics of high-dimensional filtering
in Section 1.1 of the supplementary document.

Early efforts by McCool [1999] led to an approach
based on anisotropic diffusion, where filtering is
adapted to depth and normal information. More re-
cently, Dammertz et al. [2010] proposed the usage of
an edge-avoiding À-Trous wavelet transform incor-
porating positions and normals. Their approach is
susceptible to ringing artifacts and the filter support
is inherently constrained, making it difficult to filter
intricate details adequately. Bauszat et al. [2011]
developed an approach where only the indirect illu-
mination component is filtered by the guided image
filter [He et al. 2010]. This method incorporates
depth and normal information. The mentioned ap-
proaches solely rely on geometric information for
filtering, which ultimately leads to oversmoothed
features in complex scenes since geometric informa-
tion fails to capture many light transport effects,
such as varying reflectance behaviors, shadows or
caustics.

Sen and Darabi’s random parameter filtering
(RPF) [2012] respects the random numbers used for
MC integration to determine filter weights and in-
corporates positions, shading normals and texture
colors. The approach is constrained by high mem-
ory consumption as each sample needs to be stored



3

individually. Park et al. [2013] proposed an exten-
sion to RPF whose complexity is independent from
the number of samples.

Li et al. [2012] and Rousselle et al. [2013] presented
techniques where a MC image undergoes multiple
filtering processes with varying parameters incorpo-
rating depth, normal and texture information. The
approach by Rousselle et al. additionally utilizes a
prefiltered direct illumination buffer and a caustic
buffer. Both approaches generate the final image by
estimating the error for each pixel in each filtered
image using SURE [Stein 1981] and combining the
pixels with the lowest estimated noise.

Moon et al. [2013] presented an approach based on
non-local means filtering and a virtual flash image
(VFL), much in the spirit of noise reduction meth-
ods for photographs using flash images [Eisemann
and Durand 2004; Petschnigg et al. 2004]. The VFL
is supposed to be a replacement for all common fea-
ture buffer choices, however, it might be devoid of
particular edges under specific circumstances. In
a later publication, Moon et al. [2014] proposed an
approach where locally optimal filtering parameters
are automatically chosen by considering reconstruc-
tion errors for each pixel. The filtering is accom-
plished through weighted local regression incorpo-
rating depth, normal and texture information. Sim-
ilarly, Kalantari et al. [2015] propose the utilization
of machine-learning techniques to find optimal fil-
tering parameters.

RPF techniques [Sen and Darabi 2012; Park et al.
2013] and SURE-based filtering [Li et al. 2012] re-
quire a substantial amount of computation time,
i.e., in the order of minutes, to denoise high-
resolution (full HD) images. For parallelizable tech-
niques implemented on the GPU [Rousselle et al.
2013; Moon et al. 2014; Kalantari et al. 2015], im-
proved denoising times in the order of tens of sec-
onds were reported. Even faster GPU techniques
include the approach by Moon et al. [2013], which
requires a few seconds to denoise a 1280 × 960 im-
age, and the techniques by Dammertz et al. [2010]
and Bauszat et al. [2011], which are reported as
interactive. They suffer from the aforementioned
qualitative limitations, however.

Noise-estimation approaches are generally based
on empirically evaluating the MC sample vari-
ance [Rushmeier and Ward 1994; McCool 1999;
Rousselle et al. 2012; Kalantari and Sen 2013]. An
inherent problem of such approaches is that the
variance estimates themselves suffer from noise at

low sampling rates, just like the MC estimate it-
self. In this paper, we present a novel alternative to
purely empirical techniques to provide reliable esti-
mates at low sample counts. We note that estimat-
ing the error introduced by the filtering process [Li
et al. 2012; Rousselle et al. 2013; Moon et al. 2014]
is orthogonal to estimating the variance of MC sam-
ples.

All mentioned techniques, including the state-of-
the-art, are primarily concerned with denoising
quality with computational efficiency being a sec-
ondary goal. In this paper, our foremost concern
is the applicability for rendering scenarios, where
most of the resources should be available for the
light transport simulation, e.g., interactive Monte
Carlo rendering. Thus, we provide lightweight tech-
niques that integrate into the path tracing process
and cause only a minimal overhead when compared
to common high-dimensional filter strategies.

3 Overview

General high-dimensional MC noise filtering takes
the per-pixel samples at each image location and
its neighborhood as well as secondary information
into account and tries to infer from them i) how
much noise is present at the given location; ii) which
samples are good estimates for the pixel color; and,
finally, iii) a filtered color value that exhibits as
little noise as possible.

We follow the same scheme and give an overview
of our denoising framework in Figure 2: the filter
takes as input a potentially undersampled and con-
sequently noisy rendering from the renderer and re-
lies on additional information to evaluate the afore-
mentioned items i) and ii). A novel feature buffer
augments well-known noise-free feature buffers such
as depths and normals by material-specific infor-
mation and determines which samples are suitable
candidates for inclusion in the filtering process (see
Section 4). Depending on the capabilities of the
underlying high-dimensional filter, noise estimates
are used to either determine spatially varying kernel
sizes or per-pixel blending weights (see Section 5).
As a basis for these methods, accurate noise esti-
mates are required. For this, we extend conven-
tional methods that empirically determine the per-
tile variance of the sample in a local tile by a novel
per-pixel BSDF variance estimate (see Section 6)
that takes the properties of the materials along the
respective light paths into account, which yields a
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Figure 2: An overview of our noise reduction frame-
work. The renderer generates the noisy rendering
which is filtered with respect to the noise-free fea-
ture buffers and our novel per-pixel error estimate.
The blending stage combines unfiltered and filtered
pixels according to the error estimate. It is, how-
ever, superfluous if the filter is capable of adaptive
kernel sizes.

more faithful per-pixel error estimate. The gamma-
corrected filtered image constitutes our output, and
an evaluation of our framework is given in Sec-
tion 7.

4 A Priori Information for Fea-
ture Buffers

Most high-dimensional filters rely on feature buffers
to guide their filtering behavior. Common choices
are 3D positions [Kalantari et al. 2015; Sen and
Darabi 2012] or depths, shading normals, and tex-
tures [Moon et al. 2014; Rousselle et al. 2013].
Other more complex variants include direct illu-
mination and caustic information [Rousselle et al.
2013], which need to be filtered themselves. This
secondary information gives vital cues on where
edges in the final images are potentially located
(e.g., at object silhouettes) and prevents the filter
from smoothing across image regions with signifi-
cantly different characteristics.
While most of the aforementioned works design
such feature buffers in an ad hoc fashion and val-
idate them experimentally, we take the opposite

(a) Input (b) Gaussian filter

(c) [Gastal and Oliveira 2012] (d) Ours

Figure 3: Ideally, the method noise for a particular
noise reduction technique should only contain un-
wanted noise while being devoid of any legitimate
image structures. The method noise images above
demonstrate that our approach is particularly effec-
tive in preserving legitimate image information.

route. In the following section, we mathematically
evaluate the denoising capabilities of general feature
buffers and derive a description of what constitutes
promising candidates. Based on this knowledge, we
then introduce the albedo map as a novel feature
buffer that also takes material properties along re-
flected and refracted light paths into account (see
Section 4.1).

4.1 Method Noise of Feature Buffers

In this section, we investigate the denoising prop-
erties of general feature buffers by looking at the
method noise qF [Buades et al. 2005] of a filter F
applied on an image g given as

qF(x) = g(x)− Fg(x), (1)

where Fg(x) denotes the result of applying the fil-
ter F to g at a position x ∈ Rd. The method noise
describes the local image changes caused by the fil-
tering process. For a perfect (and generally unob-
tainable) filter, it would contain only the noise that
should be removed from the image g. Note that the
calculations in this section are valid for arbitrary
signals g and conducted in the continuous domain
for simplicity.
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Figure 4: The blurring and sharpening properties of
a cross bilateral filter as a function of the gradient
magnitudes of the feature buffer given by (3).

For realistic images and filters, it is generally not
possible to develop a closed-form expression of the
corresponding method noise. However, a descrip-
tion based on a local Taylor-series expansion is suf-
ficient for our purposes and we give as an introduc-
tory example the method noise of the well-known
Gaussian filter G as [Lindenbaum et al. 1994]

qG(x) = g(x)−Gg(x) = −σ2∇2g(x) + o(σ2), (2)

where σ denotes the width of the Gaussian filter in
terms of its standard deviation, and σ is assumed
to be small enough. The Gaussian method noise is
thus zero on harmonic (i.e., flat) parts of the image
and very large near edges or textures, where the
Laplacian is expected to be large. This behavior
leads to significant blurring of important features,
which is evident from the presence of structured
image information in the method noise examples in
Figure 3.

Method noise of cross bilateral filter. Using
a more refined filter definition, our goal in the fol-
lowing is to match the actual noise in an image as
faithfully as possible with the filter’s method noise.
To this end, we develop a feature buffer that shows
this desired characteristic when used with a com-
mon filtering approach. Like most high-dimensional
filtering approaches [He et al. 2010; Petschnigg et al.
2004], we use a cross bilateral filter CBL as the basic
filtering methodology and denote its spatial width

as τ . For simplicity, we calculate the method noise
of the CBL with a feature buffer h in 1D:

qCBL(x) = g(x)− CBLg(x) '

− τ2
(
u
(
κ h′(x)

) g′(x)

h′(x)
h′′(x)︸ ︷︷ ︸

I

+ v
(
κ h′(x)

)
g′′(x)︸ ︷︷ ︸

II

)
+ o(τ2) (3)

with a constant κ depending on the filter parame-
ters. A derivation of this expression can be found
in Appendix A, and an illustration of the function u
and v is provided in Figure 4. Several insights into
the nature of the sought feature buffer can be ob-
tained from this expression.

Analysis. Similar to the behavior of the Gaus-
sian filter (2), the second term (II) contains the im-
age Laplacian g′′(x) (which is the second derivate
in 1D). Relevant image information should be pre-
served by the filtering process, and thus we need
to ensure that the term containing g′′(x) is sup-
pressed at the corresponding image locations. This
can be achieved by a large |h′(x)|, which leads to
small values of v(κ h′(x)). The contrary also holds
true, as regions devoid of relevant image informa-
tion should be smoothed more prominently, which
requires small gradient magnitudes |h′(x)| causing
a large v(κ h′(x)).
For vanishing and large feature-buffer gradient mag-
nitudes |h′(x)|, the function u(κ h′(x)) in the first
term (I) tends to zero, and the corresponding term
does not influence the method noise considerably.
In between, however, the negative values of u lead
to an amplification of the Laplacian h′′(x) of the
feature buffer, which has a sharpening effect in the
corresponding image regions—a characteristic prop-
erty of advanced filters [Buades et al. 2006]. If h
mirrors relevant image features, such a sharpening
behavior does not pose a problem per se, but if
the feature buffer is contaminated with noise, the
strength of sharpening is noisy as well, leading to
further noise in the image. This is especially true
if the feature buffer matches the noise of the input
image, which will lead to g′(x)/h′(x) ≈ 1.

Requirements for feature buffers. The anal-
ysis of the method noise of a CBL implies two re-
quirements for a good feature buffer: (i) it should
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exhibit high gradient magnitudes in the presence
of relevant image features, (ii) it should be as
noise-free as possible to avoid the quality degrada-
tion due to the inevitable sharpening behavior of
the filter. Additionally, for performance reasons, we
add the requirement that (iii) it should be possible
to evaluate it significantly faster than the rendering
step to allow rapid noise reduction.
We note that commonly used feature buffers like
positions and normals meet these requirements in
general: they exhibit large gradients at legitimate
image features such as object silhouettes, they are
essentially noise-free and trivially obtained. How-
ever, they do not meet (i) in all cases: in particular,
image features that are entirely due to the materi-
als in the scene are not taken into account at all.
If a material is specular, for example, even noise-
free scene features visible in the reflection will be
treated as noise, since they do not appear in the
feature buffer (see Figure 12 for an example).

4.2 Albedo Map

Numerous works have incorporated texture colors
in feature buffers [Moon et al. 2014; Rousselle et al.
2013]. However, this cannot account for appear-
ance changes due to the glossyness of the material,
for example (i.e., a transition from a glossy to a
diffuse part of a surface). Our first contribution to
an improved feature buffer is therefore to introduce
the albedo as a new attribute for feature buffers.
Albedo is defined as the hemispherical-directional
reflectance ρhd:

ρhd(ω) =

∫
H2

f(p, ω, ω′)(ω′ · n) dω′. (4)

This quantity can be intuitively understood as the
reflected radiance in direction ω when the surface
point p with BRDF f is uniformly lit across its
hemisphere H2. It depends only on the material
model, which allows it to be precomputed.
A feature buffer consisting of the albedo of the sur-
face hit at a pixel (evaluated in the direction to-
wards the viewpoint) adheres to all three afore-
mentioned requirements: it is essentially noise-
free (ii), can be efficiently looked up during the
rendering process (iii), and it exhibits high gradi-
ent magnitudes at the boundaries between different
reflectance behaviors, which constitutes legitimate
image information with a high probability (i).
Essentially, we use the albedo values as coarse but
noiseless approximations for the actual radiance. In

Storing in albedo map 

Path tracing 

SR/T

DD D D

ST

SR

G

Figure 5: Construction of the albedo map. The es-
timated error introduced by a given bounce deter-
mines the weighting of subsequent bounces to min-
imize noise.

this regard, we generalize the albedo ρhd by includ-
ing the emission term Le, i.e.,

ρhd(ω) = Le(p, ωo)+

∫
H2

f(p, ω, ω′)(ω′ ·n) dω′ (5)

and we will refer to this modified definition as albedo
for the remainder of this work.

4.3 Albedo Map Usage

While the described albedo map is more general
than, for example, a simple texture, it is still limited
to information gathered from the first intersection
of viewing rays. However, for specular surfaces, the
path tracer follows specular reflections without sig-
nificant noise, therefore the albedo of the specular
surface itself is not relevant.

Recursive evaluation. Instead, we introduce
the notion of a noise-limited feature buffer, where
we follow an eye path until we reach the first noisy
intersection. Conveniently, this is possible as a triv-
ial extension to the path tracing computations that
generate the noisy input image. When tracing the
path from the camera, we stop at the first noisy sur-
face and instead of exhaustively sampling further
paths to obtain the radiance contribution from this
surface location, we use the respective albedo value
as a noiseless representative. This allows us to ob-
tain legitimate gradient information in image space
even in the presence of refractive and reflective ma-
terials by aggregating per-sample albedo values in
the albedo map. An overview of possible light trans-
port scenarios that are covered by this approach is
illustrated in Figure 5.
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The noisiness of a surface is computed in a precom-
putation step based its material properties, which
are available before rendering. The theory around
these a priori noise estimates is developed in Sec-
tion 6 and the two main results are summarized and
used to build our feature buffer in Section 4.4.

Radiance sample integration. While the use of
the albedo map provides a noiseless representative
for the radiance contributions in the light transport
simulation, it is, in some sense, inconsistent, since
the information gained from the rendering process
is not incorporated into the feature buffer. As so-
lution, we propose a blending scheme, where em-
pirical information is added to the feature buffer
at a rate dependent on the its variance, i.e., ra-
diance contributions that are expected to exhibit a
large sample variance are added at a lower rate than
samples from nearly noise-free sources. As the re-
cursive evaluation above, this approach utilizes the
a priori noise estimates that are developed later in
Section 6.

4.4 A Variance-Bound Feature
Buffer

To facilitate the description of our feature buffer,
we briefly summarize the main results of our a pri-
ori noise estimation theory that is presented in Sec-
tion 6. Since our estimates are generated as byprod-
uct of the path tracing process, we assume that
N samples were already used to estimate the ra-
diance of a pixel. Furthermore, it is assumed that
each path has up to n light bounces and that the
radiance throughout of the i-th path segment of
path j is given by tij . The a priori approxima-
tion s̃2

pixel of the associated radiance variance is
given by (14) as

s̃2
pixel =

1

N

N∑
j=1

n∑
i=1

T 2
ij s̃

2
ij

where Ti =
∏i−1
k=1 tk denotes the cumulative

throughput along the path. The estimate builds
upon the a priori variance estimates s̃2

ij of the re-
spective light-material interactions at each bounce.
Paths that terminate before reaching n bounces
contribute no variance through these non-existent
bounces, i.e., s̃2

ij = 0 is set for these. Given the
variance s̃2

pixel of the samples, the variance of the
sample mean can be approximated with s̃2

pixel/N .

Empirical information blending. Our goal is
now to find the blending weights wij at each bounce
such that the amount of empirical information is
maximized without increasing the variance of sam-
ple mean above a certain user-defined threshold δ.
Choosing δ = 0, as extremal case would enforce the
use of only the albedo map, since it is free of noise.
The blending at a bounce i of path j with outgoing
direction ω and incoming direction ω′ is given by

wijf(p, ω, ω′)L̊(p, ω′)(ω′ · n) + (1− wij)ρhd(ω)

where L̊ denotes the incoming radiance, which it-
self is a blended depending on weights of the sub-
sequent light bounces. Note that similar to the
throughputs at each path segments, blending is a
cumulative effect and the variance contribution of a
given bounce i of path j is determined cumulative
weight Wij =

∏i
k=1 wkj . As a shorthand, we use w

to denote the vector of all weights.
Given the user-defined error threshold δ, we aim
to compute a set of weights ŵij as solution to the
optimization problem

ŵ = arg max
w

a(w) such that

{
a(w) ≤ δ2

0 ≤ w ≤ 1
(6)

where a(w) denotes the a priori approximation of
the variance of the associated sample mean, i.e.,

a(w) =
1

N2

N∑
j=1

n∑
i=1

T 2
ijW

2
ij s̃

2
ij .

The intuitive meaning of the optimization problem
is that we seek to incorporate as much empirical
information as permissible.

Blend weight computation. Solving the full
nonlinear problem (6) to obtain the desired
weights ŵ would severely degrade the computa-
tional performance of our filtering approach and
reduce its applicability. We found, however, that
a potentially suboptimal approximation is already
sufficient for our purposes and we leave more so-
phisticated approaches to solve (6) as future work.
When omitting the constraint w ≤ 1, an asymptoti-
cally optimal solution ŵ+

kj that attains the maximal
value at n→∞, i.e., a(ŵ+) = δ2−2−n, is given by

ŵ+
kj =

1

tkj
√

2

(
δ

√
2j − 1

s̃2
ij

)1/i

. (7)



8 5 NOISE-ADAPTIVE FILTERING

However, it diverges for vanishing variance esti-
mates s̃2

ij or throughputs tkj and thus we per-
form a hard clamping to 1 to obtain the blending
weights ŵ, i.e., ŵkj = min

(
ŵ+
kj , 1

)
. While the final

weights respect both constraints of (6), they consti-
tute a suboptimal solution that does not attain the
maximum of the objective. However, we found it to
deliver excellent results for all our test cases.
Using these blending weights, we are able to craft
a feature buffer by aggregating a variance-bounded
representative color value at each pixel, which com-
bines contributions of the actual radiance sam-
ples and the albedo map. With growing sample
count N , the weights are increasing and even for a
small user-defined target variances δ2, the amount
of empirical radiance information, which is incorpo-
rated into this buffer, grows and eventually domi-
nates the albedo map contribution. In this sense,
our feature buffer is biased but consistent and an
illustration of this property can be found in Fig-
ure 13.

5 Noise-Adaptive Filtering

Apart from the construction of a suitable feature
buffer, our a priori noise estimates can also be used
in the filtering process itself. Depending on the
amount of local noise, more or less smoothing can
be performed by adjusting additional filtering pa-
rameters. We present two approaches in this sec-
tion, one for filtering methods that permit spatially
varying kernel sizes and a second as a replacement
strategy based on blending for filters that lack this
capability. Note that both methods can be used
independently of the proposed feature buffers, i.e.,
they can be applied to existing filtering methods.

5.1 Noise-Adaptive Kernel Sizes

As we will show in Section 6, it is possible to de-
rive an estimate of the variance s̃2

pixel that can be
expected for a certain pixel location. It is based on
a priori knowledge of the variance that can be ex-
pected when sampling the various scene materials
and is described by (14). The standard error of the
radiance sample mean of a typical Monte Carlo ren-
dering process decreases with 1/

√
N in the number

of samples N . This allows us to compute a desired
number of samples M that is necessary to obtain a
user-defined target error ε using the expected vari-
ance s̃2

pixel, i.e., M = s̃2
pixel/ε

2. If the samples per

pixel are fixed toN and we assume that the variance
estimate also holds in the vicinity of the current
pixel, we can alternatively compute the number of
pixels m that is necessary to achieve the same goal
by m = s̃2

pixel/(N ε2).

By adjusting the local filter size, we aim to include
at leastm pixels in the filter support to limit the in-
fluence of the local noise to a user-provided upper
error bound ε. Such an approach is beneficial for
filters which are capable of adaptive filter kernels,
such as the cross bilateral filter [Eisemann and Du-
rand 2004; Petschnigg et al. 2004]. The specifics of
this process depend closely on the actual filter ker-
nel. A general approach would be to set the internal
parameters in such a way that most of the kernel’s
density is found in an area with the size of m pix-
els. For a univariate Gaussian, which is used, for
example, in the work on adaptive manifold filtering
[Gastal and Oliveira 2012], its standard deviation σ
can be chosen as

√
m/3 to ensure that the majority

of the desired number of pixels is contained within
the filter support. This is based on the considera-
tion that the number of pixels contained within the
filter support given by σ can be approximated as
(3σ)2.

5.2 Noise-Adaptive Blending

In our experience, none of the approximate high-
dimensional filters, such as the adaptive manifold
filter [Gastal and Oliveira 2012] or the guided filter
[He et al. 2010], are capable of spatially varying ker-
nel sizes without introducing artifacts. For this rea-
son, we propose a simple blending-based approach
to adapt the filtering to the local noise level and
limit the oversmoothing of low-variance regions.

First, we compute a global filter-kernel size by tak-
ing a user-chosen percentile αb of the local kernel
sizes, which are computed based on the methods
described in the previous section. This allows the
user to decide which ratio of image pixels is treated
with a fitting or larger kernel size. The result of
the subsequent filtering at each pixel gF, which
suffers from local oversmoothing, is then blended
to recover fine details from the original input g
of the filtering. Using a heuristic to compute the
blend weights wB based on the user-defined tar-
get error ε and the local a priori variance esti-
mate s̃2

pixel, given by wB = min(ε/
√
s̃2
pixel, 1), we

compute the final output gB as a convex combina-
tion, i.e., gB = wBg+ (1−wB)gF. If the local noise
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(a) (b)

Figure 6: We scale our per-pixel variance estimate
(b) according to the empirical per-tile variance (a),
combining the pixel accuracy of our estimate with
the actuality of empirical information. These im-
ages have been multiplied by four for better visibil-
ity.

estimate s̃2
pixel is significantly larger than the tar-

get error ε allows, the corresponding weight wB will
be small and the filtered version of the image will
dominate the final output gB. Low variance regions,
on the contrary, will contribute more of their initial
values to the final image.
Together with Section 4 on a suitable feature buffer,
this section on noise-adaptive filtering concludes our
presentation on how a priori information can be
used in the context of high-dimensional filtering.
The next section will provide a detailed explana-
tion on how these a priori variance estimates can
be obtained.

6 A Priori Information for
Noise Estimation

Since filtering affects both the noise and the le-
gitimate image content, the knowledge of the ac-
tual noise level at a given image location can sig-
nificantly enhance the performance of the denois-
ing procedure. Converged image regions only need
to be filtered slightly or not at all, whereas high-
variance regions benefit from smoothing. In this
section, we show how a priori information on the
behavior of scene materials can be leveraged for a
novel noise estimation method. We consider this
approach to be orthogonal to the filtering of higher-
order effects such as motion blur or depth of field
and leave a combination of both approaches for fu-
ture work.
The key observation of our method is the fact that
specular materials can be sampled deterministically
while diffuse materials introduce noise into the MC

(a) Empirical estimate (2 spp) (b) Our a priori estimate (2 spp)

(c) True error

Figure 7: Our per-pixel error estimate (b) provides
more reliable approximations of the true error (c)
than empirical estimates (a) at low sampling rates.
The images have been multiplied with a factor of
two for better visibility.

rendering. This can be visualized with the respec-
tive importance function, which is a Dirac delta
distribution for specular materials but has a sup-
port on the whole hemisphere for diffuse materials.
Along each sampled path, the material encountered
at each bounce thus plays an important role in the
final noise that will be present at the corresponding
pixel.

We perform a decomposition of the total per-pixel
radiance variance (Section 6.1), which subdivides it
into two qualitatively different parts—the explained
and unexplained variance. As our main contribu-
tion in this context, we present an approximation
of the unexplained variance terms that can be pre-
computed before the rendering process. Further-
more, we show how to sample their expected values
at runtime with a negligible overhead to the MC
rendering process. We introduce the approximation
of the variance caused by a single light-material in-
teraction (see Section 6.2) and a sampling scheme
to estimate the expected value of this variance con-
sidering multiple light bounces and paths (see Sec-
tion 6.3). Finally, we fuse these estimates with the
empirical sample variance of the tonemapped per-
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pixel radiance samples to obtain the final radiance
estimate (Section 6.4).

6.1 Variance Decomposition

To determine the magnitude of spatially varying
noise in the rendered image, sample variances have
been used to great effect [McCool 1999; Rousselle
et al. 2012; Kalantari and Sen 2013]. Unfortunately,
the sample variance is subject to noise, which is
prohibitive for reliable noise estimates at low sam-
ple counts. In contrast to that, our approach re-
lies on preprocessing the variance induced by light-
material interactions (i.e., light bounces) and a sub-
sequent aggregation thereof, which ultimately leads
to more reliable noise estimates. In the following,
we will present the concepts related to the aggrega-
tion procedure.

Law of total variance. Ultimately, we are in-
terested in the variance V[·] of the radiance L—
given as a random variable—over a region of the
image plane, i.e., a pixel in our case. Assum-
ing geometrical optics, the radiance that arrives
at the camera through an image location X can
be parametrized by a sequence of light interactions
with surfaces at the locations P1, P2, . . . , Pn, which
effectively describes a light path with n bounces,
where n has to be chosen sufficiently large. Con-
sidering these locations as random variables them-
selves, we have L = L(X,P1, . . . , Pn), which allows
us to decompose the variance of L into its con-
stituent contributions given by the law of total vari-
ance [Bowsher and Swain 2012], which states that

V[L] = E
[
V[L |X,P1, . . . , Pn]

]
+

n∑
i=1

(
E
[
V[L |X,P1, . . . , Pi−1]

−V[L |X,P1, . . . , Pi]
]) (8)

+ V
[
E[L |X]

]
,

where E[A |B] (resp. V[A |B]) denote the expected
value (resp. variance) of random variable A when
conditioned with random variable B. Section 1.2 of
the supplementary document also provides an intu-
ition of this law in our context.
We first consider a simplified case to obtain an intu-
ition on the various terms in this expression. If we
are not interested in the specifics of the bounces, we
can omit their explicit representation and assume

the radiance as a function of the image plane loca-
tion X, i.e., L = L(X). In this case, the variance
decomposition yields

V[L] = E
[
V[L |X]

]
+ V

[
E[L |X]

]
.

The last term can be thought of as the variance
of the radiance means and describes the variance
among the expected radiances distributed over the
image domain. In statistical terms, this is also
referred to as the explained variance, since it can
be obtained by evaluating the average radiance at
different image locations and looking at their vari-
ance. The other summand gives the average radi-
ance variance calculated based on the variance of
the radiance at each image location. Often called
unexplained variance, it gives an indication of the
average variability of the radiance at constant lo-
cations. Intuitively, the explained variance can be
understood as the radiance variance across a pixel,
while the unexplained variance abstracts the vari-
ances that could arise at fixed image locations due
to stochastic sampling of the light bounces.

Unexplained variance estimation. Common
noise estimates use the radiance samples that are
produced by the MC rendering method to com-
pute their variance as an estimator of V[L]. As
such, both the explained and unexplained variance
are estimated simultaneously and at low sampling
rates, the associated error can become prohibitively
high. Our goal is to utilize a priori information on
the scene materials to improve the estimate of the
unexplained variance considerably. Thus, we are
concerned with the first two summands in the gen-
eral variance decomposition given by (23). Since
we account for all light-material interactions with
the light bounce locations P1, . . . , Pn, different path
geometries are accounted for in the first summand
E
[
V[L |X,P1, . . . , Pn]

]
, and only the variance gen-

erated due to stochastic behavior of the materials
is captured with this term (under fixed in- and out-
going directions). The second summand, given as
a sum, aggregates the variance contributions of all
light bounces of a given order, i.e., the i-th sum-
mand represents the average radiance variances be-
tween all light paths, where the first i − 1 bounces
are kept fixed, and those where the first i bounces
are fixed. Note that the outer expected value E[. . .]
is taken over all possible arrangements of fixed-
bounce locations and in this sense, the second sum-
mand of (23) aggregates the variance contributions
of all possible bounces of a given order.
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6.2 Per-Bounce Variance Estimation

In this section, we develop an approximation of the
variance terms for each summand of
n∑
i=1

(
E
[
V[L |X,P1, ..., Pi−1]−V[L |X,P1, ..., Pi]︸ ︷︷ ︸

∆i

])
(9)

in the variance decomposition given by (23). Since
each difference ∆i describes the additional variance
that is introduced by adding an i-th light bounce
(with all previous bounces being fixed), we investi-
gate in the following the variance contributions of
light-material interactions.

Light-material interactions. As we include re-
fractive and reflective materials in our setting, we
consider the full-sphere formulation of the rendering
equation [Kajiya 1986a] given as

Lo(p, ω) = Le(p, ω)

+

∫
S2

f(p, ω, ω′)Li(p, ω
′)(ω′ · n) dω′, (10)

where Lo(p, ω) is the radiance leaving a particular
surface with normal n at the location p in the out-
going direction ω. Le denotes the radiance contri-
bution through emission, f is the bidirectional scat-
tering distribution function (BSDF) describing the
scattering properties of the material at hand and
Li(p, ω

′) is the incident radiance incoming from di-
rection −ω′.
A simple MC estimator for the integral is given by

1

n

n∑
i=1

f(p, ω, ω′i)Li(p, ω
′
i)(ω

′
i · n), (11)

where ω′i is the sampling direction chosen based
on the sampling scheme and n denotes the sam-
ple count. It can be regarded as an estimator for
the expected value of the product of two random
variables F and L that represent all possible sam-
ples from f(p, ω, ω′i)(ω

′
i · n) and Li(p, ω

′
i) respec-

tively. To compute the variance of the samples,
an exhaustive sampling of the product is required.
While the behavior of the scene materials that de-
termine the respective F is generally known before-
hand, L has to be estimated without a light trans-
port simulation. Thus, we approximate the incident
radiance with a suitable function that emphasizes
the material-specific characteristic and obtain a pre-
computable approximation of the variance of (11).

Figure 8: Polar plots showing how our approxima-
tion L̃i changes with respect to θ for different λ
values.

A priori approximation of L. For highly spec-
ular materials, only a narrow cone of sampling di-
rections will be relevant, whereas diffuse materials
reflect incoming radiance from a larger region of
the hemisphere. This immediately translates over
to the possible variances of the incoming radiance,
i.e., the narrower the cone of relevant directions,
the more similar the radiance contribution in this
cone will be on average. We therefore use the func-
tion ` as a heuristic approximation of the random
variable L given by

`(p, ω, ω′) =
λ+ (ω′ · ω)

λ
(12)

with a parameter λ and with the term (ω′ · ω) that
ensures that the function changes relative to the
representative sampling direction ω. In Figure 8 we
demonstrate the effect of the λ parameter. We use
the weighted mean to determine ω, i.e.,

ω =

∫
S2 f(p, ω, ω′)ω′

|
∫
S2 f(p, ω, ω′)ω′|

,

however, other quantities, such as the spherical me-
dian [Fisher 1985], are possible as well. While the
latter would be robust to outliers, we did not no-
tice any considerable improvement in practice and
use the weighted mean due to its reduced computa-
tional complexity.
Our approximation is based on the heuristic as-
sumption that, on average, incident radiance
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changes proportional to cos(θ), where θ is the angle
between ω′ and ω. Thus, the values are propor-
tional to the area of a spherical cap of a unit sphere
constituted by a cone whose cross-section subtends
2θ. In the case of a uniformly sampled spherical
cap (i.e., cos(θ) is uniformly distributed) the ran-
dom variable L̃, representing all possible samples
of (12) would be uniformly distributed as well.

Since we desire to cap-
ture the material-specific
contributions to MC noise
due to the incident ra-
diance over the whole
sphere, we require ` to be
non-zero on its whole sup-
port, which leads us to a
choice of λ = 2. Note
that any λ > 1 is per-
missible, but exceedingly

large values cause undesired flattening of `, while
values close to 1 underemphasize contributions due
to transmitted radiance incident from the opposite
representative direction −ω. In any case, we found
λ = 2 to work well on all our test cases. To adapt
our heuristic approximation to the actual scene ra-
diance, a scaling based on radiance estimates is per-
formed, which is presented in Section 6.4.

Variance estimate computation. To estimate
the variance of the MC samples used for the esti-
mator in (11), we take a set of samples f̂ (resp. l̂)
from the random variables and compute their sam-
ple variance s2 given by

s2(f̂ , l̂) =
1

n− 1

n∑
i=1

(
f̂ i l̂i − f̂ l̂

)2

, (13)

where f̂ i (resp. l̂i) denote the individual samples
and f̂ l̂ the mean over the resulting set of their
element-wise multiplication.
Replacing the radiance samples with a set ˆ̀of sam-
ples from our approximation given in (12), we can
compute an a priori variance estimate s̃2 = s2(f̂ , ˆ̀)
of the MC estimator. Since this quantity does not
depend on the light transport simulation, it can be
computed accurately in a preprocessing step and we
give a detailed description of this process in Section
2.1 to 2.2 of the supplemental document.

6.3 Variance Estimate Aggregation

Having computed an a priori estimate of differ-
ence ∆i of variances in each summand of (9), we

are still left with the computation of the expected
value E[∆i] of these per-bounce variance contribu-
tions over all bounces of a given order i, i.e., the
i-th summand characterizes the additional radiance
variances caused by all i-th bounces. For a given
camera position, these quantities can be computed
by exhaustive sampling similar to the light trans-
port simulation itself. This would approximately
double the required computational effort, which is
clearly unacceptable.

Unexplained variance aggregation. To rem-
edy this, we reuse the sampling that is already per-
formed during the light transport simulation. For
each path, we not only compute the corresponding
radiance sample, but also query the a priori vari-
ances at each light-material interaction. Note that
this imposes a sampling scheme that takes radiance
values into account in contrast to our approximated
radiance. This is beneficial for the accuracy of our
variance estimate, as only relevant light-material
interactions are considered. The knowledge about
which materials are encountered during light trans-
port simulation cannot be sensibly determined a
priori, which necessitates this approach. It pro-
vides us with samples of our a priori variance for
the first m bounces, if the path has m vertices.
To compute the i-th summand of (9), we collect
the variances s̃2

i at bounces of the same order i
for all paths and estimate their expected value by
averaging them. Before that, we have to account
for geometrical relationships between subsequent
bounces, which influence the radiance throughput
of each path segment. If the incident radiance at
a light-material interaction is scaled by a factor a,
the variance of the corresponding estimator is scaled
with a2. Thus, we have to scale each sampled a pri-
ori variance s̃2

i with a cumulative throughput fac-
tor T 2

i , which is a product of all throughputs tk
from the camera to the corresponding bounce, i.e.,
Ti =

∏i−1
k=1 tk. Finally, we obtain an approxima-

tion s̃2
pixel of (9)—the main contribution to the un-

explained variance—by

s̃2
pixel =

n∑
i=1

1

N

N∑
j=1

T 2
ij s̃

2
ij =

1

N

N∑
j=1

n∑
i=1

T 2
ij s̃

2
ij (14)

where the n bounce orders are indexed by i, and
j enumerates the N paths which are used for the
variance estimate of the given pixel. The reordered
form on the right side is suited for an effortless inte-
gration into existing MC rendering systems and is
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used in our implementation. Note that terminated
paths, which have less than n bounces, do not con-
tribute to higher bounces and for these, s̃2

ij = 0.

The remainder of the unexplained variance, i.e., the
term E

[
V[L |X,P1, . . . , Pn]

]
, denotes the expected

value of the variances that arise if paths are con-
sidered fixed. As such, it encodes the remainder of
unaccounted stochastic material effects if the direc-
tions of both in- and outgoing radiance at each light
bounce is kept fixed. Since we generally respect all
stochastic material effects by means of our a priori
variance, this term can be omitted, i.e., considered
zero.

Explained variance aggregation. As the last
term in (23) that is unaccounted for, the explained
variance V

[
E[L |X]

]
plays only a minor role in our

setting. Since we desire per-pixel noise estimates,
the random variable X that describes the image lo-
cation only varies over the extent of the footprint of
a single pixel. As such, the expected value E[L |X]
of the radiance at each location will have limited
variance V

[
E[L |X]

]
over the pixel and we choose

to simply omit this term. We also note that an ef-
fective evaluation of the expected radiance requires
exhaustive sampling of light bounces of paths start-
ing at each fixed image location X. Undersam-
pling, especially at low sampling rates as in our
context, would degrade the estimate considerably
and would effectively reintroduce the unexplained
variance that is already accounted for.

6.4 Variance Fusion

Our heuristic approximations of the incident radi-
ance at each light bounce do not take the actual
scene radiance into account (see Section 6.2). In
this sense, they are decoupled from the light simula-
tion and would yield the same result for all possible
lighting configurations. In this section, we present
a method on how to fuse the information obtained
from radiance samples to perform an adequate scal-
ing of the radiance approximations given by Equa-
tion 12.

As basis serves an empirical variance estimate for
which we use the approach by Dmitriev and Sei-
del [2004], who use a tile-based estimate of the form

s2
tile =

1

m

m∑
j=1

(
T
(
Lall(j)

)
− T

(
Le|o(j)

))2

(15)

where the m pixels in the tile are enumerated by
index j. A tone mapping operator T is used to
transform the variance estimate based using all the
radiance samples Lall of each pixel as well as the
estimate using only the even or odd subset Le|o of
it. A main concern in the use of such an approach
is the tile size. While small tiles give a noisy but
detailed variance estimate, large tiles significantly
reduce the noise on the expense of reduced locality
of the estimate. When basing the variance esti-
mates solely on empirical data, small tiles need to
be used (e.g., 4 × 4 pixels in the case of Dmitriev
and Seidel [2004]), whereas our a priori variance es-
timates already provide noiseless local information.
Thus, we use significantly larger tiles, i.e., 32× 32,
to get more accurate estimates with a lot less noise
and use them to scale our local estimates, which is
performed in three main steps:

Tonemapping. We perform approximative
tonemapping, which effectively clamps the
radiance variances to a certain range.

Downsampling. To allow comparison, our per-
pixel estimates s̃2

pixel are coarsened to tile gran-
ularity s̃2

tile by averaging them over the foot-
print of each tile.

Scaling. A global scaling factor is derived from the
per-tile scaling factors s2

tile/s̃
2
tile with the help

of a user-chosen percentile αv, which allows
a trade-off between how much of the render-
ing’s noise is under- or overestimated. Note
that this is done for each color channel and the
maximum among those global scaling factors is
used for the whole image and all channels. This
factor effectively scales all approximated radi-
ances evenly and adapts them to the observed
radiance in the scene.

This completes the derivation of the scaled per-pixel
variance estimates that are build the basis of the
albedo map and the filtering strategies in Section 4.

7 Results

We have incorporated our albedo rendering and
variance estimation techniques in LuxRender. All
the results shown throughout this paper were ren-
dered with unidirectional path tracing on the CPU
with MIS combining BSDF and light source sam-
pling. For filtering, we have utilized the MATLAB
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(a) Filtering without blending
mask

(b) Filtering with blending
mask

(c) Blending mask visualization

Figure 9: A noisy input image with 4 spp filtered
with and without our blending mask on objects of
varying glossyness.

reference implementation of the adaptive manifold
filter by Gastal et al. [2012] and a C++ implementa-
tion thereof found in OpenCV [Bradski 2000]. The
results were obtained using a 2.2 GHz quad-core
Intel Core i7 machine with 8 GB of memory.

For the sake of fairness, we compare our method
to the approach described by Gastal et al. [2012]
using feature buffers containing depth and normal
information. Their approach is the only one that we
consider comparable to ours in computational over-
head. We consider the Classroom scene to be the

Figure 10: The output of our filtering framework
asymptotically converges to the ground truth and
retains delicate features obtained later in the ren-
dering process. The measured results correspond to
the Splash scene in Figure 1. We show a side-by-
side comparison of the evolution of the noisy and
the filtered image in the supplementary video.

Step Time [ms]

Rendering (1 spp) 5,793
Gamma correction 19
Adaptive Manifold Filtering 2,826
Total 8,639

Rendering (1 spp) 6,399
Albedo map 410
BSDF variance estimate 138
Tile variance 53

Variance fusion 55
Adaptive filter kernel 36
Filtering 3,990
Blending 85
Gamma correction 19
Total 10,585
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Figure 11: Detailed breakdown of the individual
steps of the proposed framework. Our techniques
use mainly a priori knowledge known before start-
ing the rendering process, therefore they introduce
a minimal additional overhead over the adaptive
manifold filter of Gastal and Oliveira [2012]. The
timings were recorded during the rendering of the
Classroom scene seen in Figure 12.

most representative for a practical case to demon-
strate the performance of our approach (Figure 11).

Albedo map. Our albedo map effectively helps
to discern many legitimate edges to keep them from
being oversmoothed by the filtering process. The
merits of this technique are apparent in our com-
parison (Figure 12).

The albedo map adheres to the rules stated in Sec-
tion 4.1 as it provides high-quality gradient infor-
mation in a noiseless and inexpensive manner. As
the rendering progresses, more and more gradient
information is included in the albedo map while
the noise level is kept below a specified threshold.
Moreover, the albedo map is a consistent estima-
tor of the actual radiance, which is demonstrated
in Figure 13.

Refractive materials can be accounted for by de-
terministically tracing the reflective and refractive
paths at the cost of additional overhead to the ren-
dering process depending on the scene description
in exchange for filtering quality (Figure 14).

For scenes primarily containing non-refractive ma-
terials, the computational overhead implied by the
albedo map is minuscule. This can bee seen in Fig-
ure 11.
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RMSE: 0.121

RMSE: 0.154

Noisy input

RMSE: 0.092

RMSE: 0.029

[Gastal and Oliveira 2012]

RMSE: 0.031

RMSE: 0.026

Our technique Ground truth

Figure 12: Comparison between our technique and the adaptive manifold filter using the same set of
parameters. In both scenes, the adaptive manifold filter blurs many important details, leaving only the
sharpest features intact. Both scenes were rendered with 4 spp. The LuxBall scene was filtered with a
spatial standard deviation of 15.81, 15 manifolds the following parameters: δ = 0.001, ε = 0.0055, αv =
50, αb = 50, σd = 0.2, σn = 0.2, σa = 0.1. The Classroom scene was filtered with a spatial standard
deviation of 30.43, 31 manifolds and the following parameters: δ = 0.001, ε = 0.00275, αv = αb =
87.5, σd = 0.2, σn = 0.2, σa = 0.05. The parameters σd, σn and σa correspond to entries in the covariance
matrix Σ (described in Section 1.1 of the supplemental document) for the depth, normal and albedo map
feature buffers respectively.

A priori noise estimate. Our variance estima-
tion heuristic described in Section 6 accounts for
the noise introduced by different material behav-
iors. It relies on an a priori approximation of the
variance introduced by light-material interactions
and a subsequent aggregation thereof. We show a
visualization of our variance estimate compared to
the empirical per-tile variance in Figure 6. Figure 7
demonstrates how the variance estimate increases
in the vicinity of multiple diffuse bounces which is
due to the aggregation of multiple bounces for a
given path (Section 6.3).
The prime advantage of our approach is that it con-
siders at least the first high-variance bounce along
a path, thereby limiting the room for underestima-
tion significantly, even at low sampling rates. In
contrast to that, empirical estimates frequently un-
derestimate variance. This is especially severe at
low sampling rates, which can be observed in Fig-
ure 7a.
Our variance-fusion technique ensures that our vari-
ance estimate is close to the actual variance of the
rendering and that it decreases as more samples are
taken. Using a filter which is adapted to the esti-
mated variance therefore results in a consistent out-
put image. This fact is demonstrated by the RMSE

plot given in Figure 10. Moreover, Figure 9 shows
how our variance estimate can be utilized to derive
per-pixel blending factors to blend unfiltered and
filtered pixels.
Our variance-estimation scheme poses minimal in-
tegration, run-time and memory overhead due to
its a priori nature. The remainder of the neces-
sary computations can be inexpensively conducted
during the light transport simulation. Figure 11
demonstrates the minimal run-time implications of
our variance-estimation method.

8 Limitations and Future
Work

In the following, we discuss the limitations of our
techniques as well as possible directions for future
work.

Higher-order effects. Obtaining a noiseless
albedo map while rendering the initial samples re-
quires that there is no integration for higher-order
effects such as motion blur or depth of field. These
effects introduce additional stochastic processes,
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(a) 4 spp (b) 64 spp (c) 1024 spp

Figure 13: A series of albedo maps showing its convergence to the MC estimate with an increasing amount
of used samples while keeping noise below a user-defined threshold. As the rendering process matures,
the feature buffer contains more and more noiseless gradient information, and eventually converges to
the ground truth (disregarding the tone mapping operation).

Figure 14: Deterministically tracing refractive ob-
jects for the albedo map effectively preserves legiti-
mate information in the filtered output seen above.
The image was rendered using 16 spp.

which ultimately causes noise in the feature buffers.
Possible remedies for these problems are either the
usage of a higher number of samples or the utiliza-
tion of specific noise-reduction techniques tailored
to these effects.
Our BSDF variance estimate suffers from noise
due to higher-order effects in a similar man-
ner. An interesting future direction in this regard
would be the consideration of an a priori estimate
parametrized by depth and lens parameters to esti-
mate the variance induced by depth of field effects.

Consistent variance estimation. Our BSDF
variance estimate, given by (14), is reliable at low
sampling rates as underestimations, inherent to

purely empirical methods, are constrained. By in-
creasing the sample count, however, the empiri-
cal sample variance asymptotically converges to the
true variance, since the sample variance is a consis-
tent estimator of the population variance. There-
fore, it is more accurate than our a priori estimate
at high sample counts.

In this regard, we presume that our a priori estimate
can be considerably improved by increasingly in-
corporating the sample variance accordingly as the
number of samples grows. We note that this is or-
thogonal to our variance fusion technique, where
our a priori estimates are uniformly scaled accord-
ing to the sample variance of the sample mean.

Non-linear tone mapping. Our BSDF variance
estimate neglects the effects of non-linear tone map-
ping operations such as gamma correction. This is
due to the fact that usually, tone mapping is per-
formed according to the brightness of the scene,
which means that the tone mapping parameters are
oftentimes not known beforehand and can not be
considered during the evaluation of the BSDF vari-
ance estimate. Linear tone mapping operations are
naturally supported, as a linear scaling of the radi-
ance values results in a linear scaling of the corre-
sponding variances, which is accounted for with our
variance-fusion technique.

Non-linear operations are more difficult to consider,
as the resulting variance depends on the location
of the radiances in the value range. For ranges
where radiance differences are compressed, the vari-
ance tends to be low, whereas for ranges where dif-
ferences are expanded, the variance is accordingly
high. This is the reason why gamma correction is
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performed at the end of our rendering pipeline, i.e.,
filtering is performed on the linearly tone mapped
values.

9 Conclusion

We have presented a novel feature buffer and a per-
pixel variance estimation heuristic to facilitate the
usage of high-dimensional filters for MC noise re-
duction. Our theoretical treatment of the method
noise of high-dimensional filters reveals that a high-
quality feature buffer should follow the magnitude
of gradients in the presence of relevant images fea-
tures and should be as noise-free as possible. Our
albedo map is a practical implementation of these
observations. In particular, it is based on a recur-
sive evaluation and can therefore deal with specular
materials. It also supports all commonly used mate-
rial models without any explicit classification rule.
Since the albedo can be precomputed, the whole fil-
ter process merely takes a few seconds to compute
on full HD images for practical scenes. We also
show how to merge in actual radiance samples in
more converged areas. This new feature buffer can
be used as an extension to improve the quality of
any technique relying on a high-dimensional filter
to denoise MC renderings.

Furthermore, we propose a novel heuristic to esti-
mate the per-pixel variance reliably. It is based on
a priori predictions about the variance introduced
by light-material interactions and an aggregation
thereof. Moreover, it is adapted to the actual vari-
ance levels by means of variance fusion and con-
sequently enables consistent filtering, i.e., the spa-
tial width of the filter decreases as more samples
are added. Both the albedo map and the BSDF
variance estimate can be used to enhance a variety
of different techniques not directly related to our
work. The variance estimate could be used to drive
an adaptive sampling scheme, for instance, whereas
the albedo map can be used in any scenario where
noiseless gradient information is desired.
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A Method Noise for Feature
Buffers

To evaluate the influence of feature buffer choices
on the denoising capabilities of bilateral filtering
operations, we evaluate the corresponding method
noise. As shown in the work of Buades et al. [2006],
two convenient simplifications can be used without
compromising the validity of our final conclusions:
i) the spatial weight function of the bilateral filter
can be substituted with a step function, yielding
the Yaroslavsky filter YF [Yaroslavsky 1985], and
ii) the computation can be conducted in 1D. Using
a one-dimensional feature buffer h(x), the filter of
interest on a signal g(x) is given as

YFg(x) =
1

C(x)

∫ x+τ

x−τ
g(y) e

− |h(y)−h(x)|
2

ζ2 dy (16)

where the normalization is given as C(x) =∫ x+τ

x−τ e
− |h(y)−h(x)|

2

ζ2 dy and the filter parameters for
the spatial domain (resp. feature buffer) are given
by τ (resp. ζ). The local effects of the filter are
given by the method noise g(x)−YFg(x) for small τ
and ζ, where we assume that τ/ζ = const. By ap-
plying Taylor expansion with y = x+ t for a small t
on the terms of (16), i.e.,

g(x+ t)− g(x) = tg′(x) + t2

2 g
′′(x) + . . .

e
− |h(x+t)−h(x)|

2

ζ2 =

e
− t

2h′(x)2

ζ2

(
1− t3

ζ2h
′(x)h′′(x) + . . .

)
(17)

we obtain for the method noise

g(x)−YFg(x) =

τ2

(
u

(
τ

ζ
h′(x)

)
g′(x)

h′(x)
h′′(x) + v

(
τ

ζ
h′(x)

)
g′′(x)

)
+O(τ3) (18)

with u(s) = s z(s)− 3v(s), v(s) = 1−2s z(s)
4s2 , z(s) =

e−s
2

√
π Erf(s)

.

B Background

B.1 High-Dimensional Filtering

Filtering is a fundamental operation where values
from a given input signal are combined in a mean-

ingful way to form the values of the resulting out-
put. In the case of discrete linear filtering, the out-
put values gF

i result from the linear combination of
all input values gj with given filter weights wF

ij :

gF
i =

∑
j∈I

wF
ijgj . (19)

Here, I denotes the spatial domain of the input sig-
nal and i, j denote positions in I. For example, in
the case of digital images, the spatial domain is two-
dimensional (dI = 2) and points in this domain are
denoted by positions i = (xi, yi)

T . In this paper,
we concentrate on digital image filters, noting that
most of our proposed concepts can easily be applied
to different spatial dimensionalities.
The filter weights are defined by the filter kernel φ
which determines the influence of each input value
at position j on a particular output value at i by
evaluating their distance. The notion of distance is
constituted by a d-dimensional signal h:

wF
ij =

φ(hi − hj)∑
j∈I φ(hi − hj)

. (20)

The normalization factor ensures that the weights
to filter a particular pixel add up to one, i.e.,∑
j∈I w

F
ij = 1. Here, hi is constituted by con-

catenated values in d-dimensional space: hi =
(xi, yi, . . . )

T .
A commonly chosen filter kernel is a Gaussian func-
tion, since it allows the differentiation of inliers
from outliers and is thus robust [Durand and Dorsey
2002]. The Gaussian filter kernel can be written as

φ(hi − hj) = e−
1
2 (hi−hj)TΣ−1(hi−hj). (21)

where Σ denotes a d × d covariance matrix deter-
mining how the weights decrease with distance. Our
notation used in this regard is inspired by previous
work [Gastal and Oliveira 2012].

Invariance under rigid transformations of h.
The filter weights used to evaluate the influence of
each input pixel are solely dependent on the inter-
pixel distances constituted by the d-dimensional sig-
nal h. Accordingly, the filtered result is invariant
under rigid transformations of h. Rigid transfor-
mations include translations as well as orthogonal
transformations such as reflections and rotations.
This can be formally defined as

Rhi + t ∀i ∈ I, (22)
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where R denotes an orthogonal transformation ma-
trix and t a translation vector. This invariance is
the reason why flash images can be used to success-
fully filter a photograph, even if the flash image is
comprised of different colors [Petschnigg et al. 2004;
Moon et al. 2013].

Notable high-dimensional filters. The bilat-
eral filter [Tomasi and Manduchi 1998] is among the
most widely used filtering algorithms. It utilizes a
Gaussian kernel and the spatial x, y coordinates as
well as the r, g, b intensities of the input image as an
edge-stopping function, i.e., hi = (xi, yi, ri, gi, bi)

T .
The bilateral filter heeds the distances in image-
space as well as the distances constituted by the
values of the input and therefore smoothes the ho-
mogeneous regions while preserving the strong dis-
continuities (edges) in the image accordingly.

The bilateral filter can be generalized in a way that
it does not draw the distances from the original in-
put, but from a separate, arbitrary buffer. These
filters are termed joint [Petschnigg et al. 2004] or
cross bilateral filters [Eisemann and Durand 2004]
and are proven to be useful in situations where the
input image exhibits undesirable properties regard-
ing the distance calculation, such as excessive noise.
Evaluating the distances based on another signal
with more desirable properties can therefore lead
to superior results. Petschnigg et al. successfully
applied joint bilateral filtering for the noise reduc-
tion of photographs taken in low-light conditions by
using corresponding flash images as edge-stopping
functions.

While the bilateral filter reconstructs a pixel by
averaging its neighboring pixels, non-local filtering
methods consider all pixels in the given input im-
age. A well-known method, the non-local means fil-
ter [Buades et al. 2005] calculates distances based
on the comparison of the neighborhoods of the pix-
els instead the pixels themselves; regions with sim-
ilar neighborhoods are weighted more heavily than
those with dissimilar ones.

Approximations. The naïve evaluation of (19)
is expensive as it requires O(dm2) operations, where
m denotes the number of pixels. For this reason,
several approximative techniques have been sug-
gested, such as bilateral grids [Chen et al. 2007],
permutohedral lattices [Adams et al. 2010] or adap-
tive manifolds [Gastal and Oliveira 2012] to accel-
erate the process. We refer the interested readers

to previous work [Gastal and Oliveira 2012] for a
detailed survey of acceleration methods.

B.2 An Intuition for the Law of Total
Variance

The general law of total variance for an arbitrary
number of conditioning random variables P1, . . . , Pn
is given by (and (8) in the paper):

V[L] = E
[
V[L |X,P1, . . . , Pn]

]
+

n∑
i=1

(
E
[
V[L |X,P1, . . . , Pi−1]

−V[L |X,P1, . . . , Pi]
]) (23)

+ V
[
E[L |X]

]
.

To convey our intuition, we start with the case of
one conditioning random variable:

V[L] = E
[
V[L |X]

]
+ V

[
E[L |X]

]
. (24)

As stated in the paper, the first summand denotes
the average variance of the radiances for locations
in image space given by X, where the second sum-
mand is the variance of the radiance means.

In the case of two or more conditioning random vari-
ables the same equation holds true:

V[L] = E
[

V[L |X]︸ ︷︷ ︸
total var. for a given X

]
+V
[
E[L |X]

]
. (25)

In this context, the underbraced term denotes the
total variance of L for a given X. As the condi-
tioning variables are not explicitly considered, it
represents the whole unexplained variance for an
arbitrary number of conditioning random variables.

This insight helps us to understand the general law
of total variance by considering the following trans-
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formations, starting with the case with one condi-
tioning variable:

V[L] = E
[
V[L |X]

]
+ V

[
E[L |X]

]
= E

[
V[L |X]

]
+ V

[
E[L |X]

]
+ E

[
V[L |X,P1]

]
− E

[
V[L |X,P1]

]
= E

[
V[L |X,P1]

]
+ E

[
V[L |X]

]
− E

[
V[L |X,P1]

]
+ V

[
E[L |X]

]
= E

[
V[L |X,P1]

]
+ E

[
V[L |X]−V[L |X,P1]

]
+ V

[
E[L |X]

]
.

The last three lines correspond with the general law
of total variance. In this regard, the intermediate
(center) term can be understood as the expected
value of the total variance for a given X without the
variance components introduced by the subsequent
conditioning variable(s).

Considering our a priori estimates. Our per-
bounce a priori variance estimates corresponds to
the aforementioned center term as the variance
is modeled as if the incident radiance is exactly
known, i.e., our a priori estimate does not represent
the variance of a bounce and all following bounces.
Instead, it represents the variance introduced by a
single bounce disregarding all following bounces.

C Implementation Details

In the following, we will outline specific details
which we have omitted previously for brevity’s sake.

C.1 Multiple Importance Sampling

Multiple importance sampling (MIS) is a powerful
noise suppression technique combining the advan-
tages of multiple MC estimators to approximate a
particular integral. The combination is based on
weights which are calculated according to the prob-
ability distribution functions (PDFs) of the respec-
tive sampling schemes.
To account for differences in variance introduced
by MIS, our per-bounce variance estimate, given

by (13) in the paper, can be extended with the in-
clusion of the MIS weights for each sample:

s2(f̂ , ˆ̀, $̂) =
1

n− 1

n∑
i=1

(
f̂ i

ˆ̀
i$̂i − f̂ ˆ̀ $̂

)2

, (26)

where $ is the random variable corresponding to
the weights. Due to the additivity property of vari-
ance, the combination of the variance estimates of
the different estimators is a matter of a simple ad-
dition.

We have evaluated our variance estimate for BSDF
sampling combined with light source sampling
through MIS. The sampling of light sources requires
the PDF of L̃i(p, ω, ω

′) to calculate the weight. It
can be trivially evaluated through normalization,
ensuring that the integration over the sphere yields
one:

p`(p, ω, ω
′) =

`(p, ω, ω′)

4π
. (27)

Generating sampling directions according to
p`(p, ω, ω

′) is an additional necessity for the light
source sampling MC estimator. This task is
detailed in the following.

Importance sampling `. We describe a simple
approach to generate sampling directions according
to the PDF given by (27). First, we derive a PDF
with respect to θ and φ from it, which is defined
with respect to solid angle:

p`(p, θ, φ) =
λ+ cos(θ)

λ
sin(θ). (28)

Based on this, we can easily generate the needed
spherical coordinates θ and φ through rejection
sampling:

Algorithm 1 Rejection sampling L̃i

1: loop
2: θ ← πξ([0, 1])
3: φ← 2πξ([0, 1])

4: if ξ([0, 1]) <
p`(p, θ, φ)

max(p`(p, θ, φ) : θ ∈ (0, 2π))
then

5: return Ω dir
6: end if
7: dirx ← sin(θ) cos(φ)
8: diry ← sin(θ) sin(φ)
9: dirz ← cos(θ)

10: end loop
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Here, ξ([0, 1]) is a random number generator gen-
erating uniformly distributed random numbers over
[0, 1]. θ is the angle between ω′ and ω. Therefore,
we transform the spherical coordinates to Cartesian
ones to ultimately rotate the vector with the rota-
tion matrix Ω to transform the sampling direction
into the hemisphere’s coordinate system, i.e., Ω is
constituted by an orthonormal basis where ω repre-
sents the z axis. We note that random samples can
be drawn efficiently and more than half of them are
expected to fall inside the function.

C.2 Look-Up Tables (LUTs)

The following points should be considered regarding
the generation of LUTs for the albedos and per-
bounce variance estimates.

• Depending on the complexity and the number
of parameters needed to control the scatter-
ing properties of a given material model, the
corresponding LUT has to be parametrized ac-
cordingly, which can result in significant mem-
ory usage. Fortunately, the parametrization
of each color channel can usually be avoided
by parametrizing only one color channel in-
stead, as material models usually perform the
same set of transformations for each color chan-
nel separately. The retrieval of the respective
quantity during the rendering process is then
a simple matter of performing three lookups
for each color channel (in the case of RGB
triplets).

• Besides the material model parameters, the
outgoing direction needs to be parametrized as
well. Here, the parametrization according to
cos(θ) is preferred over the one based on θ con-
sidering the smaller footprint on the rendering.
If we use θ the resulting higher resolution for
grazing angles tends to be wasteful.

• Singular behaviors of material models should
be considered carefully. Some material models
might yield exceptionally high variance values
at grazing angles where (ωo · n) is near zero.
Using such values for the LUT would compro-
mise interpolations where the respective value
is used. To alleviate this problem, we simply
discard the problematic values and use extrap-
olations of the two following values instead.

C.3 Specular Refractive Materials

For the evaluation of the albedo map for specular
refractive material models, the sampling manifold
affords deterministic sampling as there are only two
possible outcomes. Depending on the scene this ap-
proach might create a considerable overhead. How-
ever, the ultimate noise reduction performance for
such surfaces can be greatly improved.

C.4 A Word on User-Chosen Param-
eters

Our noise filtering framework relies on the following
parameters which can be chosen by the user:
δ The albedo map error threshold defines

how much error is permissible during the com-
putation of the albedo map. A large thresh-
old raises the blend weights, given by (8) in
the paper, in favor of the radiance samples,
whereas small values cause the albedo values
to dominate. In practice, a fixed small value
can be used for a variety of cases. We used a
value of 0.001 for all of our scenes.

ε Similarily, the error bound defines how much
error is permissible during the filtering step.
It is used to derive a filter kernel size as well
as the blending weights between the unfiltered
and filtered pixels. We have generated satis-
factory results with values between 0.0025 and
0.01.

αv The variance fusion percentile determines
how much of the noise of the rendering is
under- or overestimated by our BSDF vari-
ance estimate. A percentile of 0 causes the
BSDF variance estimate to be matched to the
lowest noise level in the empirical noise esti-
mate. Conversely, a percentile of 100 causes
the BSDF variance estimate to be matched to
the highest empirical noise level.

αb The filter kernel percentile determines the
global size of the filter kernel for filters which
are not capable of adaptive kernel sizes. The
percentile is calculated based on the local ker-
nel sizes described in Section 5.1 of the paper.
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