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Figure 1: (left) Our approach automatically identifies opportunities for placing surrogate rules (α) in shape grammar derivation trees, either
directly or only for partial subtrees (β). At runtime, surrogate rules can evaluate to simple impostors that replace detailed geometry in
procedurally generated scenes. (center) Our approach uses view-dependent factors to decide on the applicability of impostors, achieving high
visual fidelity (original/ours). (right) Wireframes indicate the significantly reduced geometry in the rendered scene (original/ours).

Abstract
Procedural generation has become a key component in satisfying a growing demand for ever-larger, highly detailed geometry
in realistic, open-world games and simulations. In this paper, we present our work towards a new level-of-detail mechanism
for procedural geometry shape grammars. Our approach automatically identifies and adds suitable surrogate rules to a shape
grammar’s derivation tree. Opportunities for surrogates are detected in a dedicated pre-processing stage. Where suitable,
textured impostors are then used for rendering based on the current viewpoint at runtime. Our proposed methods generate
simplified geometry with superior visual quality to the state-of-the-art and roughly the same rendering performance.

1. Introduction

As realism in computer games and movies rapidly advances, the de-
mand for massive and detailed virtual environments has surged. It is
becoming increasingly infeasible to create such compelling models
within a reasonable amount of time and budget using the traditional
process. Procedural approaches have found great use in automating
the process of modeling scene geometry [WWSR03] and can eas-
ily generate vast, detailed environments. However, any geometry
that is rendered in real-time must eventually be transferred to the
Graphics Processing Unit (GPU), which, for potentially billions of
triangles, incurs a significant overhead. Several approaches have
been proposed to produce procedural geometry via so-called shape
grammars in parallel, directly on the GPU, such as the parallel gen-
eration of architecture (PGA) system presented by STEINBERGER

et al. [SKK*14]. But even then, as STEINBERGER et al. pointed out,
further optimizations are required to relieve memory bottlenecks
for highly detailed procedural models. The authors proposed us-
ing techniques such as visibility pruning and frame-to-frame coher-
ence. They also suggested the use of level-of-detail (LOD) mech-

anisms as an important performance factor, but their solutions did
not offer methods for exploiting LODs automatically. Their hand-
crafted LOD models were further selected only based on viewing
distance, thus ignoring orientation, projection and parallax effects.
To address these issues, we propose an automatic, view-dependent
impostor generation for shape grammars via surrogate rules.

2. Method

Our surrogate rules are capable of either evaluating the original
shape grammar rules of their corresponding subtree or returning
a simplified impostor instead (Figure 1). Starting from the root of
the shape grammar’s derivation tree, at each node α representing a
rule, we check whether it is sensible to insert a surrogate rule. The
policy for this decision is use case-dependent and made based on
the rules and parameter ranges in α’s subtree. We then evaluate the
grammar from α down to its leaves to generate the detailed geome-
try. To avoid redundant computation, we run a full evaluation of the
whole derivation tree in one pass and store the generated geometry
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Figure 2: A facade viewed from different perspectives. Parts that
are invisible from one view direction become visible from another.

in global vertex and index buffers. From the detailed geometry, tex-
tures are created for each surrogate rule’s impostor. We achieve this
by rendering the detailed geometry with orthographic projection
oriented towards the current rule’s impostor shape, a fitted quadri-
lateral. Due to the parallax effect, one impostor texture made from
a single view direction is very limited in capturing the appearance
of detailed geometry, especially when it significantly extrudes out
of the impostor shape (Figure 2). These errors may still be notice-
able, even if viewed from a great distance. Therefore, we generate
multiple textures for each impostor by rendering the corresponding
detail geometry from several view directions into an impostor grid
and defer selection of the impostor texture to runtime.

Given point Q on plane P and a point P /∈ P , we define

poviP,Q(P) =
QH
∥QP∥ , (1)

where H is the orthogonal projection of point P onto plane P . For
a given impostor shape S, we define the impostor plane PS to be
the plane in which S resides, and the origin OS of plane PS to be
the center of S. For the camera position E, the POV indicator of
E is computed as φφφS,E = poviPS ,OS (E), which can be seen as
the orthogonal projection of the view vector OSE onto plane PS ,
normalized by the distance between the camera and the center of S
(see Figure 3). Thus, φφφS,E is independent of ∥OSE∥. We subdivide
the unit square in the impostor plane PS into a (2k+1)× (2k+1)
uniform grid, k ≥ 1. Given a certain view distance d, for each grid
cell with center O′, corresponding camera position E’ is computed:

E′ = OS +d · (OSO′+nS ·
√

1−∥OSO′∥2),

where nS is the outgoing unit normal vector of S. Obviously OSO′

is the POV indicator of the camera positioned at E′. Then we render
the detailed geometry for each surrogate from those camera posi-
tions and generate (2k+1)2 textures from the rendered images.

Based on the implicit information stored in the impostor grid,
we can now select view-dependent impostors at runtime. During
the evaluation of the derivation tree when geometry is procedurally
generated, we calculate the POV indicator at each added surrogate
rule. The texture for the impostor is chosen based on which cell of
the impostor grid the POV indicator lies in. Subtree rules will be
fully evaluated if the POV indicator lies outside the impostor grid.

3. Preliminary Results and Future Work

To evaluate the overall performance of our method, we tested four
static scenes of varying complexity (when fully evaluated): bal-
cony (167.8M triangles), town (6.1M triangles, Figure 1), dorms

E
PS

OS

(a)

OS

H
E

PS

(b)

PS H ′

OS

(c)

Figure 3: (a) An impostor shape S centered at OS resides in plane
PS , with a camera positioned at point E; (b) Vector OSH is the
orthogonal projection of the view vector OSE onto PS ; (c) POV
indicator OSH′ = poviPS ,OS (E) = OSH/∥OSE∥. Clearly,
OSH′ lies inside the unit circle centered at point OS .

(836.7K triangles) and facade (3.2M triangles). For these four
scenes, we randomly sampled 647 camera configurations in total,
with different positions and view directions. In our tests, we used a
3× 3 impostor grid by setting k = 1, and the resolution of the im-
postor texture for each point of view is set to 128× 128. Then we
evaluated the unmodified grammar and modified grammars with
adaptive level of details regarding performance and visual quality
and compared to the PGA approach presented in [SKK*14]. With
our method, we achieved better visual scores than PGA in all three
test scenes (20% on average), according to the Butteraugli metric
[AOS*17]. Compared to the unmodified version, our method was
able to eliminate 83% of triangles on average and achieve roughly
the same rendering frame rate as STEINBERGER et al.’s PGA. How-
ever, compared to STEINBERGER et al., our method may still gen-
erate about 5–20× as many geometry primitives. This seemingly
drastic difference is easily explained by the fact that STEINBERGER

et al.’s LOD method depends solely on the view distance to de-
termine the applicability of an impostor; hence, their approach can
trivially achieve a hugely beneficial side effect of occlusion culling.
However, during the analysis of the derivation tree, we could easily
bake outer and inner hulls of procedural geometry into our surro-
gate rules. This additional information should enable us to apply
proper occlusion culling and produce favorable results to the cur-
rent state-of-the-art and, alongside further improvements, bring our
work to fruition.
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