
Blickwinkelabhängige
Surrogate-Terminale für

Prozedurale Erzeugung von
Geometrie

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Medieninformatik und Visual Computing

eingereicht von

Moritz Roth
Matrikelnummer 01633060

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Mitwirkung: Univ.Ass. Chao Jia, BSc MSc

Univ.Ass. Dipl.-Ing. Dr.techn. Bernhard Kerbl, BSc

Wien, 4. Juli 2021
Moritz Roth Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

View-Dependent Surrogate
Terminals for Procedural

Geometry Generation

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Media Informatics and Visual Computing

by

Moritz Roth
Registration Number 01633060

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Assistance: Univ.Ass. Chao Jia, BSc MSc

Univ.Ass. Dipl.-Ing. Dr.techn. Bernhard Kerbl, BSc

Vienna, 4th July, 2021
Moritz Roth Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Moritz Roth

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 4. Juli 2021
Moritz Roth

v

Kurzfassung

Prozedural erzeugte Geometrie spielt eine immer größer werdende Rolle in der Film- und
Computerspieleindustrie. Shape Grammars haben sich als gängige Lösung für prozedurale
Geometrie Generation im Bereich Architektur etabliert. Inzwischen sind diese so effizient,
dass die Erzeugung von Gebäudegeometrie on Demand und in Echtzeit ermöglicht wird.
Die laufend wachsende Nachfrage für immer schöner werdende Visualisierungen fordert
jedoch die Weiterentwicklung von Shape Grammars. Komplexe Shape Grammars kommen
schnell an die Limits der zur Laufzeit verfügbaren Ressourcen. Daher sind vereinfachende
Maßnahmen gefordert, die jedoch gleichzeitig möglichst wenig Einfluss auf das Aussehen
der erzeugten Geometrie haben sollen. Diese Arbeit untersucht wie blickwinkelabhängige
Surrogate-Terminale in eine Shape Grammar integriert werden können und ob diese
Vorteile mit sich bringen. Surrogate-Terminale beenden die Auswertung einer Shape
Grammar frühzeitig und ersetzen feine Details mit im Vorhinein gerenderten Bildern. Wir
legen eine Implementierungsmöglichkeit für blickwinkelabhängige Surrogate-Terminale
fest und finden eine automatisierte Prozedur, die diese in eine Shape Grammar integriert.
Unsere Lösung vergleichen wir anhand von drei Test-Szenarien mit einer unveränderten
Shape Grammar und einer alternativen Methode. Testergebnisse zeigen, dass sich unsere
Lösung von vorherigen Ansätzen unterscheidet, indem sie vermeidet unvollständige Geo-
metrie zu erzeugen die eindeutig als solche erkennbar ist. Doch, obwohl unsere Methode
in großen Szenen um einiges schneller ist als die unveränderte Shape Grammar, sind
vorherige Ansätze noch effizienter. Wir kommen zum Schluss, dass blickwinkelabhängige
Surrogate-Terminale vielversprechende Ergebnisse liefern. Jedoch sind weitere Verbesse-
rungen der Methode notwendig, um sie performancetechnisch auf den gleichen Stand zu
bringen wie bereits existierende Herangehensweisen.

vii

Abstract

Procedural geometry generation plays an ever-increasing role in the movie- and video
gaming industry. Shape grammars have established themselves as the preferred solution
for procedural architecture generation. Research in past decades drastically improved the
speed of geometry derivation through shape grammars, making it possible to generate
3D buildings on-demand and in real-time. However, the constantly rising demand for
high-quality visualizations requires new measures to reduce complexity in 3D models
generated by shape grammars without sacrificing visual quality. This thesis explores
the feasibility and benefits of inserting view-dependent surrogate terminals into a shape
grammar. Surrogate terminals end grammar derivation early and approximate finer
details with pre-rendered images. We find a possible solution for implementing view-
dependent surrogate terminals and describe a scheme to automatically insert them into a
shape grammar. Results show that contrary to previous approaches, our method avoids
the generation of visibly incomplete geometry. However, even though the modified shape
grammars evaluate faster than the original in large scenes, previous methods provide a
more significant performance gain. We conclude that view-dependent surrogate terminals
provide promising results, but further optimization is necessary to match the performance
of prior techniques.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1

2 Related Work 5
2.1 Shape Grammars & Procedural Architecture 5
2.2 Image-Based Impostors . 8
2.3 Visibility Culling . 11
2.4 Image Quality Assessment . 13
2.5 Reference Solution . 14

3 Methods 17
3.1 Surrogate Terminals . 20
3.2 Surrogate Candidate Selection . 21
3.3 Surrogate Candidate Validation . 22
3.4 Texture Generation . 26
3.5 Surrogate Terminal Insertion . 27
3.6 Frustum Pruning Operation . 28

4 Evaluation & Comparison 31
4.1 Qualitative Analysis . 31
4.2 Quantitative Analysis . 34

5 Discussion & Future Work 37
5.1 Visibility Pruning . 37
5.2 Adequate Camera Regions . 37
5.3 Unfit Candidate Detection . 40

6 Conclusion 43

xi

Glossary 45

Acronyms 49

Bibliography 51

CHAPTER 1
Introduction

As the scope of 3D video game projects and movies increases, it is becoming less and less
feasible to craft required assets by hand [HMVI13, Ios11]. Over the past decades, various
procedural generation techniques have been developed to automatically create different
elements such as sounds, images, effects, vegetation, urban environments, puzzles, and
even levels [HMVI13]. Adoption of such techniques in mainstream games is reportedly
slow due to many of the developed solutions not being considered general-purpose
[HMVI13]. However, primarily games that feature huge virtual worlds, such as Minecraft,
No Man’s Sky, and Elite Dangerous, tend to employ procedural generation techniques
[TN21, HMVI13, Str15].

Procedural geometry generation uses rules to define 3D objects implicitly rather than
storing them explicitly. There are multiple benefits to doing this: Representing highly
detailed geometry through rules is more compact, as thousands of vertices can be
described with a few rules. Furthermore, rules can be evaluated dynamically, react to
various circumstances, and adjust the generated geometry accordingly [MWH+06]. I.e.,
less detailed geometry is produced on low-end devices, or context-sensitive rules avoid
intersection with other geometry in the same scene. In addition, deliberate variation of
input parameters can lead to different outputs, making the generation of similar but not
identical assets easy. Lastly, iteration on already generated assets is straightforward, as
even large-scale changes can be realized by merely adjusting the rules and reevaluating
them.

Architecture, in particular, is a prime candidate for procedural geometry generation.
Urban environments are frequently featured in movies and video games, often being a
point of interest or even central to the experience. Such environments typically contain
vast amounts of unique buildings. Hence, crafting these assets by hand does not scale
well. Buildings on their own use repeating patterns [MWH+06] and tend to conform
to architectural design principles, local building regulations, or an overall art direction.

1

1. Introduction

That makes it easier to define firm sets of rules that generate various buildings given only
a handful of input parameters.

As mentioned above, the film- and gaming industry profit the most from procedural
architecture since fictional cities can be created and iterated upon in a scalable fashion.
However, procedural architecture generation is also helpful in non-fictional scenarios.
Unfortunately, highly detailed 3D models of buildings and infrastructure in the real world
are rarely readily available [SLG19]. Therefore, a common approach is to use whatever
data is available to generate a fairly accurate representation. One example of a video
game using procedural architecture to model real-world urban environments can be found
in Microsoft Flight Simulator 2020 [JF20]. Other use-cases include urban planning- and
visualization applications, which are subject to the same scarcity of available building
geometry.

Shape grammars have established themselves as viable solutions for efficiently generating
coherent, context-sensitive 3D buildings while also providing artistic control [MWH+06,
WWSR03]. A set of rules is used to derive building geometry from an initial shape.
Optimization of this derivation process has advanced to a point where it is possible to
generate urban environments on-demand in real-time on the Graphics Processing Unit
(GPU) alone. This skips the comparably slow process of loading big chunks of geometry
data onto the GPU for rendering [SKK+14a, SKK+14b]. As a trade-off, geometry
derivation speed now becomes a relevant factor, and any post-processing techniques that
reduce geometry complexity also need to run in real-time. Traditionally, having too
much geometry in a scene is avoided by preparing different versions of assets (levels of
detail (LODs)) with decreasing complexity. When sending data to the GPU, an adequate
version is selected to keep the scene’s overall complexity in check. Dynamic generation of
different LOD geometry during grammar derivation reduces both geometry complexity
and derivation time [SKK+14b]. Previous work by Steinberger et al. [SKK+14b] suggested
the insertion of pre-computed surrogate terminals into a shape grammar. These surrogate
terminals insert pre-rendered images of building parts into the scene, replacing the actual
parts of the building they represent. This works particularly well for windows and finer
details in facade decoration. For balconies or similar parts protruding out of a building’s
surface, this is a less optimal solution since a single image can only represent the geometry
from one viewing direction.

This thesis introduces view-dependent surrogate terminals (VDSTs). The idea is to
select one out of multiple pre-rendered images (surrogate textures) depending on the
direction from which the camera views the geometry in question. Since architecture in
urban environments is the most common use-case for shape grammars, we have decided
to limit the scope of this thesis to procedural generation of urban architecture. We
explore the benefits and drawbacks of VDSTs and aim to find out if they can easily
approximate non-planar structures that significantly protrude from the original shape.
Another question is whether VDSTs increase the speed of derivation and rendering due
to early termination and reduction of overall geometry.

2

Prior techniques and other work relevant to our method are summarized in Chapter 2.
Throughout Chapter 3, we describe our implementation of VDSTs and how we insert
them into a shape grammar. Chapter 4 compares our method to the unmodified shape
grammar and previous work based on three examples. Limitations and future work are
discussed in Chapter 5. Finally, in Chapter 6, we shortly sum up our work and answer
the research questions.

3

CHAPTER 2
Related Work

Explicit research on our selected topic, i.e., optimizing the generation of procedural
geometry with simplified geometry, is rare. Therefore, we first explain procedural
architecture generation through shape grammars in Section 2.1. Geometry optimization
in the form of image-based impostors and visibility culling is explored in Sections 2.2 and
2.3. Then, Section 2.4 summarizes Image Quality Assessment (IQA) techniques. Finally,
in Section 2.5, we describe the method proposed by Steinberger et al. [SKK+14b] that
serves as a reference solution for this work and uses image-based impostors, visibility
culling, and IQA to enhance shape grammars.

2.1 Shape Grammars & Procedural Architecture

Stiny et al. [SG71] first proposed the idea of a grammar that operates on shapes instead
of symbols. Their proposal refers to a shape as a set of one or more geometric objects
in a specific configuration within 2D / 3D Euclidean space. They redefine the Kleene
operator ∗ for sets of shapes: For any set V that exclusively contains shapes, V ∗ is the
set of all possible combinations of the shapes within V , where each shape can appear
an arbitrary number of times and have an arbitrary scale and orientation each
time it appears. A shape grammar consists of

• a finite set of terminal shapes VT

• a finite set of marker shapes VM , which are distinct from VT , meaning V ∗T ∩VM = ∅

• a finite set of rules R

• an initial shape I ∈ V ∗T × VM

5

2. Related Work

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

R

VT{ } VM{ } I =

SGI = {VT , VM , R, I}

Figure 2.1: Example of a shape grammar (top-left) together with one possible step-by-step
derivation. The notation above the arrow for each step indicates which rule is being
applied. The left- and right-hand sides of the arrow show the shape before- and after rule
application, respectively. Shapes directly manipulated in the current step are highlighted
in red.

Together they form the 4-tuple SG = (VT , VM , R, I), which defines the shape grammar.
Rules have a left-hand side u and a right-hand side v where

u = t1m1, v =

t1 |case1

t1m2 |case2

t1t2m2 |case3
, ti ∈ V ∗T ,mi ∈ VM

and are denoted as u→ v. The arrow signifies that u can be replaced with v. Algorithm
2.1 shows how to derive a shape grammar. Figure 2.1 shows an example grammar together
with its derivation.

While the shape grammar by Stiny et al. [SG71] provided means to model and analyze
different kinds of art and architecture, it was still mainly derived by hand and lacked
coherent notation. The combination of different rules often resulted in unwanted side
effects, and deducing the impact of a single rule on the derived shapes proved difficult
[MWH+06]. Follow-up papers of Wonka et al.[WWSR03], Marvie et al. [MBG+12], and
Müller et al. [MWH+06] addressed these issues and proposed new methods as well as
modifications to the model.

Müller et al. [MWH+06] proposed to link shapes to terminal- (Σ), or non-terminal
(V) symbols v ∈ Σ ∪ V and made it possible to notate a shape grammar in text
form. Each shape additionally keeps track of its size S and orientation by storing a
position P together with vectors X, Y , and Z forming the local coordinate system.
Finally, a shape stores a set of grammar-specific parameters p, making it a 3-tuple
s = (v, g, p); g = (P,X, Y, Z, S);P,X, Y, Z, S ∈ R3.

6

2.1. Shape Grammars & Procedural Architecture

Algorithm 2.1: Stiny shape grammar derivation
Input: SG = (VT , VM , R, I)

1 S0 = I;
2 n = 0;
3 while true do
4 matching_shapes = ∅;
5 for ri = (ui, vi) in R do
6 find all uik ∈ Sn in any orientation or scale;
7 append all found uik to matching_shapes;
8 if matching_shapes == ∅ then
9 break;

10 select one uik from matching_shapes;
11 Sn+1 = (Sn \ uik) ∪ vik ;
12 n = n+ 1;
13 return Sn;

Production rules are restricted to only have a single non-terminal symbol v ∈ V on the
left-hand side. This makes the difference between the shape grammar by Stiny et al.
[SG71] and the shape grammar by Müller et al. [MWH+06] analogous to the difference
between context-sensitive and context-free grammars. In context-sensitive grammars,
the left-hand side of a production rule may include multiple non-terminal and terminal
symbols. On the other hand, the left-hand side of a rule in a context-free grammar is
only one non-terminal symbol. This change streamlines the derivation process and makes
the effect a rule has on the outcome more apparent.

A unique id now identifies rules. The left-hand side v ∈ V is combined with a condition.
The right-hand side is a parameterized set of operations to be executed upon any shape
with symbol v to compute the successor shapes, combined with a selection probability
[MWH+06]. The following notation is used:

id : non-terminal : condition operations : probability

Operations include basic instructions such as affine transformations. However, Müller et
al. [MWH+06] also introduced operations Subdivide and Repeat inspired by common
patterns found in architecture. Subdivide splits the original shape along a local axis into
a predetermined set of sub-shapes and balances the sizes of the derived shapes to fit the
size of the original shape (Figure 2.2 left). This is akin to refining a coarse structure
by adding more detailed structures in a specific pattern. Repeat creates sub-shapes
with predetermined size along a local axis within the original shape. It produces the
appropriate number of sub-shapes to fill the original shape and stays within its bounds
(Figure 2.2 right). This facilitates tiling a repeatable pattern across shapes of different
sizes.

7

2. Related Work

S

GW WD D

S

GW WD D

1 : S → SubDiv(”X”, 1, 1r, 2.5, 1r, 1){D|W |G|W |D}

Size(7.5, 4, 0) Size(9, 4, 0) Size(10, 4, 0) Size(15, 4, 0) Size(12, 4, 0)

F F F

S S S S S S S

rule1 rule1

rule1 rule1 rule1 rule1 rule1 rule1 rule1

rule2 rule2 rule2

2 : F → Repeat(”X”, 5){S}

Figure 2.2: Left: Subdivide operation. Symbols D and G are defined with absolute width,
ensuring that the sub-shapes always have the same size regardless of parent-shape size.
Symbols W are defined with relative width (marked by an r), meaning they will adjust
their size to fill the remaining space. Right: Repeat operation. Shape F is replaced by
multiple instances of shape S with width 5. If an exact fit is not possible, the width for
all sub-shapes is adjusted slightly to avoid one out-of-place sub-shape.

More recent advancements in the field of shape grammars are mainly concerned with
increasing the performance of shape grammar derivation. For example, Steinberger et
al. [SKK+14a] describe a rule scheduling scheme that, especially when implemented to
work on the Graphics Processing Unit (GPU), achieves enormous speedups. In a follow-
up paper, Steinberger et al. [SKK+14b] use image-based impostors, visibility culling
techniques, and IQA to further shape grammar performance and make real-time geometry
derivation possible. The following three Sections, 2.2, 2.3, and 2.4, give a broad overview
of the concepts mentioned above before Section 2.5 describes Steinberger’s solution in
more detail.

2.2 Image-Based Impostors

Over the past few decades, demand has been on the rise for 3D scenes of ever-increasing
size, complexity, and geometric detail. While technical advancements of the underlying
hardware regularly boost the performance of commercially available computers, they
struggle to keep up with the workload [JWP05]. Thus other solutions are required. A
common approach is to reduce unnecessary geometric detail that only appears very
small in the rendered image. The term level of detail (LOD) describes a technique
where multiple versions of the same asset with decreasing quality (vertex-count, texture
resolution, etc.) are provided. Less qualitative versions (impostors) are used when the
asset is further away or not the center of attention, and the difference in quality is less
likely to be noticed. This effectively reduces the number of vertices in a scene and helps

8

2.2. Image-Based Impostors

to alleviate aliasing effects that would otherwise occur due to faces being smaller than
pixel size [DDSD03]. The following paragraphs describe multiple approaches to create
different LOD assets from detailed geometry automatically.

Billboards and sprites replace complex geometry with planar impostors. More specifically,
they are rectangles textured with an RGBA image of the geometry. Since one image
can approximate arbitrarily complex geometry without requiring additional resources,
they are a very light-weight and efficient method. The textures for sprites and billboards
can be created manually from images of real-world objects. However, textures may also
be generated automatically by rendering the complex geometry that is supposed to be
approximated.

The exact differences between sprites and billboards are vaguely defined and vary between
publications. In the context of the work by Jeschke et al. [JWP05], the terms are
synonymous. Décoret et al. [DDSD03] avoid the expression sprite but define a billboard
as either two planar impostors intersecting each other, forming a cross or a single impostor
that aligns itself always to stay parallel to the image plane. Eberly [Ebe01] makes a strict
distinction between sprites and billboards. Sprites are planar impostors with arbitrary
orientation. Billboards are a special case of sprites that are in some form oriented towards
the camera. Eberly discerns between screen-aligned billboards that stay parallel to
the image plane and remain upright regardless of camera rotation and axially aligned
billboards that only rotate about their up-vector in object space. For the purposes of
this thesis, we will stick to the definitions of Eberly.

One drawback of sprites is that they only look similar to the original geometry if viewed
from roughly the same camera position as the one used to generate their texture. If the
discrepancy gets too big, the sprite starts to look unnatural and out of place (see Figure
2.3). In that case, another better-fitting sprite has to be rendered or selected from a
set of pre-rendered sprites. Alternatively, the detailed geometry can be displayed. Since
the difference between sprite and original diminishes with increasing view distance, the
region in which a sprite stays valid is defined by a minimum distance, the direction from
which the sprite was rendered, and an angle that defines an acceptable amount of visual
inaccuracy (see Figure 2.4) [JWP05].

Another drawback of billboards and sprites is that the z-buffer information is lost when
reducing geometry into a rendered texture. Because of this, visibility errors can occur
when intersecting with other objects in the scene or when two planar impostors should
occlude each other (see Figure 2.5). In static scenes, it is possible to circumvent this issue
by grouping objects close to each other in a single sprite, but this is no longer possible
in a dynamic scene, where objects can move independently. Schaufler [Sch97] proposes
nailboards that store a ∆-value in the alpha channel of their texture to address this issue.
This value is indicative of the z-buffer difference between the nailboard and the original
geometry and makes it possible to fix the visibility errors. Since the alpha channel was
previously used to determine the transparency of the texture, this method defines one
explicit alpha value to signify that a given texel is transparent. The rest of the values
imply that the texel is opaque and encode the z-buffer difference.

9

2. Related Work

(a) Scene Overview (b) Generating Position (c) Valid Position (d) Invalid Position

Figure 2.3: While sprites stay valid for similar camera positions, they start looking more
and more out of place as the camera is moved away from the position the sprite was
generated from. This effect is much more apparent for camera movement around the
object than for movement that changes the distance between camera and sprite. We
generated a sprite of a wet floor sign from camera position (b) to demonstrate this effect.
A second camera position (c) is close to (b), while a third camera position (d) is farther
away from (b) and views the sprite from a different angle. The sprite looks acceptable in
the image rendered from camera position (c) but looks out of place in the image rendered
from camera position (d).

minimum distance

render direction

acceptable error angle

valid

invalid

sprite
position

camera positions

camera positions

Figure 2.4: Space can be divided into sets of valid- and invalid camera positions for a
given sprite based on the direction the sprite was rendered from, a minimum distance,
and the maximal tolerable deviation angle from the original render direction [JWP05].

10

2.3. Visibility Culling

(a) original geometry (b) chair in front of desk (c) desk in front of chair

Figure 2.5: In some areas, the chair should be displayed in front of the desk, while in
others, it should be behind the desk. Since the z-buffer information of the geometry
is being reduced to the face of the billboard, those intricate interactions cannot be
reproduced. It is only possible to position one billboard in front of the other or let the
planes intersect on a straight line [Sch97].

In later work, Schaufler [Sch98] proposed another approach. Here the impostor texture
is created by rendering the inside of the geometry from behind using a perspective
projection. This way, a single render can display more sides of the original geometry
than a conventional render from the outside could show. In order to render the impostor,
multiple sprites are stacked along the z-axis of the view frustum that was previously
used to create the impostor. Each rectangle exclusively displays those fragments of the
impostor texture with a z-buffer value between the z-distance of the rectangle itself and
the z-distance of the next rectangle. Thus, the 3D features of the original geometry
remain intact, and the impostor remains valid in a broader range of camera positions.
Figure 2.6 left demonstrates how the impostor texture is generated. Figure 2.6 right
shows how the impostor is rendered.

The method proposed by Décoret et al. [DDSD03] selects panes in 3D space that roughly
tangentially align with as many triangles as possible. They then project the triangles
onto these planes, creating textures for a cloud of semi-transparent sprites. This way,
the complexity of the geometry can be drastically reduced, and the impostor remains
valid for all camera angles. In order to adjust to different LOD, an error threshold can
be adjusted that influences how many sprites will be created.

2.3 Visibility Culling

Other common techniques that reduce render expense can be found in the field of visibility
culling. These approaches distinguish between visible and non-visible geometry and
discard non-visible geometry early on so that no resources are wasted on it [JWP05,

11

2. Related Work

imposter frustum

imposter texture

projection of torus

torus

projection center

sprite

approximation of torus
valid camera position

Figure 2.6: Left: The inside of the object (in this case a torus) is rendered to an impostor
texture. Note that in this render-pass, front faces are being culled, and fragments with
greater distance to the camera are drawn over closer fragments. Right: Multiple layered
sprites use the impostor texture to more accurately represent the original geometry
[JWP05].

(a) Frustum culling (b) Occlusion culling (c) Back-face culling

Figure 2.7: Different visibility culling techniques. Rendered geometry is shown in blue,
discarded geometry is shown in red.

CCSD03]. Unlike image-based impostors, since only non-visible geometry is removed, the
visual appearance remains exactly the same as without visibility culling. The efficiency of
such an algorithm is determined by its accuracy and the added computational overhead.
In general, there are three types of visibility culling: Frustum Culling, Occlusion Culling,
and Back-face Culling. Frustum culling checks if objects can be visible inside the render
by comparing their geometry with the camera’s viewing frustum. If an object is entirely
outside the viewing frustum, it cannot be visible in the rendered image and is therefore
discarded (see Figure 2.7a). Occlusion culling finds geometry entirely hidden by other
geometry from the current camera position and discards it (see Figure 2.7b). Finally,
back-face culling does not draw faces that do not face the camera (see Figure 2.7c).

Back-face culling, being the most straightforward and simple approach, can be used in
the broadest range of applications. It is easy and quick to determine whether a face

12

2.4. Image Quality Assessment

is pointing away from the camera since only the face normal needs to be compared
with the vector from the camera to the face position using a dot product [Ebe01]. It
is part of the OpenGL rendering pipeline and, therefore, usually does not have to be
implemented separately. Typically, scenes consist of objects with faces pointing in very
different directions, making it possible for back-face culling to cull a significant amount
of faces regardless of camera position.

Frustum culling is more complex than back-face culling. In order to check whether an
element is within the view frustum, it is compared with the frustum’s six sides. This
makes it no longer efficient to check each face or even each object. Because of this, a
bounding volume usually approximates one or more objects. Different approaches have
been proposed using axis-aligned bounding boxes, oriented bounding boxes, or bounding
spheres [AM00]. Some methods use hierarchical scene partitioning techniques to cover
big chunks of a scene at once when making a comparison [Chi95, AM00]. Regardless of
all efforts made to increase the performance of frustum culling, there are still cases in
which the computational overhead of the procedure overshadows the benefits. Suppose
all of the scene is contained within the view frustum. No object could be culled, but it
would still be necessary to make at least a few comparisons.

Occlusion culling only improves performance under the condition that much geometry is
actually being occluded, e.g., the camera is placed on ground level in a dense city. In
this case, close-by buildings would occlude most of the remaining scene. On the other
hand, if the camera were placed in a bird’s-eye view to give a good overview of the city,
much less geometry would be occluded, reducing the effectiveness of occlusion culling to a
point where it reduces overall performance [SKK+14b]. Checking if objects are occluded
is much more complex than applying frustum- or back-face culling since occlusion is a
property dependent on the camera, the object itself, and all the other objects within the
scene [CCSD03].

2.4 Image Quality Assessment
Objective Image Quality Assessment (IQA) tries to determine the quality of images
algorithmically. While some approaches find a quality score based on intrinsic properties
of an image, others rely on the existence of a reference image, to which they compare the
tested image [MES14]. A straightforward method (per-pixel difference) calculates the
difference for each pixel in two images using the mean value, which makes it fast and
easy to implement. However, in most cases, this method fails to adequately capture how
humans see images and is therefore unfit to represent the visual difference perceived by
humans. For example, an image compared to itself using per-pixel difference would yield
a drastically different result than the same image compared to a version of the image
shifted a few pixels to the right or a version of the image with a slightly different tint.
While these changes would be hard for a human to notice, they significantly impact the
result of the per-pixel comparison.

13

2. Related Work

Structural Similarity (SSIM) attempts to better approximate human vision by comparing
weighted k-by-k pixel sub-areas of the image, which later get summarized through a
mean value. The method only considers the luminance values of each image. It combines
the quality score for each k-by-k window out of three metrics, comparing the weighted
average luminance, the weighted average contrast (standard deviation), and weighted
structural differences (correlation) [WBSS04, MES14, VWB+21].

While SSIM handles the above-mentioned issues much better than per-pixel difference,
the fixed sub-area size acts as a limiting factor. As a result, the method mainly detects
frequency differences that can be captured within the k-by-k window. Wang et al.
[WSB03] proposed Multi-Scale Structural Similarity (MS-SSIM) to address this issue.
They factor in multiple versions of the image, each successive version being the previous
image filtered with a low-pass filter and downsampled to half the resolution.

The method Butteraugli, introduced by Alakuijala et al. [A+, AOS+17], considers color
values and factors in quirks of human vision that make it easier or harder to notice
certain differences. They take into account that we perceive color differences with varying
accuracy due to different proportions of color-sensing cones in our retina. Further, they
account for the fact that it is harder to notice differences between images in parts with
high frequencies than parts with lower frequencies.

2.5 Reference Solution
As mentioned in Section 2.1, the solution proposed by Steinberger et al. [SKK+14b]
improved shape grammars with the use of image-based impostors, visibility culling, and
IQA. A pre-processing step is introduced that inserts surrogate terminal operations into
a shape grammar. These surrogate terminal operations replace detailed geometry with a
pre-rendered sprite of said geometry if the distance to the camera is big enough. This
effectively reduces not only vertex-count but also derivation time since derivation is
terminated early. To find the appropriate distance thresholds that decide whether a
surrogate terminal can be used, Steinberger et al. render both the detailed geometry
and the surrogate terminal from multiple camera angles and distances. They then fit
a parameterized sigmoid function to the correlation of the camera distance with the
per-pixel difference of the rendered images and compute the distance threshold. Figure 2.8
shows the geometric difference that such a surrogate terminal has on the final geometry.

To further increase performance, frustum- and occlusion pruning is employed [SKK+14b].
Visibility culling makes sure that invisible geometry is discarded early on, whereas
visibility pruning ensures that invisible geometry is not even generated in the first
place. To make frustum pruning possible, coarse bounding volumes, also called hulls, are
calculated dynamically during derivation. When designing a shape grammar, certain rules
are tagged as hull-generating rules. Only those rules are used to calculate a bounding
volume, and all child rules are assumed to generate geometry contained within the hull.
Once the hulls have been determined, they are checked against the camera’s viewing
frustum to decide if further derivation is required. Similar measures are required for

14

2.5. Reference Solution

traditional rule / operation

inactive surrogate operation

active surrogate operation

skipped rules

Facade Facade

/ operations

Figure 2.8: Left: Derived geometry from a shape grammar utilizing surrogate termi-
nals. Nearby structures are generated in full detail, while distant facade elements are
replaced with sprites. Right: Two excerpts of a derivation tree (inexact and simplified
representations of the left image) that demonstrate the general concept of surrogate
terminals.

occlusion pruning. However, the bounding volumes need to be more accurate to avoid
pruning geometry that is actually visible through a hole in some otherwise occluding
geometry.

Together with the more efficient rule scheduling scheme proposed in prior work by
Steinberger et al. [SKK+14a], these advancements allow for generating and rendering
entire city visualizations in real-time on the GPU alone. In our work, we aim to improve
upon the surrogate terminal operations introduced by Steinberger et al. and further use
the method as a benchmark to compare our solution against.

15

CHAPTER 3
Methods

This thesis is a follow-up work to Steinberger’s On-the-fly Generation and Rendering
of Infinite Cities on the GPU [SKK+14b]. In their paper, Steinberger et al. propose a
method to skip multiple derivation steps inside a shape grammar and reduce unnecessary
geometric detail by inserting additional surrogate terminal operations. Those surrogate
terminals essentially replace detailed geometry with pre-rendered sprites [JWP05] of said
geometry. The grammar chooses to use them if the observing camera is far enough away
so that the Human Visual System (HVS) can barely notice the difference. Our proposed
method builds on the insight gained in this work and aims to improve surrogate terminals
by broadening their application domain.

According to Steinberger et al. [SKK+14b], one of the main issues with generating
surrogate textures is the discrepancy in dimensionality between input shape and final
geometry. The input shape is an arbitrary non-terminal shape, and the final geometry is
its entirely derived counterpart. A two-dimensional quad, for example, could be used as
a baseline to generate detailed geometry for a window. It could, however, also be used
as a building footprint that will subsequently be extruded into a 3D prism. In the first
case, all of the generated geometry stays relatively close to the input shape, making it
easy to render a sprite that stays valid for a wide range of view directions and distances.
In the second case, some of the geometry is very far away from the input shape. The
distant geometry is subject to the parallax effect. This limits the range of valid view
directions severely and increases the minimum distance from which it makes sense to use
the surrogate terminal instead of the actual geometry [JWP05].

We observe that the range of valid view directions for a given sprite is limited in two ways,
both caused by the parallax effect: First, vertices distant from the sprite are impacted
differently to close vertices when the camera moves. Second, some faces are only visible
from certain directions [JWP05], as demonstrated in Figure 3.1. The effects of the first
limitation loom larger with greater distance between the geometry to the impostor and
diminish with increasing camera distance. However, the effects of the second limitation

17

3. Methods

(a) Overview (b) Front view (c) Side view

Figure 3.1: The right face of the balcony (magenta) is visible from the side while hidden
from the front. Because of this, it is not possible to create a valid sprite that can be used
for both views.

persist regardless of camera distance and are even apparent in cases where the geometry
is not that far away from the sprite. Consequently, if the generated geometry is farther
away from the input shape, it is impossible to use a single sprite to cover a wide range of
viewing angles. However, it would still be desirable to stop grammar derivation early
to avoid wasting computation time on unnecessary details. In architecture, it is not
uncommon for geometry to stick out of an otherwise flat surface. Balconies, vents,
pipes, satellite dishes, and emergency stairs are only some examples of geometric detail
an architecture-oriented shape grammar may try to model. Steinberger’s [SKK+14b]
method cannot provide satisfactory sprite textures in these cases. Our proposed approach
addresses this issue using multiple, pre-rendered sprite textures for different points of
view selected on a case-by-case basis once the grammar is executed.

Just like Steinberger et al. [SKK+14b], we propose a pre-processing step that transforms an
unmodified version of the grammar (original grammar) into a modified version (modified
grammar). The modified grammar utilizes surrogate terminals, while original grammar
does not utilize surrogate terminals. First, we build an Abstract Syntax Tree (AST) of
the original grammar, which we use to derive and evaluate the grammar once from top to
bottom. In the derivation process, we identify operations of certain types as candidates
for surrogate terminal insertion (surrogate candidates). For these surrogate candidates,
we remember which parts of the geometry they create and the input shape they used
to create that geometry. In a second step, we analyze all found surrogate candidates
based on their final geometry and input shape and determine whether they can be used.
Next, we render multiple surrogate textures from different camera configurations for
each suitable surrogate candidate. Finally, we insert the rendered surrogate textures
as surrogate terminal operations into the AST and translate the modified AST to get
the modified grammar. Figure 3.2 gives a visual overview of the individual stages and
demonstrates how a grammar is modified based on a simple example.

18

D DW WG

D
ecoration

W
all

G
lass

D
ecoration

W
all

SubDiv

XOperation Non-Terminal

FacadeF

Repeat

CompSplit

Extrude

G
en

erate

Start Facade

D DW WG

D
ecoration

W
all

G
lass

D
ecoration

W
all

SubDiv

XOperation Non-Terminal

FacadeF

Repeat

CompSplit

Extrude

G
en

erate

Start Facade

Surrogate Candidate

D DW WG

D
ecoration

W
all

G
lass

D
ecoration

W
all

SubDiv

XOperation Non-Terminal

FacadeF

Repeat

CompSplit

Extrude

G
en

erate

Start Facade

Unfit Candidate

Fit Candidate

D DW WG

D
ecoration

W
all

G
lass

D
ecoration

W
all

SubDiv

XOperation Non-Terminal

Facade

Repeat

CompSplit

Extrude

G
en

erate

Start Facade

Surrogate Terminal

F

1.

Geometry Data

2.

Terminal

Terminal

3.

Sprite Textures

(a)
Star t :

Extrude (3)
CompSplit () {

mantle :
Repeat(+X, 5)
Facade ;

d e f au l t : Generate ;
} ;

Facade :
SubDiv(+X) {

1 .0 : Decorat ion ;
1 . 0 r : Wall ;
2 . 5 : Glass ;
1 . 0 r : Wall ;
1 . 0 : Decorat ion ;

} ;

Wall :
. . .

. . .

(b)

Star t :
Extrude (3)
CompSplit () {

mantle :
Terminal (. . .)
Repeat(+X, 5)
Facade ;

d e f au l t : Generate ;
} ;

Facade :
Terminal (. . .)
SubDiv(+X) {

1 .0 : Decorat ion ;
1 . 0 r : Wall ;
2 . 5 : Glass ;
1 . 0 r : Wall ;
1 . 0 : Decorat ion ;

} ;

Wall :
. . .

. . .

(c)

(d)

(e)

Figure 3.2: (a) Overview of our method. (b) Example: original grammar. (c) Example:
modified grammar. (d) Render: original grammar. (e) Render: modified grammar. 19

3. Methods

C

(a)

O
C

H

(b)

P
O

(c)

Figure 3.3: Visual demonstration of how to calculate the point of view indicator (POV
indicator) P.

Section 3.1 describes how exactly our novel, view-dependent surrogate terminals operate
once inserted into the grammar. The following sections, 3.2, 3.3, 3.4, and 3.5, explain
how to automatically generate surrogate terminals and insert them into a shape grammar.
Section 3.6 then describes further improvements we added to make our solution more
feasible.

3.1 Surrogate Terminals

The surrogate terminal operations proposed by Steinberger et al. [SKK+14b] work only
on planar input shapes. They decide whether to derive the grammar further or insert a
sprite based on camera distance alone. We augment these surrogate terminals to consider
the camera’s position relative to the surrogate and select the most appropriate from
multiple sprite textures. To facilitate this, a suitable metric is required, which needs to:

• capture the direction from which the camera observes the input shape

• be quick to compute

• allow the best fit surrogate texture to be selected with few comparisons

We propose a novel point of view indicator (POV indicator) P , which is a 2D vector with
length ≤ 1. To obtain P , we first calculate the vector −−→OC from the input shape origin O
to the camera position C inside object space of the input shape (see Figure 3.3). Then,
we project −−→OC along the input shape’s normal vector onto the input shape to get −−→OH,
which we finally normalize by dividing by ‖−−→OC‖ (see Equation 3.1).

P =
−−→
OH

‖
−−→
OC‖

(3.1)

20

3.2. Surrogate Candidate Selection

Doing these calculations in object space helps because the following shortcuts can be
taken:

1. −−→OC = C, since O = (0, 0, 0)

2. projecting −−→OC onto the input shape is as simple as multiplying one vector component
by 0

3. converting P from a 3D vector to a 2D vector can be done by omitting the same
vector component

P = (0, 0) if the camera is directly in front or behind the initial shape. Suppose the
camera position lies on the same plane as the initial shape. In this case, ‖P‖ would equal
1. Overall, ‖P‖ quantifies how "head-on" the camera looks at the surrogate. The vector
P itself captures the direction from which the camera views the shape.

We use the POV indicator to subdivide the space into multiple cells with similar values
(see example in Figure 3.3c) and generate suitable surrogate textures for each cell. Once
the surrogate terminal operation gets called, it calculates camera distance and POV
indicator. Next, it compares the camera distance with a pre-computed distance threshold
τD and decides whether to terminate derivation. If the decision is to derivation, an
appropriate sprite is inserted into the scene as a terminal shape. The sprite’s texture
is decided by looking up in which cell of the subdivided POV indicator space P lies. If
the camera is too close, derivation does not stop, child operations are executed, and the
entire geometry is generated.

3.2 Surrogate Candidate Selection
In order to analyze and modify a shape grammar, we first need to build an AST from
the grammar’s notation. Each rule has its own tree, and operations form the tree nodes
(see Figure 3.2a top-left). Leaves of a tree either discard unnecessary shapes (Discard
keyword), add the current shape to the final geometry (Generate keyword), or assign a
new non-terminal symbol to the shape.

21

3. Methods

Once the AST is complete, it can be used to derive the grammar by defining an axiom
(tuple of initial shape and starting symbol) and recursively applying rules until no non-
terminal shape remains. While navigating through the tree structure of the AST, we
keep track of possible surrogate candidates using a separate data structure. Namely, each
time we derive a possible surrogate candidate, we add a 4-tuple containing

1. a reference to the operation

2. the current shape s = (v, g, p)

3. the size of the global index buffer before the operation has been executed

4. the size of the global index buffer after the operation and all its children have been
executed

to a list. Because we derive the AST in a depth-first fashion and insert new indices at
the end of global buffers, these index buffer offsets can later be used to analyze and
exclusively render geometry created by the operation and its children.

Not every operation type makes a good surrogate candidate. The translate operation,
for example, changes the position of the final geometry, while conditionals dynamically
decide which children to invoke. Since the goal is to reduce geometric detail, creating
surrogate terminals for operations that directly contribute to adding more geometry to
the scene makes sense, for example, operations that subdivide, duplicate, or extrude the
input shape.

3.3 Surrogate Candidate Validation
The operation type is not the only factor limiting the usefulness of a possible surrogate
terminal. In many cases, a sprite cannot replace the final geometry when viewed from
certain camera positions. For example, Figure 3.4 shows a balcony’s final geometry that
sticks so far out of the input shape that parts are not contained in the screen space area
covered by the input shape. For some surrogate candidates, it is entirely impossible to
create fitting surrogate textures. Some candidates are hardly helpful due to a small region
of valid camera positions. Other candidates remain valid for a vast range of camera
positions even though some vertices in the final geometry protrude significantly from the
input shape. Therefore, we suggest a validation process that determines the range of
valid camera positions for surrogate candidates and drops unfit candidates.

We consider a camera position C legal relative to a surrogate candidate if all vertices in
the final geometry of that candidate can be mapped from C onto the candidate’s input
shape. We say a vertex V can be mapped onto a shape S from a position P or direction
D if the line through V and P , or the line through V along D intersects with S. Camera
C1 in Figure 3.5d is an example of an illegal camera position relative to the candidate
since V cannot be mapped onto the input shape. On the other hand, camera positions

22

3.3. Surrogate Candidate Validation

(a) (b)

Figure 3.4: Some of the balcony’s vertices extend so far out of the facade that they leave
the sprite’s bounds when viewed from this angle. (a) Input shape highlighted in cyan
and final geometry that sticks out too far highlighted in red. (b) Incomplete sprite with
cut-off geometry.

C2 and C3 are legal since the lines through C2 and V and C3 and V intersect the input
shape at points V ′C2

and V ′C3
, respectively. The legal region (LR) of a surrogate candidate

is a subset of R3 and consists of all legal camera positions relative to the candidate.
The approximate legal region (ALR) is our approximation of LR. We deem a surrogate
candidate to be fitting if the ALR is big enough so that it makes sense to check for
legality in grammar derivation and dynamically decide whether to insert a sprite.

Algorithm 3.1 analyzes a surrogate candidate and returns a scaling factor κ (see Figure 3.6).
κ is used to determine if a camera position is considered legal relative to a hypothetical
sprite inserted in place of the surrogate candidate. A camera position with POV indicator
P is considered legal if |Px| < κx and |Py| < κy. In case κ = (0, 0), there are no or too
few legal camera positions for the candidate, so we deem it unfit.

The algorithm iterates over all vertices in the surrogate candidate’s final geometry and
calculates a preliminary scaling factor κV for each vertex V . A first step (lines 6-8) checks
whether V can be mapped onto the input shape along the input shape’s normal vector
(see Figure 3.5b). If mapping the vertex is impossible, the procedure is interrupted, and
the surrogate candidate is deemed unfit. While this circumstance does not automatically
infer that no legal camera positions exist, it is still reasonable to assume a small LR.

A second step (lines 10-16) finds the closest points Pi to V on the input shape’s edges (see
Figure 3.5c). The LR for a surrogate candidate considering V is defined by the four planes
through each of the candidate edges and V . Each plane divides space into two half-spaces.
The intersection of all closed half-spaces that do not contain the input shape is the LR for
V . We approximate this vertex-specific LR with a region defined by the two-dimensional
vector κV . κV itself is defined by the minimum of h1 and h2 as well as v1 and v2 (see line
16), which are the ratio between the lengths of −−−→PiHV and −−→PiV (see lines 11-14). Suppose

23

3. Methods

V

(a)

V

HV

(b)

V
P1

P2

P3

P4

HV

(c)

V

C1

HV

V ′
C2

HC1

C2

C3

HC2

HC3

V ′
C1

V ′
C3

(d)

Figure 3.5: (a) Example of a surrogate candidate together with its final geometry. A
single vertex V is highlighted. (b) A first evaluation step checks if V can be mapped
onto the candidate’s input shape along the input shape’s normal vector. (c) In a second
step, the closest point Pi to V on each edge is determined. Vectors −−→PiV and −−−→PiHV are
then used to calculate a scaling factor κV that approximates the range of legal camera
positions (see Algorithm 3.1). (d) Example of three camera positions. Contrary to
camera positions C2 and C3, camera position C1 is not legal since V cannot be mapped
onto the candidate’s input shape from C1.

(0, 0) 1

1

−1

−1

κx

κy

A

Aκ

(a)

(0, 0) 1

1

−1

−1

A

Aκ

A1 A2

A3A4

Aκ,1 Aκ,2

Aκ,3Aκ,4

(b)

Figure 3.6: (a) The scaling factor κ is used to construct a rectangular area Aκ in
POV indicator space. All camera positions with P ∈ Aκ are considered legal by our
approach. The circle contains all possible POV indicator values. Area A is the best-case
scenario since all camera positions are considered legal. (b) Vertex positions of A are
A1 = (−1,−1), A2 = (1,−1), A3 = (1, 1), and A4 = (−1, 1). Aκ is defined by vertices
Aκ,i = Ai ◦ κ.

24

3.3. Surrogate Candidate Validation

Algorithm 3.1: Surrogate candidate fitness determination
Input: surrogate candidate C

1 S = input shape of C in object space
2 Sn = normal vector of S
3 κ = (1, 1)
4 foreach object space vertex V in final geometry of C do
5
6 obtain HV by mapping V along Sn onto S // see Figure 3.5b
7 if HV is outside the S then
8 return (0,0) // C is deemed unfit

9
10 find closest points P1, P2, P3, P4 to V on edges of S // see Figure 3.5c

11 h1 = ‖−−−→P1HV ‖/‖
−−→
P1V ‖

12 h2 = ‖−−−→P3HV ‖/‖
−−→
P3V ‖

13 v1 = ‖−−−→P2HV ‖/‖
−−→
P2V ‖

14 v2 = ‖−−−→P4HV ‖/‖
−−→
P4V ‖

15
16 κV = (min(h1, h2),min(v1, v2)) // see Figure 3.7a
17 κ = (min(κx, κVx),min(κy, κVy)) // see Figure 3.7b
18 if κx < τS or κy < τS then // see Figure 3.7c
19 return (0,0) // C is deemed unfit

20
21 return κ

camera position C has POV indicator P . In case |Px| < κVx ∧|Py| < κVy , we assume that
the camera position is legal. Figure 3.7a demonstrates how κV can be interpreted visually.
This approximation introduces two errors. The first error is that κV is calculated relative
to vertex V , while P is calculated relative to the input shape origin. This error introduces
both false positive and false negative categorizations and is detrimental for close camera
positions but diminishes in significance with increasing camera distance. The second
error introduces only false negatives and exists due to the fact that κV is a conservative
estimate of LR and selects the smaller of the two ratios for each axis (see line 16).

A third step merges κV into the overall scaling factor κ (see line 17) and checks whether
the new κ still defines a large enough ALR (see line 18). If the ALR is too small,
we deem the candidate unfit, as the computational overhead of checking for camera
position legality would likely overshadow the performance gain. For this, we compare the
individual components of κ to a minimum scaling factor τS . If at least one component
is lower than τS , we return (0, 0) and deem the candidate unfit for surrogate terminal
insertion (see Figure 3.7c).

25

3. Methods

1

1

−1

−1

A

AκV

h2

h1

v1 v2

(a)

1

1

−1

−1

A

Aκ

AκU

AκV

(b)

1

1

−1

−1

A

Aκ τS

τS

(c)

Figure 3.7: (a) Example of a preliminary scaling factor κV approximating the LR of a
single vertex V . κV is determined by scalars h1, h2, v1, and v2 (see Algorithm 3.1 lines
11-16). (b) We use the component-wise minimum to compute the overall scaling factor
κ from all vertex-specific scaling factors (see Algorithm 3.1 line 17). This simplified
example calculates the overall scaling factor for the two vertices U and V , with scaling
factors κU and κV . (c) Example of a surrogate candidate deemed unfit due to a κ value
with y-component < τS .

1

1

−1

−1

A

Aκ

Figure 3.8: Subdivision of the ALR in POV indicator space. Area Aκ is split into a 3 ×
3 grid. Each cell is assigned its own surrogate texture.

3.4 Texture Generation

To generate surrogate textures for a candidate, we first subdivide the ALR in POV
indicator space into an n× n grid of cells (typically 3 ≤ n ≤ 9), from now on referenced
as the surrogate grid (see Figure 3.8). Then, for each cell, we calculate the center position
G, for which we determine a camera position CG in object space with distance d and
unit-length candidate normal n (see Equation 3.2).

26

3.5. Surrogate Terminal Insertion

CG = d ∗ (−→G + n ∗
√
|
−→
G ·
−→
G − 1|) (3.2)

We render the surrogate candidate’s final geometry to a framebuffer object (FBO).
The exact screen space positions of the surrogate texture within the FBO are found
by applying the camera transformation and projection matrices to the vertices of the
candidate’s input shape. Next, we correct the perspective distortion of the surrogate
texture using the FBO as a texture for a quad perpendicular to the camera. The screen
space positions of the candidate’s input shape serve as UV coordinates of the quad and
rectify the image once rendered. Finally, the rectified surrogate texture is added to a
global texture atlas containing all surrogate textures for the entire grammar.

3.5 Surrogate Terminal Insertion

A reasonable distance threshold τD has to be computed before surrogate terminal
operations can be inserted into the AST. Here we adapt the methodology proposed by
Steinberger et al. [SKK+14b]. We render both final geometry and sprite from a multitude
of camera configurations, making sure to view the geometry from a broad range of
directions and distances. The perceived difference between the renders is assessed by an
objective Image Quality Assessment (IQA) algorithm (in our case, butteraugli [A+]). We
then fit a sigmoid function model to the results using non-linear least squares regression.
Equation 3.3 is the sigmoid function we use in our model, and Equation 3.4 is the model
itself. Symbols a, b, and c are unknown parameters estimated by the regression technique,
and argument x in Equation 3.4 is the camera distance. Once values a, b, and c have
been approximated, we intersect the function with a predetermined acceptable error
threshold τE to get the distance threshold τD (see Figure 3.9).

s(x) = 1
1 + e−x

(3.3)

err(x) = s(a ∗ (x+ b)) ∗ c (3.4)

Now that τD is calculated, surrogate terminal operations are inserted into the AST in
front of fit surrogate candidates. τD and κ are added as parameters of the terminal
operation, together with positional information of the surrogate textures within the
texture atlas. Finally, the modified AST is translated back into conventional shape
grammar notation, that other tools, which implement the proposed surrogate terminal
operation, may use to generate 3D models more efficiently. The code blocks in Figure 3.10
show the example grammar from Figure 3.2 together with a more elaborate pseudo-code
version that demonstrates how surrogate terminals work internally.

27

3. Methods

0 100 200 300 400
distance

0

5

10

15

20

25

30

er
ro

r

a = 0.025, b = 98.522, c = 23.736
data
sigmoid fitting

D = 110.884
E = 10.0

Figure 3.9: τD gets approximated by fitting a sigmoid function model to the visual error
data and intersecting it with a predetermined error threshold τE .

3.6 Frustum Pruning Operation
To further increase the efficiency of our method, we decided to add a frustum pruning
operation. It checks whether the final geometry produced by the operation’s child rules is
visible given the current camera configuration and stops derivation if it is not. For each
surrogate candidate (regardless of fitness), we find the most distant vertex V to the input
shape’s origin O. We use the distance between O and V as the radius for an approximate
bounding sphere, which the frustum pruning operation uses when executed. We insert
the operation directly before surrogate candidates regardless of fitness (see Figure 3.11)
since frustum pruning is applicable even if it is impossible to create a valid impostor.

28

3.6. Frustum Pruning Operation

Star t :
Extrude (3)
CompSplit () {

mantle :
Repeat(+X, 5)
Facade ;

d e f au l t : Generate ;
} ;

Facade :
SubDiv(+X) {

1 .0 : Decorat ion ;
1 . 0 r : Wall ;
2 . 5 : Glass ;
1 . 0 r : Wall ;
1 . 0 : Decorat ion ;

} ;

Wall :
. . .

. . .

(a)

Sta r t :
Extrude (3)
CompSplit () {

mantle :
Terminal (κ1, τ1

D, TLoc
1)

Repeat(+X, 5)
Facade ;

d e f au l t : Generate ;
} ;

Facade :
Terminal (κ2, τ2

D, TLoc
2)

SubDiv(+X) {
1 .0 : Decorat ion ;
1 . 0 r : Wall ;
2 . 5 : Glass ;
1 . 0 r : Wall ;
1 . 0 : Decorat ion ;

} ;

Wall :
. . .

. . .

(b)

Star t :
Extrude (3)
CompSplit () {

mantle :
I f (dist() ≥ τ1

D and P in κ1) {
id = getTex (P, κ1, n)
Sp r i t e (TLoc1, id) ;

} Else {
Repeat(+X, 5)
Facade ;

} ;
d e f au l t : Generate ;

} ;

Facade :
I f (dist() ≥ τ2

D and P in κ2) {
id = getTex (P, κ2, n)
Sp r i t e (TLoc2, id) ;

} Else {
SubDiv(+X) {

1 .0 : Decorat ion ;
1 . 0 r : Wall ;
2 . 5 : Glass ;
1 . 0 r : Wall ;
1 . 0 : Decorat ion ;

} ;
} ;

Wall :
. . .

. . .

(c)

Figure 3.10: A thorough example of a shape grammar modified by the surrogate terminal
operations. We use the example grammar shown in Figure 3.2. (a) The original shape
grammar. Possible surrogate candidate rules are highlighted. (b) The same grammar
after being modified. κi, τ iD, and TLoci are surrogate terminal–specific constants. TLoci
specifies the texture atlas positions of all surrogate textures of the surrogate terminal in
question. (c) Pseudo-code explanation of what the surrogate terminal operation does
internally. dist() returns the distance between the camera and the input shape’s origin.
P is the POV indicator of the camera position relative to the input shape. The global
constant n defines the resolution of the surrogate grid. getTex(...) determines which
surrogate texture should be used based on P, κi, and the surrogate grid resolution.
Finally, Sprite(...) replaces the input shape with a quad of equal dimensions and sets
the correct material properties.

29

3. Methods

Star t :
Extrude (3)
CompSplit () {

mantle :
Repeat(+X, 5)
Facade ;

d e f au l t : Generate ;
} ;

Facade :
SubDiv(+X) {

1 .0 : Decorat ion ;
1 . 0 r : Wall ;
2 . 5 : Glass ;
1 . 0 r : Wall ;
1 . 0 : Decorat ion ;

} ;

Wall :
. . .

. . .

(a)

Sta r t :
FrustumCheck (rad1)
Extrude (3)
CompSplit () {

mantle :
FrustumCheck (rad2)
Terminal (κ1, τ1

D, TLoc
1)

Repeat(+X, 5)
Facade ;

d e f au l t : Generate ;
} ;

Facade :
FrustumCheck (rad3)
Terminal (κ2, τ2

D, TLoc
2)

SubDiv(+X) {
1 .0 : Decorat ion ;
1 . 0 r : Wall ;
2 . 5 : Glass ;
1 . 0 r : Wall ;
1 . 0 : Decorat ion ;

} ;

Wall :
. . .

. . .

(b)

Sta r t :
I f (! inFrust (rad1)) {

Discard ;
} Else {

Extrude (3)
CompSplit () {

mantle :
FrustumCheck (rad2)
Terminal (κ1, τ1

D, TLoc
1)

Repeat(+X, 5)
Facade ;

d e f au l t : Generate ;
} ;

} ;

Facade :
I f (! inFrust (rad3)) {

Discard ;
} Else {

Terminal (κ2, τ2
D, TLoc

2)
SubDiv(+X) {

1 .0 : Decorat ion ;
1 . 0 r : Wall ;
2 . 5 : Glass ;
1 . 0 r : Wall ;
1 . 0 : Decorat ion ;

} ;
} ;

Wall :
. . .

. . .

(c)

Figure 3.11: A thorough example of a shape grammar modified by surrogate terminal
operations and frustum pruning operations. We use the example grammar shown in
Figure 3.2. (a) The original shape grammar. Possible surrogate candidate rules are
highlighted. (b) The same grammar after being modified. Frustum pruning operations
are highlighted in blue, while surrogate terminal operations are highlighted in green.
radi is an operation-specific constant that defines the radius of a bounding sphere. (c)
Pseudo-code explanation of what the frustum pruning operation does internally. The
second frustum pruning operation has not been expanded to increase clarity. inFrust(...)
returns true if the bounding sphere positioned at the origin of the input shape with
radius radi is inside the current view frustum.

30

CHAPTER 4
Evaluation & Comparison

To evaluate our solution, we set up three different shape grammars that generate scenes
of varying scale and complexity (original grammar). On each original grammar, we apply
our method to get a modified grammar. We also generate a separate shape grammar that
uses view-independent surrogate terminals as suggested by Steinberger et al. [SKK+14b]
(steinberger grammar) to compare our results to previous work.

The original dorms grammar generates the smallest scene with approximately 1.7M
vertices. It consists of 16 buildings with high detail, each house using roughly 100K
vertices. The buildings feature inset windows and balconies, which are repeated over four
to nine floors.

The original town grammar combines multiple building archetypes in one grammar and
arranges them in a street grid of 10-by-10 blocks. It generates 12.2M vertices and is the
most complex grammar, as it uses the most rules to create the different buildings, and
the most surrogate terminals have to be inserted.

The original balcony grammar generates the biggest scene with around 335.7M vertices.
Here, 10K high-rise buildings with balconies that stick out of each floor make up the
scene. The individual buildings themselves are not that highly detailed, use about 33.6K
vertices each, and have 11 to 19 floors.

To generate the modified grammar, we used a 5-by-5 surrogate grid, a minimum scaling
factor τS = 0.1, and an acceptable error threshold τE = 20. The acceptable error
threshold used to generate the steinberger grammars was also chosen to be 20.

4.1 Qualitative Analysis
Table 4.1 shows representative example renders generated from all three scenarios with
the above-mentioned three distinct grammar versions. In contrast to our method, Stein-
berger’s approach inserts surrogate terminals even if some vertices of the approximated

31

4. Evaluation & Comparison

original grammar modified grammar steinberger grammar
do

rm
s

to
w
n

ba
lc
on

y

Table 4.1: Example renders for each of the three test scenarios using the original grammar,
modified grammar, and steinberger grammar, respectively.

geometry cannot be mapped onto the input shape. Consequently, steinberger grammars
sometimes generate visually incomplete geometry, such as balconies without railings and
flat flowerpots (see balcony- and dorms grammar in Table 4.1). Our method avoids these
issues while still being able to reduce a significant amount of geometric detail.

Scenes generated by original grammars and modified grammars look similar. However, the
less detailed geometry derived by the original grammar is subject to fewer aliasing issues
previously caused by far-away triangles of sub-pixel size (see town grammar in Table 4.1).

32

4.1. Qualitative Analysis

(a) (b)

(c)

(d)

Figure 4.1: (a) Example render of geometry produced by the modified grammar of the
balcony scenario. (b) The same render with replaced surrogate textures. Each surrogate
terminal operation is assigned a unique color. Surrogate terminals that approximate
the geometry of the balconies (red) use an unreasonably high distance threshold τD. (c)
Extract of the texture atlas used for rendering (a). (d) The same extract of the modified
texture atlas as (c) used for rendering (b). Note that the orange surrogate textures are
not used once in (b).

Contrary to our expectations, the modified grammars seemed to mainly use surrogate
terminals of flat geometry. More complex geometry with features like balconies extending
into or out of the surrogate’s input shape only got replaced by sprites in specific cases
(see Figure 4.1). We attribute this to a too strict calculation of distance threshold τD
and scaling factor κ, leading to an unnecessarily deep derivation of the grammar.

33

4. Evaluation & Comparison

vertex count derivation time rendering time visual diff.
umod ours stb umod ours stb umod ours stb ours stb

dorms 1.7 M 947.3 K 183.6 K 1.0s 1.8s 0.6s 1.2ms 0.9ms 0.6ms 31.7 47.2
town 12.2 M 4.0 M 852.2 K 1.9s 2.6s 1.0s 6.6ms 2.8ms 1.3ms 23.9 58.3

balcony 335.7 M 45.0 M 3.5 M 120.4s 4.2s 0.7s 10.0s 18.2ms 2.7ms 46.5 56.4

Table 4.2: Average test results for each scenario using grammars without frustum pruning.
The unmodified original grammars are abbreviated as umod, the modified grammars
generated by our method are shortened to ours, and steinberger grammars are referred
to as stb.

Another issue we identified is that some surrogate terminals rarely get used since their
region of adequate camera positions (adequate region (AR)) is roughly contained within
the AR of surrogate terminals higher up in derivation hierarchy (parents). Therefore, in
case a parent surrogate terminal cannot terminate grammar derivation, there is a low
chance the surrogate terminal itself can be applied. Figure 4.1d demonstrates this issue
since the orange surrogate texture cannot be found within Figure 4.1b. The surrogate
terminal with red textures contains the orange surrogate terminal and uses a scaling
factor κ = (0.93, 0.72) and distance threshold τD = 213.5, while the orange terminal
uses κ = (0.13, 0.72) and τD = 130.9. Since the orange terminal gets used in very few
scenarios but has to be derived every time the red surrogate terminal cannot stop grammar
derivation, its computational overhead likely overshadows the benefit it provides.

4.2 Quantitative Analysis

For each scenario, we picked at least 100 camera configurations showing the buildings from
different viewing directions and -distances. We specifically focused on geometry produced
by rules either method could have considered as surrogate candidate. We derived the
geometry from the grammars using these camera configurations and compared them
based on vertex count, derivation time, render time, and visual difference. Vertex count
is the number of generated vertices by the grammar. Derivation time states how long it
takes to generate geometry by deriving the grammar in question. Rendering time refers to
the time it takes to render the already generated geometry. Finally, the visual difference
is how closely the images rendered by the altered grammars match the originals based
on the Image Quality Assessment (IQA) tool butteraugli [A+]. We used one machine
equipped with an Intel Core i7-8700K CPU 3.70 GHz, an NVIDIA GeForce GTX 1080
Ti, and 32GB RAM for all of our tests.

In a first test, we used surrogate terminal operations alone without the aid of the frustum
pruning operation to see how they perform in isolation. Table 4.2 shows that both the
modified grammars and steinberger grammars achieve enormous improvements over the
original grammars. Especially vertex count and render time could be reduced drastically,
Steinberger’s method generally performing better than our method. In small- and

34

4.2. Quantitative Analysis

(a) (b)

Figure 4.2: 2D representations of space partitions into adequate region (AR) (blue) and
inadequate region (IAR) (red) by a surrogate terminal (black). (a) Space partition by
Steinberger’s method [SKK+14b]. (b) Space partition by our method. Note that the
IAR in (a) is contained in a closed surface and therefore has a finite volume, while it has
infinite size in (b).

medium-sized scenes, the additional overhead of our method during grammar derivation
outweighs the added benefit. With growing scene size, however, it becomes more and
more infeasible to derive the whole grammar. For the balcony scenario, our solution
required 3.5% of the derivation time that the original grammar needed.

Compared to Steinberger’s grammars, our modified grammars tend to generate more
visually correct images, but they take more time and produce more vertices. We attribute
this to two factors:

1. The insertion criteria for surrogate terminals are harsher since we avoid inserting
invalid sprites.

2. Checking insertion criteria is more resource-intensive since we use both viewing
direction and camera distance.

Figure 4.2 shows a 2D representation of the AR of surrogate terminals by Steinberger’s
method and our method. While the region of inadequate camera positions (IAR) stays
finite in Steinberger’s method, it is infinitely big in our solution. Consequently, our
method can insert surrogate terminals less frequently and has to process the derivation
tree more thoroughly.

35

4. Evaluation & Comparison

vertex count derivation time render time visual diff.
umod ours stb umod ours stb umod ours stb ours stb

do
rm

s surr 1.7 M 947.3 K 183.6 K 1.0s 1.8s 0.6s 1.2ms 0.9ms 0.6ms 31.7 47.2+ prune 177.6 K 33.1 K 0.9s 0.5s 0.6ms 0.5ms
% gain - 81.3% 82.0% - 52.7% 10.9% - 33.0% 24.5% - -

to
w
n surr 12.2 M 4.0 M 852.2 K 1.9s 2.6s 1.0s 6.6ms 2.8ms 1.3ms 23.9 58.3+ prune 690.9 K 117.2 K 2.1s 0.8s 0.9ms 0.8ms

% gain - 82.6% 86.2% - 17.1% 15.2% - 66.8% 35.8% - -

ba
lc
on

y surr 335.7 M 45.0 M 3.5 M 120.4s 4.2s 0.7s 10.0s 18.2ms 2.7ms 46.5 56.4+ prune 8.0 M 418.9 K 1.2s 0.4s 4.2ms 0.9ms
% gain - 82.2% 88.2% - 71.8% 39.3% - 77.0% 67.2% - -

Table 4.3: Average test results for each scenario where grammars use surrogate terminals
alone (surr) or surrogate terminals together with frustum pruning operations (+ prune).
An extra row (% gain) shows the performance gain achieved by adding the frustum
pruning operation. The unmodified original grammars are abbreviated as umod, the
modified grammars generated by our method are shortened to ours, and steinberger
grammars are referred to as stb.

To limit the cases in which our method falls back on generating the entire geometry for
off-screen elements, we added the frustum pruning operation described in Section 3.6.
Table 4.3 shows the test results for all shape grammars with and without inserted frustum
pruning operations. An extra row further highlights the performance gain achieved by
adding the new operations. Even though the improvement was not enough for our method
to surpass Steinberger’s method, performance increases on derivation time had a more
substantial effect on our method across the board. This suggests that more advanced
visibility pruning approaches such as stricter frustum pruning or occlusion pruning can
help mitigate the difference between the two techniques.

36

CHAPTER 5
Discussion & Future Work

In this chapter, we discuss how various shortcomings of our solution can be addressed in
future work. At first, further optimization opportunities of the visibility pruning process
are described. We then revisit our way of determining whether a surrogate terminal
should insert a sprite and point out multiple ways to improve upon it. Lastly, additional
criteria are highlighted that can help identify redundant surrogate candidates.

5.1 Visibility Pruning
As stated in Section 4.2, future work could further increase performance by adding or
improving visibility pruning methods. The frustum pruning approach we use tries to
avoid unnecessary overhead and uses bounding spheres that are quick to check against
the frustum planes. Consequently, it is lenient and may prune fewer elements than a
more sophisticated technique. Our frustum pruning operation can be improved in two
ways: The inaccurate bounding spheres could be replaced by tighter bounding volumes
such as oriented bounding boxes. The operation could also check whether a bounding
volume is entirely within the viewing frustum. If this is the case, the derivation cannot
be stopped. However, child operations no longer need to check for frustum pruning since
they are contained in the parents bounding volume and are therefore also contained
within the view frustum.

5.2 Adequate Camera Regions
Visibility pruning alone might not provide enough improvement. Inserting frustum prun-
ing operations in steinberger grammars also increases performance. Since Steinberger’s
method uses a less complicated decision-making process to determine whether to use a
surrogate terminal, we can generally assume that derivation of a single surrogate terminal
takes longer using our method. Unless our method can terminate derivation earlier than

37

5. Discussion & Future Work

Figure 5.1: The introduction of a second distance threshold restricts inadequate camera
positions to a finite volume. This trade-off reintroduces the generation of incomplete
geometry at great distances.

Steinberger’s method, it is unlikely that we reduce derivation time to a point where
our method is generally faster than Steinberger’s approach. Figure 4.2 suggests that
our proposed surrogate terminal can terminate grammar derivation in fewer cases. This
is because the inadequate region (IAR) for our surrogate terminals is infinitely big, as
opposed to Steinberger’s surrogate terminals, where the IAR has a finite size. Future
work could look at multiple ways to improve on this front.

One possible enhancement would be to find a second distance threshold, beyond which
the Human Visual System (HVS) can no longer perceive the geometric detail added by
further deriving the grammar regardless of viewing direction. Generating incomplete
geometry at such distance would go unnoticed, therefore inserting invalid sprites can
reduce vertex count, derivation time, and render time without affecting visual quality.
This change essentially combines our approach with that of Steinberger et al. [SKK+14b].
It limits the IAR of surrogate terminals to a volume of finite size (see Figure 5.1).

Another improvement could be made by calculating an additional offset vector −→w for the
surrogate grid. Just scaling the grid by vector κ underestimates the legal region (LR)
conservatively. Using κ alone, the grid always remains centered on the origin. Suppose
a camera position with POV indicator (x, y) is illegal relative to the surrogate candidate.
In that case, camera positions with POV indicators (−x, y), (x,−y), and (−x,−y) are
also automatically deemed illegal even though they may not be. Shifting the surrogate
grid by some vector −→w removes this constraint and can lead to larger, more accurate
approximate legal regions (ALRs). Figure 5.2 shows how this change could modify space
partitioning for a single vertex. Figure 5.3 shows the impact this change can have on the
surrogate grid.

38

5.2. Adequate Camera Regions

(a) (b) (c)

Figure 5.2: (a) Correct space partitioning into legal region (LR) (blue) and illegal region
(red) for a single vertex (×) relative to a surrogate candidate (bold line). (b) Our method
approximates the space partitioning in (a) using only scaling factor κ. Depending on
vertex position, this partition in approximate legal region (ALR) (blue) and approximate
illegal region (red) can be quite inaccurate and stricter than it needs to be. (c) A
modification to our approach might use an offset vector −→w in addition to κ to better
approximate the correct space partitioning in (a).

1

1

−1

−1

A

AκV

h2

h1

v1 v2

(a)

1

1

−1

−1

A

A′

v2

h2 h1

v1

(b)

Figure 5.3: (a) Our method considers any camera position with POV indicator in area
AκV adequate for sprite insertion. We compute κV by finding scalars v1, v2, h1, and
h2 (see Section 3.3) and then assigning κVx = min(v1, v2) and κVy = min(h1, h2). This
conservative estimate wrongly classifies many legal camera positions as illegal. (b) The
introduction of an additional offset vector −→wV that shifts area A′ by a fixed amount can
help better approximate the LR. κV is now computed as κV = (h1 + h2, v1 + v2)/2, while
−→wV = (h1 − h2, v1 − v2)/2.

39

5. Discussion & Future Work

(a) (b) (c)

Figure 5.4: (a) Per surrogate candidate (bold line), a desired LR decided upon, for which
each generated surrogate texture should be valid (blue area). (b) Upon surrogate texture
generation, the candidate’s final geometry (vertices marked by ×) is used to determine
each sprite’s (blue line) required size and position relative to the input shape. Since this
calculation is view-dependent, the values for position and size change for each sprite of a
surrogate candidate. (c) Example of a sprite (blue outline) that is bigger than its input
shape.

One final idea for augmentation would be to make sprites bigger than their respective
input shape. This way, geometry sticking out of the input shape’s screen space area
could still be replaced by a valid impostor (see Figure 5.4). Surrogate terminals would
need to implement nailboard behavior (see Section 2.2) to avert visibility issues with
adjacent geometry.

5.3 Unfit Candidate Detection

Surrogate candidate validation determines if a candidate by itself has a sufficiently large
ALR. However, as noted previously in Section 4.1, it currently goes unchecked if other
surrogate candidates higher up in the derivation hierarchy already cover the same region.
Under certain circumstances, weak surrogate terminals might be inserted into a shape
grammar. These weak surrogate terminals are either unable to terminate grammar
derivation or only terminate for a narrow range of camera positions. Therefore, the
benefits of weak surrogate terminals are overshadowed by the computational overhead,
and marking them as unfit increases overall performance.

Future work could compare the adequate region (AR) for surrogate candidates with the
already covered region by previous surrogate terminals to help decide if a candidate
should be deemed fit. An even broader approach could achieve a similar effect by finding
a way to estimate the expected performance change that comes with inserting a surrogate

40

5.3. Unfit Candidate Detection

terminal into grammar and deciding whether to insert a given surrogate terminal based
on this estimation.

41

CHAPTER 6
Conclusion

We have presented a novel method to insert view-dependent surrogate terminal (VDST)
operations into a shape grammar. Shape grammars utilizing VDSTs produce significantly
less complex geometry. Generated geometry consequently requires less time to render
and suffers from fewer aliasing artifacts. In contrast to view independent approaches,
VDSTs are able to avoid generating incomplete geometry at a distance. Our approach
can approximate geometry that extends a significant distance into or out of the original
surface. However, the resulting surrogate terminals are often heavily limited in their
range of legal camera positions. Further work is required to make surrogate terminals
of protruding geometry viable for broader application. The attained benefits come at
the cost of some derivation time. Also, under certain circumstances, more geometry
is generated than by previous approaches. However, plenty of room for improvement
remains.

The introduction of a rudimentary frustum pruning operation demonstrated the possible
performance gain by combining surrogate terminals with visibility pruning techniques.
Future work can further increase performance by employing more sophisticated visibility
pruning approaches. More accurate space divisions into approximate legal and illegal
camera regions can be found. Further methods can be developed that weigh the possible
gains of a surrogate candidate against its computational overhead to decide whether
inserting it into the grammar provides any advantage.

Overall, further development is necessary to compete on a level with previous work.
Nevertheless, our method provides promising results that indicate the concept is applicable
in more scenarios than earlier techniques. With further optimization, we expect our
method to outperform prior approaches.

43

Glossary

adequate If a surrogate terminal would terminate grammar derivation based on a
given camera position, the camera position is considered adequate relative to that
surrogate terminal. View-independent surrogate terminals proposed by Steinberger
et al. [SKK+14b] consider a camera position adequate if the distance between
camera and input shape origin is greater than a predetermined distance threshold
τD. View-dependent surrogate terminals (VDSTs) additionally require the camera
position to be contained within the approximate legal region (ALR) of the surrogate
terminal. 34, 35, 38, 39, 45, 46

adequate region (AR) The set of camera positions considered adequate by a surrogate
terminal. 34, 35, 40, 46, 49

affine transformation A set of geometric transformations that include but are not
limited to translation, scaling, rotation, and any combination of these three [Ebe01].
7, 46

approximate legal region (ALR) The approximation of the legal region (LR) by a
surrogate candidate or surrogate terminal. 23, 25, 26, 38–40, 45, 49

billboard Camera-aligned sprite. 9, 11, 46

butteraugli Objective Image Quality Assessment (IQA) method that tries to quantify
the perceived difference between two images. 14, 27, 34

derivation The process of applying a shape grammar in order to generate geometry.
An axiom (tuple of initial shape and starting symbol) is defined and rules of the
grammar are applied recursively until no non-terminal shape remains. Not to
confuse with evaluation. 2, 6–8, 14, 15, 17, 18, 20–23, 28, 32–38, 40, 43, 45, 46

evaluation The process of analyzing a shape grammar with the intent of modifying it.
Not to confuse with derivation. 18, 24, 45

fit Our method deems a surrogate candidate fit, if its ALR is big enough. 22, 23, 25–28,
40

45

image-based impostor Object within a virtual 3D scene that uses an image to effi-
ciently approximate complex geometry, which would otherwise be less efficient to
render in all its detail. 5, 8, 12, 14, 47

inadequate region (IAR) Opposite of the adequate region (AR). The set of camera
positions considered inadequate by a surrogate terminal. 35, 38, 49

input shape The shape on which an operation is executed. The input shape gets
replaced by the output shape of the operation, once it has finished executing. 17,
18, 20–25, 27–30, 32, 33, 40, 45, 46

legal A camera position is legal relative to a surrogate candidate / surrogate terminal if
all vertices within the final geometry of that candidate / terminal can be mapped
onto the candidate’s / terminal’s input shape from the camera position. 22–25, 38,
39, 43, 46

legal region (LR) The set of legal camera positions relative to a surrogate candidate
or surrogate terminal. 23, 25, 26, 38–40, 45, 49

modified grammar A modified version of a shape grammar that does make use of
surrogate terminals. 18, 19, 31–36

nailboard A billboard that stores the z-buffer offset of each pixel relative to the bill-
board’s surface, so that visibility can be caluclated correctly. 9, 40

object space 3D coordinate space of an object. All coordinates are specified relative to
the object’s origin, which lies at (0, 0, 0). 9, 20, 21, 25, 26

operation Helps defining a shape grammar. Introduced by Müller et al. [MWH+06], an
operation is part of a rule. It takes an input shape, modifies it in some way (affine
transformation, duplication, conditional selection between multiple child operations,
etc.), and replaces the shape with the result of the modification. Multiple operations
can be chained together within a rule. 7, 14, 15, 17, 18, 20–22, 27–30, 33, 34, 36,
37, 43, 46, 47

original grammar An unmodified version of a shape grammar that does not make use
of surrogate terminals. 18, 19, 31, 32, 34–36

per-pixel difference Objective IQA method that compares two images with equal size
by comparing each pixel of the first image with its positional counterpart in the
second image and averaging the difference. 13, 14

rule A rule of a shape grammar that defines the production guidelines used to derive
the described language (the set of all possible shapes). It determines which shape
or set of shapes may be replaced by another set of shapes. 5–8, 14, 21, 22, 28–31,
45–47

46

screen space 2D coordinate space of a rendered image. 22, 27, 40

shape grammar A grammar that operates on 2D or 3D shapes. Proposed initially by
George Stiny et al. [SG71] in 1971, they have since been adapted and modified to
allow the procedural generation of 3D models. 2, 3, 5–8, 14, 15, 17, 18, 20, 21, 27,
29–31, 40, 43, 45–47

sprite Image-based impostor that displays a texture of the geometry it approximates on
a quad. 9–12, 14, 15, 17, 18, 20–23, 27, 33, 35, 37–40, 45, 47

steinberger grammar A shape grammar modified by surrogate terminals as suggested
by Steinberger et al. [SKK+14b]. We compare our method to previous work
by comparing bench marks between shape grammars modified by our surrogate
terminals and Steinbergers surrogate terminals. 31, 32, 34, 36, 37

surrogate candidate Operation inside a shape grammar rule that might be an appro-
priate insertion point for a surrogate terminal. 18, 22–30, 34, 37–40, 43, 45–47

surrogate grid Subdivided area in POV indicator space that is valid for a given surro-
gate candidate. Each cell in this grid is associated with its own surrogate texture.
26, 29, 31, 38

surrogate terminal Operation that decides whether subsequent operations should be
evaluated or if a sprite with appropriate surrogate texture should be inserted into
the scene. 2, 14, 15, 17, 18, 20–22, 25, 27, 29–31, 33–38, 40, 41, 43, 45–47

surrogate texture Texture for a sprite that can be used instead of evaluating subsequent
operations inside a shape grammar. 2, 17, 18, 20–22, 26, 27, 29, 33, 34, 40, 47

texture atlas Image that contains textures for multiple faces or objects, packed in a
space-efficient way. 27, 29, 33

valid An image-based impostor is valid relative to a camera position, or a camera position
is valid relative to an image-based impostor, if the image-based impostor looks
plausible when rendered from the camera position. The image-based impostor looks
plausible, if the visual difference between the geometry the image-based impostor
represents and the image-based impostor itself is below a predefined margin of
error. 9–11, 17, 18, 22, 28, 35, 38, 40, 47

47

Acronyms

ALR approximate legal region. 23, 25, 26, 38–40, 45, Glossary: approximate legal region
(ALR)

AR adequate region. 34, 35, 40, 46, Glossary: adequate region (AR)

AST Abstract Syntax Tree. 18, 21, 22, 27

FBO framebuffer object. 27

GPU Graphics Processing Unit. 2, 8, 15

HVS Human Visual System. 17, 38

IAR inadequate region. 35, 38, Glossary: inadequate region (IAR)

IQA Image Quality Assessment. 5, 8, 13, 14, 27, 34, 45, 46

LOD level of detail. 2, 8, 9, 11

LR legal region. 23, 25, 26, 38–40, 45, Glossary: legal region (LR)

MS-SSIM Multi-Scale Structural Similarity. 14

POV indicator point of view indicator. 20, 21, 23–26, 29, 38, 39, 47

SSIM Structural Similarity. 14

VDST view-dependent surrogate terminal. 2, 3, 43, 45

49

Bibliography

[A+] Jyrki Alakuijala et al. Butteraugli, 2016. URL https://github. com/google/but-
teraugli.

[AM00] Ulf Assarsson and Tomas Möller. Optimized view frustum culling algorithms
for bounding boxes. J. Graphics, GPU, & Game Tools, 5(1):9–22, 2000.

[AOS+17] Jyrki Alakuijala, Robert Obryk, Ostap Stoliarchuk, Zoltan Szabadka, Lode
Vandevenne, and Jan Wassenberg. Guetzli: Perceptually guided JPEG
encoder. CoRR, abs/1703.04421, 2017.

[CCSD03] Daniel Cohen-Or, Yiorgos Chrysanthou, Cláudio T. Silva, and Frédo Durand.
A survey of visibility for walkthrough applications. IEEE Trans. Vis. Comput.
Graph., 9(3):412–431, 2003.

[Chi95] Norman Chin. Iii.5 - a walk through bsp trees. In Alan W. Paeth, editor,
Graphics Gems V, pages 121–138. Academic Press, Boston, 1995.

[DDSD03] Xavier Décoret, Frédo Durand, François X. Sillion, and Julie Dorsey. Bill-
board clouds for extreme model simplification. ACM Trans. Graph., 22(3):689–
696, 2003.

[Ebe01] David H. Eberly. 3D game engine design - a practical approach to real-time
computer graphics. Morgan Kaufmann, 2001.

[HMVI13] Mark Hendrikx, Sebastiaan A. Meijer, Joeri Van Der Velden, and Alexandru
Iosup. Procedural content generation for games: A survey. ACM Trans.
Multim. Comput. Commun. Appl., 9(1):1:1–1:22, 2013.

[Ios11] Alexandru Iosup. POGGI: generating puzzle instances for online games on
grid infrastructures. Concurr. Comput. Pract. Exp., 23(2):158–171, 2011.

[JF20] Jan-Keno Janssen and Martin Fischer. Schön schweben. c’t, 19/2020:52–53,
Aug 2020.

[JWP05] Stefan Jeschke, Michael Wimmer, and Werner Purgathofer. Image-based
representations for accelerated rendering of complex scenes. In Yiorgos

51

Chrysanthou and Marcus A. Magnor, editors, 26th Annual Conference of
the European Association for Computer Graphics, Eurographics 2005 - State
of the Art Reports, Dublin, Ireland, August 29 - September 2, 2005, pages
1–20. Eurographics Association, 2005.

[MBG+12] Jean-Eudes Marvie, Cyprien Buron, Pascal Gautron, Patrice Hirtzlin, and
Gaël Sourimant. GPU shape grammars. Comput. Graph. Forum, 31(7-
1):2087–2095, 2012.

[MES14] Pedram Mohammadi, Abbas Ebrahimi-Moghadam, and Shahram Shirani.
Subjective and objective quality assessment of image: A survey. CoRR,
abs/1406.7799, 2014.

[MWH+06] Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc Van
Gool. Procedural modeling of buildings. ACM Trans. Graph., 25(3):614–623,
2006.

[Sch97] Gernot Schaufler. Nailboards: A rendering primitive for image caching in
dynamic scenes. In Julie Dorsey and Philipp Slusallek, editors, Rendering
Techniques ’97, Proceedings of the Eurographics Workshop in St. Etienne,
France, June 16-18, 1997, Eurographics, pages 151–162. Springer, 1997.

[Sch98] Gernot Schaufler. Image-based object representation by layered impostors. In
J. M. Shieh and Shi-Nine Yang, editors, Proceedings of the ACM Symposium
on Virtual Reality Software and Technology, VRST 1998, Taipei, Taiwan,
November 2-5, 1998, pages 99–104. ACM, 1998.

[SG71] George Stiny and James Gips. Shape grammars and the generative specifi-
cation of painting and sculpture. In Charles V. Freiman, John E. Griffith,
and Jack L. Rosenfeld, editors, Information Processing, Proceedings of IFIP
Congress 1971, Volume 2 - Applications, Ljubljana, Yugoslavia, August 23-28,
1971, pages 1460–1465. North-Holland, 1971.

[SKK+14a] Markus Steinberger, Michael Kenzel, Bernhard Kainz, Jörg Müller, Peter
Wonka, and Dieter Schmalstieg. Parallel generation of architecture on the
GPU. Comput. Graph. Forum, 33(2):73–82, 2014.

[SKK+14b] Markus Steinberger, Michael Kenzel, Bernhard Kainz, Peter Wonka, and
Dieter Schmalstieg. On-the-fly generation and rendering of infinite cities on
the GPU. Comput. Graph. Forum, 33(2):105–114, 2014.

[SLG19] Thomas Schauppenlehner, Konstantin Lux, and Christoph Graf. Effiziente
großflächige interaktive landschaftsvisualisierungen im kontext des ausbaus
erneuerbarer energie–das potenzial freier geodaten für die entwicklung inter-
aktiver 3d-visualisierungen. AGIT Journal für Angewandte Geoinformatik,
5:172–182, 2019.

52

[Str15] Allen Stroud. Developing elite dangerous. Foundation, (120):78–88, 2015.

[TN21] Emma R Tait and Ingrid L Nelson. Nonscalability and generating digital
outer space natures in no man’s sky. Environment and Planning E: Nature
and Space, page 251484862110007, mar 2021.

[VWB+21] Abhinau K. Venkataramanan, Chengyang Wu, Alan C. Bovik, Ioannis
Katsavounidis, and Zafar Shahid. A hitchhiker’s guide to structural similarity.
IEEE Access, 9:28872–28896, 2021.

[WBSS04] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. Image
quality assessment: from error visibility to structural similarity. IEEE Trans.
Image Process., 13(4):600–612, 2004.

[WSB03] Z. Wang, E.P. Simoncelli, and A.C. Bovik. Multiscale structural similarity
for image quality assessment. In The Thrity-Seventh Asilomar Conference on
Signals, Systems Computers, 2003, volume 2, pages 1398–1402 Vol.2, 2003.

[WWSR03] Peter Wonka, Michael Wimmer, François Sillion, and William Ribarsky.
Instant architecture. ACM Trans. Graph., 22(3):669–677, July 2003.

53

	Kurzfassung
	Abstract
	Contents
	Introduction
	Related Work
	Shape Grammars & Procedural Architecture
	Image-Based Impostors
	Visibility Culling
	Image Quality Assessment
	Reference Solution

	Methods
	Surrogate Terminals
	Surrogate Candidate Selection
	Surrogate Candidate Validation
	Texture Generation
	Surrogate Terminal Insertion
	Frustum Pruning Operation

	Evaluation & Comparison
	Qualitative Analysis
	Quantitative Analysis

	Discussion & Future Work
	Visibility Pruning
	Adequate Camera Regions
	Unfit Candidate Detection

	Conclusion
	Glossary
	Acronyms
	Bibliography

