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Abstract

Social virtual reality applications have the potential to provide a unique way to convey a
sense of social presence when compared with other ways of communication in the area
of computer mediated communication. Having a virtual body in a social virtual reality
application can not only heighten the sense of embodiment of the user but can also convey
a sense of presence to other users. General interest in social virtual reality applications
is rising partly due to virtual reality devices become more affordable, including input
technologies like hand tracking. This thesis aims to create a multi user virtual reality
application that heightens social presence by representing users with a full-body avatar
utilizing current entry level consumer grade virtual reality hardware. Hand tracking in
combination with inverse kinematics is used to enhance perceived social presence. Those
technologies provide a sufficiently convincing representation of the performed action of
the user in a multi user context, while being significantly less cumbersome as solutions
using additional trackers or controllers to realize a full body avatar.
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CHAPTER 1
Introduction

In the last years Virtual Reality(VR) technology shifted from expensive prototype
hardware, only used in research and industrial applications, more and more to an
affordable consumer grade product. There is a multitude of head-mounted displays in
low and middle consumer price ranges available. On the lower price point featuring
the PlayStation VR headset [1], the Oculus Go [2] and Oculus Quest [3], the Oculus
Quest and the lately released Oculus Quest 2 [4] stand out due to them not requiring
a connected PC to operate and their cheap price point. The mid-range also features a
wide variety of product like the older HTC Vive [5] and Oculus Rift S [6], or the newer
Valve Index [7], HP Reverb G2 [8] and HTC Cosmos Elite [9]. In the mid-range the
Valve Index stands out due to its innovative input system, where the controllers allow
for individual finger tracking.
VR enables users to experience virtual worlds in 360 degrees and allows the user to
interact with the environment in a natural and intuitive way. In most commercial systems
controllers are used for interacting with the virtual environment. Controllers usually
come in pairs and represent the users hands and abstract complex hand interactions,
such as grabbing, with buttons and triggers. An alternative to controller input for VR
interaction is hand tracking. Hand tracking allows the user to manipulate the virtual
environment in a more intuitive way. Hand tracking has always been a research topic
for various interaction use cases, where early prototypes used gloves [10]. Recent hand
tracking solutions do not require gloves, instead they use cameras to track the user’s
hands. Leap Motions hand tracking technology follows this approach, as well as the
integrated hand tracking of the Oculus Quest and Oculus Quest 2. Both are due to their
affordability broadly available to consumers.
There are VR applications that allow multiple users to share the same virtual space. While
many VR games focus on emulating the competitive multiplayer aspects of traditional
multiplayer games, some VR games and applications feature a cooperative or purely social
multi-user experience. Those social VR applications feature a unique way to interact
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1. Introduction

and collaborate with other users. By having an avatar controlled and animated by the
user’s movement in the real world, a multi-user VR application can convey a sense of
social presence that cannot be conveyed in other interactive media or traditional ways of
communication. After the start of the pandemic in 2020, many people had to work from
home and were discouraged from meeting other people in person. The increased demand
of a way of communication that conveys a sense of social presence and the broad offer of
entry level VR hardware have renewed the interest in social VR platforms. There are
already different social VR applications that allow multiple users to connect to a shared
virtual environment, like Mozilla Hubs [11] and VRChat [12] and other platforms are
being developed like Facebook’s Horizon [13].

Social VR applications have the potential to fill the gap in the modern communication
landscape, by providing a way of communication that conveys the presence of the
communication partner and featuring unique ways of interaction. VR hardware is getting
more affordable than ever before and social VR applications are rising in popularity.
Considering those factors this thesis aims to create a multi-user social VR application
of high fidelity, where users are represented with full-body avatars and hand tracking is
utilized as a basis for an intuitive and natural interaction scheme.

1.1 Goal of the thesis
The goal of this thesis is to create a social VR application. This VR application aims
to enhance the social of presence experienced by the clients in the virtual environment
by representing the users with a full-body avatar. This full-body avatar shall display
the actual movement of the user in a convincing fashion, as far as consumer grade
VR technology allows, without having to rely on cumbersome and expensive capture
technologies such as motion capture. To achieve this goal, a hand tracking system is used
to capture the detailed hand movement of the user and applying it to the avatar. Further
movement that cannot be captured by the head mounted display (HMD) or the hand
tracking system, shall be generated procedurally. To procedurally animate the body of
the avatar inverse kinematic solver need to be utilized to approximate and transform the
remaining bones of the user’s avatar to match hers or his posture. Furthermore should
the clients be able to interact with the environment, allowing them to pick up objects
and pass them to another. To achieve the social aspect of this VR application, the user’s
movement as well as their interaction with objects in the environment has to translate
to the other clients using a networking solution. Finally, another important aspect is
to choose technologies to realize this functionality in a way that the application can be
experienced in a convenient fashion by limiting the amount of devices used to reduce
setup time.
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CHAPTER 2
Related Work

Multiple aspects are important for the implementation of a distributed multi-user social
environment with full-body avatars that utilizes hand tracking as the main input system.
To start with, embodiment plays an important role in representing different users in the
scene to create a sense of social presence. Further, hand tracking is the key technology as
it provides an intuitive way of interaction. This section will feature a selection of related
work covering the mentioned key areas of this thesis.

2.1 Sense of embodiment and social presence
VR applications are unique when it comes to the potential of creating the sense of presence
as they immerse the user into a virtual environment. Using an avatar to represent the
player is a good way to increase presence. To achieve this heightened sense of presence
the user needs to perceive the virtual body to be their own body by enhancing the sense
of embodiment [14]. A social VR application has the potential to convey a similar social
presence, defined as the feeling that the virtual environment is shared with others [15],
as found in face to face communication.

Kilteni et al. describe the sense of embodiment as perceiving properties of a virtual
body similarly to how one’s own biological body is perceived [14]. In their work they
further divided the concept of sense of embodiment into three sub-components: sense
of self-location, sense of agency and sense of body ownership. They describe the sense
of self-location as the sensation of the self being located inside a virtual body. Sense of
agency describes how the effect of a performed action mirrors the expected outcome of
this action. This implies that, if an expected consequence of an action matches the actual
outcome of the action, the sense of agency is reinforced [14]. Finally, the sense of body
ownership is described as perceiving the virtual body as one’s own body trough visual
and haptic feedback, as well as identifying oneself with the appearance of the virtual
body.
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2. Related Work

Furthermore, Kilteni et al. suggest that the enhancement of the sub-components of
embodiment leads to an increased overall sense of embodiment [14]. They propose several
approaches to enhance the different sub-components. Self-location is highly dependent
on perspective to strengthen the sense of being located in a virtual body. Therefore,
using the first-person perspective where the user’s virtual camera is placed at an eye
level in a convincing fashion can improve the sense of self-location. To improve the sense
of agency the virtual body has to respond to the actions the user performs in a quick and
predictable way. This can be achieved, for example, by mapping the tracked movement
executed by the user to the movement of the avatar in a convincing fashion. Finally, the
sense of body ownership can be enhanced by providing convincing haptic feedback for
performing actions in the virtual world and by allowing the user to choose or customize
their virtual body.
Oh et al. investigated social presence and highlighted factors that contribute to conveying
social presence in virtual environments [16]. In their findings they classify the predictors
of social presence into immersive qualities, contextual properties and individual traits.
One of the immersive qualities that contributes to a heightened perceived social presence
is the visual representation of the communication partner. Oh et al. emphasized that
the behavioural realism is one of the most important parts of the visual representation
to enhance social presence [16]. Behavioural realism describes how convincingly the
communication partner is able to act in a non-verbal way, be it through gestures, facial
expressions or plausible eye contact. Other than behavioural realism, the quality of the
visual representation in aspects to human likeliness and photo realism seem to have less
impact on social presence [16]. Another immersive quality is haptic feedback. Providing
the users haptic feedback while interacting with the environment or with each other
can enhance to perceived social presence. Furthermore, Oh et al. describe the influence
of contextual properties on social presence. Contextual properties rely, other than the
immersive qualities, on more psychological aspects within the context of communicating
in a virtual environment. For example, when the avatar of the user matches or is similar
to his or her real appearance social presence can be increased [16]. A similar effect can
be achieved by providing identity cues such as usernames or profile pictures. Displaying
agency, by conveying that the avatar is controlled by an actual human, can increase social
presence for the communication partner. Therefore, if the communication partner can
perform convincing human-like actions a higher level of social presence can be achieved.
This fact has been demonstrated experimentally [17]. Other contextual properties such
as perceived physical proximity can enhance the social presence. This can be achieved by
seeing the communication partner within a shared virtual space. The virtual space itself
can also be enhanced for social presence by providing cues that indicate the presence of
other users than the current communication partner, implying a social context [16].

2.2 Hand interaction
As mentioned in Section 2.1, increasing the sense of agency experienced by the user can
increase the sense of embodiment. Tracking the hand of the user to animate the hands
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2.2. Hand interaction

of their virtual body can enhance the perceived agency, compared to controllers where
different controller interactions would only trigger an animation of the performed action.
However, using hand tracking to interact with objects or navigate user interfaces provides
additional challenges.

Tscharn et al. conducted a study where participants would navigate a 3D map using hand
tracking provided by a Leap Motion Controller and Space Navigator®, a physical control
device [18]. While using hand tracking the navigation of the 3D map is controlled by
gestures recognized by the hand tracking system. The efficiency of the Space Navigator®
surpassed the hand tracking; however the participants found the hand tracking to be
more enjoyable to use. Masurovsky et al. [19] found similar results in their study,
where participants had to manipulate objects using hand tracking and the Oculus Touch
controllers. Grabbing the objects using hand tracking was initialized by performing a
grabbing gesture. The controller grab interaction was initialized by pressing a button.
In this study, the Oculus Touch controllers outperformed hand tracking in usability.
Additionally to the default grabbing interaction of the hand tracking, Masurovsky et
al. provided a modified version where the virtual hand representation of the user would
provide visual feedback when in grabbing range and while the grabbing interaction is
successfully performed. This modified implementation performed slightly better than the
default hand tracking solution.

One of the main reasons of efficiency loss in the study by Masurovsky et al. [19] was the
frequent unintentional dropping of the virtual object. The interaction that initialized
the grabbing interaction in [19] was based on recognizing gestures. Another approach
for interacting with physical objects, without relying on gesture recognition, would be
to model a physic based interaction model as proposed by Höll et al. [20]. Their VR
interaction system simulates friction between the users tracked hands and the physical
objects in the virtual environment. In their study they compared their system with the
Interaction Engine provided by Leap Motion (which was also used as the default hand
tracking based interaction in [19]). The participants found the solution by Höll et al. to
be more realistic compared to the gesture based system.
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2.3 Inverse Kinematics in VR
Inverse kinematics (IK) is an approach that allows to reconstruct the pose of a body
based on several known body part poses. In particular, it can be utilized to approximate
arm movement relative to the body using only the hand positions and rotations. This
additional control over the virtual body’s movement can, similar to hand tracking,
heighten the perceived agency of the user. Parger et al. animated the upper body
of a virtual avatar using multiple IK solvers and compared them to real-time motion-
captured animations [21]. In their study participants performed different tasks while
being embodied into an avatar representation that consisted of either only floating hands
or arms animated by motion capture or inverse kinematics. They found that the IK-
controlled arms were preferred to the floating hands. Parger et al. further concluded that
the IK solution was indistinguishable from the motion capture, making this approach for
animating a virtual avatar responsive to player input a good candidate for enhancing
agency and embodiment without the need for additional sensors or motion capture suits.
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CHAPTER 3
Methodology

This chapter describes the design of the implemented system and provides details about
the choice of the used technology.

3.1 System design

Our multi-user application consists of three main components: tracking (including head
and hand tracking), inverse kinematics and distribution. The workflow that connects
these components is demonstrated in Figure 3.1. Head and hand tracking data is received
on each user’s computer and distributed to all other client machines over the networking
system. There, head and hand tracking data is used to animate the avatar representing
the user with the methods of Inverse Kinematics (IK). Similarly, each user interaction is
distributed to other machines over the network.

Head and hand tracking

To animate and distribute the user’s movement over the network some positions need to
be tracked by the VR system. The most important positions that need to be tracked by
this application are the head and hand positions. In this application to animate head
movement the position and rotation of the Head mounted Display (HMD) needs to be
tracked. To translate the users hand movement into the virtual environment the hands
positions are captured by a hand tracking system, instead of tracking a controller. The
hand tracking system allows further to track individual finger movement that will be
used to animate the hands of the avatar procedurally. There are many ways how hand
tracking can be realized.The main two hand tracking solution used in consumer grade
VR are Ultraleap’s(former Leap Motion) and the integrated hand tracking of the Oculus
Quest and Quest 2 [22]. Both solutions use cameras and visual computing techniques to
find key points that are used to generate a skeletal structure that can be used to animate
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Figure 3.1: Schematic overview of how the different tracking-data is captured and
processed by the IK solver to animate the local Avatar. The schematic further illustrates
how raw animation data is distributed and used to animate the avatars of remote clients

a hand model. The hand tracking positional data captured by the hand tracking system
is mapped to the corresponding bones of the chosen avatar, so that the avatar’s hands
mimic the users hand movement, as seen in 3.2. The positions tracked by the HMD and
hand tracking system are synchronized over the applications network system to translate
the movement of the user to all other connected users.

Figure 3.2: Hands of the avatar model animated with the real-time hand tracking input
of user hands.
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3.1. System design

Inverse Kinematics

Since the avatar models used in this project have a humanoid skeletal structure, the
limited amount of tracked positions is not sufficient to animate the avatar in a convincing
fashion. To fill in the gaps, an inverse kinematic (IK) solver is needed. The inverse
kinematic solver is then used to approximate the position of all other bones of the avatar
that are not covered by the tracked positions. Other than in forward kinematics (FK),
where the given joint rotations are used to calculate the end-effector position, IK uses the
end-effector position to calculate the joint rotations, as displayed in Figure 3.3. Therefore,
using IK is in our case useful since we have the end-effector positions (represented by the
hand positions) and need to find the rotations for the remaining bones of the full-body
avatar.

Figure 3.3: Illustration of FK and IK applied on an robotic arm.[23]

To ensure that the animations are immersive for the user, the avatar must be calibrated
to the height of the player. Otherwise the arm’s bone position derived from the inverse
kinematic solver cannot position the arms in a way, such that the calculated hand position
reaches the tracked hand target positions. The approach chosen for this project is to
scale the avatar size proportionally to the height of the user. Another approach would
be to scale the camera rig in relation to the user height. This would have the effect
of resizing the user proportionally to the size of the avatar, however, real world height
differences between users would not be preserved using this approach.

Distribution

Tracking input data, including the hand tracking data, is synchronized between all users
in the environment. Body pose values derived from the inverse kinematic solver are

9



3. Methodology

calculated locally for each client, including the avatars of remote players. An alternative
approach would be to calculate IK-driven poses only for the local player and then
distribute those poses to the other players. We chose our approach of calculating IK
poses on every client because it reduces the amount of data that needs to be sent over
the network. A possible drawback is that the positions of bones may vary between local
and remote users, however, we never observed large discrepancies between the poses of
players on different clients.

3.2 Choice of technology

3.2.1 Game Engine

In this Project we use the Unity3D engine. Unity is one of the more popular game engines
and is used by some of the more popular VR applications like VR Chat [12] or Beat
Saber [24]. Through various assets Unity provides VR development tools for different
input devices.

3.2.2 Oculus Quest

The Oculus Quest is unique when it comes to VR systems. The Oculus Quest has the
hardware to run VR applications and track user input built into the headset. Different
from other HMDs the Oculus Quest does not need a PC or a console, eliminating the need
for a cable. Furthermore, the Oculus Quest tracks controllers using the front mounted
cameras of the headset, therefore not needing dedicated tracking stations such as the
lighthouse system of the HTC Vive. Combining those two attributes, the the Oculus
Quest is not restricted to a dedicated playing area, like other HMDs, making the headset
highly portable and allowing usage in multiple different locations.

Additionally, the Oculus Quest can be connected to a PC via a single USB-C cable. This
enables the Oculus Quest to run PC-VR applications and features unique benefits during
development, allowing for rapid iteration cycles without having to build for the device.

The Oculus Quest also features a built in hand tracking system, eliminating the need for
third party hand tracking solution like the Leap Motion Controller [25].

All in all the unique features of the Oculus Quest allows the user to enter the in this
project realized application using only the headset without the need for a PC running
the application or additional input and tracking devices.

3.2.3 Final IK

Final IK [26] is a Unity3D asset featuring a variety of IK solvers. To animate the full-body
avatar used in this project, the VR IK solver featured in this package was used. This IK
solver animates the whole body, including arm and head movement. Furthermore, the
VR IK solver has a built-in locomotion solver that procedurally animates leg movement
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3.2. Choice of technology

according to the user’s movement. This locomotion system works best for small areas,
however being less suited for room-scale travel [26].

3.2.4 Photon Networking

Photon Unity Networking (PUN) [27] is a Unity3D asset that provides a network
infrastructure and additional network functionality to Unity3D. It features a room
based matchmaking system that allows objects and Unity3D scenes to be synchronized
between players. It offers functionality for synchronizing common Unity3D properties
like transforms, but also provides options for custom data synchronisation. Additionally
PUN provides Remote Procedure Calls (RPCs) useful for distributing infrequent updates
to other clients. PUN also features add-ons to support chat and voice chat functionality.
Servers to run applications powered by PUN can be self-hosted, which is ideal for local
testing. Additionally PUN offers a cloud based server structure to host the applications
and created rooms. This allows for easy network testing, especially when the clients are
not in the same location.
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CHAPTER 4
Implementation and Use

This chapter covers the implementation and its components in detail. Assets used in
this project are described here as well. Connection management, as well as all required
components to use the players and intractable systems are described. Furthermore,
instructions on how additional avatars can be created are provided in this chapter.

4.1 Used assets and packages

4.1.1 Unity3D

As explained earlier Unity is used in this project, since the available assets make it
possible to create applications for special hardware such as the Oculus Quest. The
Unity3D version used for this project is 2019.4.1f1.

4.1.2 Oculus integration

The Oculus integration provides Unity3D with tools to enable development for the
different Oculus devices. Apart from the basic components like the camera rig and the
interaction system, this project also utilizes the provided hand tracking features [25].
The version used in this project is v.16 [28].

4.1.3 PUN 2

To realize the network capabilities of this project Photon Unity Networking 2 is used. It
provides a server connection system, as well as high level abstraction for serializing and
de-serializing network data continuously, like player positions. It also features tools for
sending RPCs for updating infrequently changed data. The version used in this project
is v.2.16 [29].
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4. Implementation and Use

4.1.4 Final IK

For enabling the earlier explained procedural arm and leg movement of the full body
avatar the Final IK asset is used [26]. Final IK features multiple IK solvers. The solver
used in this project is the VR-IK solver. The VR-IK solver is optimized for full-body
avatar for VR applications and can be used on most avatar models outfitted with a
humanoid bone structure. The version used in this project is 1.9.

4.1.5 Animation Rigging by Unity

The Animation Rigging by Unity was used as the IK solver before we switched to Final
IK. It provides some basic IK solvers allowing to animate body parts such as arms
procedurally. This package features also some tools. The one tool used by this asset is
the Bone Renderer Component. This component highlights bones in the editor, which
makes assigning bones to the correct fields of IK solver easy, even when using Final IK.
The version used in this project is preview - 0.2.6.

4.1.6 Microsoft Rocketbox Avatar Library

Microsofts Rocketbox Avatar Library is a collection of humanoid avatars freely available
for research purposes [30]. Those avatars are fairly detailed and feature a standardized
bone structure shared between all included avatars. Examples of virtual characters
contained in the Rocketbox library can be seen in Figure 4.1.

Figure 4.1: Avatars from the Rocketbox Avatar Library used in this project.
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4.2. Connection management

Name Type Description
maxPlayersPerRoom byte Maximum number of players (default = 2 )
playerPrefab GameObject The avatar instated in the scene representing

the local player

Table 4.1: Serialized fields of the Network Manager.

4.2 Connection management

(a) (b)

Figure 4.2: Setting for a cloud server connection (a) and local server connection (b).

To connect to a server hosting the application, the Photon server settings have to be
located and configured for cloud hosted servers or self-hosted servers, as described in
Figure 4.2. To connect to a cloud server a app ID has to be generated with a Photon
account and entered in the app ID field. Additionally the check box “Use Name Server”
has to be checked. To connect to a self-hosted server server and port of the server have
to be entered and “Use Name Server” has to be unchecked. Connection settings for both
variants can be seen in Figure 4.2.

4.2.1 Network Manager

The Network Manager connects the clients to the Photon server and instanciates the
referenced game object in the playerPrefab field in the scene. The Network Manager tries
to connect the client to a room where the player limit has not been reached; otherwise
it creates a new room. User-defined fields of the Network Manager are summarized in
Table 4.1.
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4.3 Player setup

4.3.1 Handtracking Map

The Handtracking Map is a class containing all possible bones of the OVRBone enum
[25]. It is a part of both the left and right hand controller empty game objects in the
avatar prefab. It is used as a reference map in the Handtracking Mapper, where the bone
data of the OVRSkeleton is used to update the position of the referenced bones of the
avatar. Not all bones need to be assigned, depending on the concrete implementation of
the Handtracking Mapper. The interface for bones assignment is shown in Figure 4.3.

Figure 4.3: The Handtracking Map custom component used for mapping the Oculus
hand tracking input to the referenced hand bones

4.3.2 Handtracking Mapper

The Handtracking Mapper is responsible for updating the rotations of the individual
finger bones of the avatar hands, as well as distributing the updated rotations over the
network. The rotations are updated for the local player instance using the OVRSkeleton
data. Here, the OVRSkeleton data updates the local rotation of each finger bone reference
from the Handtracking Map.
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4.3. Player setup

Name Type Description
_ovrSkeleton OVRSkeleton Reference for the OVRSkeleton script used to

generate the bone data for this hand
_map HandtrackingMap Reference map of the avatar bones where the

bone data of the OVRSkeleton should be mapped
to

HandType Hand Enum used to set the hand used for this script,
can be HandLeft, HandRight and None. Default
None

hand OVRHand Reference of the current hands OVRHand to
determine tracking confidence

Table 4.2: Serialized fields of the Handtracking Mapper.

Name Type Description
calibrationSize float Base scale for calibration
ik VRIK VRIK object holding the transform references for calibrat-

ing the height

Table 4.3: Serialized fields of the Height Calibrator.

The rotations of all referenced transforms in the Handtracking Map are serialized using
OnPhotonSeriallizeView. The received data from networked instances other than the
local player is then applied to the corresponding avatar instead of using the OVRSkeleton
data. The received rotation data is also interpolated, so that the finger animations are
displayed smoothly.

A summary of serialized fields that need to be assigned for this component can be seen
in Table 4.2

4.3.3 Height Calibrator

The prototype features a basic height calibration for the hand tracking input. The
system’s reserved left hand pinch [25] is used to trigger a height calibration, as can be
seen in Figure 4.4. In the calibration process the avatar is scaled to the height of the
player at the time of triggering the action. This new scale information is also distributed
to all remote players. Base scale can be adjusted and a reference to the Final IK solver
need passed as can be seen in Table 4.3

4.3.4 Networked Player

The Networked Player script is used to initialize the avatar on creation as well as updating
the target points for the inverse kinematic system, including head and both hand target
positions. The targets are attached to the corresponding anchors in the OVRCameraRig
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4. Implementation and Use

Figure 4.4: System reserved left hand Pinch gesture ([25]) used to trigger the height
calibration

and are passed as references to the IK solver. If the confidence level of the hand tracking
is low or lost, the Networked Player script saves the last tracked position and moves the
hand target position to the last known position of the hands. If tracking is re-established,
the OVRSkeleton is again used to update the hand position. A summary of serialized
fields that need to be assigned for this component can be seen in Table 4.4
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4.3. Player setup

Name Type Description
customHandR GameObject References right hand game object containing an

OVRHand script
customHandL GameObject References left hand game object containing an

OVRHand script
headTarget GameObject The head target for IK solver, gets parented to the

centre eye anchor of the OVR camera rig
rightHandTarget GameObject The right hand target for IK solver, gets parented

to the right hand anchor of the OVR camera rig
leftHandTarget GameObject The left hand target for IK solver, gets parented to

the left hand anchor of the OVR camera rig

Table 4.4: Serialized fields of Networked Player

Figure 4.5: The avatar controlled and animated by a remote client, from the local users
point of view

4.3.5 Avatar prefab

The avatar prefab represents the player in the scene. An avatar prefab consists of a head
target, right hand target and left hand target, which are used for the inverse kinematic
solver. Additionally a right- and left hand controller are used for the hand tracking input
and the grabbing system and an avatar model is used to represent the player in the scene.

The avatar prefab uses a VR IK script from the Final IK asset to animate the avatar
model using the targets within this prefab. A Networked Player from the view of the
local player can be seen in Figure 4.5.
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4. Implementation and Use

Name Type Description
velocityFactor float Modifies the strength of the velocity needed to throw the

object on grab end. Default 1.0f
pinchThreshold float The threshold used to determine when the grab action

should be triggered. Default 0.7f

Table 4.5: Serialized fields of the Handtracking Grabber

4.4 Distributed interactions

The distributed interaction system in this project is derived from the OVR grabbing
system and expanded to work in a networked environment, using PUN as well as
supporting hand tracking input.

Figure 4.6: Remote client interacting with an object from the local users point of view

4.4.1 Handtracking Grabber

The Handtracking Grabber is derived from OVRgrabber. It continuously checks the pinch
strength of the OVRHand and calls the grabBegin function from the base OVRgrabber
script, when the pinch threshold is exceeded by the observed pinch strength. The grab
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end is triggered when an object is currently held and the current pinch strength does
not exceed the pinch threshold. User-defined fields of the Handtracking Grabber are
summarized in Table 4.5. Here the pinch threshold and the velocity multiplier for
throwing can be adjusted. A Networked Player from the view of the local player can be
seen interacting with objects in Figure 4.6.

4.4.2 Networked Grabbable

The Networked Grabbable derives from OVRGrabbable and overrides the GrabBegin
and GrabEnd method. The Networked Grabbable aims to preserve the functionality of
the original OVRGrabbable and applies the functionality to a networked context. The
script transfers the ownership of the grabbed object as soon as someone initiates a grab
action and distributes the physic properties of the object over the network.

4.5 New avatar integration
Adding a new avatar is simple by design, however there might need to be some adjustments
depending on the skeleton of the desired avatar model. The skeleton of the hand portion
of the model needs at least three bones in the pinkie and thumb, otherwise the whole
range of motion of the hands cannot be represented in the chosen avatar.

Figure 4.7: Location of the avatar prefab and its variants in the project folder.

There are already four different avatar prefabs in the project, all using models from
Microsoft’s Rocketbox avatar pack, featuring over 100 humanoid avatars from Microsoft.
The scripts used in this project are tested using those models. For different models,
adjustments to the Handtracking Mapper are required. In case of a different bone
structure in the hand portion of the model the Handtracking Mapper needs to be
adjusted to update and network all, potentially additional, bones provided by the model.
Additionally, the orientation of the bones may vary between different models; in this case
the positional and rotational offset needs to be taken into account.

To create a new avatar, locate the avatar prefab and create a prefab variant, illustrated
in Figure 4.7. Then, add the desired character model to the root of the prefab. To rig the
avatar to the inverse kinematic system, open the VR IK script located in the prefab root,
as seen in Figure 4.8. Then drag and drop all bones from the avatar in the reference list
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of the VR IK script. Some of the fields are optional, as hinted by a tooltip. Fields that
do not feature an optional tooltip are required. All required fields need a reference.

Figure 4.8: Fields of the VRIK component responsible for managing the bone references
used by the IK solver.

To rig the hands, the Handtracking Map has to be located in the game object /RightHand-
Target/RightHandController and /LeftHandTarget/LeftHandController respectively, as
described in Section 4.3.1 and shown in Figure 4.3. Like in the VR IK script, the bones
of the avatar need to be assign to the corresponding field in the Handtracking Map. The
Handtracking Mapper is then responsible for updating and networking the hand tracking
input on the avatar model.

As mentioned before, the Handtracking Mapper is designed for the Rocketbox Avatars
and is not guaranteed to work with other skeletons. For models with a different skeletal
structure a different implementation of the hand tracking mapper is needed to cope with
the different bone structure and deviating offsets. To use the newly created avatar in the
test scene, drag the avatar in the playerPrefab field of the Network Manager.
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4.6 New grabbable objects integration
To the objects in the scene, that should be grabbable by the players, where all connected
players should see the updated position, a Networked Grabbable script needs to be
attached. All players in the scene need a Handtracking Grabber or an OVRGrabber
attached to their hand anchors as well as a sphere collider set to trigger. The avatar
prefab is already outfitted with all required scripts to utilize the grabbing system.
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CHAPTER 5
Results

In this project, a multi user VR environment was created where the virtual body of each
player is displayed and animated in a convincing fashion. With the combination of the
Oculus Quest hand tracking and the Final IK solver, the movement of multiple users can
be realistically and smoothly portrayed. Overall, this approach to user representation in
VR is immersive and conveys a good sense of presence of other users in the same virtual
environment and their scale, enabling plausible multi-user interactions. An example of
two users interacting in a natural way is presented in Figure 5.1.

Figure 5.1: This figure shows two clients interacting in the virtual environment, displaying
the animated full body avatars and the possible hand interactions. On the left side the
scene is displayed in the Unity editor. On the right side the scene is shown from the local
perspective of the local client.
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5.0.1 Future improvements

Those benefits come with challenges and limitation. When it comes to hand tracking, the
tracking range of the Oculus Quest is quite limiting. This requires the user to always keep
their hands in their field of view to ensure that the hands are tracked correctly. Tracking
becomes also difficult when the user performs rapid hand movement. Those limitations
make actions like throwing an object quite difficult, since it requires fast movement and
potential leaving of the tracking area while taking a swing. Another limiting factor is
that tracking is lost when the hands are occluded, making actions where one hand needs
to be in front of the other difficult to perform.

Using hand tracking limits the interaction possibilities compared to a controller. Conven-
tional locomotion systems like using an analog stick for movement become not usable.
Therefore, a room-scale play area is recommended to allow users to traverse distances
in real space, limiting the potential size of the virtual environment. An option to allow
for distance travel would be a teleport system, where a hand gesture would initialize a
ray cast to the desired location and another gesture would confirm the teleport action.
Another challenge can be found in UI interaction. A good approach would be to opt for
a physical world space interface, like touchscreens in the scene, a wrist mounted interface
to provide the users with additional options or buttons, to make up for the limited input
system.

This illustrates that there are challenges to consider while creating a virtual environment
designed for hand tracking and there are many possibilities when it comes to implementing
VR interactions using hand tracking.

5.0.2 Conclusion

The results of this project show that using an all in one systems like the Oculus Quest,
can provide a convincing full body avatar experience without the need for controllers
or even a a designated playing area. Sufficiently accurate procedural animations of
the avatar can be achieved using an IK solver, eliminating the need for any additional
tracking technologies. Even though there are interaction limitations when it comes to
hand tracking, immersive social VR interactions, utilizing full body avatars, can be
achieved using entry level consumer grade VR technology making.
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