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Kurzfassung

Automatisierte Segmentierung ist ein wichtiger Schritt in der Therapieplanung für Hirn-
tumore, wie das Vestibularis-Schwannom. Behandlungsprotokolle umfassen kontrastver-
stärkte T1-gewichtete (ceT1) und hochauflösende T2-gewichtete (hrT2) MR-Scans. CeT1
Scans bietet einen höheren Kontrast, verwenden aber Kontrastmittel, die kumulative
Nebenwirkungen verursachen können. Daher gibt es Bemühungen, vollständig auf hrT2
umzusteigen. Da die Verfügbarkeit großer, vollständig annotierter Datensätze begrenzt
ist, sind Strategien zur Nutzung modalitätsübergreifender Daten erforderlich. Nach der
Entwicklung eines Segmentierungs-Algorithmus müssen Künstliche Intelligenz (KI) Ent-
wickler die Ergebnisse ihrer Modelle mit Ground-Truth Labels und anderen Algorithmen
vergleichen. Eine visuelle Analyse verbessert das Verständnis für solche automatisierten
Lösungen. Aktuelle Visual Analytics (VA) Anwendungen bieten jedoch keine flexiblen
Vergleichsmöglichkeiten, mit denen sich große Patientenkohorten bis hin zu einzelnen
Bildschichten aufschlüsseln lassen. Außerdem sind sie nicht in der Lage, Korrelationen zu
anderen aus Datensätzen und Bildern abgeleiteten Merkmalen, zu erkennen.

Diese Arbeit hat zwei Schwerpunkte. Erstens entwickeln wir zwei Methoden, die
Information von ceT1- auf hrT2-Scans übertragen. Das Ziel ist die automati-
sche Tumorsegmentierung auf hrT2-Bildern. Es werden Kohortdaten von 242 Patienten
verwendet, die jeweils aus annotierten ceT1- und nicht annotierten hrT2-Aufnahmen
bestehen. Die Methoden werden durch ein klassifikationsgesteuertes Modul erweitert,
das falsch-positive Vorhersagen von Scans vermeidet. Zweitens entwerfen und imple-
mentieren wir eine interaktive webbasierte VA-Anwendung für die Bewertung der
Algorithmusergebnisse. Wir führen eine quantitative Evaluierung durch und demons-
trieren vier Anwendungsszenarien. Das vorgestellte Tool ermöglicht es den Benutzern,
mehrere Modelle auf verschiedenen Detailebenen zu vergleichen und Korrelationen zwi-
schen Fehlermetriken und Radiomics-Merkmalen zu finden. Unsere besten Methoden
erreichen 61.14% und 92.62% Dice Score auf Tumorschichten bzw. dem gesamten Da-
tensatz. Unser VA-Ansatz liefert zusätzliche Erkenntnisse, die für die Bewertung der
entwickelten Algorithmen nützlich sind.

ix





Abstract

Automatic segmentation is an important step in therapy planning for brain tumors,
such as Vestibular Schwannoma. Treatment protocols include contrast-enhanced T1-
weighted (ceT1) and high-resolution T2-weighted (hrT2) MR scans. Although ceT1 scans
provide higher contrast, they use contrast agents which can cause cumulative side-effects.
Therefore, efforts are underway to move to hrT2 completely. Because the availability of
large, fully annotated data sets is limited, strategies for using cross-modality data are
needed. After developing an automated algorithm, artificial intelligence (AI) engineers
must evaluate the results of their models against ground truth labels and compare them
to other algorithms. Visual assessment through Visual Analytics (VA) improves an
in-depth understanding of such automated approaches. However, current VA applications
are limited and do not provide flexible comparison capabilities that are able to drill down
from large cohorts of patients into individual image slices. Also, they are not able to
provide a view on correlations to other dataset- and image-derived features, such as from
radiomics.

This thesis has two main contributions. First, we develop two domain adaptation
methods that transfer knowledge from ceT1 to hrT2 scans. The goal is to generate
automatic tumor segmentation on hrT2 images. Cross-modal data of a cohort of 242
patients, each consisting of annotated ceT1 and non-annotated hrT2 scans, are used. The
methods are enhanced with a classification-guided module which avoids false positive
predictions of slices. Second, we design and implement an interactive web-based VA
application for the assessment of algorithm performance and results. We perform a
quantitative evaluation and demonstrate four use case scenarios. The proposed tool
allows the users to compare multiple models and subjects on different levels of detail and
find correlations between performance values and radiomics features. Our best methods
achieve 61.14% and 92.62% Dice Score on only tumor slices and the entire dataset,
respectively. Our VA approach provides additional insight, useful for the assessment of
the developed algorithms.
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CHAPTER 1
Introduction

This chapter provides a brief overview of the main concepts presented in this thesis. In
particular, we focus on the motivation of our thesis and our goals. At the end we outline
the structure of this work.

1.1 Motivation
Radiation therapy with ionizing radiation is the most common treatment for tumors.
Manual delineation of the clinical target volume (CTV) and the organs-at-risk (OAR) is
an essential part of the clinical workflow in radiation therapy [116]. The CTV is the target
of irradiation, whereas the OARs are organs and structures that should be spared from
radiation to avoid damage to healthy surrounding tissue, such as the cochlea or the facial
nerve. When treating brain tumors, identifying different brain structures in a consistent
manner is critical for a successful treatment planning and for avoiding treatment failures
[68]. This task, often performed manually by radiologists, is time-consuming and can
result in intra- and inter-observer variability [116, 28]. Accurate automatic segmentation
would improve the clinical workflow and its efficiency, but automatic approaches are not
yet robust and general enough to account for all cases. Results of recent challenges in
the medical imaging community suggest that neural networks are a successful approach
for automatic brain structure segmentation [116].

Treatment protocols make use of multi-modality images, such as computed tomography
(CT), T1-weighted and T2-weighted magnetic resonance imaging (MRI) [116, 132], since
each modality provides supplementary information for treatment planning. However,
using multiple modalities introduces additional challenges to neural network approaches.
Common supervised deep learning techniques need a fully labeled dataset, which
increases the workload as the number of modalities increases. Thus, there are only a
few large, open source datasets available for deep learning techniques [46]. In addition,
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1. Introduction

neural networks learn the distribution of the training data. Therefore, it is not a feasible
solution to use just one modality for training and predict on another modality at
inference time without any adaptations during the training process. This creates a
challenge in compiling an appropriate training and evaluation dataset. Finally, there are
visually preferred modalities for brain structures based on contrast and resolution [151].
This may result in annotations that are not present, are biased, or are derived from
other modalities and therefore not as accurate [151]. Thus, multi-modality frameworks,
domain adaptation (DA) and unsupervised approaches are recently of strong interest in
the medical imaging community.

In this work, we investigate how domain adaptation could be employed in the context
of brain tumor segmentation across two image modalities, i.e., cross-modal data. In
addition, we discuss how the results of such an approach could be visually assessed in
order to support performance explainability and fine-tuning of the segmentation method.

1.2 Aim of the Work
The aim of the work is to answer the following two research questions:

(RQ1) How can we generate brain tumor segmentations automatically for cross-modal data
under the assumption that no labeled data for the target domain are available for
training?

(RQ2) How can we visualize the outcomes of automatic segmentation methods to support
software developers and artificial intelligence (AI) engineers in evaluating their
developed models?

In order to answer the research questions stated, this work is split into two parts. We
translate the questions to tasks and identify limitations and requirements for each task.

Research Question 1 (RQ1): Automatic brain tumor segmentation on
cross-modal MRI data

The first task is to develop an algorithm that automatically generates delineations of
a brain tumor on unseen cross-modal data. The clinical use case and the resulting
dataset impose some constraints on the development of the algorithm. The dataset
available for development contains two image modalities: source (T1) and target (T2)
modality. Paired images and ground truth labels for the source domain are available
during development. However, the algorithm should predict delineations on the target
modality where only unannotated raw image are available for development. For test
purposes, the target modality images must have associated ground truth labels. Another
assumption for the algorithm design is that the data samples of the two modalities are
not paired. Finally, the algorithms should not have extreme requirements in hardware.
A Nvidia GPU with 8 GB of memory is specified as reasonable equipment.
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1.3. Methodological Approach

Research Question 22 (RQ2): Visual assessment of algorithm performance
and results

The second task is to design and implement a visual analysis tool that supports the model
evaluation process by providing an interactive interface to investigate the performance in
a visual manner. Usually, the performance of the method is evaluated based on numerical
measures that reduce a complex behaviour to an individual numerical value. The target
users are deep learning experts and AI engineers who design solutions and train neural
networks. The tool should help the user to inspect and compare the results of different
segmentation methods (high level), as well as to identify data samples where errors or
inaccuracies occur (low level). In addition to solving the task, the tool should ensure
scalability, generalizability, and usability. The final tool should go beyond comparing just
two results and be applicable to a larger number of segmentation algorithms. Although
the main focus of the tool is the investigation of brain tumor segmentation results, the
underlying principles should be applicable to segmentation algorithms for other body
parts. The functionality provided should be understandable and usable by the users who
may have varying levels of experience with interactive visualizations.

1.3 Methodological Approach
The first task is accomplished by using algorithms that employ deep learning. After
researching previous work on domain adaptation, we developed two segmentation pipelines
based on image alignment. Several supervised segmentation models and image synthesis
networks are trained and combined into frameworks predicting the tumor segmentation
masks on the target modality. In order to provide baseline methods for the evaluation, we
train a fully supervised segmentation network on target modality data as upper boundary
and a supervised segmentation network on source modality data, without considering
the different modalities, as lower boundary. Different training settings for the approaches
are tested and compared. We have chosen individual concepts that are frequently used,
and therefore well-known and evaluated.

An interactive visual analysis tool fulfills the second task by providing functionality to
navigate through the dataset at different levels of detail. The implementation is web-
based to ensure accessibility despite different hardware settings. The results of multiple
segmentation methods are presented with various Visual Analytics (VA) techniques on
different levels of detail. Following Shneidermann’s Mantra “Overview first, zoom and
filter, then details on demand” [115], we provide an overview of the entire test set with
all 3D volumetric data samples, followed by single patient data sample with a stack of
image slices, and finally, single image slices within the 3D data sample. We present
the distribution of a pre-defined performance metric with heatmaps. The relationship
between the performance, the selected data and the tumor features are shown with
parallel set diagrams. The visual assessment of multiple segmentation predictions for a
single image slice is shown with heatmaps using explicit encoding.

This thesis contains two main contributions. First, we develop an automatic seg-
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mentation framework to predict on the target modality based on the source modality.
Second, we design and implement a VA application for artificial intelligence (AI) and
machine learning (ML) experts to support the evaluation and comparison of multiple
segmentation algorithms. The combination of the two contributions is novel within the
context of cross-modal domain adaptation.

1.4 Outline of the Thesis
The following chapters of this thesis are structured as follows: Chapter 2 provides clinical
background about Vestibular Schwannoma tumor, the brain tumor targeted, and the
dataset used. In Chapter 3, we focus on related work in the field of image segmentation
and comparative visualization of medical data. This includes automatic segmentation
with deep learning for medical images in general and brain data in detail, domain
adaptation in medical image analysis, comparative visualization and visual assessment of
segmentation outcomes. In Chapter 4, we explain our data pre-processing, and provide
the technical background of model architectures, activation functions, and error metrics
utilized, followed by the design of our segmentation methods and their implementation.
In Chapter 5, we proceed with the design and implementation details of our interactive
visual analysis tool. Chapter 6 collects the results of our segmentation algorithms and
insights about the model performances gained with our VA tool. Finally, Chapter 7
concludes the thesis where we reiterate about the work performed with regards to the
research questions stated, reflect upon limitations of our implementations and provide
potential approaches for future work.
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CHAPTER 2
Clinical Background

The goal of this chapter is to provide clinical background information about Vestibular
Schwannoma tumor, to position our work within the therapy workflow, and to introduce
the dataset used in this work.

Figure 2.1: Illustration of Vestibular Schwannoma location and surrounding nerves [5].
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2. Clinical Background

2.1 Vestibular Schwannoma

Vestibular Schwannoma (VS), also known as acoustic neuroma, is a benign tumor affecting
the balance and hearing nerves connecting the brain and the inner ear (see Figure 2.1).
It accounts for approximately 8% of intracranial brain tumors and for the majority of
tumors of the cerebellopontine angle (CPA) (85 − 90%). The incidence has increased
over the years and was reported with 1.2 per 100, 000 people per year in 2016. More than
90% of the patients have a unilateral and sporadic tumor. [21]

2.2 Therapy Workflow

Figure 2.2 shows an illustration of the steps involved in therapy planning. The series
of steps is compressed to diagnosis, imaging, treatment planning, and treatment, which
are described in the following subsections. Our work falls within the scope of treatment
planning, where data segmentation, data exploration and analysis are subtasks.

Figure 2.2: Compressed workflow of therapy planning as described by Schlachter et
al. [111] for radiation therapy planning containing the steps: diagnosis, imaging, treatment
planning, and treatment. Our primary focus is on treatment planning and the associated
subtasks of segmentation and data exploration and analysis.

Diagnosis

The symptoms of VS include hearing loss and tinnitus, resulting from the involvement
of the cochlea nerve, as well as imbalance and cranial nerve deficits [21]. Although, VS
tumors are rarely fatal, they reduce the patient’s quality of life. The diagnosis consists of
a multidisciplinary evaluation including neurological examination, audiometric testing
(i.e. audiogram) and contrast-enhanced MRI [21]. The Koos staging system with scores I
- IV is a reliable tumor classification with scores rating the tumor size [37].
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2.2. Therapy Workflow

Imaging

The current MRI protocol include contrast-enhanced T1-weighted (ceT1) and high-
resolution T2-weighted (hrT2) scans. The tumor is more visible on the former, while
surrounding structures, such as the cochlea, are more visible on the latter [133]. However,
recently there has been increasing concern about the use of gadolinium as contrast
agent in contrast-enhanced MRIs [125, 36], supporting the shift to using other MRI
modalities. Wang et al. [133] motivated their segmentation approach on T2-weighted
MRI with reducing the “potentially harmful cumulative side-effects of gadolinium contrast
agents”. The MICCAI challenge Cross-Modality Domain Adaptation for Medical Image
Segmentation description also claims that high-resolution T2 scans “could be a reliable,
safer, and lower-cost alternative to ceT1” [3].

Treatment Planning

Since radiotherapy can cause side-effects harming the patients, the treatment needs to be
carefully planned. Surrounding Organs at Risk (OARs), such as surrounding nerves and
the cochlea, should be spared from damaging radiation to effectively treat the patient.
Thus, treatment planning involves a lot of different essential steps. The tasks include
data registration, data fusion, data segmentation, and data exploration and analysis
[111]. Our work contributes to the last two steps: automatic data segmentation and
segmentation outcome exploration and analysis. In clinical practice, the tumor and the
relevant surrounding structures are delineated manually, which results in inter-observer
variability [100, 95]. Automatic deep-learning approaches can help to reduce the time
and the human effort required for delineation and make clinicians results more consistent
[33]. Another aspect of achieving more stable delineations is the use of multiple image
modalities [147]. Different image modalities contain different information aspects that
can complement each other. However, this leads to multi-parametric, multi-modality
medical imaging data that must be explored and analyzed to derive conclusions for the
treatment planning and outcome. Several experts are involved in treatment planning:
radiation oncologists, medical physics, radiologists, radiotherapist, and dosimetrists. The
introduction of automated segmentation approaches expands this group of experts to
include machine learning (ML) and deep learning (DL) engineers/experts.

Treatment Strategies

After VS is diagnosed, there are different treatment strategies [21]:

• Microsurgery
Surgical resection is considered for large tumors that pose a threat of neurological
impairment. The surgeon has different approaches to chose from, each with its own
associated advantages and drawbacks.

• Stereotactic Radiosurgery (SRS)
SRS is considered for patients with a tumor size less than or equal to 3−4 cm. Tools
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2. Clinical Background

for modern SRS include the Gamma Knife [21]. It has become a preferred initial
treatment due to the minimal invasive nature and the excellent clinical outcomes.

• Fractionated Stereotactic Radiation Therapy (FSRT)
FSRT is applied to patients with a tumor size greater than or equal to 3− 4 cm
and when functional preservation has the highest priority. Since the tumor grows
slowly, this approach causes late toxicity to the surrounding normal structures,
such as brainstem and cranial nerves.

• Observation
Surveillance without any initial treatment is used especially for elderly patients
and patients with small, asymptomatic lesions. In the surveillance period, the
patient receives brain MRI scans every 1 to 2 years and additional tests, such as
audiograms, are performed.

• Combined therapy
A combination of multiple treatment strategies is quite rare, but may be surgery
followed by radiation therapy or vice versa.

The main treatment strategies targeted by the present thesis are SRS and FSRT.

2.3 Dataset
The dataset used in this work is publicly available in The Cancer Imaging Archive
(TCIA) [114] and is a collection of labeled MRI scans from 242 patients diagnosed with
VS undergoing Gamma Knife stereotactic radiosurgery (GK SRS). The provided image
modalities are ceT1 and hrT2 MR images. Facial features were obscured before the
dataset was made available for anonymization reasons. An illustrative data sample before
and after facial obscurification is shown in Figure 2.3. In addition, the patient’s radiation
therapy (RT) plan is included, denoted as RTDose, RTStructure and RTPlan. The
structural information of VS tumor and cochlea is provided as segmentation contour
lines (JSON format). The manual delineations were generated by treating neurosurgeon
and physicist considering both image modalities. Due to visual preference, the tumor was
segmented mostly on T1 images and cochlea on T2 images. The annotation process was
performed on axial slices in the Gamma Knife planning software (Leksell GammaPlan,
Elekta, Sweden) using an in-plane semi-automated segmentation method.

After downloading the dataset from TCIA, the recommended preprocessing steps are
applied [73]. This includes restructuring the patient folders and converting DICOM
images and JSON files into NIFTI format. The images are co-registered. Since the tumor
is mainly annotated in T1 images, and the training is conducted using the pair T1 and
VS tumor segmentation for the majority of our segmentation methods, we register T2
images to T1 images with the registration matrices (TFM format) to prioritize the T1
images. The affine transformation matrices are calculated based on reference points
of the Leksell Stereotactic System MR Indicator box which fixates the patient’s head

8



2.3. Dataset

during image acquisition (see white dots in Figure 2.3). The calculation is performed
automatic by LeksellGammaPlan software, and the resulting registration matrices are
provided along with the dataset. After the co-registration, empty (i.e., all-zero) slices are
removed from the volume. T1 and T2 volumes are aligned so that the correspondence of
non-empty slices in the dataset for both and the mapping between the layers is preserved.

Figure 2.3: Dataset example of patient with right sided VS tumor. The six white dots in
each image are reference points used for image registration. A) ceT1 MRI; B) hrT2 MRI;
C) ceT1 MRI scan with VS tumor segmentation; D)-F) Corresponding images after facial
obscurification [114].

The image scans were taken with a 32-channel Siemens Avanto 1.5T scanner with single-
channel head coil. The contrast-enhanced T1-weighted scans have an in-plane resolution
of 0.4 × 0.4 mm and an in-plane matrix of 512 × 512. The in-plane resolution of the
high-resolution T2-weighted scans is 0.5× 0.5 mm, the in-plane matrix is either 384× 384
or 448× 448. The slice thickness for both was between 1.0 and 1.5 mm.
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CHAPTER 3
Related Work

The topic covered in this chapter is two-fold, i.e., image segmentation and comparative
visualization of medical data. The first two sections provide an overview of semantic
segmentation for biomedical applications in general (Section 3.1) and brain image data
(Section 3.2). Next, we cover techniques for domain adaptation in medical image analysis
with special focus on unsupervised methods, to deal with domain shift caused by different
image modalities (Section 3.3). Apart from the deep learning related topics, we also take a
look at medical visualization. In Section 3.4, the techniques for comparative visualization
are discussed, followed by visual assessment of segmentation results in Section 3.5.

3.1 Semantic Segmentation in (Bio)Medical Images

In the last decade, deep neural networks achieved great results in computer vision tasks
such as classification, object detection and segmentation. Especially Convolutional Neural
Network (CNN) architectures such as AlexNet [78], VGGNet [118], GoogleLeNet [119],
ResNet [50], MobileNet [52], and DenseNet [53] are very popular for image classification.
After their success in classification challenges, CNNs have also been adopted for semantic
segmentation in a variety of applications.

One of the first deep learning networks for semantic image segmentation was introduced
by Long et al. [86]. A Fully Convolutional Network (FCN) with skip connections
between downsampling and upsampling path is trained end-to-end for supervised pixelwise
predictions. Since only convolutional layers are used, the network can take an image of
arbitrary size. However, FCNs are slow in real-time inference and they are not using the
global context information in an efficient way. One of the most common encoder-decoder
network is UNet by Ronneberger et al. [108]. It was originally developed for electron
microscopic (EM) images and won the International Symposium on Biomedical Imaging
(ISBI) cell tracking challenge 2015. Although developed for biomedical data, it has been
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3. Related Work

one of the major breakthroughs for medical image segmentation and is now also used
outside the medical domain [92, 14].

Numerous extensions and adaptations of the UNet have been developed to overcome
limitations of the original architecture and to adopt the idea to different kinds of images.
This paragraph only covers a selected collection. Drozdzal et al. [35] investigate the
importance of skip connections for biomedical image segmentation by comparing results
of FCN with long and short skip connections. Another network for multiple medical
images segmentation tasks, which deals with further development of skip connections, is
UNet++ by Zhou et al. [148]. Aside from deep supervision, they use nested and dense
skip connections to fuse semantically more similar feature maps. UNet3+ by Huang
et al. [54] uses full-scale skip connections and deep supervision for liver and spleen CT
segmentation. In addition, they introduce a classification-guided module to reduce false-
positives in a non-organ image. A 3D version of UNet, called 3D UNet, for volumetric
data of the Xenopus kidney is introduced by Çiçek et al. [29]. Another well-known 3D
variant using the encoder-decoder scheme is V-Net by Milletari et al. [93], which was
first used for volumetric prostate MRI data. Li et al. [84] combine a 2D DenseUNet and
a 3D counterpart in their H-Dense UNet for liver and tumor segmentation in CT scans.
Attention-UNet by Oktay et al. [102] inserts attention gates to increase the focus on the
target structures in multi-class abdominal CT segmentation. Li et al. [83] combine the
idea of attention gates, dense skip connection and deep supervision in the Attention-
UNet++ for liver CT segmentation. Zhang et al. [145] use residual units in the UNet
architecture and apply their deep ResUNet to road extraction from aerial images. X-Net
by Bullock et al. [19] combines two UNets in series for bone and soft tissue segmentation
in X-Ray images. Isensee et al. [60] introduce a robust and self-adapting framework called
“no-new-Net” (nnU-Net). The idea behind the framework is that solving segmentation
on a novel dataset is influenced by a lot of inter-connected choices regarding architecture,
pre-processing, training and inference (i.e., post-processing). Designing a new architecture
is not always the best way, since a lot of components influence the performance in the
end. The framework tries to find the best combination based on 2D and 3D vanilla UNet
and a Cascaded UNet.

Another class of segmentation networks are R-CNN based models. A well-known candidate
of this family is the Mask-RCNN by He et al. [48], which can be used for instance
segmentation. Mask-RCNN consists of two stages. First, the Region Proposal Network
(RPN) predicts bounding box candidates for objects. Then, extracted features are
used to perform classification, bounding box regression and pixel-wise segmentation in
parallel. Zhou et al. [148] used their resdesigned skip connections to improve segmentation
backbone and boost the medical image segmentation performance. SegAN for medical
image segmentation was published by Xue et al. [138]. Their adversarial network consists
of a FCN as segmentor and a critic network trying to differentiate between predicted and
ground truth segmentation maps. The two networks are trained end-to-end in a min-max
manner. We refer the interested readers to the survey about image segmentation using
deep learning by Minaee et al. [94].
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3.2 Semantic Segmentation in Brain Images
In recent years, there have been several segmentation challenges on medical data focused
on advancing research in different fields. At the Medical Image Computing and Computer
Assisted Intervention (MICCAI) 2020 alone, nearly all challenges included a segmentation
task for various (clinical) use cases. We only focus on the most relevant challenges dealing
with multi-modal brain data.

The most related MICCAI challenge is the MICCAI challenge 2021 Cross-Modality Do-
main Adaptation for Medical Image Segmentation (crossMoDA) [3]. The task is to predict
VS and cochlear segmentation on hrT2 images. Compared to the following introduced
challenges, the limitation for network training is, that only ceT1 with corresponding
segmentation masks and unpaired hrT2 can be used. For validation the mean Dice score
and Average Symmetric Surface Distance per structure and overall are used. In the first
validation phase, 5 challenge teams (10%) reach a performance above 80% mean Dice
score and 45 teams (85%) achieved results below 60% mean Dice score. If we look at
the top 10 teams, there is a clear trend in strategies [3]. The top three methods are
combinations of image alignment and nnU-Net. What sets the first two apart, is the use
of self-supervision. The challenge winner generates pseudo-labels on non-annotated hrT2
images with a trained pipeline consisting of CycleGAN and segmentation network. The
nnU-Net segmentation network is then re-trained with the labeled synthetic T2 and the
pseudo-labeled T2 scans. The team on the second place uses NiceGAN, an extension
of CycleGAN, for pixel alignment. For the segmentation, they trained several nnU-Nets
tailored to the two different hrT2 modalities and the different label classes. The goal of
the third team is to use publicly available frameworks. Therefore, their image alignment
is performed with CUT (Contrast unpaired translation) that uses patchwise contrastive
learning and adversarial learning and nnU-Net. Due to the usage of large networks, all
strategies are trained on Nvidia GPUs with more than 8 GB. An extended dataset of the
challenge published via TCIA is used for this work (see 2.3). Wang et al. [133] proposed
the first automatic VS tumor segmentation. They combine 2D convolutions in earlier
layers and 3D convolutions in deeper layers to form a 2.5D UNet. Additionally, they
extend the attention module by Oktay et al. [102] to supervise the attention learning on
different scales explicitly. The network was trained with and tested on hrT2 images.

The MICCAI 2020 challenge Anatomical Brain Barriers to Cancer Spread: Segmentation
from CT and MR images (ABCs) [1] aimed at developing fully automatic segmentation
algorithm for brain structures that will make radiotherapy planning more efficient and
consistent. Two segmentation tasks are performed on paired and registered CT and
MRI scans. The first task is focused on the clinical target volume (CTV) and limiting
brain structures, the second task deals with supporting structures used to optimize
the radiotherapy treatment plan. The results of the top 10 challenge participants are
summarized by Shusharina et al. [116]. An analysis regarding submitted architecture
shows that eight out of ten used a 3D UNet [29] and four out of ten used nnU-Net
[60], including the first two. Ning et al. [99] won the challenge with their residual UNet
architecture. For optimization, they use a hybrid loss between Tversky loss and Dice
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loss. Further improvement is achieved through an ensemble strategy. The algorithm by
Chen et al. [27] uses a coarse-to-fine approach in three stages. The ROI for the targets
extracted in Step 1 is used in Step 2 to perform fine segmentation on zoomed in image.
The final decision is made in Step 3 based on a fusion of all previous feature maps and
predictions. Zou and Dou [151] leverage domain knowledge for model training and the
symmetric of structures for label merging. At test time, the best two models are used
in a model ensemble strategy. An uni-modal approach, only leveraging one modality,
is described by Langhans et al. [81]. Gay et al. [41] used a bi-directional two-stage
framework. Large structures were segmented with an Attention U-Net on MRI images
only. For small structures, the ROI is determined by training a Inception-ResNet-v2
and using either an Attention U-Net or a V-Net depending on the target structure for
automatic segmentation on smaller image volumes.

A challenge that already exists since 2012 is the MICCAI challenge Brain Tumor Segmen-
tation Challenge (BraTS) [2]. Over the years, the complexity of the challenge tasks has
widened from segmentation to overall survival prediction and classification uncertainty
prediction. The challenge dataset is often used as benchmark resource for brain tumor
segmentation, due to the publicly accessible multi-modal dataset offered to the medical re-
search community [10, 91]. The dataset consists of native and post-contrast T1-weighted,
T2-weighted and T2 Fluid Attenuated Inversion Recovery (T2-FLAIR) MRI scans. In
their survey, Agravat and Raval [10] summarize the change of trends in automated glioma
brain tumor segmentation approaches from methods using handcrafted features to the
usage of deep neural networks. They cover the BraTS challenges 2012-2019. Another
survey by Magadza and Viriri [91] focuses on different strategies and building blocks
for brain tumor segmentation. Isensee et al. [59] won the first place in the BraTS 2020
challenge with an nnU-Net adapted to the brain tumor segmentation task. Jia et al. [63]
extended their previous 3D High-resolution and Non-local Feature Network (HNF-Net)
[64] to use a two-stage cascaded HNF-Net. Together with Wang et al. [135] they rank
second. Wang et al. [135] develop a modality-pairing network with two parallel branches
connected via skip connections.

The HEad and neCK TumOR segmentation challenge (HECKTOR) [4] was held in
conjunction with MICCAI 2020 and MICCAI 2021 to motivate researchers to leverage
bi-modal information for head and neck primary tumor segmentation from PET and CT
images. While the focus of the first year was only on segmentation, in the second year
the challenge was expanded to include patient outcome prediction with and without the
tumor delineation. The challenge organizers provide a baseline with 3D V-Net and a
2D version [13]. They compare bi-modal networks with early and late fusion and single
modality dedicated networks. All top 10 ranked teams with one exception submitted a
3D-UNet like architecture with different strategies regarding pre- and post-processing,
loss function and usage of data augmentation and ensemble strategies. The challenge
winner is a residual UNet with integrated ‘Squeeze and Excitation’ (SE) normalization
by Iantsen et al. [58]. The final prediction is generated by an ensemble of 8 networks.
The SE layer was developed by Iantsen et al. [57] for a submission at the BraTS 2020
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challenge. Ma and Yang [89] train a 3D UNet and perform at test time an uncertainty
estimation with model ensembles. For high uncertainty cases, active contours is used as
post-processing. A 3D nnU-Net model supplemented with ‘spatial and channel Squeeze
and Excitation’ (scSE) blocks is proposed by Xie and Peng [137]. The dynamic Scale
Attention Network (SA-Net) by Yuan [143] uses full-scale skip connections to combine
feature maps at different scales. The same strategy was also submitted at BraTs 2020
[142]. Chen et al. [26] use a three-step framework to refine the segmentation results
in an iterative manner by using additional information from upstream trained models.
Ghimire et al. [43] introduce a patch-based 3D UNet with both conventional and dilated
convolution to tackle the 3D image memory issue and use small and large receptive fields.
Yousefirizi and Rahmim [141] modified a GAN for medical image segmentation (SegAN )
with an improved polyphase V-Net as generator and an encoder-similar discriminator.
The only 2D approach is used by Zhu et al. [150] in a two-stage framework. A ResNet-
based classifier predicts the axial slices displaying a tumor which are then segmented via
a 2D UNet.

Our work is inspired by the MICCAI challenge crossMoDA dataset and its clinical use
case. The task of unsupervised domain adaptation with underlying cross-modality is
very different from the automatic segmentation algorithms studied. While they address
the multi-modality aspect, they lack the challenge of missing target labels, which pose an
additional difficulty in segmenting brain structures. This is the research direction that
the present thesis aims to contribute to.

3.3 Domain Adaptation in Medical Image Analysis
Transfer learning (TL) aims to transfer the knowledge which has been learned from task
TA on domain A to the task TB on domain B. Either the domain (feature space) or
the task (label space) change in transfer learning. Domain adaptation is a special case
of TL, where only the domain changes. As a toy example to explain TL and DA, we
employ the common deep learning example of cat and dog image classification. Let task
TA be the classification of cat images within the domain A of natural images. Applying
the knowledge learned by this task to the problem of classifying dog images (different
task TB 6= TA) on natural images (same domain B = A) is TL with constant domain.
One strategy for TL with same domain is to re-use the weights of a model trained on
task TA as a starting point for the task TB training. Transferring the knowledge to the
classification of cats (same task TA = TB) in cartoon images (different domain A 6= B) is
still considered TL, but more precisely it is DA. The change in data distribution between
the training data (source domain) and the test data (target domain) is referred to as
data shift problem [104]. The data shift is common for medical image analysis due to
different scanners and scanning parameters, subject cohorts and multi centers studies, and
changing image modalities. Thus, DA is of great interest for the medical image analysis
community to overcome the domain shift and heterogeneity among datasets [46, 77].
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There are different taxonomies for DA. Guan and Liu [46] provide five categories to
describe a DA method. The descriptor classes are not mutually excluding to each
other and are based on model types, label availability, modality difference, number of
sources and adaptation steps. Figure 3.1 shows each category and where our work is
located. Based on the strategy of knowledge transfer, we can distinguish four major
alignment techniques for unsupervised DA methods: feature alignment, image alignment,
feature+image alignment, and disentangled representation. Another way of subdividing
unsupervised DA is given by Kouw and Loog [77]. They distinguish between sample-based,
feature-based and inference-based. We use the alignment strategy for categorization.
Table 3.1 provides an overview of different domain adaption methods in medical image
analysis that is discussed in this section. For a more comprehensive literature review, we
refer the reader to existing review papers [46, 77, 120].

Figure 3.1: Overview of domain adaptation categories after Guan and Liu [46].

A well known deep generative model is the Generative Adversarial Network (GAN ) [45].
It consists of a generator and a discriminator which are trained simultaneously in a
min-max-game manner. The generator takes random noise as input and generates
synthetic images. The discriminator tries to distinguish between fake and real images.
For realistically looking synthetic images, a good balance between the generator and
discriminator is necessary. Based on the idea of GANs, Zhu et al. [149] introduced
CycleGAN, an unpaired image-to-image translation with cycle-consistent adversarial
networks. For unsupervised domain adaptation, CycleGAN-based frameworks are used
to perform image alignment either by transforming source domain images into target
domain images or vice versa [51, 17, 109].

In the context of medical image segmentation, image alignment is the most commonly
used approach (see Table 3.1). The goal of the work by Chartsias et al. [22] is to perform
cardiac synthesis on unpaired CT and MRI data. A direct application of CycleGAN
leads to an anatomical shift that causes the segmentation masks between the original and
synthetic images to be misaligned. Thus, they concatenate images and corresponding
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Publication target GT modality segm domain alignment
Charsias et al. [22] 3 CT & MRI both image
Jiang et al. [65] 3 CT & MRI target image
Valindria et al. [126] 3 CT & MRI both feature
Zhang et al. [146] 3 CT & MRI both image+feature
Chen et al.[23] 7 X-Ray source image
Zhang et al. [144] 7 X-Ray & DRR source image
Huo et al. [55, 56] 7 CT & MRI target image
Kamnitsas et al. [67] 7 MRI target feature
Joyce et al. [66] 7 CT & MRI source feature
Dou et al. [34] 7 CT & MRI target feature
Chen et al. [24, 25] 7 CT & MRI target image+feature
Yan et al. [139] 7 MRI source image+feature
Yang et al. [140] 7 CT & MRI source disentangled

Table 3.1: Overview of domain adaptation methods in medical image analysis. The first
part of the table includes methods where ground truth labels in the target domain are
available for training neural networks, the second part is lacking this ground truth data.

segmentation masks to a two-channel input for the CycleGAN. This mitigates the problem
of dislocated segmentation label for synthetic images. Jiang et al. [65] introduce a two-
step tumor-aware approach for semi-supervised lung cancer segmentation in MRI data.
The first step is a CycleGAN supplemented with tumor-aware loss to preserve tumor
structure. After the MRI synthesis, a semi-supervised segmentation network is trained
with synthesized and a limited number of real MRIs. The “Synthetic Segmentation
Network” (SynSeg-Net) by Huo et al. [56, 55] is a similar combination of CycleGAN and
segmentor. In contrast to the previously introduced approaches, the segmentation is
only performed on synthetically generated target images since no target ground truth is
available. CycleGANs enhanced with semantic consistency are used to transform X-Ray
images (target domain) towards source images and perform X-Ray segmentation by
Zhang et al. [144] and Chen et al. [23].

Next, we discuss methods using feature alignment. Ganin et al. [40] introduce the “Domain
Adversarial Neural Networks” (DANN ) framework. The feature alignment is implemented
by a shared CNN encoder between a task-specific classifier and domain classifier. The
purpose of the domain classifier is to support a domain-invariant representation. This idea
is extended by Kamnitsas et al. [67] for MRI segmentation of traumatic brain injuries.
The task-related classifier is exchanged for a segmenter invariant to domain-specific
representations. “Adversarial Discriminative Domain Adaptation” (ADDA) by Tzeng
et al. [123] is focused on a discriminative representation. After pre-training a source
encoder with supervised classification task, the weights are used as initialization for
adversarial adaptation. The source and target mapping are independently trained in
an adversarial manner. At test time, target images are transformed with the target
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encoder and classified with the source classifier. Joyce et al. [66] use feature alignment
to stabilize the training of an adversarial segmenter. Instead of images, they directly
generate synthetic segmentation masks that have no point-to-point correspondence with
the original image. A reconstruction loss, a loss to regularize the size and the intensity
of segmentation masks are introduced as additional unsupervised costs. Dou et al. [34]
introduce PnP-AdaNet, an unsupervised cross-modality DA framework for cardiac multi-
class image segmentation. MR (source) and CT (target) images are unpaired. Their
feature alignment strategy is based on the convention, that the first layers learn low-level
features (domain-specific) and the higher level task-specific features (domain-invariant).
Two independent encoders, one for each domain, share one segmentation decoder. The
adversarial learning is realized by two discriminators, one for multi-level features and
another for predicted segmentation masks. Another feature-alignment technique is to
share latent representation between two domains at different locations in the network
[126]. However, for this, source and target ground truth labels need to be available.

The next category covers approaches using image and feature alignment techniques. Zhang
et al. [146] combine a CycleGAN with two UNets in an end-to-end supervised framework
that works on unpaired but labeled data. The synthetic data from the generators is
boosting the segmentor training and the generator loss includes a segmentor supervised
shape-consistency loss. Unlike this work, the following methods do not rely on labeled
target data. “Cycle-Consistent Adversarial Domain Adaptation” (CyCADA) by Hoffmann
et al. [51] employs a combination of image and feature alignment where cycle-consistency
is used along with a semantic loss that constrains the mapping between domains. This
approach was tested on a number of natural image recognition and prediction tasks. Chen
et al. [24, 25] are solving the task of cardiac multi-class image segmentation with their
“Synergistic Image and Feature Adaptation” framework (SIFA). Image transformation
with a CycleGAN data flow ensures the image alignment. The segmentation model
trained on real and synthesized target images shares a feature encoder with the decoder
stream that generates source-like images. Discriminators in semantic prediction and
generated image space complete the feature alignment. A similar unsupervised framework
is proposed by Yan et al. [139]. Their UNet-GAN consists of two stages. First, a UNet is
trained on labeled source data in a supervised manner. Then, a CycleGAN is trained
with a loss function that combines image- and feature-level loss. To facilitate feature-level
alignment, the MSE of features extracted from the UNet encoder between the original
and generated images is calculated. At test time, the target data is transformed to
source-like data that is fed to the UNet.

Disentangled representations of CT and MRI scans are used by Yang et al. [140] in a
two-step domain adaptation framework. In the first step, images from both domains
are transformed into a domain-specific style space and a domain-invariant content space.
The representation in the content space contains anatomical structural information that
is independent of the modality. Content-only CT images are used to train a segmentation
model that is applied to content-only MRI data at test time.
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Our task classifies as deep, multi-modality, single source DA according to the taxonomy by
Guan and Liu [46]. Existing works use only data samples with corresponding segmentation
labels for the segmentation dedicated framework part. In order to extend the dataset
that can be actively used during training, we add a classification-guided module to
two unsupervised approaches that resemble an UNet-GAN with image-feature only
alignment. This algorithmic extension is the main technical contribution of the present
thesis. Compared to methods that were submitted to the crossMoDA competition and
rely on high GPU memory (> 8 GB), our approaches work on a GPU with 8 GB of
memory.

3.4 Comparative Visualization

The visual assessment of at least two data samples with respect to each other is defined as
comparative visualization. Kim et al. [71] classify comparative visualization approaches
into four fundamental techniques, as displayed in Figure 3.2. These are Juxtaposition,
Superimposition, Interchangeable, and Explicit Encoding. Juxtaposition is a side-by-side
view of multiple data samples in different coordinate spaces. Superimposition is an
overlay of data samples integrating them to the same coordinate system. An approach
is interchangeable when data samples are viewed sequentially in the same coordinate
system, e.g. by means of animation. Explicit encoding refers to calculating and displaying
a composite of multiple data samples, such as the difference or intersection. Thereof, the
authors propose hybrid methods, i.e., to combine multiple of the traditional approaches or
switch between them, to overcome drawbacks of single methods. An additional dimension
in comparative visualization is the amount of instances to be compared. There are 1-by-1
comparisons (one patient vs another), 1-by-n (one patient vs a cohort, i.e., group of
patients), and n-by-n (a cohort vs another).

Figure 3.2: Four fundamental visualization techniques for comparative visualization for 2
(top row) and N (bottom row) data samples: Juxtaposition (a,e), Superimposition (b,f),
Interchangeable (c,g), Explicit Encoding (d,h) [71].
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For the comparison of polygonal meshes, the mesh processing system MeshLab [30] and
PolyMeCo [117] for mesh analysis and comparison are proposed. The drawback of both
tools is that they only support pairwise comparison. Schmidt et al. [112] introduce
YMCA (Your Mesh Comparison Application) for meshes produced from point clouds.
The surface reconstruction of multiple algorithms can be compared against each other
in an interactive way. In addition to a 2D overview, local variations in the spatial
information are visualized using focus-and-context techniques. The main target of the
application is the visual quality of the mesh reconstruction.

Displaying multiple data samples at once to provide important insight is especially useful
for multi-modal medical data visualization. In this context, the different data samples
originate from multiple image modalities. Lawonn et al. [82] name basic visualization
techniques to deal with occlusion, poor depth perception and rendering relevant data
components from multiple sources in their survey. Besides smart visibility techniques to
avoid visual clutter or occlusion while maximizing the visual information, they discuss
focus-and-context as an approach to highlight a focus object in the context of surrounding
structures in their survey.

The topics of ensemble visualization and cohort analysis are related to comparative
visualization and are not only relevant for the medical field. The interested reader is
referred to other publications [134, 75, 16].

3.5 Visual Assessment of Segmentation Outcomes

The visual assessment of segmentation results can have different types of emphases and
applications. As a result, the research field is very broad and contains (not exclusively)
parameter space exploration, uncertainty or sensitivity visualization, and Visual Analytics
(VA) approaches . We focus on a selection of related works dealing with medical image
segmentation. For VA applications in the area of public health in general, the interested
read is referred to the survey by Preim and Lawonn [103].

Tuner by Torsney-Weir et al. [122] and GEMSe Fröhler et al. [38] are interactive tools
to explore the parameter space. Tuner is intended for developers of segmentation
algorithms to help them find a “good” parameter setting. GEMSe allows an interactive
exploration of parameter combinations in multi-channel segmentation algorithms by using
a hierarchically clustered image trees.

In general, uncertainty and sensitivity information is important to visualize. As uncer-
tainty is present in each stage of the radiotherapy planning workflow, it influences the
individual steps [105]. The task of uncertainty-aware visualization in medical imaging is
the communication of uncertainties in the therapy workflow that might have an influence
on the decision-making process and the treatment planning [44]. ProbExplorer by Saad et
al. [110] is an interactive tool for analyzing and editing probabilistic segmentation results.
The uncertainty is quantified based on Bayesian decision theory and is color-encoded
for suspicious region highlighting. Al-Taie et al. [11] introduce an uni-modal approach
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for uncertainty estimation and visualization. Using the Kullback–Leibler divergence,
also called the total variation divergence, an uncertainty map is calculated where each
pixel that can not be assigned to a class with a certain probability is color-encoded. The
authors extend their work to multi-modal imaging data [12]. The segmentation results
for the multi-modal application are produced by a combination of probabilistic uni-modal
algorithms, i.e., an ensemble of classifiers. The use case is the segmentation of multiple
sclerosis lesions involving multiple MR modalities. In addition to comparing different
ensemble classifier, they estimate and visualize the brain tumor growth over time as the
areas of segmentation mask growth or shrinkage result in high uncertainty values. Nair
et al. [97] utilize Monte-Carlo dropout to calculate multiple uncertainty measures that
are visualized with the segmentation results in the original image. Another tool that is
used to generate uncertainty measures for medical image segmentation is Bayesian neural
networks [79, 62]. Apart from the segmentation mask, they also express the uncertainty
of the segmentation results. For additional literature, we refer the reader to surveys by
Gillmann et al. [44] and Raidou [105].

Visual Analytics (VA) is a combination of automated data analysis and interactive
visualization to enable an effective analysis of data [70]. VA has also dealt with the topic
of analyzing segmentation outcome results. Landesberger et al. [130, 131, 80] provide
several VA tools that support the visualization of the segmentation process and outcomes
of medical image segmentation with statistical shape models. The first approach [130]
visualizes the convergence behavior for global (i.e., full organ) and local data (i.e., organ
regions and landmarks). The user can select only one subject for analysis. In a follow-up
work by Landesberger et al. [131], the visualization applications is extended to the
entire workflow, i.e., data pre-processing, model selection, model-based segmentation,
and model evaluation, including linked-views of the histogram of quality values for the
dataset with detailed views for selected objects [131]. In a later work, Landesberger
et al. [80] deal with the task of detecting segmentation error that occur systematically.
First, an overview of the similarity in segmentation quality for the whole dataset is
provided. Then, outliers and instances of special interest are shown in a detailed view
for the inspection of samples selected by the user. In order to find regions with common
segmentation quality profiles across a dataset, point correspondence of landmarks is
required. The approach is limited to one dataset, i.e., a ground truth and automatic
segmentation prediction from a single algorithm. Geurts et al. [42] published a method to
compare and evaluate several statistical shape models for 3D medical image segmentation.
Scatterplots of global quality measures, such as Hausdorff Distance and Average Surface
Distance, provide a pairwise algorithm comparison. Regions showing systematic quality
properties are clustered with a quality-based clustering method and the best algorithm
per region is determined. The results of this analysis are shown in a regional quality
comparison view. Raidou et al. [106] propose a VA tool that facilitates exploration and
visual assessment of segmentation errors. Local quality measures and response profiles for
features are supported. The results from a single shape model segmentation algorithm
are considered on the level of a cohort and a individual subject. Reiter et al. [107] have
extended the web-based VA tool to allow the analysis of shape and size variability and
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their influence on the segmentation result. There are also VA applications that are not
specialized in medical segmentation, but have applications in other areas of medical
image processing [39, 85].

Table 3.2 compares the VA tools for medical image segmentation with respect to the
criteria of multiple model support, multiple (i.e., cohort) and individual subject visu-
alizations. All methods provide some kind of “overview-and-focus” approach and have
underlying segmentation meshes from (statistical) shape models. Our work supports
the comparison of multiple deep-learning based segmentation algorithms for a whole
dataset (i.e., a cohort) and individual data samples (i.e., individual subjects). Based on
our experience with deep learning model development, we have defined five tasks. This
are overall performance comparison (T1), per patient performance comparison (T2),
per slice performance comparison (T3), relationship to imaging-derived features (T4),
and anatomy-based predictions (T5). The approaches support T1, T2, and mostly a
mesh-based variation of T3 (denoted with T3∗). By exploring and analyzing data at
different levels of detail, our approach is more flexible than the state-of-the-art and covers
all five tasks.

Publication multiple
models

multiple
subjects

individual
subject

comparison tasks

Landesberger et al. [130] 7 7 3 - T1,T2
Landesberger et al. [131] 7 3 3 1-by-1 T1-T3
Landesberger et al. [80] 7 3 3 1-by-n T1-T3∗

Geurts et al. [42] (3) 3 3 1-by-1 T1-T3∗

Raidou et al. [106] 7 3 3 n-by-n T1,T2
Reiter et al. [107] 7 3 3 n-by-n T1,T2
Ours 3 3 3 flexible T1-T5

Table 3.2: Overview of VA methods in medical image segmentation with (statistical)
shape models. For multiple models, (3) stands for pairwise comparison only, whereas 3is
for more than only two models. T3∗ is the mesh-based equivalent of per slice performance
comparison.
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CHAPTER 4
Automatic Segmentation

Methods for Cross-Modal Data

This chapter is dedicated to describe the automatic segmentation approaches that predict
VS delineations on hrT2 scans. After covering the data processing pipeline and theoretical
background, we introduce our methods and explain their implementation.

4.1 Data Pre-Processing
The dataset consists of 242 folders containing ceT1 and hrT2 volumetric MRI scans
with corresponding tumor segmentation masks. The source and content are described in
Section 2.3. In this section, we discuss the processing steps applied to the data before it
is fed into a neural network. The pipeline is depicted in Figure 4.1. First, we split the
dataset into subsets for training, validation, and testing. We analyze the data distribution
of all three subsets. Then, we calculate for each data volume statistical values, i.e., 1st
and 99th percentile, mean, standard deviation, overall minimal and maximal value. They
are used at loading time to pre-process the raw T1 and T2 slices. In addition, the data
augmentation used during training for selected neural networks is explained.

Figure 4.1: Pipeline for data pre-processing steps. First, the data is split into three
subsets. Then, volumetric statistics that are used to process each slice are calculated.
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4.1.1 Dataset Split and Distribution

It is common practice to divide a dataset for neural network training into three subsets.
The training dataset is used for the actual training, the validation dataset is used for
validation or optimization during the training phase and the test dataset is locked away
for a final evaluation. Our split is 64 : 16 : 20 for training, validation, testing, respectively,
which means 80% of the data is used during the algorithm development and 20% is used
for the final evaluation, which is discussed in Section 6.1. The split is folder-based and
each folder contains volumetric data with a varying number of slices. Some subject IDs
are removed due to being incomplete or because they were missing in the first place.
Details about the dataset split are summarized in Table 4.1. Depending on the task, there
are different filtering options for the subsets based on the VS segmentation information:

D1 Full dataset with all non-zero slices of all subjects. The dataset is highly imbalanced
with respect to tumor presence in the individual image slices since only a subset of
slices per volume display the tumor (see Figure 4.2a).

D2 Balanced dataset with respect to tumor presence, i.e., the number of image slices
with and without tumor presence is equal. The slices not displaying a tumor are
chosen randomly.

D3 Slices displaying the tumor. The slices are filtered by checking the segmentation
mask size after resizing to the image size specified (default: H = 256, W = 256).

D4 Slices displaying the tumor with a certain size, i.e., number of pixels in the seg-
mentation mask. Figure 4.2b shows that many slices have a small (i.e. < 50 pixel
counts) delineations associated. This information is useful when the data sample is
viewed as 3D volume. Then, the tumor volume is more accurate since the tumor
boundary is not cut off at the top and bottom. For training 2D methods, the small
masks are very challenging to detect which is discussed in Section 6.1.

# folders IDs removed IDs % # slices # VS slices
train 155 1-158 [39, 97, 130] 64% 10400 1675
validation 39 159-199 [160, 168] 16% 3016 365
test 48 200-250 [208, 219, 227] 20 % 3708 538∑ 242 1 - 250 total of 8 IDs 100 % 17277 2578

Table 4.1: Overview of training/validation/test split.

Figure 4.3 shows the histogram of pixel values for slices with VS segmentation for the
training, validation and testing dataset of 1675, 365 and 538 images, respectively. It
demonstrates the data shift between source (ceT1) and target (hrT2) domain which
means that the distributions are different.
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4.1. Data Pre-Processing

(a) Full dataset.
(b) Tumor size distribution in training set.

Figure 4.2: Illustration of dataset composition in training, validation, testing subset: (a)
Full dataset with/without tumor presence; (b) Tumor size distribution in training subset.

(a) Training set.

(b) Validation set.

(c) Test set.

Figure 4.3: Data shift for source and target domain visualized by histogram of pixel
values for training (a), validation (b) and testing (c) subset.
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4.1.2 Volume-based Statistics

Statistical values of the volumetric data sample X are pre-calculated to be used in the
slice-based processing. The following values are calculated for ceT1 and hrT2 separately:

s1 1st and 99th percentile of the pixel values in a sample X to reduce outliers.

s2 Mean µX and standard deviation σX for z-score normalization.

s3 Overall minimal min(X) and maximal max(X) intensity values for normalization.

4.1.3 Slice-based Processing

At loading time, we deal with 2D image slices since we use 2D models. However, the
underlying data is volumetric, i.e. a stack of slices. In order to preserve the volume
statistics and process the slices belonging to a data volume the same way, the volume-
based pre-calculated statistical values are used to apply processing steps to each slice
x ∈ X. The pre-calculation is beneficial for computational efficiency since not the entire
data volume needs to be accessed to calculate the parameters for every slice at run time.
Figure 4.4 shows the histogram of a exemplary data volume for T1 and T2 and how the
steps S1-S4 transform the image value range.

Figure 4.4: Histograms of image values to illustrate the slice-based processing steps S1-
S4: clip intensity values to 1st and 99th percentile, z-score normalization, volume-based
min-max normalization, and slice-based min-max normalization.
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S1 Clip the image values of a data slice x below the pre-calculated 1st and above the
99th percentile to remove extreme outliers [81].

S2 Perform z-score normalization with pre-calculated mean µX and standard deviation
σX : x−µX

σX
.

S3 Apply volume-based min-max normalization x−min(X)
max(X)−min(X) to normalize the value

range to [0, 1] according to the volume data.

S4 Apply slice-based min-max normalization to shift the pixel values to a common
scale [α, β] within the slice x:

[
x−min(x)

max(x)−min(x)

]
· (β−α) +α. The intervals [α, β] are

neural network dependent and for this work, we use the common intervals [0, 1] and
[−1, 1]. This is the last operations in the processing pipeline. Before that, other
modifications such as data augmentation (Section 4.1.4) can be applied.

4.1.4 Data Augmentation at Training Time

For the training of selected neural networks, the data is randomly augmented during
training time to avoid overfitting [19]. A random selection of the following methods is
chosen at run time: affine transformation for translation, scaling and rotation, flip the
image vertically around the x-axis, blur the image with a Gaussian, median, motion filter
with random kernel size. All methods increase the data variability to better generalize
the model to unseen data at test time. Augmented images are shown in Figure 4.5.

Figure 4.5: Examples for data augmentation during training time: (A) Original; (B)
Affine transformation; (C) Vertical flipping; (D) Gaussian blur; (E) Median blur; (F)
Motion blur. Best seen in high-resolution.
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4.2 Background
In this section, we cover the error metric choice, the theory of selected network architec-
tures, corresponding loss functions, and activation functions.

4.2.1 Error Metrics

A standard for image segmentation and object detection is the Jaccard Index, also
known as Intersection over Union (IoU), (Figure 4.6a)

IoU = |A ∩B|
|A ∪B|

(4.1)

The region-based measurement compares the intersection to the union of two binary
regions A and B and is easy to understand and implement. The notation |.| is used to
indicate the set size. A perfect segmentation has an IoU value of 1, while totally disjoint
regions have an IoU value of 0.
Related to the IoU is the Dice Similarity Coefficient (DSC) (Figure 4.6b)

DSC = 2|A ∩B|
|A| ∪ |B|

. (4.2)

The ratio between IoU and DSC is
IoU

DSC
= 1

2 + IoU

2 . (4.3)

which means they are always within a factor of 2 to each other:

DSC/2 ≤ IoU ≤ DSC. (4.4)

While the formulation of IoU penalizes a mismatch between two regions even if there is a
substantial strong overlap, DSC is less sensitive and more likely to estimate an averaged
behavior.

Figure 4.6: Illustration of IoU (a) and DSC (b) [121].
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Another error measurement for segmentation performance is the Average Symmetric
Surface Distance (ASSD). ASSD calculates the average distance between two surfaces
which in our case are the segmentation contours of ground truth and prediction. For
each pixel belonging to the segmentation contour, the distance to the closest pixel of the
other contour is calculated and all distances are averaged. If two segmentation masks are
a perfect match, the distance is 0 mm. The worst case is that the ASSD is the maximal
distance of an image.

In the context of image synthesis, we use different performance measurements because we
are not comparing binary masks, but image objects X and Y with total pixel number n.
Mean Absolute Error (MAE) calculates the arithmetic average of the absolute errors
and Mean Squared Error (MSE) penalizes larger differences more by calculating the
average of the errors squared:

MAE = 1
n

n∑
i=1
|Xi − Yi|, (4.5)

MSE = 1
n

n∑
i=1

(Xi − Yi)2. (4.6)

The detection of the tumor presence is a binary classification problem with the two
possible outcomes present and absent. The predictions fall into one of the four categories:
True positive (TP ), true negative (TN), false positive (FP ), and false negative (FN)
predictions (see Figure 4.7). The Accuracy (ACC) is given based on the different
outcome categories:

ACC = TP + TN

P +N
. (4.7)

The True Positive Rate (TPR), also called sensitivity and recall, and the True
Negative Rate (TNR), also called specificity and selectivity, are analyzing the correct
present and absent classification in more detail:

TPR = TP

TP + FN
= TP

P
(4.8)

TNR = TN

TN + FP
= TN

N
. (4.9)

DSC and ASSD are easy to understand, widely known and often used in similar situ-
ations [3]. Thus, their ability to asses the prediction accuracy is used in our work for
semantic segmentation evaluation. We report MSE for image comparison, to weight larger
differences between two images stronger. An indication about how good the algorithm
can detect tumor presence in image slices is given by ACC, TPR, and TNR.
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Figure 4.7: Confusion matrix for binary classification.

4.2.2 X-Net

X-Net has been developed by Bullock et al. [19]. It is designed to provide a deep neural
network that can extract high-level features and fine-grained details without overfitting
to a small dataset. Figure 4.8 shows the model architecture, which consists of two
encoder-decoder modules. It can be interpreted as two UNets connected in series with
a long-range skip connection. As inspired by UNet [108] or SegNet [15], the encoder
is a series of convolutional layers and pooling for feature extraction and downsamling,
respectively. The decoder uses convolutional layers and upsampling over multiple stages
to produce a segmentation mask of same resolution as the input image. The original
paper used the activation function ReLU, which is explained in Subsection 4.2.6. The
downsampling is performed by maximum pooling and upsampling with nearest-neighbor
interpolation. Skip connections are transferring information from downsampling to
upsampling path, providing fine-grained details at later layers. The connections are
realized by concatenating feature maps with the same dimensions.

Figure 4.8: X-Net Architecture [19].
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For semantic tumor segmentation the label pair consists of the ground truth A and
predicted B segmentation masks. A common loss function, based on the DSC, is the
Dice loss:

Ldice = 2|A ∩B|+ ε

(|A| ∪ |B|) + ε
. (4.10)

A factor ε is added to the fraction to stabilize the training by avoiding a vanishing
denominator. Dice-related losses are a common choice for medical image segmentation
due to their training robustness and rank stability [88]. Ldice should be low.

4.2.3 Classification-guided Module

The idea of a classification-guided module (CG module) is introduced by Huang et al. [54]
for UNet 3+ to avoid over-segmentation in medical image segmentation. UNet 3+ is
an extension of UNet and has an encoder-decoder structure. Figure 4.9 depicts the
original classification-guided module used on different levels in the decoder part of the
network. For the classification-guided module, a block of operations including dropout,
convolution, pooling, and sigmoid activation is attached to different stages of the decoder.
The resulting 2D tensor is processed to a single value {0, 1} encoding the probability for
presence (i.e. 1) and absence (i.e. 0) of an object (i.e. organ in the original work). The
value is used as multiplier for the predicted segmentation mask. If the object is found
absence by the classification branch, the segmentation mask is silenced, i.e., set to 0, and
if the object is found present, the segmentation mask is kept as is.

Figure 4.9: Classification-guided module in UNet 3+ to avoid over-segmentation [148].
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For training the classification-guided module, the Binary Cross Entropy (BCE) loss
function [32] is used:

LBCE = − 1
N

N∑
i

yi · log(p(yi)) (4.11)

with the targets yi and the probability function p(.). A high loss value means that the
prediction deviates from the target. The total loss function is a combination of the
segmentation (4.2) and classification (4.11) loss. The lower the loss, the better.

4.2.4 CycleGAN

The CycleGAN by Zhu et al. [149] uses the image-to-image translation idea of GANs
[45] combined with a cycle-consistency loss that allows image synthesis for unpaired data.
The unpaired data comes from two different domains/distributions S (source) and T
(target). The framework consists of two generators GS2T , GT2S and two discriminators
DS , DT (see Figure 4.10a). The goal is to learn a mapping GS2T : S → T such that the
distribution of GS2T (S) is similar to the distribution of T . To facilitate the training,
another generator GT2S : T → S is optimized to make the distribution of GT2S(T )
similar to that of X. To make the problem mathematically bijective, i.e. GS2T = G−1

T2S ,
the constraint of cycle consistency is introduced: GT2S(GS2T (S)) ≈ S (Figure 4.10b)
and GS2T (GT2S(T )) ≈ T (Figure 4.10c). This means, if we translate one domain to
another and then run the reverse mapping, we should arrive back at our starting point.
The cycle-consistent networks GT2S ◦GS2T : S → S and GS2T ◦GT2S : T → T can be
interpreted as two autoencoders with an intermediate state in another domain.

Figure 4.10: Illustration of CycleGAN architecture: (a) The model consists of two
generator functions and two associated discriminators; (b) Forward cycle-consistency for
generator GS2T ; (c) Backwards cycle-consistency for generator GT2S [149].

The generator architecture consists of three components. First, an encoder part with
convolutional blocks is extracting high level features and compressing the input image.
Then, the feature vector is processed in the transform part by residual blocks [50]. Figure
4.11 illustrates a residual block, which ensures that the block input is available for later
layers by adding a residue to the output node. This preserves the characteristics of
the input and makes the changes for the output less abrupt. Finally, the decoder path
creates the output with original input size from the feature vector. The patch-based
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discriminator is a PatchGAN network [61]. Overlapping image patches of size 70× 70 are
classified as real or fake. The advantage of a patch-level discriminator over a full-image
discriminator is the reduced number of parameters.

Figure 4.11: Illustration of a Residual block, which adds the input to the output node to
preserve characteristics of the input.

For image synthesis with CycleGAN, several loss functions are used to guide the training
for discriminator and generator. The loss functions are described for the generator
GS2T : S → T and discriminator DS : S → {0, 1}. The losses for generator GT2S : T → S
and discriminator DT : T → {0, 1} work analogue.

• The discriminator DS wants to distinguish between real s ∈ S and fake ŝ =
GT2S(t) ∈ S samples. The discriminator loss is the weighted MSE of real and
fake sample:

Ldiscr = ((DS(s)− 1)2 + (DS(ŝ))2 · 1
2 . (4.12)

• The generator GS2T wants to fool the discriminator DT , which means that the fake
sample t̂ = GS2T (s) ∈ T produced by the generator should pass as real sample,
i.e. discriminator should predict 1. Thus, the adversarial loss [45] is the MSE of
discriminator prediction of the fake sample and the target 1:

Ladv = (DT (GS2T (s))− 1)2. (4.13)

• The cycle consistency loss for CycleGANs is introduced to ensure the bijectivity
of the generators, i.e., after translating one domain to another and performing the
reverse mapping, the starting point should be reached again. s ∈ S and t ∈ T are
real samples.

Lcyc = |s−GT2S(GS2T (s))|+ |t−GS2T (GT2S(t))|. (4.14)

• The identity loss measures how similar a real sample s ∈ S and an identity sample
GT2S(s) ∈ S, generated by applying the “wrong” generator to the real sample, are:

Lid = |s−GT2S(s)|. (4.15)

• The total generator loss is a weighted combination:

Lgen = λ1 · Lcyc + λ2 · Lid + Ladv, (4.16)

with λ1 = 10 and λ2 = 1 to emphasize the importance of the cycle consistency loss.
The identity loss is considered optional, i.e., λ2 = 0 is possible.
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Ldiscr = 0 means that the discriminator can distinguish 100% correctly between real and
fake samples. Lgen = 0 means that the synthetic images of the generator always trick
the discriminator (Ladv = 0), the generator reproduces the same real sample (Lcyc), and
inserting a real target image results in the same real image (Lid = 0). Since Ldiscr and
Lgen are in competition with each other, we would like to see a balance between the two.

4.2.5 SIFA

Synergistic Image and Feature Adaptation (SIFA) by Chen et al. [24, 25] is a unified
framework designed for unsupervised domain adaptation employing both image and
feature alignment. Figure 4.12 illustrates the components of the SIFA framework and the
two data flows for image and feature alignment. Both alignment strategies can benefit
from each other. Image synthesis is exploited to narrow the domain shift by aligning the
image appearance between source and target images. This is realized by the generator
Gt transforming images from source to target domain and the combination of shared
encoder E and the decoder U performing the reverse transformation. The encoder E
is shared with the classifier C producing segmentation masks. Hence, the encoder is
trained on both pixel-to-pixel transformation and semantic segmentation at the same
time, permitting multi-task learning. The imbalance in medical image segmentation is
addressed by using a hybrid loss of cross-entropy loss and Dice loss as segmentation
loss for the supervised training of the segmentation branch. Since the data is unpaired,
adversarial learning and the cycle consistency loss [149] are injected (see Section 4.3.2).
There are three discriminators Dt, Ds, and Dp distinguishing their inputs between source
and target based content. Two of the discriminators Ds and Dp enhance the feature
adaptation. In contrast to a common strategy of inserting the discriminator directly in a
high-dimension feature space, they operate in lower-dimensional spaces, i.e. semantic
prediction and generated image space. The goal is to support domain-invariant feature
extraction in the shared encoder, as there are two discriminators attached from different
feature spaces. All components are trained every training step in an end-to-end manner
with a sequential update: Gt → Dt → E → C → U → Ds → Dp.

Figure 4.12: Illustration of SIFA [25].
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4.2.6 Activation Functions

Activation functions are used after convolutional blocks to control their output. They
introduce non-linearity to networks and ensure that the gradient values are in a certain
range during back-propagation [101]. Table 4.2 and Figure 4.13 summarize the activation
functions relevant for this work. Rectified Linear Unit ReLU [98], Leaky ReLu [90]
and Scaled Exponential Linear Unit SeLU [74] are used in convolution blocks within
neural networks. A small comparison is performed, to evaluate, if one is superior to
others for DA. ReLU is one of the most used activation functions [31]. However, since
negative values are set to zero, the effect of the dying ReLU problem can occur, i.e.
large parts of the network have no contribution to the training process. Leaky ReLU is
relaxing this definition and is a well-known alternative [90]. SeLU claims self-normalizing
properties [74], which might be beneficial for the data shift problem. In the last layer of
semantic segmentation networks, logistic sigmoid activation is normalizing the output
to the interval [0, 1].The last layers in GAN and Cycle-GAN have hyperbolic tangent
(tanh) activation, which normalizes the output to the interval [−1, 1].

Activation function Formula

Rectified Linear Unit (ReLU) f(x) = max(x, 0) =
{

0 if x < 0
x if x ≥ 0

Leaky ReLU f(x) =
{
αx if x < 0
x if x ≥ 0

Scaled exponential Linear Unit (SeLU) f(x) = τ

{
αex − α if x < 0
x if x ≥ 0

Sigmoid f(x) = 1
1+e−x

Hyperbolic tangent (tanh) f(x) = ex−e−x

ex+e−x

Table 4.2: Overview of activation functions, with the function value x and parameters α
and τ .

Figure 4.13: Activation functions (left) within a neural network for a range of x ∈ [−1, 1]
and (right) before the network output for a range of x ∈ [−3, 3].
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4.3 Automatic Segmentation Methods

This section is dedicated to the methods implemented for automatic VS segmentation on
hrT2 images. As shown in Figure 4.14, the assumption is that annotated ceT1 images
and raw hrT2 images are available for training. At inference time, the brain tumor mask
should be predicted on hrT2 images. First, supervised methods are described to establish
a baseline. They make use of the data pair of image and segmentation mask for both
image modalities. Then, domain adaptation methods are introduced. Two methods
are employing a CycleGAN for image alignment. Finally, we introduce a new method
that performs domain adaptation with image and feature alignment exploiting the entire
dataset. Theoretically, all methods can be applied to reversed source S and target T
domains. However, since the goal is to predict on hrT2 scans, T2 is considered as target
domain and is focused in the following section.

Figure 4.14: Data availability for DA: annotated ceT1 and not annotated hrT2 images
for training. At inference, masks on hrT2 images are predicted.

4.3.1 Supervised Segmentation

Supervised segmentation networks are trained as baseline to evaluate the performance of
later introduced unsupervised techniques and to investigate the performance differences
between different activation functions. In the supervised training setting, the input
images are available together with corresponding segmentation masks.

First, we considered the UNet architecture [108]. However, initial empirical tests have
shown an unstable training. Advancement of UNet, such as UNet++ or UNet3+, have a
higher number of model parameters resulting in a higher GPU memory consumption.
Thus, our baseline segmentation network is X-Net [19] (for theoretical background see
Section 4.2.2). The network has been developed especially for small medical datasets and
has a similar parameter number as a comparable UNet. After removing slices without
tumor presence, only a couple of hundred remain. Thus, X-Net seemed particularly
suited for our purposes. There are three different versions of the simple setting without
further adaptation:
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• X-Net T1: X-Net trained on ceT1 slices with brain tumor present (D3) in a
supervised manner. Applying the pre-trained network to hrT2 images gives a
lower bound on performance if the difference between the data modalities is not
considered.

• X-Net T2: X-Net trained on hrT2 slices with brain tumor present (D3) in a
supervised manner. This network is the upper performance bound when performing
supervised training with available image and segmentation data pairs.

• X-Net T1+T2: X-Net trained on ceT1 and hrT2 slices with brain tumor present
(D3) in a supervised manner. Instead of taking one input channel, this version
has two input channels that are concatenated. As a result, both modalities are
included in the training in a paired and supervised manner.

Another supervised method is the classification-guided segmentation, short CG X-
Net. The original classification-guided module was added to a UNet extension to avoid
over-segmentation (see Section 4.2.3). For our work, the classification-guided module
complements the X-Net architecture. The training and validation dataset are extended
with non-tumor slices to build a balanced dataset (D2). As shown in Figure 4.15, a
classification branch is added at the second bridge. The operations are Dropout with
rate 0.5, 1 × 1 convolutional layer, global max pooling and sigmoid activation. Then,
values above 0.5 are mapped to 1, values below 0.5 to 0. The resulting value encodes
the probability of tumor presence or absence and is used for multiplication with the
predicted segmentation mask. The loss function is a combination of the Dice and BCE
loss: Ldice + LBCE (see Figure 4.15). Empirical testing showed that a weighted loss
results in unstable training. Thus, the sum of loss functions is used for optimization.

Figure 4.15: CG X-Net architecture with classification-guided module which predicts a
probability of tumor presence to silence “empty” masks.

37



4. Automatic Segmentation Methods for Cross-Modal Data

4.3.2 CycleGAN

The CycleGAN implementation follows the original paper [149]. The generator is a
ResNet-based network and the discriminator follows the PatchGAN architecture. Only
slices with brain tumor are used for training (D3), because they are images with the
most relevant information for tumor segmentation while the training time is reduced by
not using the entire dataset. To stabilize the training of the discriminator, an image
pool of fake patterns is collected during training, from which an example is then drawn
for error computation. The size of this fake image pool is set to 50 samples. They are
randomly replaced by new generated fake samples throughout the training process. In
one training epoch, each training data sample, i.e. unpaired T1 and T2 image slices, is
drawn and processed exactly once like shown in Figure 4.16. For each data sample the
following steps are performed:

• Train the generators GS2T : S → T , GT2S : T → S where S (source) is the domain
of ceT1 images and T (target) of hrT2 images. The generator loss in (4.16) is used.

• Either fill the image pool with the newly generated fake samples or replace random
samples in the already filled pool. Then, draw fake samples from the updated fake
image pool for the discriminator training.

• Train the discriminators DS : S → {0, 1} and DT : T → {0, 1} with the discrimina-
tor loss in (4.12). Depending on the specific training settings, this update step for
the discriminators is not executed for every training sample.

Figure 4.16: CycleGAN training with ceT1 (S) and hrT2 (T ) images. The main
components are two generators, GS2T and GT2S , and two discriminators, DS and DT ,
which are trained depending on each other.

T1 images show better defined tumor boundaries and have a better contrast and resolution
compared to T2 images. Thus, we expect that the transformation from T1 to T2 works
better than the opposite case.
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4.3.3 GT2ST2ST2S+SegmT1

The first approach that employs the generator GT2S from a pre-trained CycleGAN is
GT2ST2ST2S+SegmT1. Both networks, a CycleGAN and a segmentation network, are trained
separately. The workflow at inference time is illustrated in Figure 4.17b. The generator
translates the target T2 images into synthetic T1 images. Then, they are fed into a
SegmT1, which was trained on real T1 image and segmentation pairs in a supervised
manner (see Figure 4.17a). Finally, the segmentation mask predicted on synthetic T1
images is used as target segmentation mask. This pipeline has not only two stages at
training time, but also at inference which makes the framework more complex.
Since the training of both networks does not depend on each other, they can be trained
in parallel if enough hardware resources are available. However, there is no end-to-end
training possible. We expect that the framework works well on images that preserve the
tumor boundary from T2 to T1 transformation. However, due to the expectation that
generating synthetic T1 images from T2 images is challenging, synthetic T1 images may
not resemble the real T1 images in the quality that the segmentation network is used to.
The real T1 images have a more distinct tumor boundary, which are used to predict the
tumor delineation. For images where this clear boundary cannot be reconstructed, the
segmentation network will most likely fail.

(a) Training of segmentation.

(b) Inference.

Figure 4.17: GT2ST2ST2S+SegmT1: (a) Segmentation network is supervised SegmT1; (b)
Inference consists of two steps: 1) Generate synthetic T1 images by applying the generator
GT2S to the T2 image. 2) Predict the segmentation mask with a specialized SegmT1.
X-Net T1 is employed as an example for SegmT1.
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4.3.4 SegmS2T

The pipeline SegmS2T employs the trained generator GS2T for image synthesis during
semantic segmentation training. Figure 4.18 shows the data flow at training and inference
time. T1 slices with corresponding masks are taken as input (D3) which means that
neither real T2 images nor related masks are necessary. Then, the T1 images are
translated to T2 images before the network predictions are optimized (see Figure 4.18a).
Assuming that the transformation preserves the brain tumor, the segmentation masks
can be transferred and used as ground truth. Therefore, the training data pair consists
of synthetic T2 images with transferred segmentation masks from the original T1 images.
Compared to GT2ST2ST2S+SegmT1, predictions can be performed directly on real T2 images
at inference time (see Figure 4.18b). This reduces the inference to a single step.
We expect that the synthetic T2 images preserve the tumor structures better than
synthetic T1 images. The potentially lower quality of the tumor boundary compared
to real T2 images is supposed to aid the training. It can be interpreted as integrated
data augmentation. If the network is capable of extracting the tumor information for low
quality T2 images, it should also be able to handle real T2 images. Thus, we expect that
the approach produces better results.

(a) Training of segmentation.

(b) Inference.

Figure 4.18: SegmS2T: (a) Segmentation network training by using synthetic T2 and
transferred segmentation masks. (b) For inference, the trained SegmS2T predicts on
real T2 images. X-Net T2 is employed as an example for the segmentation model.
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4.3.5 CG SIFA

The original SIFA framework [25] addresses the class imbalance in medical imaging
with a hybrid loss of cross-entropy and Dice loss. In our approach, we integrate the
classification-guided module from UNet3+ [54] into the segmentation branch of SIFA.
Figure 4.19 shows the resulting CG SIFA framework, which is short for “Classification-
Guided Synergistic Image and Feature Adaptation” framework. The main components
are taken from the original SIFA framework (see Section 4.2.5): the generator GS2T , the
discriminatorDT , the shared encoder E, the decoder U and the two discriminatorsDS and
DSegm. The segmentation classifier is exchanged for a classification-guided segmentation
decoder called CG Segm. The classification-guided module allows a dataset of non-tumor
samples to be used in a more guided approach. Multiple deconvolutional layers and a
classification branch are combined in the last layer by multiplication of segmentation
mask and classification prediction. This leads to a silenced segmentation mask when
tumor absence is classified. For the cases where the silencing is correct, i.e. the ground
truth is empty, the Dice Loss Ldice is zero and is not contributing to the total loss. The
total loss is: Ldice + Lbce. However, the segmentation decoder is trained together with
the shared encoder E. The loss for the generator GS2T and U ◦E follows the CycleGAN
loss principle. Same applies to the discriminator losses. At inference time, real T2 images
are inserted into the encoder to generate the representation in feature space. Then, the
representation is taken by the segmentation network to predict the presence classification
and the segmentation mask.
SIFA is a hybrid approach using not only image, but also feature alignment. According
to the literature [25], it should be more successful than only image alignment. Improved
by the CG module, CG SIFA should perform even better on the entire dataset.

Figure 4.19: CG SIFA framework with classification-guided segmentation decoder in
addition to the image synthesis workflow.
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4.4 Implementation

In this section, we report the implementation and training settings of the methods.
Detailed illustrations of the network architectures are given in Appendix A.1. All
methods are implemented with Tensorflow and Keras [9]. Each model has been trained
with the settings described below on an Nvidia RTX 3080 Laptop GPU with 8 GB
memory. The input image size for all networks is 256× 256× 1 (HxWxC).

4.4.1 X-Net & CG X-Net

In the original X-Net implementation, ReLU activation is used. Thus, our basic X-Net
version uses ReLU activation and He Normal [49] initialization for the convolutional
weights. Additionally, we also test the performance of Leaky ReLU with He Normal
initialization and SeLU with LeCun Normal initialization [74]. In comparison to the
original filter depth of [64, 128, 256, 512], the filter depth are reduced to [32, 64, 128, 256]
to minimize the required GPU memory. A batch size of 4 is chosen after first test runs.
Adam optimizer [72] with learning rate 0.001 and Dice loss function are used for training.
The learning rate is reduced by a factor of 0.5 to a minimum of 0.0001 if the loss on
the validation dataset is not improving for 10 epochs. In total, the training is scheduled
for 150 epochs with augmentation switched on at epoch 100. The first epochs can be
interpreted as a pre-training of the network, whereas in the last third, additional variation
in the dataset is introduced to reduce overfitting. In addition, early stopping is applied,
which means that the training is stopped if the validation loss is not improving for 20
epochs which reduces the epoch number and training time if the network is already
converging. The training schedule was fixed after testing different settings and observing
the loss behavior to verify the convergence of the model. For CG X-Net, the same
implementation parameters and training settings are applied, except a bigger batch size
of 8 is chosen to stabilize the training.

4.4.2 CycleGAN

Our CycleGAN implementation follows the original [149]. The ResNet-based generator
consists of two down-sampling blocks with filter depth [64, 128, 256], followed by nine
residual blocks that keep the filter size the same. The up-sampling is done by a transposed
convolutional layer with the reverse filter sizes. After a final convolutional layer, the
activation function tanh is applied bringing the image pixel range into [−1, 1]. Like the
original CycleGAN implementation, we use instance normalization [124]. The PatchGAN
discriminator is a convolutional network looking at 70× 70 image patches to define if
they are real or fake. After an initial convolutional layer, Leaky ReLU and instance
normalization are integrated in three down-sampling convolutional blocks. The final
convolution layer outputs a 32× 32 tensors. The generators and the discriminators use
one Adam optimizer [72] each, with initial learning rate 0.002. The total number of
epochs is 100. The learning rate scheduler starts a linear decay at epoch 50.
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To produce natural appearing synthetic images, the generator and the discriminator need
to be balanced. When the discriminator gets too strong, the generator training suffers
and vice versa. We observed that the discriminator improves very quickly, since the
generator produces unrealistic images at the beginning. Thus, skipping the discriminator
update, allows the generator “to catch up”. This behavior is controlled with the training
parameter dstep. The options dstep=1,5,10 have been tested. This means that the
discriminators are only trained at each step, at every 5th and at every 10th step in one
training epoch. The generated fake samples are stored for all steps in the fake image
pool and are therefore not lost for training.

4.4.3 GT2ST2ST2S+SegmT1 & SegmS2T

Both approaches can use either the standard X-Net or the classification-guided enhanced
version. Depending on the segmentation model, they are referred to as GT2ST2ST2S+X-Net
T1 and X-Net S2T or GT2ST2ST2S+CG X-Net T1 and CG X-Net S2T. The model and
training settings forGT2ST2ST2S+SegmT1 and SegmS2T are the same as described in Section
4.4.1 for the X-Net applications and in Section 4.4.2 for the CycleGAN implementation.
The only difference is that due to a less stable validation loss, early stopping is not
applied for the segmentation network in SegmS2T.

4.4.4 CG SIFA

The implementation of the CG SIFA framework is a combination of CycleGAN, the
original SIFA and the CG module within the segmentation branch. The individual
components were trimmed down to fit the framework into 8 GB of GPU memory. A
lot of different combinations were tested for a limited numbers of epochs (< 20 epochs).
The description in this paragraph is from the latest implementation with which more
epochs have been trained. As generator GS2T , a ResNet-based generator is used. In the
end, the constellation of three instead of two down-sampling blocks with filter depths
[32, 64, 128, 256], followed by four instead of nine residual blocks with filter depth 256
showed satisfying reconstruction results. With the modifications, we managed to cut the
number of trainable parameters into half (from over 11, 000 to roughly 5, 500 trainable
parameters). The discriminators in the framework follow our CycleGAN implementation.
As for the CycleGAN implementation, we introduce the parameter dstep to regulate
how often the discriminators are trained in a training epoch. The shared encoder is the
largest component. By removing the large layers with filter depths 256 and 512 that occur
deep in the network, the encoder size is reduced so that the memory is sufficient. Several
residual convolution blocks with filter depths [16, 32, 64, 128, 256] remain in the resulting
network. For a more detailed description, see the network architecture visualization in
Appendix A.1. The number of trainable parameters is reduced from over 27, 000 to under
7, 000. Three residual convolutional blocks with filter depth 128 and three deconvolutional
layers with filter depths [64, 64, 32] build the decoder branch. The segmentation branch
is not only extended by the CG module as described in 4.3.1, but also with additional
deconvolutional layers with the same filter depths as for the decoder. The original SIFA
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segmentation branch implementation consists of only a single convolution layer and
the result is then resized. First empirical testing without the CG module showed that
the results are not satisfactory enough and, therefore, we changed the architecture. In
this way, we aim to mimic the X-Net strategy of down-scaling with convolutions and
up-sampling with deconvolutions. If the CG module is skipped in the segmentation
network, we refer to the framework as our SIFA method from now on, although it is not
exactly the original implementation. For the optimizer and learning rate definition, we
have orientated ourselves on the SIFA implementation. An Adam optimizer [72] with
initial learning rate of 0.002 is used. Due to the training strategy discussed later on, there
are four optimizer in the framework, one for generator and segmentation each and two
for discriminators. The discriminators for the reconstruction share an optimizer while
the segmentation discriminator has its own. Due to the limited resources, the batch size
is restricted to 1. A larger batch size would be preferable to stabilize the training but
also requires more GPU memory. In some training runs, linear decay was tested after
1/2 or 3/4 of the total number of epochs, but showed no advantages. According to Chen
et al. [24], an optimizer with constant learning rate is more stable for training. For this
reasons, linear learning rate decay was not used later on.
Compared to the original SIFA, the training strategy is modified. First, the framework
is trained like a CycleGAN, i.e. no segmentation branch update, for an initial period
to teach the encoder an initial feature extraction. After 5, 10, 15 or 20 epochs, the
segmentation updates are turned on. Then, the encoder is only updated in combination
with the segmentation branch. Although the loss function includes the generator loss
Lgen, the λ parameters are set to 1 and the segmentation loss multiplier is 10. This
means that although the reconstruction is still included in the loss function, the influence
is overshadowed by the segmentation training. The total epoch number varies between
50 and 100. The training settings and strategy were developed iteratively. A setup
was first tested for a few epochs (< 20) for the SIFA implementation. When training
progress was visible, improvements were tried out. Otherwise, larger modifications such
as architectural changes were made. Only then was the CG module added and the same
settings used for training CG SIFA.
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CHAPTER 5
Visual Assessment

To analyze the segmentation algorithms from the previous section, usually quantitative
error metrics, such as Dice Similarity Coefficient and Jaccard Distance (see Section 4.2.1),
are employed. This means that the complex model behavior is reduced to a single value,
which gives a good indication about the overall performance, especially if a big number
of models is comparatively evaluated. In order to understand the model behavior better,
obtaining additional information through detailed visual inspection is necessary. In this
chapter, we describe an interactive, web-based tool to support the visual assessment as
part of the model evaluation and to visualize segmentation outcomes.

5.1 Data Preparation

The underlying dataset for the visualization is the test set, which is a subset of the entire
dataset (see Section 4.1.1). Only the target domain with T2 images is used. There are
three different levels of detail in which the dataset can be viewed. First, the entire
dataset is considered and one value per feature is derived. Second, the dataset is divided
into patient samples and one value per patient ID is calculated. Third, for each patient
sample, the volumetric data scan is split into the individual 2D scan slices. Following
the mantra by Keim “Analyze first, Show the Important, Zoom, filter and analyze further,
Detail on demand” [70] which is an extension of Shneidermann’s mantra for Visual
Analytics applications, all three scales are covered with our visualization tool. In this
section, the generation of the model prediction, the feature types and extraction are
described.

5.1.1 Segmentation Predictions

The segmentation algorithms described in Chapter 4 are all applied to T2 images of the
test set (D1) — independent of tumor presence or absence. The inference pipeline depends
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on the segmentation algorithm and is described in more detail in Section 4.3. After
retrieving the predicted segmentation mask, each segmentation mask is post-processed
by thresholding with the threshold value 0.5. Pixel values below 0.5 are mapped to 0,
values above are mapped to 1. This results in a binary segmentation mask with 0 for the
background and 1 for the tumor delineation, as shown in Figure 5.1.

Figure 5.1: Binary segmentation mask with 0 for background and 1 for tumor delineation
generated by thresholding with value 0.5.

5.1.2 Feature Extraction

We hypothesize that the outcomes of the models relate to features in our data. Aside
from the predicted segmentation masks, we extract different 2D and 3D features from
the dataset. This includes performance measures, e.g., DSC, ASSD, and ACC, radiomic
features [152] and task-specific dataset characteristics, e.g., number of tumor slices. The
following three feature categories are considered.

Performance Measures

DSC (4.2) and ASSD, which are very common error metrics for segmentation predictions,
are supplemented by ACC (4.7), TPR (4.8), and TNR (4.9) for the tumor presence
detection. The quantitative results are calculated for the entire dataset (all) and
the subset only containing slices with tumor presence (only tumor). The scores are
calculated for different levels of detail. First, the performance is determined per slice.
Then, the results for each stack of slices is averaged per patient. Finally, the values are
averaged over the entire dataset to retrieve a single value per segmentation method. In
addition to the numerical values, the performance can also be divided into three classes:
good, medium, bad. The scores for all selected segmentation algorithms are averaged per
patient ID before translating them to categories.

Radiomic features

The Image Biomarker Standardization Initiative (IBSI) provides a standardized definition
for features that quantify characteristics in medical imaging [152]. These hand-crafted
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feature are called radiomic features and are calculated for a region of interest (ROI). The
ROI is limited to the image region within a given segmentation mask, i.e., defining a tumor
or other structures of interest. The radiomic features include first-order (distribution of
gray values), second-order (relationship between voxels/pixels), and higher-order texture
features (relationships between more than three voxels/pixels), and morphological features
(size and shape). The features can be both 2D and 3D. Based on the significance for
the models and our dataset, we have selected a subset of first-order texture and shape
features, which is described below. Some feature values show only a small variance for
different patient samples or coincide into one category when creating the signature. The
total list of features also contains related and dependent features. Thus, not all features
from one category have been selected.

The definitions for all features used in our work follows Zwanenburg et al. [152]. The
following notations are used to define the features:

• X set of N voxels/pixels in ROI

• X mean value of X

• P (k) first-order histogram with Nb non-zero bins

• p(k) normalized first-order histogram, i.e., P (k)/Nb

• µ3 is the 3rd central moment with µ3 = 1
N

∑N
k=1(X(k)−X)3

• µ4 is the 4th central moment with µ4 = 1
N

∑N
k=1(X(k)−X)4

• X set of N voxels/pixels in ROI

• Nf number of faces/triangles (3D) or lines (2D) in the mesh

• V mesh volume in mm3

• A mesh surface area in mm2

• ai, bi, ci vertices in the mesh

First-order texture features describe statistics of gray value intensities within the image
region defined by the segmentation mask.

• Energy =
N∑
k=1

X(k) measures the magnitude of the gray values of the ROI.

• Variance = 1
N

N∑
k=1

(X(k)− X̄)2 is the mean of the squared distance of gray values

from the mean value. It is an indication for how the distribution is spread around
the mean.
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• Skewness = µ3
σ3 measures how asymmetric the distribution of gray values is around

the mean value. The values can be positive (right tail is longer) or negative (left
tail is longer) and are divided into two classes with 0 as partition value.

• Kurtosis = µ4
σ4 measures the “tailedness” of gray value distribution. A univariate

normal distribution has a Kurtosis value of 3. A value less than 3 is platykurtic
(less extreme outliers than normal distribution), a value more than 3 is leptokurtic
(more extreme outliers than normal distribution). Thus, the values are split into
two classes with 3 as limit.

• Range = max(X)−min(X) defines the range of gray values in the ROI.

• MAD (Mean Absolute Deviation) = 1
N

N∑
k=1
|X(k)− X̄| is the mean of the absolute

differences between gray values and mean value.

Morphological features describing the shape of the tumor are based on the mask and do
not consider the gray value intensity in the ROI. The mask is transformed to a mesh-based
representation with triangles for volume and surface measurements [87]. We refer to
the IBSI manuscript [152] for more details about the mesh generation and mesh volume
calculations. Depending on the underlying data structure, the features are calculated for
volumetric 3D data and/or slice-wise 2D data. The 2D features are:

• Mesh Area =
Nf∑
k=1

Ak, with Ak = |ak × bk|2 , is the sum over the surface areas of

the triangle edges.

• Perimeter =
Nf∑
k=1

Pi with Pi =
√

(ai − bi)2 is the sum of all sub-area perimeters.

• Sphericity =
√

4πA
P

describes how circle-like the slice-based ROI is. The values
are in the range of [0, 1] with 1 for a perfect circle. With the partition value 0.5,
the slice-based sphericity values are assigned to two classes.

• Max2DDiam is the largest euclidean distance between pairwise vertices on the
ROI surface mesh for the 2D ROI.

• Elongation =
√
λminor
λmajor

is the relationship between the two most prominent axis

lengths of the ROI-enclosing ellipsoid, i.e., the major axis length λmajor and minor
axis length λminor. The values are in the range of [0, 1] with 1 representing non-
elongated (sphere/circle-like) and 0 maximal elongated. Two classes are divided by
the threshold value 0.5.
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The 3D features are:

• Mesh Volume =
Nf∑
k=1

Vk, with Vk = ak·(bk×ck)
6 , is the sum of all volumes of a

tetrahedron defined by the vertex points ak, bk, ck of a face k.

• Surface Area =
Nf∑
k=1

Ak, with Ak = |akbk × akck|2 , is the sum over the surface

areas of the triangle faces.

• Sphericity = (36πV 2)(1/3)

A
describes how sphere-like the volumetric ROI is. The

values are in the range of [0, 1] with 1 for a perfect sphere. With the partition value
0.5, the volumetric sphericity values are assigned to two classes.

• Max3DDiam is the largest euclidean distance between pairwise vertices on the
ROI surface mesh for the 3D ROI.

• Elongation =
√
λminor
λmajor

is the relationship between the two most prominent axis

lengths of the ROI-enclosing ellipsoid, analogous to the 2D version of the feature.

• Flatness =
√
λleast
λmajor

is the relationship between the maximal and minimal axis

lengths of the ROI-enclosing ellipsoid, i.e., the major axis length λmajor and least
axis length λleast. The values are in the range of [0, 1] with 1 representing non-flat
(sphere-like) and 0 totally flat. Two classes are divided by the threshold value 0.5.

Task-Specific Characteristics

Aside from image data features, we also extract task-specific dataset characteristics. The
total number of slices and the number of slices with tumor presence are reported for each
patient sample in the dataset. Although, we do not expect a big impact, we want to rule
out possible hidden connections and gain an overview of our dataset. In addition, the
tumor presence and size derived from the ground truth delineation are extracted per
slice. These two features give insight into the composition of a 3D dataset and we expect
a direct link to the model performance.
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5.2 Visualization Techniques

This section is intended to provide an overview of the chosen visualization techniques and
their underlying reasoning. We present the tasks in which our target users are interested.
Then, we will walk through our strategy and describe each component.

5.2.1 Overview

The main target users of our application are AI/ML engineers who develop segmentation
algorithms. To show how close the predictions of their models come to the quality
of human delineations, they need to validate their models against ground truth (GT).
In addition to performance assurance, the evaluation results are also used to compare
different models. A detailed assessment drives an iterative development process, where
the weak points are revealed and can be eliminated step by step.

To this end, we define five tasks based on the experience we gained from the algorithm
development in the previous chapter:

T1 Overall performance comparison, i.e., for all models and all patients

T2 Per-patient performance comparison, i.e., all models for one patient

T3 Per-slice performance comparison, i.e., all models for a specific slice

T4 Relationship to features, i.e., correlation of performance with the dataset- and
image-derived features discussed in Section 5.1

T5 Anatomy-based predictions, i.e., link to anatomical space

Our design strategy for a visualization tool to cover all five tasks follows Keim’s mantra
“Analyze first, Show the Important, Zoom, filter and analyze further, Detail on demand”
[70]. This is an adaptation of Shneidermann’s mantra “Overview first, zoom and filter,
then details on demand” [115] for VA. We need a visual representation that can show
the performance on three different levels of detail, i.e., averaged over the entire dataset
(T1), per patient sample (T2) and per 2D scan (T3), the correlation of performance
to features (T4), and the prediction on image scans for multiple algorithms (T5) in a
comparative manner. To fulfill the VA mantra, we need to integrate interaction. Starting
from the overall performance comparison, the user needs the possibility to select specific
patient or slice IDs based on the next higher data scale to browse the different levels
of the dataset. Brushing specific subgroups and applying this selection as filter to the
performance comparison can create a link between performance comparison and feature
relationships. In addition, the visual representations must be configurable. This means
that the user must be able to control some general settings, such as model and feature
selection. Figure 5.2 summarizes the required tasks T1-T5 and indicates the interaction
directions.
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Figure 5.2: Illustration of the tasks T1-T5 and interaction directions.

5.2.2 Performance Heatmaps (T1-T3)

The performance measures are calculated for the results of multiple segmentation algo-
rithms applied to several data samples, i.e., either patient data samples (T2) or image
slices (T3). In addition, a performance summary of the entire data set (T1) provides an
overview. To satisfy all three levels of detail, the comparison type needs to be flexible,
depending on what the user is focusing on.

The data can be interpreted as matrix with two dimensions. The human processing of
numbers is slower than of colors. Therefore, the matrix is visualized by color coding the
numerical values, as illustrated in Figure 5.3. The data samples are the matrix rows,
the performance results the columns. This visualization technique is called heatmap
visualization. Thus, we call this component performance heatmap. The color-encoding
is based on a sequential color map. Sequential color maps are used for data ranging from
low to high values and they imply order [47]. Frequently used sequential color maps are
Plasma and Viridis. We have chosen the Plasma color map since this aligns better with
the other components of the application. In addition to the actual matrix visualization,
the average performance per column is displayed in the first row from the top. The
colored matrix cells are annotated with the numerical values in the annotated heatmap.

Depending on the focus of the user, different comparisons are possible. The performance
heatmaps allow a 1-by-1 or 1-by-n comparison. A single patient or slice data (matrix
row) or a single model (matrix column) is compared with others. Using Figure 5.3 as an
example, different comparison options are discussed. The user can single out the blue
cell in the middle of the yellow cells (slice ID 24, model CG_SegmS2T_GAN1_relu)
and compare this cell with other elements of the row or column in which it is in, i.e.
perform a 1-by-1 comparison. Another option is to look at the entire column of the
CG_SegmS2T_GAN1_relu model and compare the results to a subset or all models.
The same can be done for the row with slice ID 24. This is a 1-by-n comparison.
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Figure 5.3: Performance heatmap: The DSC performance results of multiple DA segmen-
tation algorithms on multiple data samples are color-encoded with the Plasma color map.
The data is taken from patient ID 233.

5.2.3 Parallel Set Diagrams (T4)

Combining all features from Section 5.1.2, i.e., x features from performance measures,
y from radiomics, and z from task-specific characteristics, results in a vector per data
sample with dimensionality x+ y + z = n. The exact number of features depends on the
feature selection and the data sample. The data sample is either the volumetric scan per
patient ID or the 2D slice. Consequently, the space of all features is n-dimensional.

The n-dimensional spaces with categorical data can be reduced to two or three dimensions
by using high-dimensional clustering, such as t-SNE (t-distributed stochastic neighbor
embedding) [127]. The low-dimensional representation shows the clusters per signature,
but not the composition of the signature itself. Since we are also interested in the
individual categories that make up the signature, t-SNE is not suitable.

Given the actual numerical values, we assign the numbers of each feature to categories.
The mapping provides a categorical meaning, e.g., high DSC values correspond to a
good performance, whereas low DSC values to a bad performance. The aim is to use all
features to create a signature for each data sample. Samples with the same signature
show similarities, and we hope to find patterns in these relationships to draw conclusions
about the developed models. Therefore, the signatures are visualized in order to represent
the correlation to features (T4).

The numerical values of the features are grouped to classes. The combination of all
feature classes forms a signature per data sample. We are only interested in dividing the
value range, not in finding clusters in the numerical data. Therefore, the bin edges are
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defined by the minimal and the maximal feature value. If not stated otherwise, the values
are assigned to three classes that are determined by evenly spaced bins over the value
range. For some features, e.g. skewness and kurtosis, fixed limit values with statistical
significance are used to divide the range of values. A simple example with two classes
A,B with limit value 0.5 and a feature value range of [0, 1] is illustrated in Figure 5.4.

Feature 1 Feature 2 Feature 3 Feature 4
Sample 1 0.1 0.2 0.1 0.6
Sample 2 0.3 0.4 0.4 0.7
Sample 3 0.6 0.1 0.2 0.8
Sample 4 0.9 0.8 0.4 0.7

−→−→

Signature
AAAB
AAAB
BAAB
BBAB

Figure 5.4: Illustration of signature creation for the features extracted for a data sample,
i.e., either the volumetric scan per patient ID or the 2D slice.

We visualize the multivariate, categorical data in a parallel set diagram (PSD), also
called parallel category plot [76]. A PSD has parallel vertical axes, one per category,
consisting of blocks which represent the classes. The height of a block is proportional
to the count. Each point/signature is represented by a polyline with vertices on the
parallel axes going from left to right. The key features of the most left axes is defining
the color groups. For data samples with the same signature or at least same signature
parts, the polylines are merged to form a band. The PSD with all performance metrics
and the task-specific features for the patient ID 233 is shown in Figure 5.5. The same
diagram can be generated for all possible feature combinations. We support two different
color themes to adapt to the user’s needs. The first theme uses grayscale levels, ranging
from dark for good to light for bad (see Figure 5.5a). It avoids too many different
colors in our application for a more subtle PSD representation. With many overlaps, the
polylines and bands can sometimes be difficult to follow. Thus, the second option is a
more distinguishable color palette. The color map contains yellow for good, purple for
intermediate and blue for bad results as shown in Figure 5.5b. The three colors are taken
from the Plasma color map to establish color consistency.

The PSD representation is a n-by-n comparison per definition. The individual data
samples are assigned to subsets and compared with other subsets in terms of their
characteristics.

5.2.4 Prediction Heatmap (T5)

The prediction comparison per slice should happen on the one hand among the algo-
rithms results and on the other hand in comparison to the ground truth (GT) label
(T5). Comparison of multiple predictions shows the agreement or disagreement between
algorithms and reveals consistent errors made by a group of models. Since the user is not
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(a) Grayscale color map

(b) Plasma color map

Figure 5.5: PSD with all performance metrics for DA models and the task-specific features
for the slices with tumor presence in two different color themes. The data is taken from
patient ID 233.

only interested in the performance of the algorithms compared to each other, but also in
how the results compare spatially to the GT, this information must also be included.

In order to present several delineations comparatively, techniques of comparative visual-
ization are useful [71]. Juxtaposition can be extended to multiple instances in one view,
but each instance has its own coordinate system. This means that the spatial comparison
between the delineations is lost. Superimposition combines multiple instances in the
same coordinate system but suffers from occlusion issues. The method does not scale
well with a large number of segmentation and we have more than 10 masks depending on
the model selection. The scalability issue also occurs when using interchangeable. The
instances are displayed in the same coordinate system but not at the same time which
makes the direct comparison difficult for the user. This leaves the explicit encoding,
which represents a processed version of all the delineations in the same coordinate system
with no limit on the number of segmentations.

The generated mask is superimposed over the T2 scan with variable opacity. In theory,
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the T2 scans can be exchanged for T1 scans, but since the goal of our approaches is
the prediction on T2 images, we only support one modality. The image slice provides
additional anatomical context. The user can examine the anatomical structure of the
tumor, surrounding structures and regions with false positive or false negative predictions.
The GT label is integrated as contour or mask overlay for reference. The prediction
heatmap together with the GT superimposition is a 1-by-1 or 1-by-n comparison for
single or multiple algorithms, respectively.

The first explicit encoding is the total sum of all masks (see Figure 5.6). If only one
segmentation algorithm is selected, the representation is just the mask itself, as shown in
Figure 5.6a. For more than one mask, the number of times a pixel occurs in the masks is
counted. Thus, a value of 0 in the final mask means that no segmentation mask contains
this pixel. The maximal value is the number of selected segmentation algorithms, which
means that all masks match in pixel labeling. Figure 5.6b shows the final mask for an
example with 12 methods. The pixel values are color coded. Red corresponds to the
maximum value, and as the count decreases, the color fades to white. This representation
shows the user the agreement and consistency between algorithms. Nevertheless, the
ensemble of models can be very confident in the merged mask, and still be incorrect in
comparison to the GT.

(a) Single segmentation mask (b) Sum of multiple segmentation masks

Figure 5.6: Prediction heatmap with summed segmentation masks for X-Net S2T
dstep=2 (a) and 12 (all) DA models (b). High values represent a high agreement
between methods. The data is taken from patient ID 233, slice 25.

The second explicit encoding is subtraction. The sum described above is subtracted from
the GT mask where the pixel value 1 is replaced by the number of models. Consequently,
the resulting mask has positive and negative values. This concept works for both single
and multiple masks, as shown in Figure 5.7. Positive values represent pixels that are
not segmented by all methods. Negative values occur if at least one prediction includes
false positive pixels, i.e., positive predictions for non-tumor pixels. Consequently, if
the GT mask is empty, negative values mean that there is at least one false positive

55



5. Visual Assessment

tumor presence prediction. Depending on how many segmentation masks show the same
behavior of local under- or oversegmentation, the representation color is more intense.
The symmetric, diverging color map employs the concept of “cool” and “warm” for low
and high values, which is natural for humans [96]. Hence, low values are mapped to blue,
high values to red. The blue and red shades are taken from the Plasma color map to
harmonize the color use in the visualization application. The brightest color is taken
from the monochromatic color axis to interpolate the color from intense red and blue
towards white in discrete steps. The best case scenario is an empty subtraction mask.
This means that all selected methods correctly predicted each pixel.

(a) Single segmentation mask (b) Sum of multiple segmentation masks

Figure 5.7: Prediction heatmap with predicted masks subtracted from the GT mask for
X-Net S2T dstep=2 (a) and 12 (all) DA models (b). High values represent missing
segmentation regions (under-segmentation), low values represent segmentation regions
which do not belong to the tumor (over-segmentation). The data is taken from patient
ID 233, slice 25.

5.2.5 Interaction

Several interaction techniques are known for VA applications and we also use them in the
current work. Multiple (Coordinated) Views [136] show different perspectives of the data
in multiple views. The design method is often used in combination with Brushing and
Linking [69, 18], where one or multiple elements are selected in one view and highlighted
in another. The link between individual views makes it easier to identify relationships.
Focus+Context (F+C) [20] uses different levels of detail to decorate very important
elements with more details, while less relevant elements remain in the view but without
additional information.
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5.3 User Interface and Interaction

The visualization techniques described in the previous section are combined and linked
in a web-based visualization application. The components of the application and the
interaction options are described in the following.

5.3.1 Application components

The layout of the web interface is shown in Figure 5.8 with the link to the tasks T1-T5
defined in the previous section. The main components of the web interface, with which
the user interacts, are described below.

Figure 5.8: Illustration of user interface layout with the main components: Control Panel,
Performance Heatmap Cohort (T1, T2), Performance Heatmap Subject (T3), Prediction
Heatmap (T4), and PSD (T5).

Header

The header section contains a Load Data button on the left side. Data, that is not
modified during run time and serves as a lookup for further processing, filtering, or
selection, is loaded into memory during execution. On the right side, the link to the
readme file of the github repository with the code is linked.

Control Panel

The control panel allows the user to regulate settings for the performance heatmap and
the PSD on the left side and for the 2D prediction heatmap on the right side. The
possible settings are displayed in Figure 5.9.
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5. Visual Assessment

Figure 5.9: Control panel and website header.

The user can select the performance metrics from DSC, ASSD, ACC, TPR, and TNR, as
well as the dataset used, i.e., all slices or only slices with tumor presence. The combination
of these two settings determine the performance feature for the performance heatmaps and
the main feature of the PSD. The segmentation algorithms to be analyzed can be selected
from a drop-down menu, listing the individual models and predefined groups. Models
are grouped based on characteristics for easier selection. We have groups for all baseline
(Baseline) and domain adaptation (DA) methods. The domain adaptation methods
can further be divided into their approach, i.e. SegmS2T and Gen+Segm. Overall the
methods can be split into classification-guided (CG) and standard (NOT_CG) methods.
Finally, there is a class Best collecting the best methods as listed in Table 6.7 and a
class All including all methods. For the PSD, a selection of the features is possible. The
user can chose between the shape (Shape), first-order (Firstorder) or performance
(Performance) features. The selected performance metric and the task-specific features
are always the first left parallel axes and the most left parallel axis is the key feature
determining the color coding. Next to the feature selection is a button to change the
color theme of the PSD.

Cohort and Subject Views

Subheadings designate the cohort and the subject elements of the application. Both
include a performance heatmap for the error metrics and a PSD for the selected features,
either per patient or per slice. In order to make the best use of the space, the PSD
spans over 50% of the total width. The perception of the overarching PSD should also
symbolize the connection between the different levels. The visualizations for the cohort
and the subject are shown in Figure 5.10a.

Slice Views

The two views available for the slice-wise prediction heatmap, i.e., sum and subtraction
encoding, are spatially aligned with the corresponding subheadings and the control panel
options as the most left element in the application. The GT is either displayed as contour
with thickness 1 (see Figure 5.11a) or as filled mask (see Figure 5.11b) with the color
black. The opacity can be adjusted so that not all underlying layers of the visualization,
such as the segmentation heatmap, are completely obscured.
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(a) Representation used for the exploration and analysis of a cohort.

(b) Representation used for the exploration and analysis of an individual subject.

Figure 5.10: Cohort (a) and subject (b) visualization in form of performance heatmap
and PSD. Other components of the application are grayed out.

59



5. Visual Assessment

(a) Sum encoding with GT contour.

(b) Sum encoding with filled GT mask.

Figure 5.11: Prediction heatmap with overlapping GT contour (a) and filled mask (b).
Other components of the application are grayed out.

5.3.2 Interaction

We follow the concept “Analyze first, Show the Important, Zoom, filter and analyze further,
Detail on demand” by Keim et al. [70]. The realization of the supported interaction
techniques is described in the following subsection. An overview is given in Figure 5.12.
The arrows indicate the direction of the connection.
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Figure 5.12: Illustration of some selected interaction possibilities in the application:
Selection (black) and filtering (orange). The arrows indicate which component is affected.

Selection

If the data for the remaining elements is not yet available to the application, a placeholder
with text annotation is used. The text provides information about the reason for the
missing data, e.g., no data or models are selected. Before the user selects a slice for the
first time, the slice in the middle of the volume (rounded down for odd slice numbers) is
shown. The user can also slice through the volume of a patient data with the slider to
the left of the segmentation figure. This should make the navigation in the volumetric
data easier since the arrow keys can be used while hovering over the segmentation mask
for pixel information. Selecting a row triggers an update of the subheadings to include
the selected ID.

Filtering

The space of segmentation algorithms is filtered by the drop-down menu in the control
panel. The same applies to the features for the PSD and the key performance metric.

The PSDs and performance heatmaps are linked, with PSDs always showing the entire
dataset of the corresponding level and the heatmap showing only a filtered selection.
When the mouse pointer is moved over individual elements of the PSD, the selected
IDs are highlighted in the heatmap view. The not-selected IDs are grayed out, but are
retained in the matrix to demonstrate where the selected data samples are located in
relation to the whole set. Once the selection is confirmed by clicking on the element,
it is transferred to the underlying matrix and only the chosen subset is shown. The
subset is now fixed, and when the user hovers over other elements, the matrix returns
to this subset. The selection of other subsets is possible by choosing other elements or

61



5. Visual Assessment

pressing the reset button. This restores the unfiltered matrix according to the specified
parameters.

Filtering to control the focus of visual perception in the performance heatmap is supported
by the slider under the heatmap diagrams. The range sliders regulate the color axis.
Values below or above the limits on the range slider are mapped to the same color at the
end of the Plasma color map. This increases the color spectrum for the values within the
range and results in a more fine-graded color coding.

Hovering

Each component has its own hovering information. The performance heatmap reports
the model name and the patient ID from the two dimensions of the matrix and the name
and value of the performance metric that determines the color value. For the annotated
heatmap row with mean values, the hovering is deactivated, since the value is already
provided as cell label. In the PSD, hovering over a block in the parallel axes or a band
of polylines is possible. It returns the number of samples in the group in absolute and
relative numbers. The prediction heatmap limits the hovering to non-zero segmentation
mask pixels to avoid information overload. The pixel values are reported.

5.4 Implementation
The visualization is realized with Dash [6] and plotly [7]. For the radiomics features,
the python library pyradiomics is used with the default settings and implementations
[128, 8]. For the generation of the segmentation prediction, we need a Nvidia GPU with
at least 8 GB memory and Tensorflow and Keras [9].

Due to the high number of segmentation algorithms and slices in the test set, the inference
takes some time and is done offline. With the hardware available, it takes up to 4 hours
to generate all the predictions and process them. They are needed to calculate the
performance measures. Therefore, they need to be available at application start and can
not be predicted on demand during the run time. The calculation of the other features
(radiomic and task-specific features) takes 1-3 minutes. In order to provide interaction
in real-time, the data preparation as described in Section 5.1 is performed offline. The
information is stored in JSON files and is accessible by the visualization application. The
segmentation masks are reduced to contours and the list of coordinates are stored in
JSON files as well. This reduces the memory storage need. Another advantage of offline
calculation is that the hardware requirements for the machine on which the visualization
application is running can be circumvented. To generate and store the data on a machine,
allows to transfer the data to another machine. At reading time, the coordinates are
processed to a contour which can be filled to gain a binary mask with a pre-defined image
size of 256× 256 pixels (H×W).
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CHAPTER 6
Results and Discussion

In this chapter, results of the previously introduced segmentation approaches are presented.
After looking at the quantitative values with the predefined error metrics, we use our
visualization tool to comparatively analyze the predictions of the models and some
characteristics of the dataset that might be related to the performance. Due to the high
number of models and individual dataset samples in relation to the total number of slices,
we showcase few interesting use case scenarios that relate to the main tasks defined in
Chapter 1.

6.1 Quantitative Results for Segmentation

We will take a look at the performance of the baseline methods to establish an upper
and lower boundary when the task is solved by supervised training operating with the
ground truth data of both modalities. Then, the performance of DA methods is covered.
If a method is referred to as the best, this is meant with respect to DSC. We put more
focus on the DSC because it is highly used in related literature [60, 34, 25]. The DSC
and the ASSD are calculated on binary masks, i.e. with values 0 for background and
1 for VS segmentation. They are generated by mapping pixel values above 0.5 to 1,
pixel values below to 0. The ACC for tumor presence detection is inferred from the
segmentation prediction. For architecture types including a CG module, the classification
influences the segmentation mask by silencing the segmentation output if no tumor is
detected. However, even if the tumor presence is detected correctly, the segmentation
might still fail, i.e. the mask is all zero. This case is also considered a missing tumor
segmentation, since our focus is the tumor delineation on T2 images. The classification
extension only contributes to the training, the output is not considered for evaluation.
In the tables presenting the results, we use the notation ↑ and ↓ to indicate that the
desired values are either high or low. We report the error scores on two datasets: for
image slices containing ground truth delineations for brain tumor (D3), and the entire
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test dataset (D1). On one hand, we are interested in the performance on actual tumor
samples. On the other hand, in clinical practice, the data sample obtained is volumetric
containing more anatomical information than just the brain tumor. In order to apply
an automatic segmentation algorithm to the entire 3D data sample without pre-filtering
relevant slices or applying another detection algorithm beforehand, the algorithm should
be able to deal with non-tumor slices. Thus, we analyze both datasets. In addition to
analyzing each method individually, we also provide a summary and comparison of the
best models per strategy and qualitative examples.

6.1.1 Baseline

The baseline results are produced with segmentation architectures trained in a supervised
manner (see Section 4.3.1). These models are not taking the domain difference into
account. Each modality has its own specialized network, which has the modality in
the model name as suffix, such as X-Net T2 or CG X-Net T2. We distinguish two
different application possibilities: intended and “off-label” use. For intended use, the
model is applied to data from the training domain. “Off-label” use is the prediction on
images from a domain different than the training domain, such as apply X-Net T1 to
T2 images and X-Net T2 to T1 images.

X-Net

Aside from X-Net T1 and X-Net T2 for T1 and T2, a simple multi-modality approach
X-Net T1+T2 is realized by concatenating the two input images and using the fused
input for training. The results for each model are summarized in Table 6.1 for both
modalities and three different activation functions. The best T2 model uses ReLU
activation and reaches 0.71 DSC, 40.45 ASSD, and 89.22% ACC. This means that the
overlap measured with DSC is on average 71% and the average deviation between contours
is 41 pixels. The lower bound, with 0.071 DSC, 88.23 ASSD, and 84.57% ACC, is given by
a T1 model using Leaky ReLU activation applied to T2 images. This method represents
an approach using only available T1 ground truth data for training, but ignoring the
domain shift. It proves to be very ineffective as the measured overlap drops to 1/10 of
the previous value and the average deviation doubles. Table 6.2 summarizes the results
for T2 segmentation of X-Net T2 and X-Net T1. The ReLU activation is superior not
only for intended but also for “off-label” use when looking at the entire test set. The
highest DSC are 0.8425 and 0.5796 for X-Net T2 and X-Net T1 applied to T2 images,
respectively.

The choice of activation function influences the performance with a margin of ±0.04 DSC,
which does not show a clear predominance of an activation function. However, ReLU
proved to be stable considering the combination of DSC, ASSD and ACC for intended
use and Leaky ReLU for unintended use. SeLU neither produces the best DSC scores
nor predominant ASSD and ACC values. We could not observe a quantitative benefit of
SeLU over ReLU or Leaky ReLU. Since the domain adaptation methods incorporate the
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difference in the modalities and the application is not considered “off-label”, we continue
with ReLU as activation function if not stated otherwise.

Overall, we observe that the difference in performance is more than 0.10 DSC between
T1 and T2, which means that T1 predictions are consistently more accurate than T2
predictions. Moreover, using T2 methods on T1 images works better than vice versa. We
conclude that T2 prediction is more challenging than T1 prediction. This is explained
by the fact that the quality of T1 images is better and T2 images have lower contrast,
which makes the exact tumor boundary harder to detect [133].

X-Net T2 - D3

target modality activation DSC ↑ ASSD ↓ ACC ↑

T2 (intended)
relu 0.71± 0.32 40.5494± 111.8 89.22%
leaky 0.6912± 0.33 42.5344± 113.33 88.85%
selu 0.6793± 0.33 40.2957± 109.83 89.59%

T1 (“off-label”)
relu 0.3304± 0.41 178.6781± 177.08 51.86%
leaky 0.3642± 0.41 71.5728± 127.39 84.20%
selu 0.3476± 0.4 133.0548± 165.58 65.99%

X-Net T1 - D3

target modality activation DSC ↑ ASSD ↓ ACC ↑

T1 (intended)
relu 0.8238± 0.28 23.9276± 87.87 93.68%
leaky 0.8164± 0.27 22.7581± 84.1 94.24%
selu 0.8152± 0.28 27.9048± 93.56 92.75%

T2 (“off-label”)
relu 0.0426± 0.14 226.0561± 163.77 41.08%
leaky 0.071± 0.17 88.2303± 120.01 84.57%
selu 0.0608± 0.14 71.024± 113.82 86.99%

X-Net T1+T2 - D3

target modality activation DSC ↑ ASSD ↓ ACC ↑

T1+T2
relu 0.8266± 0.27 23.793± 87.87 93.68%
leaky 0.8343± 0.26 20.9521± 82.89 94.42%
selu 0.8305± 0.26 21.3539± 82.88 94.42%

Table 6.1: Results for X-Net T2, X-Net T1, and X-Net T1+T2 for test set D3. The
models are trained in a supervised manner. DSC, ASSD, and ACC are reported for both
modalities and three different activation functions. The notations ↑ and ↓ refer to the
desired result, i.e. high and low values, respectively.
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Results on T2 images - D1

X-Net T2 (intended)

activation DSC ↑ ASSD ↓ ACC ↑
relu 0.8425± 0.34 47.6676± 122.09 86.89%
leaky 0.6464± 0.46 117.954± 169.35 67.50%
selu 0.5832± 0.48 139.8881± 175.9 61.46%

X-Net T1 (“off-label”)

relu 0.5795± 0.49 134.7212± 173.36 63.3%
leaky 0.2441± 0.42 237.6359± 167.75 35.65%
selu 0.1825± 0.38 256.9102± 160.87 29.99%

Table 6.2: Results for T2 application of X-Net T2 (intended) and X-Net T1 (“off-
label”) for test set D1. The notations ↑ and ↓ refer to the desired result, i.e. high and
low values, respectively.

CG X-Net

We present CG X-Net T1 and CG X-Net T2 as the second baseline models. They
are trained on a balanced dataset of sections with and without tumor (D2). The results
on the test sets D3 and D1 are presented in Table 6.3. The performance measures for
CG X-Net T2 on D3 are 0.696 DSC, 43.49 ASSD, and 88.48% ACC. For CG X-Net
T1 the scores are 0.81 DSC, 33.64 ASSD, and 90.89%. “Off-label” use of CG X-Net
T1 on D3 T2 images results in 0.18 DSC, 160.38 ASSD, and 58.55% ACC. The behavior
of X-Net versions previously described is maintained: The error metrics for T1 images
are better compared to T2 images. The DSC for T2 images in D3 is 0.014 points lower
than for the standard X-Net version. This means that the difference is smaller than for
different activation functions in the standard X-Net versions. In addition, CG X-Net
T1 applied to T2 images results in a DSC of 0.1803, which improves the lower baseline
by more than 0.10 points. For T2 images of D1, the error scores improve to 0.94 DSC,
11.88 ASSD, and 96.74% for CG X-Net T2 and 0.76 DSC, 6.54 ASSD, and 98.06% for
CG X-Net T1. This is an improvement for both models on D1.

6.1.2 Domain Adaptation

The networks in this section are designed to account for the domain shift (see Section
4.3.3 and 4.3.4). Although the methods can be used to take either one of the image
modalities as source and the other as target domain, the target domain for the results
reported is set to T2 images. All methods are applied to T2 images, except stated
otherwise.
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CG X-Net T2

D3

target modality DSC ↑ ASSD ↓ ACC ↑
T2 (intended) 0.6962± 0.33 43.4989± 115.0 88.48%
T1 (“off-label”) 0.2456± 0.39 253.8364± 164.21 30.30%

D1

target modality DSC ↑ ASSD ↓ ACC ↑
T2 (intended) 0.9406± 0.2 11.8761± 63.77 96.74%
T1 (“off-label”) 0.8358± 0.36 56.6478± 131.25 84.25%

CG X-Net T1

D3

target modality DSC ↑ ASSD ↓ ACC ↑
T1 (intended) 0.8113± 0.29 33.637± 103.95 90.89%
T2 (“off-label”) 0.1803± 0.28 160.3764± 170.06 58.55%

D1

target modality DSC ↑ ASSD ↓ ACC ↑
T1 (intended) 0.968± 0.15 6.5401± 47.85 98.06%
T2 (“off-label”) 0.7616± 0.41 66.5179± 138.42 81.98%

Table 6.3: Results for CG X-Net T2 and CG X-Net T1 for test sets D3 and D1.
The models are trained in a supervised manner with a classification-guided module. DSC,
ASSD and ACC are reported for both modalities for intended and “off-label” use. The
notations ↑ and ↓ refer to the desired result, i.e. high and low values, respectively.

Generators GS2TS2TS2T and GT2ST2ST2S

The generators GS2T and GT2S are used for training and inference, respectively. Their
performance is crucial for the results of the DA methods. Generator GS2T is applied to T1
images to generate synthetic T2 images (T̂2) which are then used to train X-Net S2T.
Generator GT2S provides generated T1 images (T̂1) for the inference of GT2ST2ST2S+X-Net
T1. Depending on how often the corresponding discriminators were trained in an epoch,
there are different generator versions. The parameter dstep describes at which steps the
discriminators are trained, e.g. dstep=5 means that the discriminator is trained every
5th step in an training epoch. MSE of real and synthetic images and the generator loss,
i.e. how good the generator can fool the discriminator for dstep=1, are reported in Table
6.4. The results show that there is no training strategy that is best for all applications.
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Generator GS2TS2TS2T (training)

D training D3 D1
MSE(T2,T̂2) ↓ MSE(1,DT (T̂2)) ↓ MSE(T2,T̂2) ↓ MSE(1,DT (T̂2)) ↓

dstep=1 0.0563 2.390 0.0767 2.621
dstep=2 0.0533 2.389 0.0941 2.631
dstep=5 0.0520 2.654 0.069 2.662

Generator GT2ST2ST2S (inference)

D training D3 D1
MSE(T2,T̂1) ↓ MSE(1,DT (T̂1)) ↓ MSE(T2,T̂1) ↓ MSE(1,DT (T̂1)) ↓

dstep=1 0.0487 2.201 0.0730 2.158
dstep=2 0.0446 2.086 0.0674 2.032
dstep=5 0.0520 2.394 0.0760 2.167

Table 6.4: Results for test set D3 and D1 for generators GS2T and GT2S . MSE of real
and synthetic image pair and MSE between 1 and the discriminator results of synthetic
images are reported. The notations ↑ and ↓ refer to the desired result, i.e. high and low
values, respectively.

GS2T produces the most resembling images with dstep=5, GT2S with dstep=2 for
D3. Training the discriminator not every step benefits the generator training, since the
discriminator is not too strong from the beginning and a better balance is found. The
MSE increases for D1 which can be explained by the fact that only D3 has been used
for training.

Reconstruction examples are shown in Figure 6.1. The tumors are marked with red
arrows. The first row depicts the original images and the second row the synthetic
images produced by the corresponding generator. In the test set D1, there are also
slices from the top and bottom of the slice stack that have a different appearance.
Even though the CycleGan has not seen images of this appearance, the results are still
astounding. Nevertheless, in both applications, the ability of the generators to preserve
and reconstruct the tumor structure correctly, influences the segmentation. Qualitative
assessment shows a better tumor preservation on synthetic T1 images which corresponds
to our assumptions.
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(a) Samples from D1 test set without a tumor.

(b) Samples from D3 test set.

Figure 6.1: Four examples for generator GS2TS2TS2T and GT2ST2ST2S separated by blue line: Original
images are in the first row - left: T2, right: T1; Synthetic images are in the second row -
left: synthetic T2 image generated with GS2T , right: synthetic T2 image generated with
GT2S . Best viewed in high resolution.

GT2ST2ST2S+X-Net T1 and GT2ST2ST2S+CG X-Net T1

For the GT2ST2ST2S+X-Net T1 framework, the X-Net T1 models of the previous sections
are combined with different CycleGAN generators GT2S to predict on T2 images. By
exchanging X-Net T1 with a network employing the CG module, we get GT2ST2ST2S+CG
X-Net T1. The results of the model combinations are listed in Table 6.5 for both test
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sets D3 and D1. The best result on dataset D3 is 0.553 DSC, 72.13 ASSD, and 81.41%
ACC for the dstep=2 version without CG module. If we consider the entire dataset D1,
dstep=1 with CG module works best with 0.869 DSC, 36.20 ASSD, and 90.13% ACC.
There is no clear trend which discriminator training strategy is more beneficial.

GT2ST2ST2S+X-Net T1

D3

D training DSC ↑ ASSD ↓ ACC ↑
dstep=1 0.5318± 0.38 70.6398± 137.15 81.97%
dstep=2 0.5531± 0.38 72.1256± 138.98 81.41%
dstep=5 0.524± 0.36 60.3845± 127.47 84.94%

D1

D training DSC ↑ ASSD ↓ ACC ↑
dstep=1 0.6093± 0.47 127.1085± 172.05 65.10%
dstep=2 0.5794± 0.48 139.2345± 175.46 61.73%
dstep=5 0.5094± 0.48 161.3519± 179.14 55.66%

GT2ST2ST2S+CG X-Net T1

D3

D training DSC ↑ ASSD ↓ ACC ↑
dstep=1 0.5214± 0.38 89.0582± 151.31 76.58%
dstep=2 0.5443± 0.38 87.9963± 151.75 76.58%
dstep=5 0.5264± 0.36 75.2572± 140.81 80.67%

D1

D training DSC ↑ ASSD ↓ ACC ↑
dstep=1 0.8602± 0.32 38.4022± 110.55 89.56%
dstep=2 0.8692± 0.31 36.198± 107.87 90.13%
dstep=5 0.7406± 0.42 79.9413± 149.31 78.13%

Table 6.5: Results for GT2ST2ST2S+X-Net T1 and GT2ST2ST2S+CG X-Net T1 for test sets D3
and D1. The CycleGAN generator from T2 to T1 modality and a supervised X-Net
or CG X-Net with ReLU activation trained on T1 images are connected in series. The
generators used have different discriminator training schedules. The notations ↑ and ↓
refer to the desired result, i.e. high and low values, respectively.
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Both results represent a significant improvement of the unsupervised baseline method by
more than 0.30 DSC for D3 and 0.10 DSC for D1. The gap between D1 results is lower
due to the high number of non-tumor slices. If an algorithm produces a lot of all-zero
slices independent of tumor presence or absence, the prediction on D1 which contains
more non-tumor slices than tumor slices (see Figure 4.2a) is correct for the majority of
slices. Applying this insight to the interpretation of the “off-label” baseline results, it
can be seen that the better results for D1 compared to D3 are due to the high number
of empty predictions. However, the same behavior of the “off-label” baseline models
leads to poor quality for D3 slices. In comparison, DA methods especially without the
CG module encourage global over-segmentation. Examples for non-tumor slices with
segmentation predictions are shown in Figure 6.2. The positive predictions occur in areas
with bright spots that resemble tumor structures, such as in the left image. At these
location, the position is also consistent with the spatial information from the training
data. However, examples such as the picture on the right show that false predictions are
not only limited to this area. There should not be any confusion in these images because
the tumor boundary was not reconstructed accurately enough.

Figure 6.2: Examples for segmentation predictions (red) in slices without tumor presence,
i.e. over-segmentation and a false positive prediction, produced with GT2ST2ST2S+X-Net T1
dstep=2. Best viewed in high resolution and color.

X-Net S2T

For the X-Net S2T model, the generator produces synthetic T2 images which are used
as training data together with the T1 label ground truth. At inference time, we apply the
X-Net S2T model directly to real T2 scans. Table 6.6 provides an overview of the results.
The best D3 result is X-Net S2T with dstep=5 reaching 0.611 DSC, 59.56 ASSD,
and 84.57% ACC. For D1, it is the version using dstep=1 and the CG module with
0.9262 DSC, 18.196 ASSD, and 94.90% ACC. As expected, this is another performance
improvement compared to the lower boundary of the baseline methods and the other
DA method. Similar to the first DA method, no preferable update parameter for the
discriminator can be determined. The trend that classification-guided segmentation is
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inferior to standard versions for D3 but superiority for D1 is preserved.

X-Net S2T

D3

D training DSC ↑ ASSD ↓ ACC ↑
dstep=1 0.5695± 0.38 72.8934± 141.0 80.86%
dstep=2 0.5771± 0.37 74.5116± 142.64 80.30%
dstep=5 0.6114± 0.36 59.5639± 129.52 84.57%

D1

D training DSC ↑ ASSD ↓ ACC ↑
dstep=1 0.7932± 0.39 62.8065± 136.45 82.79%
dstep=2 0.7704± 0.4 71.7301± 143.75 80.31%
dstep=5 0.6502± 0.46 114.8601± 167.95 68.42%

CG X-Net S2T

D3

D training DSC ↑ ASSD ↓ ACC ↑
dstep=1 0.4797± 0.41 134.0608± 172.66 63.57%
dstep=2 0.5398± 0.4 107.9157± 163.29 70.82%
dstep=5 0.4962± 0.4 114.3868± 164.96 69.33%

D1

D training DSC ↑ ASSD ↓ ACC ↑
dstep=1 0.9172± 0.25 22.087± 86.02 93.88%
dstep=2 0.9262± 0.24 18.196± 78.4 94.90%
dstep=5 0.9183± 0.25 19.7206± 81.17 94.53%

Table 6.6: Results for X-Net S2T and CG X-Net S2T with ReLU activation trained
with different underlying generators GT2S with dstep=1,2,5 for test set D3 and D1.
The notations ↑ and ↓ refer to the desired result, i.e. high and low values, respectively.

CG SIFA

As already described in Section 4.4.4, we tried a lot of different architecture modifica-
tions and training strategy changes for both, SIFA and CG SIFA. Despite numerous
experiments, we did not manage to train a stable version that showed satisfying results.
We document in this section our results as guidelines for future implementations.
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Figure 6.3 shows the TensorBoard tracking of the Dice Coefficient and Dice Loss of one
of the few stable SIFA training in our experiments. Since no T2 GT labels are used
during training, the progress on T2 images can not be documented. Although all loss
values are reduced and the network seems to “learn”, the results are not convincing at
test time. The scores for D3 are 0.27 DSC, 98.8696 ASSD, and 81.97% ACC and for
D1 0.59 DSC, 123.00 ASSD, and 67.37% ACC. The framework was trained without
segmentation for 25 epochs. Then, the segmentation branch including the segmentation
discriminator are turned on and trained for another 75 epochs. To reduce the training
time, dstep is set to 5. Another setting with 50 epochs pre-training and 50 epochs for
segmentation training results in similar error scores at test time. The scores for D3 are
0.25 DSC, 104.56 ASSD, and 77.32% ACC and for D1 0.61 DSC, 116.21 ASSD, and 68.8
ACC. These values are far below our expectations and are also lower than the other DA
methods.

Figure 6.3: Dice Coefficient and Dice Loss of the synthetic T2 image predictions with
the T1 GT labels tracked during a SIFA training where the model seems to “learn”.

The CG SIFA training has proven to be very unstable. Especially if the segmentation
with CG module is already optimized from the very first epoch. Thus, we experimented
with training the framework without the CG module and the pretraining strategy
described above for an initial adaptation period. Then, the pre-trained network weights
can be used as starting point and to optimize the segmentation branch with the CG
module. The TensorBoard tracking of the dice coefficient and loss for such a pretraining
phase is shown in Figure 6.4. Training was done for 50 epochs, using 25 as pre-training.
At epoch 45 the training collapsed, the loss functions jumped to higher values for
no apparent reason. This behavior was observed several times with different training
strategies, total number of epochs, and starting epoch of segmentation training. The
performance measures are even worse than the lower baseline results. This approach was
not pursued further, as it would have exceeded the scope of this work.

There are many potential reasons for the unexpected behavior. First, we would like to
note that the original implementations were trained on GPUs with at least 12 GB and
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Figure 6.4: Dice Coefficient and Dice Loss of the synthetic T2 image predictions with the
T1 GT labels tracked during a CG SIFA training where the model training collapses.

a batch size of 8 [24]. This allows for deeper networks with more capacity and a more
stable training by using multiple samples instead of a single one. We hypothesize that
the network modifications required to fit the framework into 8 GB limit the number of
trainable parameters, which prevents the framework from extracting the relevant features.
Another factor could be the training strategy and parameters used. The framework has
many hyperparameters that need to be set, e.g. dstep, the learning rate, the start
epoch for the segmentation optimization, parameters in the loss functions. They must
be aligned to ensure successful training. Although most of the parameter values have
been transferred from already existing implementations, they may not be ideal for our
particular use case. In addition, human error during implementation could also be the
cause of the unexpected training behavior. For the following evaluation, we excluded
the SIFA and CG SIFA models. However, we think that a further exploration of such
models is worthwhile for the future.

6.1.3 Summary

Table 6.7 holds DSC, ASSD, and ACC values for the test sets D1 and D3 for the best
specialized baseline methods and the best DA methods applied to the target domain,
i.e. T2 images. Compared on D3, models employing the CG module are defeated by
standard segmentation approaches in all error metrics and for all methods. The only
exception is the “off-label” use for models trained on labeled T1 images to determine a
lower boundary. For this case, the CG module boosts the performance by more than
0.1 DSC, but ASSD and ACC deteriorate. Nevertheless, extending the dataset to D1
shows the benefit of the CG module. Due to more TN and less FP predictions, all scores
exceed the standard baseline methods and are significantly better. This means that the
CG module can help to avoid global under- and oversegmentation, i.e. not segmenting
slices with tumor and segmenting slices without tumor (see Figure 6.2), respectively.
Hence, the overall segmentation performance does benefit from the additional data and
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the multi-task learning introduced by CG X-Net. To rule out the possibility that only the
additional training data is the reason for the better results, we tested training the baseline
models with the balanced data sets D2. The training runs have shown an unstable
training. The Dice Coefficient converges to a plateau below 0.1 at very early stages in
the training. It seems that the network is not able to deal with empty ground truth la-
bels. The optimization stagnate since empty masks for all slices might be a local minimum.

Figure 6.5 provides three visual zoomed-in examples for the best methods on D3. The
first example is a large circular-like tumor which is covered by all methods with a few
pixels deviation. The second example is a smaller tumor with a more coarse border.
CG methods (bottom row) are more conservative resulting in smaller masks, whereas
standard methods tend to over-segment. The third example is more ellipsoidal shaped
and all methods having trouble production an accuracy delineation. The qualitatively
best result is generated with GT2ST2ST2S+X-Net T1. X-Net S2T and CG X-Net S2T
(last column) predict nothing, producing a FN result.

Overall, looking at the quantitative results, we can summarize the following observations:

• Segmentation algorithms with domain adaptation outperform models that do not
encounter the domain shift. However, our DA methods cannot reach the scores of
a supervised segmentation network trained on labeled T2 images.

• Our results show that it works better to train a segmentation network with synthetic
images (X-Net S2T) than applying a network trained on real image to synthetic
images at test time (GT2ST2ST2S+X-Net T1).

• We were not able to train a stable SIFA or CG SIFA version with the available
hardware and number of images. Further work is required in this direction.

• The use of a CG module improves the performance on a dataset containing slices
with and without tumor. At the same time, tumor segmentation DSCs remain in
the same range as for networks without a CG module.
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Best Results - D3

Intended Use (upper boundary)

Model DSC ↑ ASSD ↓ ACC ↑
X-Net T2 ReLU 0.71± 0.32 40.5494± 111.8 0.8922%
CG X-Net T2 0.6992± 0.33 43.4989± 115.0 0.8848%

Domain Adaptation

Model DSC ↑ ASSD ↓ ACC ↑
GT2S+X-Net T1 dstep=2 0.5531± 0.38 72.1256± 138.98 81.41%
GT2S+CG X-Net T1 dstep=2 0.5443± 0.38 87.9963± 151.75 76.58%
X-Net S2T dstep=5 0.6114± 0.36 59.5639± 129.52 84.57%
CG X-Net S2T dstep=2 0.5398± 0.4 107.9157± 163.29 70.82%

“Off-label” Use (lower boundary)

Model DSC ↑ ASSD ↓ ACC ↑
X-Net T1 Leaky ReLU 0.071± 0.17 88.2303± 120.01 84.57%
CG X-Net T1 0.1803± 0.28 160.3764± 170.06 58.55%

Best Results - D1

Intended Use (upper boundary)

Model DSC ↑ ASSD ↓ ACC ↑
X-Net T2 ReLU 0.8425± 0.34 47.6676± 122.09 0.8689%
CG X-Net T2 0.9406± 0.2 11.8761± 63.77 0.9674%

Domain Adaptation

Model DSC ↑ ASSD ↓ ACC ↑
GT2S+X-Net T1 dstep=1 0.6093± 0.47 127.1085± 172.05 65.10%
GT2S+CG X-Net T1 dstep=2 0.8692± 0.31 36.198± 107.87 90.13%
X-Net S2T dstep=1 0.7932± 0.39 62.8065± 136.45 82.79%
CG X-Net S2T dstep=2 0.9262± 0.24 18.196± 78.4 94.90%

“Off-label” Use (lower boundary)

Model DSC ↑ ASSD ↓ ACC ↑
X-Net T1 ReLU 0.5795± 0.49 134.7212± 173.36 63.30%
CG X-Net T1 0.7616± 0.41 66.5179± 138.42 81.98%

Table 6.7: Results for the best models of baseline and DA approaches for test set D3
and D1. DSC, ASSD, and either predicted or inferred ACC are reported. The notations
↑ and ↓ refer to the desired result, i.e. high and low values, respectively.76
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Figure 6.5: Examples of X-Net T2 (red), CG X-Net T2 (blue), GT2S+X-Net T1
(green), GT2S+CG X-Net T1 (purple), X-Net S2T (orange), and CG X-Net S2T
(brown) with GT (yellow area). Best viewed in high resolution and color.
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6.2 Visual Assessment
The high number of models and individual samples prevents a thorough investigation
of all potential use cases in the scope of this thesis. Based on what AI engineers often
look into, we have defined four use case scenarios in order to guide the visual assessment
with our application. They demonstrate valuable insights about the behavior of our
models and how this additional knowledge can drive further evaluation data analysis.
The use cases are formulated as questions to be answered with the help of our tool in the
following subsections. They have been defined empirically, based on our own experience
with developing AI algorithms. The relation to tasks T1-T5 defined in Section 5.2.1 is
listed in parentheses per question.

• Q1 How does the tumor size influence the segmentation performance?
(related tasks: T2, T3, T4)

• Q2 Are there other dataset characteristics related to the performance?
(related tasks: T2, T3, T4, T5)

• Q3 What is the difference between a standard model and its CG counterpart?
(related tasks: T1, T2, T3, T4)

• Q4 What are differences between all segmentation approaches?
(related tasks: T1, T2, T3, T5)

A detailed documentation, by screenshots taken during the investigation, can be found
in Appendix A.2. Here, we just document the most significant findings.

6.2.1 Tumor Size Analysis (Q1)

We limit the tumor size analysis to the T2 dedicated models. For an overview, the shape
features are selected in the PSD (see Figure 6.6). The parallel axes are rearranged to
group the performance measure and the tumor size related features, such as the mesh
volume, the surface area and the maximal 3D diameter together. Inspecting the data
by group affiliations reveals that bad results belong to small tumors. Medium results
are mainly from small or medium-sized tumors, with some exceptions for large tumors.
Tumor size in this context should be understood volumetrically. Next, we take a closer
look at the 20 good results. Scanning through individual patient datasets shows a pattern
in the performance heatmap for subjects as shown in Figure 6.7. The edge slices at the
top and bottom, which are also the smallest in terms of pixel size, are consistently worse
than the slices in the middle. Hovering over the subject PSD reinforces this discovery.
Good results are always in the center of the volumetric tumor part, while intermediate
results build two bands around the middle section.

Further data investigation shows two main observations that support the results of
the visual assessment. First, the models have difficulties predicting especially small
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Figure 6.6: PSD with shape features for T2 dedicated methods and only tumor slices.
The features are displayed per subject and the 20 subjects with good DSC values are
highlighted.

Figure 6.7: Performance heatmap of patient with ID 207 (left) and 241 (right). Both
show a similar pattern of good results in the center and worsening results towards the
edge slices at the top and bottom.

tumor occurrences. Second, removing segmentation masks with a size below a certain
threshold from the evaluation increases the performances. For the test set D4, we remove
segmentation masks with a tumor size below a certain threshold. As already mentioned
in Section 4.1.1 and shown in Figure 4.2b, there are a lot of slices that depict only a
small tumor with respect to pixel count. Figure 6.8 breaks down the distribution for the
left range of the axis even further. The test set is determined by steps of ten between
the tumor size of at least 0 to at least 100 pixels. The decomposition is used to illustrate
how the performance depends on the tumor size. Figure 6.9 collects the histograms of
DSC over tumor size for some selected models. It can be observed that for all methods,
the performance, i.e., DSC score, increases when tested on filtered subsets. For the best
specialized baseline method X-Net T2 ReLU, the DSC elevates from 0.71 to 0.85. For
the domain adaptation approach performing the best, the DSC rises from 0.61 to 0.78
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for X-Net S2T dstep=5 and from 0.54 to 0.71 for CG X-Net S2T dstep=2. The
same behavior can be observed for the other error metrics as well.

In conclusion, tumor size has a major impact on segmentation performance. Slices with
a small tumor, especially slices at the top and bottom of the volume, lead to
poor results. Sections in the center of the tumor volume are more likely to give good
results because the number of pixels is higher.

Figure 6.8: Tumor size distribution in test set.

(a) X-Net T2 ReLU (b) CG X-Net T2 ReLU

(c) GT 2ST 2ST 2S+X-Net T1 dstep=2 (d) GT 2ST 2ST 2S+CG X-Net T1 dstep=2
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(e) X-Net S2T dstep=5 (f) CG X-Net S2T dstep=2

Figure 6.9: Tumor size analysis by plotting DSC over tumor size in pixels for selected
models.

6.2.2 Subject Analysis (Q2)

In this subsection, we will take a look at the first-order features. The PSD and the
association to feature groups changes depending on the model selection. Hence, the
already prepared classes, like all, baseline, DA, and best, are used for the analysis. There
are two general observations about the dataset characteristics. The PSD for all models
and only for DA models is displayed in Figure 6.10. The intensity distribution in the
dataset is mostly skewed to the left (positive) and leptokurtic (above 3). Whereas the
variance, range, and MAD values are mostly small, just like the energy values. There
is always one count for negative skewness and platykurtic kurtosis belonging to bad
performance. Also one count for large range is consistently associated to bad performance.
Other than that, we do not see any obvious pattern between the features and the patient
IDs grouped by performance in the PSD. The blocks on the parallel axes are mixed
performance groups.

(a) All models
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(b) DA models

Figure 6.10: PSD with first-order features for (a) all models and (b) only DA methods.

We visually inspected slices with large range or variance for two groups of patient IDs.
The first group is patient IDs with bad performance measures averaged over all models. As
shown in examples in Figure 6.11a, examples either do not have a clear tumor borders or
are heterogeneous regions. The second group is a subject with patient IDs showing good
overall performance measures averaged over all models. This group contains examples
with a clear distinction from the surroundings and a homogeneous ROI (see Figure 6.11b).

The answer to Q2 is that there are other correlations between dataset features and
performance measures aside from the tumor size. However, they are not that obvious.
Visual inspection shows that homogeneous ROIs with distinct borders are easier
to process by our algorithms.

6.2.3 CG Module Analysis (Q3)

We will take a look at two different pairs of standard and CG module-enriched to find
patterns in the result. First, we will look at the baseline models X-Net T2 ReLU
and CG X-Net T2 ReLU as examples for fully supervised models. Then, the domain
adaptation methods X-Net S2T dstep=2 and CG X-Net S2T dstep=2 (best model
for D1) are analyzed. Both show the same patterns, which means that there is no
difference whether the DA or the baseline are used for analysis.

We get an overview with the cohort visualization first only for layers containing a tumor,
then for the whole dataset. Different performance heatmaps for X-Net S2T dstep=2
and CG X-Net S2T dstep=2 are collected in 6.12. For the representation of only
tumor slices, the results are very mixed, without a clear pattern, but with a slight
tendency for better results with the standard method (see Figure 6.12a). Including all
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(a) Examples with low DSC values (bad).

(b) Examples with high DSC values (good).

Figure 6.11: Examples of tumor ROIs: (a) bad performances for heterogeneous region
without clear borders; (b) good performance for homogeneous ROI with clear borders.

slices shows better results for the CG version (see Figure 6.12b). Only the TPR does
not show a major difference between standard and CG version since this performance
measure is relevant for the tumor slices where the results are mixed (see Figure 6.12c).
Extending the analysis from only tumor sections to all slices shows that the CG module
is more beneficial overall. This conclusion is also supported when looking at the subject-
based visualizations for random examples. The heatmaps per patient ID show more FP
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predictions around the tumor volume for standard methods. Based on this findings, we
formulate the hypothesis that the predictions of the CG models are more conservative,
i.e., the regions are smaller.

(a) DSC heatmap for only tumor slices (b) DSC heatmap for all slices

(c) TPR heatmap for all slices (d) ASSD heatmap for all slices

Figure 6.12: Performance heatmap for DSC, ASSD, and TPR values for X-Net S2T
and CG X-Net S2T.

With these additional insights and assumptions, we return to a more detailed data
analysis. The sum of the pixels in predictions with all tumor GT yields 97, 897 (CG
X-Net S2T dstep=2) and 96, 562 (X-Net S2T dstep=2). The bar charts displaying
the accumulated pixel count for different GT tumor sizes (px) in Figure 6.13 shows
that both methods underestimate the mask size. However, the bar for CG method is
consistently smaller than for the standard method, which especially shows if we zoom in
on specific groups, such as all GT labels with size smaller than 100 (Figure 6.13b). This
confirms our assumption that CG X-Net S2T dstep=2 is overall more conservative
thanX-Net S2T dstep=2. For the non-tumor slices, this is the more favorable behavior.
But for the tumor slices, this results in slightly higher error values.
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(a) All GT labels.

(b) All GT labels with size smaller than or equal to 100.

Figure 6.13: Accumulated sum of pixels in segmentation for slices with different tumor
sizes (px). The models are CG X-Net S2T dstep=2 (cg) and X-Net S2T dstep=2
(standard), together with the ground truth (gt).

In summary, the main difference between CG methods and their standard counterparts is
the lower number of false positive predictions in non-tumor slices. This results
in better overall performance with similar performance for tumor sections for the CG
enhanced models.

6.2.4 Segmentation Approach Analysis (Q4)

The quantitative analysis we have already done in Section 6.1.3 is nicely underlined by
the cohort heatmap. The X-Net T1 models are excluded from the following analysis
due to their bad performance.

First, the focus is on the three X-Net T2 models with different activation functions.
Making use of the heatmap slider and moving the maximal value towards 0 reveals
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that for ReLU the columns get faster to yellow compared to the others. Similarly, the
predominant color for Leaky ReLU and SeLU is blue for the minimal value going towards
1 (see Figure 6.14). This means that the activation function ReLU is slightly better, which
agrees with the quantitative analysis. By visually selecting rows in a random manner
and looking at the subject performance heatmap, we cannot recognize any particular
patterns.

Figure 6.14: Performance heatmap of T2 baseline models with different activation function.
The color map is changed by moving the minimal DSC value to 0.65. ReLU has higher
DSC values than leaky ReLU and SeLU.

The individual DA methods are grouped into four approaches. This are CG X-Net S2T,
CG GT2ST2ST2S+X-Net T1, X-Net S2T, and GT2ST2ST2S+X-Net T1 with the same ordering
as in Figure 6.15 from left to right. For the view with tumor slices, there are only weak
visual clues in the heatmap, mainly in the row with the mean values. These changes for
the full view where the ordering as described above is underlined with the cell colors,
because it is the ranking of the approaches regarding DSC.

We made another observation for both cases during the visual assessment of the sub-
ject performance heatmap and the corresponding slice heatmaps. The segmentation
predictions without overlap to GT are sometimes mirrored around the x-axis (see Figure
6.16), not in terms of shape but location. The cells are blue for the DSC representation,
which means that the segmentation mask is not overlapping the GT mask. Changing the
representation to ASSD shows a distance value between zero and the maximum value for
some of these cells which is an indication for existing, but incorrect segmentation masks.
There are examples of rows with such cells, that have at least one mask displayed on the
opposite side in the prediction heatmap, as illustrated in Figure 6.16.
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Figure 6.15: Performance heatmap of DA models sorted by the mean DSC values for all
slices. The color map is changed by moving the minimal DSC value to 0.5.

Figure 6.16: Examples for segmentation predictions mirrored around y-axis. The slice
heatmap shows the subtraction encoding of all DA methods. Important are the blue
pixels, i.e. there is no GT label, but at least one prediction. Best viewed in color and
high resolution.
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The comparison of the four different DA approaches results in an overall ranking of
CG X-Net S2T and CG GT2ST2ST2S+X-Net T1 at the top, followed by X-Net S2T and
GT2ST2ST2S+X-Net T1. Another observation that cannot be assigned to any particular model
is the occasional prediction to the “wrong” brain hemisphere.

6.2.5 Summary

As shown with the topics discussed above, we were able to gain additional insight into
the performance of the models. Aside from knowing the overall performance metrics and
comparing them as done in Section 6.1, we have a better understanding of the results
and can make more targeted decisions for improvements.

For Q1, we make heavy use of the cohort visualization (T2) and the shape features
related to size (T4) in order to filter the subjects. The main information is gained from
the performance heatmaps (T3), i.e., especially slices with small segmentation masks
and slices at the top and bottom of the tumor volume pose a problem to our methods.
The consequence could be experimenting with strategies to teach the network to handle
even small tumor incidences. Examples for this are oversampling small tumor masks, use
a cut-out of the original image to increase the number of relevant pixels or applying a
3D approach to include additional volumetric information. The rows of the performance
heatmaps (T2) and individual data samples (T3) are in focus of Q2. There seems to
be a connection that is not visible with the PSD (T4), but with the heatmap plots
per slice (T5). The ability of the tool to also view underlying data shows the visual
difference between individual slices. These visual differences are apparently also picked
up by the models when we cross-check this with the error values. The comparison of
CG and standard methods in Q3 is benefiting from the two dataset views. We already
noticed the difference in performance when looking at the quantitative summary, but
the visual assessment (T1-T4) showed that CG results are more conservative, i.e., the
predicted segmentation masks are less in terms of pixel sum than GT. This could be
mitigated by similar strategies as already mentioned for handling small tumor sizes. The
focus of Q4 is on the columns of the performance heatmaps (T1-T3). By checking out
different performance metrics, we spot examples of segmentation predictions (T5) that
do not have any overlap with the GT labels and are on the opposite brain hemisphere as
the tumor. This could be prevented by taking advantage of the symmetry of the human
body into account and use a training set that only contains original and flipped one-sided
brain hemispheres. By answering the questions, weak points of algorithms are identified
and can be targeted. The goal is not to provide an explanation why the algorithms work
the way they do or to shed light on the inner workings of individual layers. The question
is rather what does and does not work.
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CHAPTER 7
Conclusion

In this chapter we conclude this thesis by summarizing our work. We address and
answer our research questions by summarizing our methodological approaches and the
results obtained. After a comparison with the current state-of-the-art methods, our
methodological approach for the automatic tumor segmentation is compared with solutions
submitted to the MICCAI challenge crossMoDA and our interactive visual analysis tool
is compared with already existing VA applications. Finally, we discuss limitations of our
implementation and potential future work.

7.1 Summary
This thesis deals with the task of automatic VS segmentation on hrT2 images under the
constraint that only annotated ceT1 images and unannotated hrT2 images are available
for the training phase. This introduces the problem of data shift, where the image
modality between source (T1) and target (T2) data have different distributions. After
developing automatic segmentation algorithms, deep learning engineers and domain
experts often use single numerical values for the evaluation. In order to support the
model evaluation process, visual assessment of the results is a beneficial tool to investigate
and understand complex model behavior. In this section, we summarize our two-fold
contribution by revisiting the research questions we set out to answer with our work.

Research Question 1: How can we generate brain tumor segmentations automatically
for cross-modal data under the assumption that no labeled data for the target domain are
available for training?
We developed two domain adaptation frameworks utilizing image alignment with
CycleGAN followed by segmentation with a UNet-based network. On the one hand,
we convert hrT2 images to ceT1 images and apply a T1-specific trained segmentation
network to the synthetic T1 images. On the other hand, synthetic hrT2 images are
generated from real ceT1 images and a segmentation network is trained with transferred
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T1 labels in a supervised manner. Comparing the two approaches, the latter leads to
better results. One reason is that image synthesis from T1 to T2 works better than
vice versa because of the image contrasts. Another approach that utilizes not only
image but also feature alignment is based on SIFA. It is documented as suggestion for
further implementations. The main technical contribution is that the approaches are
enhanced with a classification-guided module, which allows simultaneous training
of semantic segmentation and classification of tumor presence. This extension shows its
advantage when we evaluate the model performance on the entire test dataset containing
slices with and without tumor presence. The effect of global over-segmentation, i.e.,
the prediction of a non-zero tumor segmentation mask on images without a tumor, is
reduced by the inclusion of the CG module. In addition, we also trained two baseline
models to compare our unsupervised domain adaptation approaches. First, a model
using annotated T2 images is trained to set the upper boundary that is achieved by a
fully supervised solution. Second, annotated T1 images are used to train a model as a
lower bound, without considering the domain shift. Our DA models outperform the base
method without DA, but do not achieve the performance of the T2 specialized baseline
methods.

Research Question 2: How can we visualize the outcomes of automatic segmentation
methods to support software developers and artificial intelligence (AI) engineers in
evaluating their developed models?
We designed and implemented a web-based visual analysis application that allows
interactive visual assessment of the model performances and prediction, and
the exploration of the relationship to dataset characteristics. The interface contains
several visualization techniques that display the information on three different levels of
detail following the visualization mantra. First, a summary is provided, consisting of
the performance measurements per algorithms averaged over the entire dataset. Then,
a cohort visualization (entire dataset in overview) is presented by PSD and a heatmap
of model performance values. Next, the PSD and performance heatmaps are used
for a subject visualization (specific patient ID in detail on demand). Finally, a sum
and subtraction encoding of the fused segmentation mask prediction is provided per
slice. The main contribution of our VA application is the flexible comparison of
multiple segmentation algorithms to solve the five tasks of overall, per-patient and
per-slice performance comparison, as well as relationship of performance to features and
anatomy-based predictions. We examined the model results and their relationship to
the dataset using four empirically formulated use case scenarios. We found a strong
correlation between tumor size and a weak correlation between the intensity values in
tumor ROIs and the performance values. Slices with small tumor sizes, such as the upper
and lower sections of the tumor volume, and tumors with non-homogeneous ROIs without
clear boundaries tend to be poorly segmented. CG enhanced models produce less FP
predictions, resulting in an overall better performance score. However, the quality on
tumor slices is comparable to that of models without CG modules. Visual inspection
of the prediction heatmaps revealed a shortcoming that could not be attributed to any
particular method. Some predictions are in the wrong hemisphere of the brain, mirrored
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around the x-axis on the opposite brain structure.

7.2 Comparison to State-of-the-Art Methods

With regard to our first goal, the same deep learning task that was solved in our work, i.e.,
VS segmentation on T2 images, was also part of the MICCAI challenge crossMoDA. The
competition was not yet completed during the conduction of this thesis. The teams that
submitted their solutions had a smaller subset of training data than what was uploaded
to TCIA and used by us. A direct comparison is therefore not possible due to the different
initial data. Nevertheless, we would like to compare the methodological ideas of the best
methods with ours. The strategies are overall the same. Image alignment with CycleGAN
or its extension NiceGAN is followed by segmentation with UNet-based networks. Where
MICCAI solutions transfer T1 scans to look like T2 scans, we tried both, synthetic T1 for
inference and synthetic T2 images for supervised segmentation training. The approaches
using synthetic T2 scans for training lead to better results, which is also the option
chosen by the competition teams. However, the top MICCAI submissions are a bit more
advanced with the use of self-training, where pseudo-labels are generated and added to
the training dataset. This is what distinguishes the first two methods from the other top
10, among others. To the best of our knowledge, no segmentation network in the context
of domain adaptation has been trained with a classification-guided module facilitating
multi-task learning of classification and segmentation so far.

With regard to our second goal, current VA approaches do not address the visual analysis
of the results of multiple algorithms in the same, flexible manner as we do. Former
approaches are mostly limited to single or pairwise result representation. Our method
allows a comparison of several segmentation masks at the same time. Most state-of-
the-art tools consider the comparison on several levels, namely overall, per patient, and
per slice, or alternatively per triangular mesh. Since they are not designed for deep-
learning methods, they do not include anatomical-based predictions. Moreover, they are
specialized in the presentation of segmentation results and mask properties, so that no
additional information, such as data characteristics or other image-derived features (e.g.,
from radiomics), is taken into account. Our application bridges this gap. We incorporate
not only the segmentation results and their performance measures, but radiomic features
in the analysis also.

7.3 Limitations & Future Work

In order to compare our approach to other existing state of the art methods, a more
extensive benchmarking is necessary. In this context, the CG SIFA method can also be
revisited. One approach would be to train the framework with higher capacity, where the
original SIFA implementation with an increased network depth can be used. Looking at
the results of the MICCAI crossMoDA challenge and analyzing the submitted approaches,
we see a lot of potential to improve our DA segmentation models in future work. There
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7. Conclusion

is the possibility to combine our classification-guided module with concepts used by
the winning team. Guiding the image translation by CycleGAN with an additional
segmentation input for the data where annotations are available during training, i.e., real
T1 and fake T2 images, may improve the tumor reconstruction. Then, the segmentation
loss can focus the training on this region when the loss weight is high. The second concept
that can improve our approach is self-training. This means that we generate pseudo-labels
on real T2 images using our current approaches and add them to the already existing
synthetic T2 images with transferred T1 images. The segmentation component is trained
with the merged dataset. This procedure of generating and improving pseudo-labels
can be carried out in multiple iterations with the goal of stabilizing the weak labels
further and further. In addition, dataset specific pre-processing, such as cropping the
image around the center with a large enough margin to always include the tumor regions,
increases the task-relevant pixel count which should help the training. However, this
modification is very specific to the problem and not a generally applicable methodology.

A possible extension to the visualization application is a 3D view of the tumor segmenta-
tion heatmap. A three dimensional illustration can provide additional spatial context, but
is also challenging in terms of occlusion and visibility. Here, smart visibility approaches
should be used as discussed by Viola and Gröller [129]. Nevertheless, the value should be
assessed prior to implementation. Another extension of the parallel set diagram is the
interaction option of multi-selections. For our scenarios, we did not see an additional
advantage or specific need for multiple selection support. However, other use cases or deep
learning tasks might benefit from a more complex selection mechanism. The goal of the
visualization could also be extended to explainable AI applications (XAI). Here, insights
into the individual layers of the developed networks are provided to explain the reason
for a prediction, such as Grad-CAM by Selvaraju et al. [113] that generates salience
maps for classification networks. Further investigation of appropriate radiomics features
and definitions could be beneficial, since first-order features and performance values do
not seem closely related. One reason for this could be that the tumor center has less
influence compared to the tumor borders. A different definition of ROI, such as a region
around the tumor contour, could bring new insights and show stronger connections. For
improvements in the visualization task, the target users need to be involved extensively.
The application is currently empirically designed and based on our own experience in
the development of deep learning algorithms. A user study for our visual analysis tool
should be conducted to gain more feedback about potential issues and design flaws. It
would also show what the main benefit for deep learning engineers is.

This thesis is an initial positive step towards using cross-modal domain adaptation for
the segmentation of brain tumors and VA approaches for the flexible assessment of the
segmentation outcomes.
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APPENDIX A
Appendix

A.1 Network architecture plots
In this subsection of the Appendix, we provide additional information for Chapter 4.
The architectures are visualized with blocks representing the tensors. The numbers
corresponds to width, height and depth (channels, filter size) of the tensor shape. The
arrows represent the neural network layers and processing methods. The notation used
in the model architecture plots is summarizes in Table A.1.

Abbreviation Description

Conv2D Convolutional Layer 2D
BN Batch Normalization
IN Instance Normalization
ReLU ReLU activation function
Leaky ReLU Leaky ReLU activation function
tanh tangens hyperbolicus activation function
sigmoid sigmoid activation function
MaxPool Maximum Pooling 2D
GlobalMaxPool Global Maximum Pooling 2D
Conv2DTrans Transposed Convolutional Layer 2D

Table A.1: Overview of notation used for model architecture plots.
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Figure A.1: X-Net architecture with two encoder-decoder parts.

Figure A.2: X-Net architecture with integrated classification-guided module.
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Figure A.3: ResNet generator for CycleGAN training.

Figure A.4: ResNet generator for SIFA training. This network version is smaller than the CycleGAN version.
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Figure A.5: Two versions of the discriminator used for CycleGAN and SIFA training with different filter depth size.
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Figure A.6: Shared encoder for SIFA training.
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Figure A.7: Decoder for SIFA training.
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Figure A.8: Segmentation branch for SIFA training.
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Figure A.9: Segmentation branch for SIFA training with classification-guided module.
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A.2. Step-by-Step Scenarios

A.2 Step-by-Step Scenarios
In the second part of the Appendix, we showcase our application with screenshots to
answer the questions from Section 6.2. The step-by-step explanation is reduced to a
manageable number of figures. If several patient or slice IDs were analyzed, the figure
caption contains an explanation.

A.2.1 Tumor Size Analysis (Q1)

(a) First, all T2 methods are selected in the drop-down menu.
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(b) Then, the theme is changed, shape features are selected and the parallel axes are rearranged.

(c) We select the patient ID rows in the PSD which are associated with bad DSC values.
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A.2. Step-by-Step Scenarios

(d) We select the patient ID rows in the PSD which are associated with intermediate DSC values.

(e) We select the patient ID rows in the PSD which are associated with good DSC values.
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(f) The rows with the good patient IDs are selected and used as filter in the cohort performance
heatmap.

(g) The patient ID 246 is selected as an example. The characteristic pattern in the subject
performance heatmap is visible.
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A.2. Step-by-Step Scenarios

(h) The slice rows are inspected in the PSD by hovering over good DSC values per slice.

(i) The slice rows are inspected in the PSD by hovering over intermediate DSC values per slice.
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(j) The slice rows are inspected in the PSD by hovering over bad DSC values per slice.

Figure A.10: Workflow for Q1 to investigate the tumor size relationship to performance.
Steps (g)-(j) are repeated for multiple examples (patient and slice IDs).

A.2.2 Subject Analysis (Q2)

(a) We take a look at the first-order features for different model group selections. First selection
is the group All.
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A.2. Step-by-Step Scenarios

(b) The next group contains all baseline methods.

(c) Then, we look at all DA models.
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(d) We also select the best methods.

(e) After getting an overview, we select data samples with bad overall performance values. Patient
ID 255 is an example where we inspect the subject PSD.
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A.2. Step-by-Step Scenarios

(f) Another example is patient ID 201. Zooming in on slice 34 shows inhomogeneous intensity
values in the ROI.

(g) As comparison, we also select subjects with good performance and analyze their subject PSD.
The ROI zoom shows a more homogeneous intensity range.

Figure A.11: Workflow for Q2 to analyze the relationship between first-order features
and the performance scores. Steps (f)-(h) are repeated for multiple examples (patient
and slice IDs).
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A.2.3 CG Module Analysis (Q3)

(a) We select the domain adaptation methods X-Net S2T dstep=2 and CG X-Net S2T
dstep=2 for this showcase.

(b) The first overview refers only to tumor slices, where no clear difference can be determined.
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(c) If we switch to the view of the whole data set, the overall better results of the CG method
become visible.

(d) Then, the performance heatmap is generated based on the ASSD values.
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(e) TPR is only based on tumor slices, therefore the results are mixed as in the only tumor of
other performance measures, such as DSC.

(f) The same behavior observed for the cohort is also found in the subject performance heatmaps.
Patient ID 246 is the first example.
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(g) Another example is given by patient ID 237.

Figure A.12: Workflow for Q3 to find differences between the domain adaptation methods
X-Net S2T dstep=2 and CG X-Net S2T dstep=2. Steps (f) and (g) are repeated
for multiple examples (patient and slice IDs).

A.2.4 Segmentation Approach Analysis (Q4)

(a) The DA methods are selected and reordered. Only tumor slices are considered for the
visualizations.
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(b) Changing the dataset view to all shows a clear gradient of DSC values from left to right.

(c) Moving the slider for the heatmap colors to 0.52 for the minimal value highlights the color
gradient.
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(d) Moving the slider for the heatmap colors further to 0.7 for the minimal value highlights the
color gradient even more.

(e) Moving the slider for the heatmap colors to 0.7 for the maximal value results in a yellow color
for the first rows from the left.
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(f) The DSC performance heatmap of a subject example (patient ID 201) shows a lot of blue cells.

(g) Changing to the ASSD representation shows distance values between 0 and the maximum
value, indicating the existing of predictions.
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(h) We choose the slice with ID 32 and zoom in on the image center.

(i) Changing the encoding from sum to subtraction shows the blue area indicating predictions
without overlap to the GT labels.

Figure A.13: Workflow for Q4 to analyze the DA segmentation approaches. Steps (f)-(i)
are repeated for multiple examples (patient and slice IDs).
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