
Interactive 3D Dense Surface
Exploration in Immersive Virtual

Reality

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Visual Computing

eingereicht von

Christian Kößler
Matrikelnummer 00928004

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Mag. Dr. Hannes Kaufmann
Mitwirkung: Dipl.-Ing. Dr. Annette Mossel

Wien, 28. Jänner 2021
Christian Kößler Hannes Kaufmann

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Interactive 3D Dense Surface
Exploration in Immersive Virtual

Reality

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Visual Computing

by

Christian Kößler
Registration Number 00928004

to the Faculty of Informatics

at the Vienna University of Technology

Advisor: Univ.Prof. Mag. Dr. Hannes Kaufmann
Assistance: Dipl.-Ing. Dr. Annette Mossel

Vienna, 28th January, 2021
Christian Kößler Hannes Kaufmann

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Christian Kößler
Otterweg 15/3/3, 1220 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 28. Jänner 2021
Christian Kößler

v

Acknowledgements

Ich bedanke mich bei meinen Betreuern Hannes Kaufmann und Annette Mossel, die
mir ermöglicht haben diese Diplomarbeit an der Interactive Media Systems Group auf
der TU Wien zu verfassen. Ganz besonderer Dank gebührt hierbei Annette Mossel, die
wegen der mehrjährigen Fertigstellungsdauer viel Geduld aufbringen musste und dennoch
die Betreuung nicht abgebrochen hat.

Ich danke allen User Study-Teilnehmern, dass sie sich die Zeit zum Testen genommen
haben.

Weiters bedanke ich mich speziell bei meiner Lebensgefährtin Janine, die mich über die
ganze Zeit hinweg bedingungslos unterstützt und mich mehrmals vor dem Aufgeben
bewahrt hat.

Außerdem bedanke ich mich bei meinen Kindern Jonathan und Josephine, die mich in den
letzten Wochen der Fertigstellung täglich ermahnt haben, dass ich jetzt weiterschreiben
sollte.

Zudem möchte ich mich noch besonders bei meinen Eltern Elisabeth und Gerhard
bedanken, die mir mit ihrer Unterstützung das Studium überhaupt erst ermöglicht haben.

vii

Kurzfassung

Detaillierte 3D-Rekonstruktionen real existierender Umgebungen werden benutzt, um
Aufgaben der realen Welt (beispielsweise Ferninspektionen) zu lösen. Dabei ist nicht nur
das Betrachten von Szenen erforderlich, sondern auch die Fähigkeit, mit der Umgebung
zu interagieren, zum Beispiel die Selektion eines benutzerdefinierten Teilbereichs der Re-
konstruktion für die spätere Verwendung. Problematisch bei großen 3D-Rekonstruktionen
kann sein, dass Objekte aufgrund von Szenengeometrie oder Rekonstruktionsartefakten
ganz oder teilweise verdeckt werden. Da dem aktuellen Stand der Technik Ansätze für das
Behandeln von Verdeckungen in Umgebungen fehlt, die aus einer oder mehreren (großen)
kontinuierlichen Oberflächen bestehen, schlagen wir die neuartige Technik Large Scale Cut
Plane vor, die eine Segmentierung und anschließende Selektion von sichtbaren, teilweise
oder vollständig eingeschlossenen Teilbereichen einer großen 3D-Rekonstruktion von
einem weiter entfernten Standpunkt ermöglicht. Ein immersives Virtual-Reality-Setup,
bestehend aus einem Head-Mounted-Display, einem Fortbewegungsgerät (omnidirektio-
nales Laufband) und einem 6DOF-Hand-Tracking-Gerät werden mit der Large Scale
Cut Plane-Technik kombiniert, um das Verständnis von 3D-Szenen und natürlichen
Benutzerinteraktionen mit diesen zu fördern. Wir präsentieren außerdem Ergebnisse
aus einer AnwenderInnenstudie, in der wir die Leistung und Verwendbarkeit unserer
vorgeschlagenen Technik im Vergleich zu einer Basis-Technik untersuchen. Unsere Ergeb-
nisse deuten darauf hin, dass die Cut-Plane Technik für große Umgebungen hinsichtlich
Geschwindigkeit und Präzision der Basistechnik überlegen ist, während eine Verbesserung
der Benutzeroberfläche notwendig ist.

ix

Abstract

Dense 3D reconstructions of real-world environments become wide spread and are foreseen
to act as data base to solve real world problems, such as remote inspections. Therefore
not only scene viewing is required but also the ability to interact with the environment,
such as selection of a user-defined part of the reconstruction for later usage. However,
inter-object occlusion is inherent to large dense 3D reconstructions, due to scene geometry
or reconstruction artifacts that might result in object containment. Since prior art lacks
approaches for occlusion management in environments that consist of one or multiple
(large) continuous surfaces, we propose the novel technique Large Scale Cut Plane that
enables segmentation and subsequent selection of visible, partly or fully occluded patches
within a large 3D reconstruction, even at far distance. An immersive Virtual reality setup
consisting of a Head-Mounted Display, a locomotion device (omni-directional treadmill)
and a 6DOF-hand-tracking device are combined with the Large Scale Cut Plane technique
to foster 3D scene understanding and natural user interactions. We furthermore present
results from a user study where we investigate performance and usability of our proposed
technique compared to a baseline technique. Our results indicate Large Scale Cut Plane
to be superior in terms of speed and precision, while we found need of improvement of
the user interface.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Problem Statement . 1
1.2 Motivation . 2
1.3 Contribution . 3
1.4 Structure . 4

2 State-of-the-Art 5
2.1 VR-Hard- and Software for Immersive Exploration 5

2.1.1 VR-Hardware . 5
VR-Input Devices . 5
VR-Output Devices . 6
VR-Tracking . 7

2.1.2 Software . 7
2.2 Interaction Techniques in Immersive VR 8
2.3 Methods for Mesh Segmentation . 9

2.3.1 Automatic Mesh Segmentation Methods 9
Learning 3D Mesh Segmentation and Labeling 9
Real-Time and Scalable Incremental Segmentation on Dense SLAM 9

2.3.2 Manual Mesh Segmentation Methods 10
Easy Mesh Cutting . 10
Cross Boundary Brushes . 10
iCutter . 11
Shape Diameter . 11

2.4 Methods for Surface Reconstruction . 11
2.4.1 Structure From Motion (SFM) . 11
2.4.2 Kinect Fusion . 13
2.4.3 3D Laser Scanning . 13

xiii

3 Methodology 15
3.1 Design Requirements . 15

3.1.1 VR Environment . 15
3.1.2 Optimized Selection of Target Patch 16
3.1.3 Interaction Steps . 16
3.1.4 Preceding Step for a Selection Task 16
3.1.5 Navigation . 17
3.1.6 Accessibility . 17

3.2 Developed Concepts . 17
3.2.1 Building the Virtual Environment 17
3.2.2 Virtual Reality Setup . 18

Combination of VR-Devices . 19
Design of Input Gestures . 19

3.2.3 Optimized Selection of Target Patch 20
3.3 Large Scale Cut Plane Selection Technique 21

3.3.1 Workflow of Interaction Technique 21
3.3.2 Interaction Technique Algorithm 23
3.3.3 Interactive Segmentation within Large Dense 3D Surfaces 25

Finding a Segmentation Plane from Hitpoints 25
A Region Growing Algorithm to create a Thick Boundary 25
Edge Thinning Technique . 26
Region-Growing to create Target Patch 27

4 Implementation 29
4.1 Employed Frameworks and Technologies 29
4.2 Building the Immersive Environment . 29
4.3 Integration & Combination of the used VR-Devices 31
4.4 Implementation of Arm and Hand Gestures System 32

4.4.1 Hardware Preparation . 33
4.4.2 The Software Interface . 33
4.4.3 Obtaining 3D Pose . 34
4.4.4 Detecting Gesture Patterns . 34
4.4.5 Apply Detected Patterns . 36

4.5 Implementation of Large Scale Cut Plane Technique 37
4.5.1 Step 1: Cut Plane Alignment . 37
4.5.2 Step 2: Transition into Cut Plane View 39
4.5.3 Step 3: Raycast in Cut Plane View 40

4.6 Implementation of Segmentation . 41
4.6.1 Selection and Target Patch Creation 42

4.7 Implementation of the VR-User Interface 43
4.8 Software Components . 44

5 Experimental Results 47
5.1 Setup . 47

5.1.1 The Raycast-Technique as Comparison 47
5.1.2 Objectives . 47
5.1.3 Apparatus . 48

Implementation . 48
5.1.4 Study Design . 48
5.1.5 Test Environment . 49
5.1.6 Tasks . 49

No Occlusion - Object Fully Accessible 50
Partly Occluded - Object Partly Accessible 50
Fully Occluded - Object Not Accessible 50
Methods . 51

5.2 Experimental Results . 51
5.2.1 Participants . 52
5.2.2 Overall Evaluation . 53
5.2.3 Evaluation on Preference & Expertise 55
5.2.4 Discussion . 57

6 Conclusion 59
6.1 Contribution . 59
6.2 Future Work . 61

6.2.1 Exploring the Design Space of the Method 61
6.2.2 Testing Different Environment Types and Sizes 61
6.2.3 Technical Improvements of the Algorithms 62

List of Figures 63

List of Tables 64

Bibliography 67

CHAPTER 1
Introduction

1.1 Problem Statement
Recent advances in virtual reality (VR) hardware have made it feasible to create immersive
virtual reality environments, where a user is able to naturally walk into a virtual world
and to interact with it. There exist numerous input devices like motion trackers and
Omnidirectional Treadmills (ODTs), as well as VR-output devices like head mounted
displays (HMDs). Those devices can be combined with the power of high-performance
computers to generate realistic and immersive VR-environments, such that a user is able
to explore a part of the real world without physically visiting that place and overcoming
limitations which would be subject to a real exploration. The computing power of modern
VR-hardware enables not only the visualization of manually created 3D worlds, but also
makes it possible to visually represent arbitrary computer-generated worlds, e.g. Dense
3D Surface Reconstructions.

The creation of such dense 3D reconstructions of large real-world environments have
been subject of intensive research during the last years due to the emerge of commodity
hardware – such as Microsoft Kinect[Mic13] – and powerful structure from motion algo-
rithms [RM12, NZIS13]. Both research and industry areas see a tremendous promise and
benefit in using these models. Especially dense reconstructions of indoor environments
can serve as core data for future real-world problem solutions, such as 3D scene under-
standing for inspections, simulation and training within realistic environments or search
and rescue. Therefore, not only exploration is required but also user interaction with the
reconstructed environment, such as highlighting areas of interest or selecting arbitrary
parts of the reconstructed model (target patches) for subsequent manipulation. However,
when an observer explores such a large reconstructed environment, the geometrical
properties of the environment cause occlusion of patches, while in addition reconstruction
errors can result in fully occluded and inaccessible patches, independent from viewport
changes of the observer. If important target patches are hidden from view, correctness

1

1. Introduction

and efficiency of target selection will suffer. To provide sufficient target selection despite
the mentioned occlusion issues a proper strategy – called occlusion management – has to
be chosen.
Such occlusion management strategies have been tackled by prior art introducing a range
of different approaches [ET08], such as Multiple Viewports, Virtual X-Ray or Volumetric
Probes. While these approaches aim at occlusion management in 3D environments that
consist of individual objects and tackle the environmental properties object interaction,
density and complexity, they are impossible to apply (i.e. volumetric probes) or are not
sufficient (i.e. virtual x-rays) for large dense 3D reconstructions since those are comprised
of dense 3D point clouds (a disconnected set of points in 3D space) or dense continuous
surfaces (3D meshes, a connected set of triangles in the 3D space). Furthermore, for
target patch selection in a 3D reconstruction, segmentation of the environment is a
pre-requisite as it defines which vertices should be extracted from the 3D reconstruction.
Automatic segmentation approaches, such as [ZCW+03, ITHG12, NL13] can subdivide a
3D reconstruction by relying on its distinct geometric properties which mitigates specific
segmentation needs. Since they usually incorporate the entire model for their calculations,
they result in increased processing time, especially for large scale reconstructions. To
enable more specific segmentations, approaches such as [VTHLB15] can be employed that
perform the segmentation from a pre-defined starting point. However, these approaches
require the target patch to be visible to the observer. In case of (partly) occluded target
patches, existing segmentation techniques usually try to solve this problem by enabling
users to navigate to the area of interest using mouse and keyboard-based interaction
techniques. However, this approach might result in a time consuming search task and
does only hold true in case those parts of interest are not occluded by other geometry,
such as reconstruction artifacts.

1.2 Motivation
To overcome limitations of prior work in occlusion management and segmentation, both
regarding its applicability to large 3D surface reconstructions is the motivation of this
thesis. We explore a new interaction technique that provides means for target discovery
and access in large 3D reconstructions while preserving the spatial relation between
the target and its context. We combine our new technique – Large Scale Cut Plane –
with an Immersive Virtual Reality (VR) setup to foster spatial 3D scene understanding
– through stereoscopic and egocentric viewing – and enable natural human computer
interaction through means of natural walking and gestural input. Thereby, Large Scale
Cut Plane enables segmentation and selection of visible, partly or fully occluded patches
within a large 3D reconstruction, even at far distance from the user’s current view
point. The proposed technique comprises two phases, as shown in Figure 1.1. In an
indication step, users cast a vertical virtual plane from their current view port through
the 3D reconstruction; an interactive CutPlane Preview is generated that set parts of the
reconstruction transparent to provide users with an x-ray view through the scene. Upon
confirmation of the cut, users are presented the CutPlane Visualization, that resembles

2

1.3. Contribution

the CutPlane Preview and provides users an enhanced scene view as well as navigation
possibilities to ease (occluded) target patch discovery. They can travel along the plane
cut to further inspect the reconstruction by looking into the 3D scene, as if the cut plane
would be a window. At each moment, they can access the target patch by the technique’s
3D segmentation and selection algorithms. To change the cut plane or upon target patch
access, they can return to their original viewport from where they started the interaction.

Align CutPlane Confirm CutPlane Segmenta on

CutPlane Visualiza on

Selec onExplora on

Normal Scene View CutPlane Preview

Exit CutPlane Explora on

Normal Scene View

Figure 1.1: Large Scale Cut Plane.

1.3 Contribution
In summary, the contribution of this thesis is to explore occlusion management in
dense large 3D reconstructions while incorporating immersive VR and extending the
state-of-the-art with the following contribution points:

1. Large Scale Cut Plane The occlusion management technique Large Scale Cut
Plane that provides means for target patch discovery and access in dense large 3D
reconstructions while preserving the spatial relation between the target patch and
its context. The technique is based on the visualization design patterns Virtual
X-Ray and Multiple Viewports([ET08]).

2. Segmentation Algorithm As a pre-requisite to the selection step, segmentation
of the 3D reconstruction is needed. We develop a segmentation technique that fits
the needs regarding processing time especially for large scale dense reconstructions.

3. Combination of VR devices The aforementioned VR setup consisting of a HMD,
an ODT and a hand gesture recognizing motion suit, which is used to bring the
user into the Immersive VR environment, needs to be combined as frictionless as
possible. The tracking information (meant in the sense of 3DOF – three degrees
of freedom – positional and 3DOF rotational tracking, in combination also called
3D pose tracking), which is provided by all of the devices has to be transferred to
correct behavior of the avatar in the virtual world.

4. User Study A user study that explores occlusion management in dense large 3D
reconstructions by statistically evaluating the novel Large Scale Cut Plane technique

3

1. Introduction

in terms of ease of use and performance and compare it with a state-of-the-art
technique as baseline.

The work of this thesis resulted in a high quality publication ([MK16]).

1.4 Structure
This thesis is structured in the following way: the state-of-the-art in mesh segmentation,
selection, 3D reconstruction methods, VR hardware and software is reviewed in Chapter 2.
Afterwards, Chapter 3 covers the methodology, where the concepts of the developed Large
Scale Cut Plane technique are explained along with the used methods for segmentation
and 3D pose tracking. Implementation details of the used approaches, technical difficulties
and algorithmic details are presented in Chapter 4. Chapter 5 describes the construction,
implementation and results of an experimental user study, targeting the comparison of
the Large Scale Cut Plane technique with a common baseline method. Finally, the thesis
ends with a conclusion in Chapter 6.

4

CHAPTER 2
State-of-the-Art

The content of this Section deals with related State-of-the-Art work in the specific domains
of the thesis, which are VR-hardware, software, interaction techniques in immersive virtual
reality, mesh segmentation methods and methods for surface reconstructions.

2.1 VR-Hard- and Software for Immersive Exploration
2.1.1 VR-Hardware
VR-Input Devices

To enable locomotion in the virtual world, two natural walking approaches exist. In the
first solution, the user walks around in a real room and gets tracked by a 6DOF tracking
system, which leads to a complex and expensive setup. Also, the multi-user abilities are
an uncertainty and a collision-preventing system is necessary. The second approach is
an Omnidirectional Treadmill (ODT), which means, the user’s position remains fixed,
although he or she is walking or running (like in a classical treadmill). The advantage of
this approach is that no positional tracking is required, the solution occupies less space
and multi-user support is given by using one device per user and no physical collisions
can occur. Several hardware vendors and institutes run active developments in the field
of ODTs. One of them is the U.S. Army Research Lab, which provides an ODT for
soldier training, it is not intended for public usage and costs more than $ 50.000 [CKL04].
The possible movements are walk, run, jump and crouch, which all current ODTs have in
common, and additionally a lay-down movement. Two other solutions, the Virtuix Omni
[Vir13] and the Cyberith Virtualizer [Cyb13] (see Figure 2.1) additionally provide the
ability to sit.
To enable not only movement but also interaction with objects, specialized VR-input
hardware (3DOF or 6DOF), which is suitable to track hand/arm and/or body gestures
can be used. Devices like joysticks, gamepads or 3D mice are available, where orientation

5

2. State-of-the-Art

and position is changed relative to the current state, whereas devices like the Razer Hydra
[Raz15] or a 3D pen deliver absolute values. Modern consumer VR solutions include
tracking components of their own. The HTC Vive offers two 6DOF input trackers and
Oculus provides its own 6DOF input devices for the hands. Another class of VR-input
devices are full body capturing systems. They work either with optical tracking like
the Motion Suite [XSe15], or with a network of IMUs (Inertial Measurement Units) like
the Perception Neuron [Neu15] (see Figure 2.2) or the PrioVR suit [Pri15]. If it is not
possible or desired to have a device attached to the user, another tracking-approach
would be optical markerless detection. Systems like MS Kinect [Mic13] or Structure.io
[Str15] work with the RGB and depth image of a scene and use image processing, feature
extraction and skeleton detection to track the hand/arm/body of the user.

Figure 2.1: The Virtualizer ODT Figure 2.2: Perception Neuron Motion Suit

VR-Output Devices

For VR experiences a range of HMDs (head mounted displays) are available. HMDs are
displays which provide a much higher field of view compared to a normal 2D computer
screen. They provide a stereoscopic view by showing separate images for both eyes. Two
devices are targeted for usage on a PC, namely the Oculus Rift [Ocu13] and the HTC
Vive [HTC13], they both have a HD-resolution of 1080x1200 per eye and a refresh-rate
of 90 Hz. A device with similar specifications is the PlaystationVR [Son15] from Sony,
it provides a refresh rate of 120 Hz and is officially compatible with the Playstation
4 only. Solutions for the mobile market are available too, like the Samsung Gear VR
[Sam15], the Zeiss VR One [Zei15], Google Cardboard [Goo15] or the Oculus Go. All
mobile solutions use attached smartphones as processing unit and display, except the
Oculus GO, which is a standalone VR-headset with integrated processing unit.

6

2.1. VR-Hard- and Software for Immersive Exploration

Figure 2.3: For PC usage: HTC Vive Figure 2.4: For mobile usage: Oculus GO

VR-Tracking

Coupling the physical movements from the real world with the virtual movement in VR
is necessary to achieve a full-immersive VR experience. Modern VR hardware makes
it possible to track position and orientation of the user. By processing this tracking
information, the virtual point-of-view in a visualization is automatically adjusted to the
user’s movement in the real world. Especially, accurate tracking of the head is essential
to prevent symptoms like headache or nausea . All non-mobile solutions provide 6DOF
positional and orientational tracking, whereas the mobile devices currently provide only
3DOF orientational tracking.
For 6DOF tracking, the used techniques are a combination of inertial sensors and optical
methods. For instance, the Vive tracking system uses two laser emitters, placed across the
room, which send out infrared laser signals. Photo diodes, which are built into the headset
and the two hand controllers receive those signals and create accurate 6DOF information.
Tracking updates solely based on this information would be not fast enough, therefore the
inertial measurement units, which are built into the headset and the hand-controllers are
used as realtime primary tracking information. Built up drift errors from those inertial
measurements then get corrected in recurring intervals by the laser tracking method.

2.1.2 Software
Both market-dominating game engines Unity [Uni18] and Unreal Engine [Unr18] are
already capable of building and simulating virtual worlds, integrate physically accurate
collision detection systems, and creating visual effects while still running with high
performance. With mass adoption of consumer-ready VR hardware the 3D engine
vendors began to natively integrate the support of VR functionality into their systems,
which enables a low entry point into building 3D VR experiences. For VR-devices, which

7

2. State-of-the-Art

have no native support from the engine vendors, SDKs or APIs exist to integrate them
into the VR application.

2.2 Interaction Techniques in Immersive VR

3D selection in virtual environments consisting of individual 3D objects have been studied
in great detail [AA13] and several fundamentally different approaches exist. Virtual
hand techniques [BKLP04a, PBWI96] enable direct object selection by either applying a
linear or non-linear mapping between the physical and the virtual hand’s position. In
contrast, pointing techniques cast a virtual object into the scene for selection, such as a
ray [BKLP04b] or a cone [LG94]. Pointing techniques might allow the selection of partly
occluded objects, depending on the cast object and the distance to the target object. For
instance, raycasting tends to be imprecise at large distances where cone-casting is better
suited. Modifications of the pointing selection metaphor, such as Flexible-Pointer [OF03]
work with bending of rays to improve the selectability of partly occluded objects.

Occlusion management techniques tackle the problem of partly and fully occluded target
objects in 3D environments by providing means for object discovery, access and/or
spatial relation. According to the taxonomy of [ET08], prior art can be categorized into
Volumetric Probes, Projection Distorters, Virtual X-Ray, Tour Planners and Multiple
Views. Expand [CWJ12] is an example of a volumetric probe technique as it uses a
cone-cast to separate all casted 3D objects in an abstract 2D manner to provide the
visualization of occluded objects. Other examples that suit the Volumetric Probe category
are Depth Bubble Cursor [RN10], Depth Ray and 3D Bubble Cursor [VGC07]. Virtual
X-Ray techniques make target objects visible by turning occluding surfaces invisible or
semi-transparent. The work of [HPGK94] introduces the idea of cutting planes that
specify the position and orientation of a slice through the virtual object. Since no
viewport change is integrated, this technique is limited to individual small virtual objects.
Multiple View techniques are well known from 3D modeling applications, such as Maya
or Blender3D. These techniques provide different views onto the 3D scene, while these
views can be separated or integrated into each other. DrillSample [MVK13] interlocks
volumetric probes with multiple (double integrated) views to allow the selection of fully
occluded target objects in mobile AR while preserving the spatial scene context to provide
a very high object disambiguation. Another occlusion management approaches that
uses a double integrated view is Starfish [WGCB12].In this technique the 3D pointer is
surrounded by a starfish-shaped surface and the end-points of the branches enclose the
nearest objects. For immersive 3D reconstruction environments, [LBLS14] proposes a
bi-manual interaction technique by using a set of pinch gestures inspired by smartphone-
based interaction to select, manipulate and annotate the surrounding 3D reconstruction.
Figures 2.5 and 2.6 show examples of the Multiple Views and the Virtual X-Ray pattern.

8

2.3. Methods for Mesh Segmentation

Figure 2.5: Multiple views: Drill sample
[MVK13]

Figure 2.6: X-Ray Visualization [HPGK94]

2.3 Methods for Mesh Segmentation

2.3.1 Automatic Mesh Segmentation Methods
Automatic mesh segmentation methods try to achieve the segmentation of 3D data
without any user interaction, only based on properties of the input data.

Learning 3D Mesh Segmentation and Labeling

The approach of Kalogerakis [KHS10] uses a data-driven approach for simultaneous
segmentation and labeling of parts in 3D meshes. It formulates an objective function
based on a Conditional Random Field model. The objective function is learned from
a collection of labeled training meshes. The algorithm uses hundreds of geometric and
contextual label features and is capable of learning different types of segmentations for
different tasks without requiring manual parameter tuning. Since it is a data-driven
approach, it needs labeled data for training the system. Results of this method are shown
in Figure 2.7a.

Real-Time and Scalable Incremental Segmentation on Dense SLAM

The method of Tateno [TTN15] works on 3D point clouds. It is a real-time segmentation
method and automatically creates segments of the cloud on the fly while the Simultaneous
Localization And Mapping (SLAM) process is performed. It incrementally merges
segments while each input depth image is processed, the method is able to handle

9

2. State-of-the-Art

arbitrary complexity of the input data. Since the segmentation process is fully automatic,
the user has no influence over the created parts, an example outcome of the method is
presented in Figure 2.7b.

(a) Data-driven method by [KHS10] (b) SLAM-method by [TTN15]

Figure 2.7: Automatic mesh segmentation results

2.3.2 Manual Mesh Segmentation Methods
Manual mesh segmentation methods rely on the user’s input to generate the separate
mesh parts. The advantage of such methods lies in improved control over the whole
segmentation process and therefore more accurate results. The following approaches
are state-of-the art mesh segmentation methods. All of them need computational
preprocessing of the input data. After that pre-processing step the user draws paint
strokes on the surface to signalize the method a preferred location of the segmentation
boundary. This input is then processed by each method’s particular algorithm and
the segmentation result is presented to the user. How paint strokes are interpreted by
the several methods is shown by Figure 2.10, which is presented by the comparative
interactive segmentation study of [FML12].

Easy Mesh Cutting

The method of Ji [JLCW06] is based on a region growing algorithm. A stroke is made
on the desired foreground, and one stroke on the desired background, then all vertices
that lie a sketch region are painted as "F" or "B". Afterwards the algorithm uses an
improved isophotic distance (as defined by [PSH+04]) to further mark vertices, until all
vertices are labeled. For performance reasons, the input mesh is simplified in an offline
pre-processing step, and the painting algorithm works with the simplified data. After the
segmentation step, hierachical correspondence between the simplified and the original
mesh is used to achieve the segmentation results for the original mesh. A result of the
method is shown at Figure 2.8a.

Cross Boundary Brushes

The approach of Zheng [ZT10] works with harmonic fields, which are generated using a
sparse linear system. A Harmonic field is a scalar- or vector-valued field that is defined
by a harmonic function to produce isolines on a surface, as shown in Figure 2.8b. Those

10

2.4. Methods for Surface Reconstruction

isolines are generated as smooth connected loops on the surface and are thus suitable
as candidates for a segmentation boundary. The method lets the user draw two types
of strokes, a part-brush stroke is used to segment out semantic part-components and
a patch-brush stroke can be drawn to segment out flatter surface patches (Figure 2.9).
When a sketch is drawn across boundaries, the algorithm chooses an isoline and performs
the segmentation.

iCutter

The iCutter-method from Meng ([MFL11]) uses a similar base algorithm as the Cross-
Boundary-Brush approach. The authors also generate a harmonic field consisting of
isolines, which are created by a harmonic scalar function. The main difference to the
Cross-Boundary method is a different paint stroke handling. The desired position of the
cut is indicated by drawing a stroke along the boundary instead of crossing it (see Figure
2.8c). Only part-type segmentations are possible with this method, patch-type cuts are
not supported.

Shape Diameter

The work of Fan[FLL11] is based on the shape diameter function of a mesh. The shape
diameter function (SDF) [SSCO08] measures the diameter of an object’s volume in the
neighborhood of each point on the surface, and provides a mapping from volumetric
information onto the surface boundary. The SDF is calculated by fitting a Gaussian
Mixture Model (GMM) using the greedy Expectation-Maximization (EM) algorithm
([VL02]). The advantage of this method is the possibility of a progressive segmentation
update while the user is drawing. This is achieved by two steps. When the user draws
a stroke at the beginning of the user interaction a global optimization is triggered
and an initial foreground region is obtained. The second step involves a progressive
local optimization based on the ongoing paint stroke information and the segmentation
boundary is updated interactively. The interactive process is shown in Figure 2.8d.

A thorough comparison of this work can be found in the comparative study of Fen[FML12]).

2.4 Methods for Surface Reconstruction
A 3D Surface Reconstruction method generates a virtual representation of a real scene,
based on that scene’s input data. Different types of input are used by several recon-
struction methods. Structure from motion uses a set of 2D images, Kinect Fusion uses
the real-time depth data from the Kinect camera, and Laser scanner methods able to
produce accurate 3D point cloud data from the laser measurements.

2.4.1 Structure From Motion (SFM)
SFM reconstruction estimates a 3D structure from a set of 2D images which are taken
from the desired object from overlapping but different perspectives ([WBG+12]). The

11

2. State-of-the-Art

(a) Easy mesh cutting (b) Cross boundary

(c) iCutter (d) Paint mesh cutting

Figure 2.8: Interactive mesh segmentation results

Figure 2.9: Part-brush and patch-brush of the cross boundary brush method.

method is based on finding correspondences between the input images, so-called "features".
A widely used feature-detector is SIFT (Scale Invariant Feature Transform) [Low04]
which transforms an image into a collection of feature vectors, each of one is invariant to
image translation, scaling, and rotation. These properties make it possible to use images
that have different distances and angles to the target object. After detecting features in
all source images, those features are matched against each other, and outlier matches
are filtered out with a RANSAC (random sample consensus) algorithm [FB81]. After
matching and applying optimization algorithms, such as bundle adjustment, the resulting
feature trajectories are used to reconstruct the camera position and rotation of each input
image. The feature points have now a 3D position and are used for the reconstructed 3D
object. SFM can be done in three ways. In incremental SFM, found relations are added
one by one to the collection, in global SFM all poses get solved at the same time, and
out-of-core SFM computes parts of the reconstruction independently and then combines
the parts into a global reconstruction. An example for SFM can be found in Figure 2.11.

12

2.4. Methods for Surface Reconstruction

Figure 2.10: Comparison of the resulting boundary by paint strokes on different methods.

Figure 2.11: Structure from motion [SCS+10]

2.4.2 Kinect Fusion
The release of the Microsoft Kinect RGB-D system enabled the possibility of a low-cost
live reconstruction of a scene. Kinect Fusion is a system for accurate real-time mapping
of complex and arbitrary indoor scenes in variable lighting conditions using only a moving
low-cost depth camera and commodity graphics hardware [NIH+11]. The technique
fuses all of the depth data streamed from a Kinect sensor into a single global implicit
surface model of the observed scene in real-time. In this method, the current sensor
pose is simultaneously obtained by tracking the live depth frame relative to the global
model using a coarse-to-fine iterative closest point (ICP) algorithm, which uses all of
the observed depth data available. Both tracking and integration is performed on the
GPU. One disadvantage of Kinect Fusion is the limitation of the algorithm to room sized
scenes due to memory constraints. However, there exist several methods, which extend
the Kinect Fusion algorithm to overcome this space limitation. An example for a Kinect
Fusion reconstructed scene is shown in Figure 2.12.

2.4.3 3D Laser Scanning
A 3D laser scan is a method that measures distance to a target by illuminating the target
with pulsed laser light and measuring the reflected pulses with a sensor. Differences in
laser return times and wavelengths can then be used to make digital 3D representations

13

2. State-of-the-Art

of the target. It it also known as LIDAR (light detection and ranging). An advantage of
the technology is the ability to scan over large distances. An resulting scene from LIDAR
scanning can be found in Figure 2.13.

Figure 2.12: Kinect fusion example [NIH+11] Figure 2.13: Lidar example [GIS18]

14

CHAPTER 3
Methodology

This chapter describes the approaches and algorithms to create the 3D exploration,
segmentation and selection research prototype, which acts as a base framework for the
new Large Scale Cut Plane technique. The concepts are described in an implementation-
agnostic way, concrete technical details and specific platform requirements are described
later. The technical specifics, such as used hardware/software technology, APIs, SDKs and
the practical implementation details of the developed concepts are described in Chapter
4. This chapter is structured the following way. Firstly, certain design requirements are
stated, and secondly concepts and solutions to those design requirements are presented.

3.1 Design Requirements
For fulfillment of the aims of the thesis, especially to create a feasible selection of
visible, partly or fully occluded patches of large dense 3D surface reconstructions, several
requirements have to be satisfied.

3.1.1 VR Environment
The usage of a reconstructed real world scene is inherent from the problem definition
in Chapter 1. To give the user a feeling of presence, the scene has to fulfill a certain
degree of realism. The choice, what kind of scene is used, and the chosen technology to
get a desired level of realism is crucial for the perceived presence the user wants to find
herself in. Not for the developed techniques in this thesis itself, but as requirement for
the planned user study, which is also a contribution to this thesis, the spatial structure
of the environment needs to be in a certain condition, such that users are forced to use
tools to be able to discover and select arbitrary target patches, intuitively and despite
partial or full object occlusion. A scene that contains different natural occlusion objects
like walls and obstacles is necessary. Its proportions should be in spatial proximity to

15

3. Methodology

the real world, such that the user does not get distracted by spatial inconsistencies. As
other criteria, the used environment has to be displayable at interactive frame rates.

3.1.2 Optimized Selection of Target Patch
Within the virtual environment, users shall be provided with means to discover and
select arbitrary target patches, intuitively and despite object occlusion up to containment
(which means that the whole target patch is covered behind an occluding object). An
illustration of the different occlusion types is given at Figure 3.1. The suggested methods
have to be designed in such a way that they explore different possibilities of solving
the proposed selection tasks. The design space of all theoretically possible techniques is
narrowed down with respect to the given technical restrictions like available hardware
and limited processing capacity.

(a) Not occluded (b) Partly occluded (c) Fully occluded

Figure 3.1: Occlusion types (occluder: blue box, occluded object: red circle)

3.1.3 Interaction Steps
The requirement to provide the user access to semi- or full occluded target patches
in the environment depends on the interaction tools that are given to the user. A
complete interaction task is defined as the composition of two subsequent steps: 1) the
segmentation of a part of the scene to indicate the desired patch and 2) the selection of
the before-segmented patch. Possible preceding user interactions like adapting the view
and locating the target are explored to optimize the selection process. Algorithms for all
sub-tasks need to be designed and implemented, with the criteria to perform at run-time
with interactive frame rates.

3.1.4 Preceding Step for a Selection Task
To be able to independently select parts of the environment it is necessary that the
scene consists of individual objects. Since the scanned and reconstructed mesh is usually
one connected set of triangles, it is required to separate different mesh parts from the
remaining data. This process of splitting 3D data is called mesh segmentation and can
be tackled in various ways. There exist several approaches which are commonly used
in interactive desktop applications. Segmentation is done based on one or more criteria.

16

3.2. Developed Concepts

Those criteria can be defined completely by the user’s input, like manually drawing a
segmentation boundary. It can be based on features, that are determined automatically by
processing the input mesh (e.g. calculate and use mesh-defining properties like curvature).
Segmentation can also be done by combining the manual and automatic approach, e.g.
by manually refining the result of an automatic segmentation process. Different existing
methods of mesh segmentation are explained in Section 2.3. In our case, the precondition
of the usage of large meshes from a scanned real environment exists. The development of a
fitting segmentation technique for this particular problem space is needed. A description,
how our segmentation approach tackles the problem, is found in Section 3.3.3.

3.1.5 Navigation
To provide an immersive and natural experience, not only the environment itself has
to meet certain requirements (as described in Section 3.1.1), but also the navigation
inside said space has to happen in an intuitive and pleasant way. Changing the viewport
performed by walking and turning/repositioning the head has to happen in a free manner.

3.1.6 Accessibility
Ease of use of the provided navigation and interaction methods is crucial for the acceptance
rate of the proposed method in this thesis. Users should be able to perform accurate
patch segmentation and selection, the provided tools should facilitate a precise way of
working. The techniques have to be designed carefully with typical users indispositions
like nausea or dizziness in mind.

3.2 Developed Concepts
This section proposes concepts and approaches to satisfy the design requirements, as
stated in Section 3.1. The section is structured the following way: First, it is explored,
how the virtual environment is created 3.2.1, then the design choices for the used types
of hardware and interaction tools are explained 3.2.2, afterwards the optimized selection
of a target patch 3.2.3 is discussed, which leads to the design of the Large Scale Cut
Plane 3.3. Finally, a suitable segmentation method is proposed (3.3.3).

3.2.1 Building the Virtual Environment
To fulfill the environment design criteria requirements, as stated in Section 3.1.1, a
large dense 3D reconstruction of a prior 3D scanned location is used. The chosen data
representation is a point cloud, which is further triangulated to provide the technical
foundation for visualization, navigation and manipulation tasks. An existing scan of a
scene called Hanghaus 2 - Ephesos (see Figure 3.2) is used as basic environment. The
scan is available as reconstructed, triangulated and texturized 3D mesh, provided by
[BMAW13]. The scene’s multi-room structure with narrow passages in-between is already
a good fit for the spatial requirements stated in Section 3.1.1. A shot of the scene from

17

3. Methodology

above, which shows the spatial properties is given in Figure 3.3.For the target-patch
selection tasks (especially for the user study) additional designed target objects and
obstacles are placed into the scene. An “as seamless as possible” integration-approach of
those objects into the scene is crucial to preserve a high immersion level. The technical
details about creating and using the scene can be found in Section 4.2.

Figure 3.2: Scanned scene: Hanghaus 2 - Ephesos

Figure 3.3: Reconstructed scene as view from above: Walls and obstacles as occlusions

3.2.2 Virtual Reality Setup

The seamless integration of different VR devices (Virtualizer (an ODT from Cyberith
[Cyb13]), Oculus ([Ocu13]), Perception Neuron([Noi15])) is necessary to provide a con-
vincing user experience. Making the correct design decisions on how those devices are
intertwined and how well the input interactions are built around those systems guarantee

18

3.2. Developed Concepts

a purposeful applicability of the given hardware. The considerations in this section tackle
the stated requirements 3.1.5 and 3.1.6.

Combination of VR-Devices

All three VR devices provide their own tracking informations. Our navigation device,
the Virtualizer provides a rotation angle alpha, which describes the current rotation of
the user around the y − axis. It also gives feedback when the user is sliding over its
ground surface. This translational feedback is given in four directions: forward, backward,
sidestep left and sidestep right. Our HMD, the Oculus Rift DK2 provides head-tracking
information (both positional and rotational). The Perception Neuron delivers positional
information of every single Neuron which is attached to the motion suit. To fulfill the
requirement stated in 3.1.5 we chose to process the rotation of the body independently
of the rotation of the head. This decoupled approach leads to a natural navigation and
viewing experience. The translation information of the Virtualizer is used to move the
torso in the virtual world in the correct direction. The positioning of the tracked arm
and hand in the virtual scene has to ensure that it is always aligned to the virtual torso
and correctly mapped to the hand in the real world to prevent conflicting information.
The implementation details of how the different tracking informations are combined are
described in 4.3.

Design of Input Gestures

To satisfy the requirement stated in Section 3.1.6, distinctive arm and hand gestures
are designed such that they are easy to understand and respecting hardware limitations
like detection accuracy of the gesture. Especially for the planned user study, where
participants have to understand the gestures within a short introduction time a trade-off
between understandability and necessary complexity has to be made. We decided to use
a one-handed gesture setup. The given tracking hardware is in principal accurate enough
to get information about individual finger positions, but has its caveats in robustness
of detection (details are explained in Section 4.4). To get a robust enough detection we
decided to use two distinct hand postures as base for our gestures. The first hand posture
V erticalHand (as seen in 3.4a) is used mainly for our selection technique. The second
hand posture Pointing (which is shown in 3.4b) is used for pointing operations within our
selection technique, as well as a controlling method for our user interface. The decision,
that such an additional user interface is needed was made to allow more interactions
without the need of creating more gestures, which would be harder to remember and
a technical challenge to distinguish from each other. Therefore a user interface with
pointing gesture enabled buttons is introduced to enable additional control possibilities
like changing the current tool (from segmentation to selection), or to provide undo
functionality. Since the user interface in VR cannot be made as 2D HUD (Head Up
Display, like an overlay menu in classic desktop applications) it has to be designed as
part of the 3D environment. We decided to implement it as overhead menu (the user
interface only appears in the user’s view if he leans his head up above a certain threshold,

19

3. Methodology

see Figure 3.4c). This offers the advantage of not distracting the user while a task is
performed, and the pointing gesture cannot be misinterpreted, also incorrect inputs are
prevented that way. Since we have no additional Accept input gesture a button press
event is triggered, if the pointing ray hovers over the button longer than a certain dwell
time.

(a) Vertical Hand gestures

(b) Pointing gestures (c) Overhead menu

Figure 3.4: Different Gestures for interactivity.

3.2.3 Optimized Selection of Target Patch

The interaction possibilities in a VR setting are different than in a common desktop
setup. In a classical desktop environment, the user is able to arbitrary translate and
rotate and scale a scene, until she gets a good viewpoint for a target selection task. In
an immersive environment, changing the viewpoint has to happen in a careful manner to
prevent disorientation, motion sickness and other illnesses. The challenge is to retain the
natural movement and interaction behavior, but to enhance it with purposeful assisting
techniques to optimize the desired task, which is in our case the selection of a target
patch. Regarding prior art in occlusion management design pattern, we found volumetric
probe techniques not applicable since target patches are not isolated upon start of
the interaction task. Employing solely Virtual X-Ray technique – such as [HPGK94] –
would not be sufficient as prior knowledge about distractors and targets is required. This
violates the idea of enabling users to select arbitrary patches within the 3D reconstruction.
Furthermore, Virtual X-Ray techniques only provide low visual depth cues which would
lead to disorientation within a large environment. Multiple Views techniques provide
high depth cues and overview to ease discovery and access, but are not capable to deal
with occlusions beyond object intersection. Tour Planner techniques [AVF04] require an
offline step that violates the requirement of interactive target discovery and access at

20

3.3. Large Scale Cut Plane Selection Technique

run-time. This leads to the design of our method Large Scale Cut Plane, which tries to
provide such an optimized approach.

3.3 Large Scale Cut Plane Selection Technique
To close the gaps of prior art and to tackle the requirement stated in 3.1.2, we designed
Large Scale Cut Plane as a combination of the Virtual X-Ray and the Multiple Views
pattern, as described in Section 2.2. Thereby, we utilized the strong disambiguation
strength of Virtual X-Ray that can handle object interaction up to containment, which
makes up the weak disambiguation capabilities of Multiple Views. Furthermore, we
obtain high depth cues by implementing a double integrated view into the Virtual X-Ray
pattern and allow 3D navigation [ET08]. This is in particular important due to the large
spatial extent of our intended 3D environments. We provide full depth cues across both
integrated views to foster human perception and spatial understanding. Furthermore, we
obtain a very high target invariance dimension as we retain – across the entire interaction
period – appearance, depth, geometry and location of target and of remaining distractors.
We design Large Scale Cut Plane as an active online interaction model to avoid offline
recomputation that would violate the interactivity requirement. The technique acts in
the view as well as object space for task solution, meaning that we both manipulate
the viewing transform as well as the 3D environment itself, as each of them alone is not
sufficient for continuous 3D surface environments. With the chosen design, Large Scale
Cut Plane retains a high degree of depth cues and supports spatial relation during target
discovery and access.
The Large Scale Cut Plane Technique is a composite two-step selection technique. The
two steps comprise

1. an interactive plane cut through the 3D environment following the Virtual X-Ray
pattern,

2. an integrated viewport change employing the Multiple View pattern to provide
users with a detailed view on the virtual environment in which they can a) navigate
along the cut plane, b) segment target patches and

3. select those target patches. A formal description is given in Figure 3.5.

Simple natural gestures are employed to operate our technique: we use a mid-air hand
pointing gesture to align and confirm the cut plane, and a finger pointing gesture for
both segmentation and selection. All gestures are illustrated in Figure 3.4.

3.3.1 Workflow of Interaction Technique
As shown in Figure 3.5, users can start the interaction process while navigating through
the virtual environment. Using the mid-air arm gesture Align CutPlane, they trigger the
vertical cut through the scene while they simultaneously can define the yaw direction θ

21

3. Methodology

Figure 3.5: State diagram of the Large Scale Cut Plane. The viewports are coded in
violet, gestures in blue and interactions in green.

of the cut plane by changing their arm’s pointing direction. While doing so, users are
provided with the CutPlane Preview which shows a preview on the cut scene. Therefore,
the environmental 3D geometry at one side of the cut plane remains unchanged while
on the other side the environmental 3D geometry is rendered semitransparent. For our
algorithmic implementation, we have chosen to set the geometry transparent at the right
hand side of the cut plane. This preview functionality is inspired by the Virtual X-Ray
techniques that have been found to make discovery trivial and facilitates target access
[ET08]. Since pure Virtual X-Ray approaches require a priori knowledge of the target to
correctly remove distractors which weakens the depth perception, we incorporated the
Multiple Views paradigm by integrating a second view that is presented to the user upon
executing the Confirm CutPlane gesture.
Within this CutPlane Visualization, the cut surface of the unchanged geometry is
highlighted to provide visual cues of the cut plane while the semi-transparent geometry
on the other side is set to almost transparent to minimize user distraction. Next, the
viewport is manipulated by translating the user’s viewing component (the virtual camera)
as well as the avatar’s geometry along the scene’s ground plane. In our implementation
with a left-handed coordinate system, we have found a slight positive translation along
the x- and z-axis to be effective.
Thereby, we achieve two important things: upon view port change, users are provided
with

1. an overview of the cut surface

22

3.3. Large Scale Cut Plane Selection Technique

2. alignment with the cut plane so that they can directly view and explore the
remaining scene geometry

Therefore, users are able to freely look around and travel along the cut plane for inspection.
Thereby, hidden and occluded target areas (up to containment) can be quickly accessed,
inspected and selected. Therefore, users first perform a segmentation within the visible
scene geometry using the mid-air hand gesture Pointing to define a segmentation boundary
that determines the target patch they want to extract. Upon satisfaction, users change the
state to selection and perform the Pointing gesture to finally segment and subsequently
select the target patch.
After selection, users remain in the CutPlane Visualization to perform another selection.
Alternatively, they can exit the CutPlane Visualization by executing the Confirm CutPlane
gesture. This triggers the manipulation of the viewport. An inverse translation is applied
yielding a re-aligned user’s viewing component and avatar geometry with their 6DOF
pose upon plane cut. Furthermore, the complete virtual environment is rendered opaque
again. The entire technique’s workflow is illustrated in Figure 3.6, the algorithm for cut
plane alignment and user repositioning is described in Algorithm 3.1.

Align CutPlane Confirm CutPlane Segmenta on

CutPlane Visualiza on

Selec onExplora on

Normal Scene View CutPlane Preview

Exit CutPlane Explora on

Normal Scene View

Figure 3.6: Large Scale Cut Plane interaction sequence.

3.3.2 Interaction Technique Algorithm
A user starts exploring the scene in the normal immersive 3D scene view. If the Align
CutPlane gesture is performed, a plane’s direction is calculated and the CutPlane Preview
is rendered. Algorithm 3.1 shows the necessary calculations with user’s torso position
Ptorso ∈ R3 and hand position Phand ∈ R3 as input. The resulting direction dcutplane ∈ R3

together with Pcutplane ∈ R3 - a point that lies on the plane itself - are used to show
the CutPlane Preview by rendering parts of the geometry semi-transparent, in our
implementation on the right side of the cut plane. This is calculated per pixel, as
described in Algorithm 3.1.

Upon execution of the Confirm CutPlane gesture, the cut plane is locked at the current
user’s position Ptorso ∈ R3 and the manipulation of users’ viewport is performed, cal-
culating Ptorsonew ∈ R3, as shown in Figure 3.7. In this CutPlane Visualization, travel
is constrained to one degree-of-freedom along the direction of the cut plane. Thereby,

23

3. Methodology

Algorithm 3.1: Cutplane-Creation and ViewChange
Data: Ptorso, Phand

Result: dcutplane, Pcutplane

1 Dcutplane ← normalize(Ptorso + Phand) Pcutplane ← Ptorso + dcutplane ∗ length
2 foreach P in pixels do
3 P.visible ← distance(Pworldpos, Pcutplane) < 0
4 end

Ptorso

Phand

(a) Align CutPlane

Ptorso

Ptorso + cutplane * length = cutplaned P

translate_local_x tr
an

sl
at

e_
lo

ca
l_

z

V
IS

IB
LE

C
U

T-
AW

AY

Ptorso_new

d cutplane

(b) Confirm Plane, User Repositioning

Figure 3.7: Geometric representation of the Large-Scale-Cut-Plane-Algorithm

distraction of users can be minimized as they can not get ”lost”. If the pointing gesture
is executed, users can draw paint strokes onto the unchanged parts of the scene geometry
by performing a ray cast with the 3D scene reconstruction. Upon finishing the pointing
gesture, the segmentation algorithm computes a boundary. As prior art segmentation
approaches take the entire 3D model into account, we investigated a local region growing
algorithm to ensure interactive framerates even when operating within large 3D scene
reconstructions. This algorithm is described in Section 3.3.3. If a correct segmentation
boundary was found the user can subsequently select this indicated target patch by
executing the Pointing gesture. This extracts the patch from the global 3D reconstruction
model. Upon patch selection, the extracted patch is relocated to the user’s current

24

3.3. Large Scale Cut Plane Selection Technique

position for subsequent manipulation. Since manipulation is not covered within the
scope of this thesis, the patch geometry remains at the user’s position. Upon selection
completion, users can exit the CutPlane Visualization by executing the Confirm CutPlane
gesture. This reverts the previous view port change so that users’ viewing component is
re-aligned with Pcutplane. Furthermore, the transparent scene geometry is set opaque to
present the normal scene view to the users.

3.3.3 Interactive Segmentation within Large Dense 3D Surfaces
The segmentation algorithm has to run at interactive framerates, since lowering or even
interruption of the system’s responsiveness would mitigate interactive exploration and
immersive user experience. It was therefore designed to solely operate in the local
neighborhood of the drawn paint strokes and not on the whole dense reconstruction. In
its current form, it is restricted to perform planarlike segmentation and does not involve
global surface processing operations like the related interactive methods in Section 2.3.
Our segmentation technique is divided into the following subtasks:

• Find a segmentation plane

• use a region growing algorithm to create a thick boundary

• use an edge thinning technique to narrow down the thick boundary

• use again a region growing technique to define the individual segments

This technique tackles the requirement, as stated in Section 3.1.4.

Finding a Segmentation Plane from Hitpoints

As first step, a list of geometry hitpoints is created as the result of the raycasts made
by the user’s segmentation paint-strokes. Then these hitpoints and the current user’s
position are fed into a least-squares plane-fitting algorithm; the user’s position acts
as a spatial reference point to ensure the correct orientation of the estimated plane.
Taking the user’s position into account is crucial especially in such cases when the local
z-distances of the found raycast hitpoints w.r.t the user’s position are nearly the same.
Figure 3.8 shows this scenario. Not taking the user’s position into account would create
a useless nearly vertical segmentation plane, which would have never been an intended
segmentation boundary w.r.t the user’s paint strokes.

A Region Growing Algorithm to create a Thick Boundary

Next, the region growing algorithm as described in Algorithm 3.2 marks all vertices that
lie inside a parameterizable distance to the plane. The algorithm takes the definition
of the plane (segP lane) as input parameter, a starting vertex ver ∈ R3 (the one with
the nearest distance to segP lane) from the set of hitpoints and a distance threshold thr,

25

3. Methodology

Phit_1

Phit_2

Phit_3

SEGMENTATION
PLANE

(a) Without user position

Phit_1

Phit_2

Phit_3

Puser

SEGMENTATION
PLANE

(b) With user position

Figure 3.8: Created segmentation plane with or without user position taken into account

which influences the broadness of the resulting boundary corridor. A reasonable threshold
value can be chosen, if the density of the given input data is taken into account. If thr is
small and the vertices of the input mesh are sparse the risk for an incomplete boundary is
raised, therefore the search has to start over with a larger threshold thr. After reaching
the threshold, the algorithm returns a list of boundary candidates boundaryList, which
represent the candidates for the final segmentation boundary, as Figure 3.9 demonstrates.

Edge Thinning Technique

A subsequent edge thinning step is employed to find the resulting thin segmentation
boundary that spatially describes a closed edge-loop. Edge thinning iteratively removes
those edges that have the maximal Euclidean distance to segP lane as long as the thinning
operation does not break the boundary’s connectivity constraint.

26

3.3. Large Scale Cut Plane Selection Technique

SEGMENTATION

PLANE

THICK

BOUNDARY

Figure 3.9: Result of the Region Growing based on segmentation plane-algorithm. The
selected vertices are drawn in red (marking of vertices is continued on the invisible
backfaces).

Algorithm 3.2: Region-Growing Algorithm
Data: segP lane, ver, thr
Result: boundaryList

1 foreach nb in ver.neighbours do
2 if distance(nb, segP lane <= thr) then
3 if NOT boundaryList CONTAINS nb then
4 ADD nb TO boundaryList

RegionGrowingRecursive(segP lane, nb, thr)
5 end
6 end
7 end

Region-Growing to create Target Patch

The next step cuts the mesh at the found boundary into two parts, this is done again
with a region-growing approach. A recursive search is started in both directions of the
neighbours of the boundary, and marks them with two different ids (set1 and set2). If on
one side all neighbours are visited and therefore all vertices at one side of the boundary
are found (set1 is full), all residual unassigned vertices are automatically assigned to
(set2). Figure 3.10 demonstrates the marking process.

27

3. Methodology

set_1

set_2

boundary

autofill rest

Figure 3.10: Region growing algorithm to divide mesh along the boundary, if the region
growing finishes at one part (like in set1), the remaining vertices will be automatically
filled into set2.

If the user executes another segmentation on an already logically segmented mesh, the
existing boundaries and marked segments have to be taken into account. We restrict our
method to only allow subsequent segmentations if the newly generated boundaries do
not overlap with existing boundaries, since that would lead to many edge cases that were
out of scope for this thesis. As long as the user does not apply a selection of the target
patch after segmenting, the mesh does not need to be physically divided, the physical
separation must happen only, if a selection task is performed, then every set of vertices
has to be converted into a new mesh. The technical challenges that arise from the mesh
splitting process are discussed in Section 4.6.1.

28

CHAPTER 4
Implementation

In this chapter, concrete implementation details, challenges and problems of the design
concepts, as stated in Chapter 3, are discussed.

4.1 Employed Frameworks and Technologies
The research prototype application is implemented in C# on Windows 10 and uses the
following engines/libraries/SDKs.

• Unity Engine 5.3.2 [Uni18]

• Axis-NeuronPROx64-3.6.32 (Perception Neuron SDK) [Noi15]

• CybSDK (Virtualizer Unity SDK) [Cyb13]

• Ovr-SDK-win-0.8 (Oculus Rift SDK) [Ocu13]

The following applications were used additionally:

• Maya 2014 Student Edition (for creating additional scene data) [Aut18]

• Axis Neuron 3.6.32 (for recording motion data and as tracking data source for
unity) [Noi15]

4.2 Building the Immersive Environment
The reconstructed 3D scene Hanghaus 2 Ephesos is available as a set of one .obj file and
90 .png-images. The model consists of ~600.000 vertices. The used Unity Engine has a

29

4. Implementation

vertex limit of 65536 vertices per mesh, and thus the unity asset importer automatically
splits the model into 20 different parts. Some parts of it are not exhausting the per-mesh
vertex limit, but since the engine’s splitting algorithm is proprietary, it can not be
retraced, on what criteria the partition process is done. Figure 4.1 shows the split up
mesh.

Figure 4.1: Split-up mesh from unity asset importer (parts highlighted as blue wire-frame
overlay).

Since a user should be able to navigate inside the scene without walking through walls,
collision objects are necessary. Unity provides the option to automatically generate
colliders from imported meshes, but this option is not preferred in our case. Since the
model is created from a dense reconstruction, the automatically created colliders could
contain point cloud outliers which block a visually free path, they could have non-manifold
geometry and would therefore be not well suited for unity’s physics engine. The user
could get stuck into a collider while navigating through the scene. Underlying colliders
were built out of boxes and a ground plane to prevent that problem, they can be seen in
Figure 4.2.

(a) Collider scene (b) Original scene

Figure 4.2: Custom-built box colliders for collision detection

For the target-patch selection tasks (especially for the user study), additional designed
target objects and obstacles are placed into the scene. The added objects are designed

30

4.3. Integration & Combination of the used VR-Devices

in a way to fit into the rest of the scene to preserve a high immersion level for the user.
Examples are shown in Figure 4.3.

Figure 4.3: Additional target objects and obstacles

4.3 Integration & Combination of the used VR-Devices
As described in Section 3.2.2, all three VR devices deliver their own tracking information.
The topic of this section is, how to use this information to get a correct mapping of
physical motions into the virtual world with this special setup. The user in the unity scene
is represented by a character controller. The SDK we get from the Virtualizer (referred
as Omni-Directional Treadmill (ODT)) is built on top of the Oculus Rift (referred as
Head Mounted Display(HMD)) SDK. This decision is reasonable, because the two devices
cannot be considered independently. If a user turns around in the ODT, the HMD as well
as the ODT register the movement, the control-algorithm has to decide how the rotations
affect the character controller. The ODT SDK solves it by not applying its own rotation
to the character controller at all. It always stays in a zero-rotated-state. To get the
correct view, it is sufficient, when the camera, which is attached to the character controller
is controlled by the tracking data from the HMD and the view gets adjusted properly.
When a user walks forward and is in a rotated state, the ODT SDK automatically moves
the character into the right direction, although the rotation itself is not applied on the
character controller. The third device, the Perception Neuron (referred as PNR) further
complicates the setup. As explained in more detail in Section 4.4 the SDK of the PNR
controls its own character in unity (in form of a robot with bones and joints). Since we
use the PNR in the one arm/hand setup mode no full-body rotations get applied to the
robot. If this robot would simply be attached to the character controller from the ODT,
the arm would have the correct rotation, but it would be on the wrong position and would
therefore be out of view. Figure 4.4a illustrates this problem. If we would additionally
apply the known rotation angle from the ODT this would be wrong too, because then we
would add up the ODT plus PNR rotation, and would get twice as much rotation for the
arm as needed, as Figure 4.4b demonstrates. The solution to the problem is illustrated
in Figure 4.4c: The body of the robot gets visually removed, since it is not be visible in
first person view anyway, and the arm gets translated, as if the shoulder starting point

31

4. Implementation

would be rotated, but instead of applying the rotation, only a translation to the new
shoulder starting point is applied. The correct rotation gets applied automatically from
the PNR rotation and thus the arm is in its correct transformed state. The process is
formally described in Algorithm 4.1.

(a) Not correct: Robot at-
tached without applying ro-
tation (incorrect), blue line:
original unrotated state, red
line: rotated body (and HMD)
in real world

(b) Not correct: rotation ap-
plied on robot (correct), but
rotation on arm applied twice
(incorrect), blue line: original
unrotated state, red line: ro-
tated body (and HMD) in real
world

Parm_before

Parm_after

(c) Correct: robot body removed
(here shown transparent), only
translation applied to arm, rota-
tion is applied from the motion
suit. blue line original rotation,
red line rotated body (and HMD)
in real world, green line trans-
formed with the same rotation
angle

Figure 4.4: Wrong and correct arm positioning

Algorithm 4.1: Algorithm for transforming the robot arm to the right position
Data: avirtY , Parm−old,Ptorso

Result: Parm−new

1 darm ← Parm−old - Ptorso

2 Parm−new ← rotate(avirtY , Y − axis) ∗ darm

4.4 Implementation of Arm and Hand Gestures System

The complete gesture detection and processing system is described in the following order:
First, the hardware preparation, then the software bridge from the manufacturer’s
software to the unity engine, next getting the tracking positions in unity, afterwards
detecting gesture patterns of those positions, and finally, using that information to control
our application.

32

4.4. Implementation of Arm and Hand Gestures System

4.4.1 Hardware Preparation

The motion suit Perception Neuron [Noi15], which is used for this project, has different
available configurations. The two most common are full body mode and single arm mode
(as shown in Figure 4.5a). Since our design consists only of one-hand gestures we setup
the Neuron suit in the single arm configuration (Figure 4.5b and 4.5c) with the addition
of a second neuron for the index finger to ensure increased accuracy in that for us crucial
tracking area.

(a) Comparison
(b) Single arm
setup

(c) Single arm setup with
additional neuron

Figure 4.5: Used Perception neuron setup

4.4.2 The Software Interface

For getting the data into our system we use two software tools that are provided by
the manufacturer of the motion suit: the software Axis Neuron and the Neuron unity-
integration SDK. The software takes responsibility of the communication with the motion
suit via USB cable or WIFI connection and broadcasts the data via a TCP network
interface to a configurable port. The software is also capable of live recording motion
data and replaying the recorded data instead of live motion data on request. We used
that to test and tweak our gesture detection without the need to always put the suit
on. On the unity side,the manufacturer’s SDK consists of a 3D-model of a robot, which,
if placed into the scene takes over the translations and rotations of the user’s physical
motion data. As we already discussed in Section 4.3 we programmatically removed the
translation and rotation of the body such that they do not contribute to the remaining
transformations. That means, our transformations begin at the shoulder component.
Additionally we also removed all parts except the right arm and hand from the 3D model
of the robot, so they cannot block the view, when the user and thus the robot mesh gets
repositioned.

33

4. Implementation

4.4.3 Obtaining 3D Pose
The transformations of the robot arm are organized as a hierarchical scene graph. Every
frame, the gesture component stores the resulting world positions and local rotations
from the given transformations of all body parts that are needed by the gesture detection
engine. In our case, those positions are:
PArm, PElbow, PHand, PT humb1−3,PIndex1−4, PMiddle1−4,PRing1−4,PP inky1−4.
And one rotation angle: rhandX .
Figure 4.6 illustrates their location on the robot model. Those are more positions than
physical neurons are available, the interpolation logic is done by the Axis Neuron software
and works in a very robust way most of the time.

Parm

Phand

Pelbow

Pthumb1-3 Pindex1-4

Pmiddle 1-4

Pring 1-4

Ppinky 1-4

r hand_X

Figure 4.6: Location of the tracking points on the robot model

4.4.4 Detecting Gesture Patterns
For our two main postures V erticalHand and Pointing (as described in Figure 3.4) we
use different angles and directions between our tracked points to detect if one of those
postures is met.
For the V erticalHand posture we use the following metrics: direction from arm to elbow:
darm−elbow, direction from elbow to hand: delbow−hand, direction from hand to the tip of
the middle finger dhand−middle, direction from hand to the tip of the ring-finger dhand−ring

and the local x-rotation-angle of the hand-transform rhandX . A V erticalHand posture is
detected if the directions darm−elbow, delbow−hand, dhand−middle and dhand−ring are similar
enough (deviation below a certain configurable threshold) and the rotation rhandX is
between a configurable minimum and maximum angle, which ensures that the hand
must be held in vertical position to detect the posture). Algorithm 4.2 and Figure 4.7
demonstrate the detection.

The second posture Pointing works in a similar way. In this case the directions of the
individual fingers in relation to each other are important. As long as the direction from
the hand PHand to the tip of the index finger PIndex4 is similar to the direction of the
finger itself (dindex1−index4) and the other fingers lie in orthogonal-near direction (with
a theoretical angle of 90 degrees or more between index finger direction and direction

34

4.4. Implementation of Arm and Hand Gestures System

d arm_elbow

d elbow_hand

d hand_middle4

d hand_ring4

r hand_X

Figure 4.7: Used metrics in the Vertical Hand posture detection

Algorithm 4.2: Algorithm for detecting the Vertical Hand posture
Data: darm−elbow, delbow−hand,dhand−middle,dhand−ring,rhandX , thresholdgesture,

thresholdangleMin, thresholdangleMax

Result: isV erticalHandActive
1 dotarmelbow−elbowhand ← dot(darm−elbow, delbow−hand)

dotarmelbow−handmiddle ← dot(darm−elbow, dhand−middle)
dotarmelbow−handring ← dot(darm−elbow, dhand−ring) avg ←
average(dotarmelbow−elbowhand, dotarmelbow−handmiddle, dotarmelbow−handring)
rotisInbetween ← thresholdangleMin < rhandX < thresholdangleMax

2 if rotisInbetween AND avg > thresholdgesture then
3 isV erticalHandActive ← true
4 end
5 else
6 isV erticalHandActive ← false
7 end

of every other finger) then the Pointing posture is detected. Algorithm 4.3 and Figure
4.8 demonstrate the detection. The position of the tip of the index finger is also stored
as input for calculating raycast directions when the gesture is used in the segmentation
process.

The usage of configurable thresholds brings flexibility to the gesture detection system and
can prevent inoperabiltiy of the whole application. The thresholds can be easily adjusted,
if the accuracy of the used hardware is unstable, or the skills of the participating user to
perfectly reproduce a demanded gesture are insufficient.

35

4. Implementation

dhand_index4

d index1_index4

dmiddle1_middle3

d ring1_ring3

d pinky1_pinky3

Figure 4.8: Used metrics in the Pointing posture detection

Algorithm 4.3: Algorithm for detecting the Pointing posture
Data: dhand−index4, dindex1−index4,dmiddle1−middle3,dring1−ring3,dpinky1−pinky3,

thresholdgesture

Result: isPointingActive
1 dothandindex4−index1index14 ← dot(dhand−index4, dindex1−index4)

invdotmiddle13−index14 ← 1 − clamp(dot(dmiddle1−middle3, dindex1−index4))
invdotring1−ring3 ← 1 − clamp(dot(dring1−ring3, dindex1−index4))
invdotpinky13−index14 ← 1 − clamp(dot(dpinky1−pinky3, dindex1−index4))

2 avg ← average(dothandindex4−index1index14,
3 invdotmiddle13−index14, invdotring1−ring3,
4 invdotpinky13−index14)
5 if avg > thresholdgesture then
6 isPointingActive ← true
7 end
8 else
9 isPointingActive ← false

10 end

4.4.5 Apply Detected Patterns
The distinction between the two postures Vertical Hand and Pointing are used as a base
for all gestures that are needed to interact with the system.
The gesture Align CutPlane uses the Pointing posture and the direction from torso
to hand to align the CutPlane. The gesture Commit CutPlane to enter and exit the
CutPlane View is also based on the Vertical Hand posture. Additionally, a check is
implemented, such that the direction from arm to the hand (darm−hand) is also compared
to the up-vector by building a dot-product between the two of them, as Figure 4.9

36

4.5. Implementation of Large Scale Cut Plane Technique

demonstrates. If a certain threshold is met, the gesture triggers the user-requested
view-change.

d arm_hand

d up

Figure 4.9: Used metrics in the commit plane gesture

4.5 Implementation of Large Scale Cut Plane Technique
The implementation details of our novel Large Scale Cut Plane technique are structured
in the following way: In Step 1, the details of Cut Plane Alignment are discussed, step 2
explains the transition into the Cut Plane View, following with step 3, which clarifies the
handling of Raycasts in the Cut Plane View.

4.5.1 Step 1: Cut Plane Alignment
When a user performs the Align CutPlane gesture, an X-Ray view on the right side of the
plane has to be presented to the user. The geometry on the left side of the plane should
remain unchanged. The plane itself and the adjacent geometry within a certain distance
to the plane have to be marked visually. An example is presented in Figure 4.10.

We decided to implement the needed x-ray semitransparent view by manipulating the
pixel shader. Since the same shader is used for rendering theCut Plane Alignment View
and the Cut Plane View we need an approach that is suitable for both views. The most
important difference of the two views is the viewing angle. The Cut Plane View allows a
frontal view through the plane, therefore it is possible that front-faces of objects get sliced
away, which is an issue because back-faces are usually not rendered to save computation
time. Thus, for the Cut Plane View it is necessary to render the back faces of the model
too, which would otherwise lead to the phenomenon, that sliced objects get completely
cut-away in this view. The problem is illustrated in Figure 4.11a. The solution to this
problem is to turn off backface culling in this case, as Figure 4.11b shows.

To take into account, that we need to render opaque and transparent parts in one view,
the rendering is done in two passes: First, the model is rendered with alpha = 1 (opaque)

37

4. Implementation

(a) View before Align CutPlane gesture

(b) View while executing CutPlane Align ges-
ture

(c) View while executing CutPlane Align ges-
ture

Figure 4.10: X-Ray view in CutPlane Align Mode:left side of the geometry is untouched,
right side is visualized semi-transparent, plane cut is visually enhanced on the adjacent
geometry with blue coloring

and backface culling turned off. In this iteration, every fragment that has a relative
position (as seen from the viewpoint) in front of the cutplane gets discarded. Then, in a
second shader pass the same geometry is rendered with alpha = 0.3, (semi-transparent),
but this time every fragment that has a view position behind the cut plane gets discarded.
Backface culling can be turned on for this pass, as there happen to be no "sliced front
faces" in front of the plane. However, for this pass it is necessary to turn off the z − test,
otherwise we would not be able to get the x-ray functionality in the Cut-Plane Alignment
view. An enabled z − test would prevent the rendering of occluded geometry at all. The
blue cut-plane visualization enhancement is realized by adding blue color to the output
if the fragment’s world position is within a certain distance to the cut plane. Table 4.1
gives an overview over the different render options.

1st Pass 2nd Pass
Render Style Opaque Semi-Transparent

Backface Culling Off On
z-Test On Off

Table 4.1: Render options of the two different passes

38

4.5. Implementation of Large Scale Cut Plane Technique

(a) Problem: back
faces not visible

(b) Solution: turn
off backface culling

Figure 4.11: Disabled backface culling for opaque part of the cutplane

Unity supports multiple render passes in a surface shader, and the necessary render
switches can be specified per render pass, so it can handle every needed pass in one
shader, which is attached to the rendering component of the 3d model. The formula,
that decides if a pixel is drawn or discarded is outlined exemplary for the opaque case in
Algorithm 4.4. The algorithm’s input variables Pplane1 and Pplane2 are the world positions
of two points lying on the plane, and Ppixel is the world position of the processed pixel.
The transparent case is handled the same way, only with opposite sign.

Algorithm 4.4: Shader calculation that decides if a pixel has to be discarded.
Data: Pplane1, Pplane2, Ppixel
Result: isDiscarded

1 distance ← ((Pplane2.X − Pplane1.X) ∗ (Ppixel.Z − Pplane1.Z)) − ((Pplane2.Z −
Pplane1.Z) ∗ (Ppixel.X − Pplane1.X)) if distance > 0 then

2 isDiscarded ← true
3 end
4 else
5 isDiscarded ← false
6 end

4.5.2 Step 2: Transition into Cut Plane View
When the user has found the desired position and rotation of the cut plane, she has
to lock it in with the Commit CutPlane gesture. The progress, while executing the
Commit CutPlane gesture to enter or exit the Cut Plane View is visually indicated by
progress lines on the cutplane itself (see Figure 4.12). After finishing the gesture, a user
repositioning, as outlined in Figure 3.7b is made. Since navigation in the Cut Plane
View is restricted to plane-aligned movement only, a set of unity collider walls must be

39

4. Implementation

generated instantly to create a small plane-aligned corridor where the user can move and
the default colliders must be deactivated (see Figure 4.13).

Figure 4.12: Progress lines: Visual indication of gesture progess

Figure 4.13: Custom colliders to restrict movement (colliders in green)

4.5.3 Step 3: Raycast in Cut Plane View

While staying in the Cut Plane View the user is able to draw paint strokes onto the
geometry with the execution of the Pointing gesture. Drawing paint strokes is also
possible when the comparing base line technique Raycast (as described in Section 5.1.1)
is active. In that case, a Unity Physics Raycast is executed and the first found geometry
hitpoint can be used. However, if the Cut Plane View is active, a straightforward Raycast
is not possible any more because of two reasons: First, our Cut Plane View technically
contains all the geometry from the scene, even if a part of it is rendered transparent. The
first hitpoint could land on a transparent part in front of the plane, but we want to draw
our paint strokes behind the cut plane. And second, even if there is no geometry in front
of the cut plane we could hit a "sliced object" and Unity would ignore the hitpoint because
its Raycast functionality does not take back faces into account. So we use a Double
Raycast approach. It consists of one forward ray that stores all front-facing-hits and one
inverted backward ray, that starts at the hit point with the maximal Euclidean distance
to the user’s position, points towards the user’s position and stores all back-facing-hits,
again only selecting the one with the minimal Euclidean distance to the user but behind
the cut plane. Figure 4.14 explains the concept.

The resulting series of hitpoints is then used to perform a segmentation on the geometry.

40

4.6. Implementation of Segmentation

Ptorso_new

d cutplane

Pbackhit2

Pbackhit1

Pfronthit1

Pfronthit2

Figure 4.14: Double Raycast. Chosen hitpoint is the bigger green point from the backward
ray. It is the point with the minimal Euclidean distance to the user but behind the cut
plane.

4.6 Implementation of Segmentation
Our segmentation method is composed of 5 subsequent steps, as Figure 4.15 describes.

thick
boundary

plane
fitting

region
growing

edge
thinning

region
growing

raycasts into
3D space

2D paint
strokes

3D hitpoints
3D
segment.
plane

thin
boundary

segmented
parts

data

methods

Figure 4.15: The pipeline of the segmentation method.

There are two parts in the segmentation pipeline that use some form of the region growing
algorithm. Both parts, namely the creation of a thick boundary (as described in Section

41

4. Implementation

3.3.3) and the marking of vertices to find the segmentation parts (7) are dependent on a
suitable data structure to quickly navigate on the graph of edges and vertices. For this
reason, we incorporate a pre-processing step on those parts of the environment where
a segmentation at runtime should be possible. As a limitation, like stated in Section
3.2.1 unity splits the dense reconstruction into sub-meshes and thus building a connected
neighbour structure is only possible inside those sub-meshes. That limits also the later
segmentation in the application to specific regions of the scene. The data-structure to
quickly find neighbours of vertices is built up by traversing the array of triangles that is
provided by unity for each mesh. Algorithm 4.5 shows the process. This pre-processing
step is done at every startup of the application, but could be sourced out to an external
process which caches the neighbour graph in a file as long as the input meshes stay the
same.

Algorithm 4.5: Create vertex-neighbour graph structure
Data: arrtriangles, Phand

Result: dicneighbours

1 foreach arrtriangle in arrtriangles do
2 dicneighbours[arrtriangle[0]].add(arrtriangle[1])

dicneighbours[arrtriangle[0]].add(arrtriangle[2])
3 dicneighbours[arrtriangle[1]].add(arrtriangle[0])

dicneighbours[arrtriangle[1]].add(arrtriangle[2])
4 dicneighbours[arrtriangle[2]].add(arrtriangle[0])

dicneighbours[arrtriangle[2]].add(arrtriangle[1])
5 end

With that structure in place, a region growing algorithm simply can loop through all
neighbours of a vertex and call itself recursively until all vertices are visited. After
the creation of a thick boundary the edge thinning process, as described in Section 7
is supposed to narrow down the boundary until it only consists of a thin edge loop.
However, while performance-testing the pipeline, the iterative removal and the subsequent
boundary-correctness-check after each iteration, broke in some cases the interactivity
requirement as stated in 3.1.6. As it turned out, the skip of that step does not harm the
overall segmentation process. The parametrizable distance threshold thr from section
3.3.3, which influences the width of the resulting boundary corridor in the boundary
creation step can be optimized, until a reasonable thin boundary, that fits our purposes
is found. Our region growing algorithm to find segmentation parts does not necessarily
need a complete thinned out boundary as input. Figure 4.16 demonstrates the resulting
boundaries.

4.6.1 Selection and Target Patch Creation
After a successful segmentation and the logical division of an object in segmented parts,
a physical splitting of the mesh is necessary for two reasons: first, if a subsequently

42

4.7. Implementation of the VR-User Interface

(a) Multiple segmentation boundaries on test
models

(b) Segmentation boundary on the actual
scene

Figure 4.16: Progress lines: Visual indication of gesture progess

selection happens after the segmentation, we move the cut out part towards the user as
result of the selection process. So this part has to be a an own detached object to enable
the needed transformations on it. Second, if the user’s way is blocked by geometry, a
selection gesture cuts away the obstacle. The splitting itself is done easily in unity, such
that a new object with an attached mesh can be created in runtime without interrupting
interactivity. Though, a problem arises when creating the new colliders that are needed
to update the engine’s collision detection information. If a mesh-collider is created
from the cut geometry, the user can get stuck on them because the engine’s internal
collision physics algorithms are not very robust against non-closed-objects. The solution
to this problem is to automatically generate a closed box-collider out of the non-closed
mesh-collider that serves as user’s collision object. The mesh-collider itself is needed too,
because the Physics Raycasting needed for our segmentation-paint-strokes has to work
with exact geometry, the box-collider is not applicable for that. To get this combination
of different colliders working without interfering each other, we define physics layers
in Unity, where the Raycast only takes collision information from layer1 into account,
the player collision indeed the colliders from layer2. Figure 4.17 shows a subsequent
segmentation and selection process. After a part is selected, the specific geometry is cut
out from the rest.

4.7 Implementation of the VR-User Interface

As described in Section 3.2.2, the user is provided with additional input possibilities in
form of an overhead menu to prevent the needed creation of a new gesture for every new
input action. The overhead UI is created as a set of camera-aligned unity buttons with
attached colliders to recognize a raycast hit from a pointing gesture. If the raycast’s
direction hovers over a button longer than a defined dwell time thr, a certain action is
executed. The change between selection and segmentation technique, as well as executing
undo-commands can be performed that way. An example of the overhead UI is shown at
Figure 4.18.

43

4. Implementation

Figure 4.17: Subsequent segmentation-selection process

Figure 4.18: The overhead UI

4.8 Software Components
Figure 4.19 shows the software components, structured by device input components,
processing in Unity, and output generation. Inside the Unity box the internal software
flow of the core components is displayed.

44

4.8. Software Components

Unity Engine

Gesture
Controller

Player
Controller

Scene
Controller

Segmentation
Controller

CutPlane
Controller

UserStudy
Logger

UserStudy
Data

UserStudy
Birdview
Screenshots

informs scene
about detected
gestures

controls player
position/rotation when
input is received

controls
cutplane
visibility/
scene
transparency

tells where
to segment
input data

triggers UserStudy
data and Birdview-
Screenshot
writing

Gesture
Tracking

HMD
Tracking

Virtualizer
Tracking

Axis
NeuronInput

Output

sends neuron arm/hand
positions/rotations to unity

combines tracking
information of
all input devices
for player
controller

HMD
Output

stereoscopic image

Figure 4.19: The software information flow
45

CHAPTER 5
Experimental Results

For a comprehensive evaluation of this thesis’ work we conducted a quantitative and
qualitative evaluation by comparing the Large Scale Cut Plane selection technique with
the baseline technique Raycast – as described in Section 5.1.1 – across three different
selection scenarios based on variations of patch position and visibility. As target patches,
we used convex parts of the scene that can be segmented by defining a straight boundary.

5.1 Setup

5.1.1 The Raycast-Technique as Comparison
The well-studied Raycast technique [BKLP04c] was implemented as a baseline technique
for comparative purposes, used for our user study. Raycast comprises the same sequence
as the Large Scale Cut Plane technique, but without setting a cut-plane and execution
of the transition into the geometry-reduced refinement view. Thus, it consists only of the
segmentation and selection step which are both performed with the Pointing gesture.

5.1.2 Objectives
With this study, we want to investigate users’ performance and perception when selecting
patches from large dense 3D reconstructions while being immersed. Therefore, we
evaluated both Large Scale Cut Plane’s performance and usability compared to a state-
of-the-art technique by investigating the following research questions:

1. How does the two-step technique Large Scale Cut Plane quantitatively and qualita-
tively perform compared to Raycast?

2. How do both techniques perform regarding users preference and level of expertise?

47

5. Experimental Results

5.1.3 Apparatus

To conduct our experiment, we used the test apparatus as shown in Figure 5.1a. It
comprises of the devices integrated into the research prototype, the Oculus Rift DK2 as
HMD, the Cyberith Virtualizer as an omni-directonal treadmill to allow natural walking
for virtual travel and Perception Neuron [Noi15] as motion capture suit to track users’
right hand and upper limb motion.

Implementation

The devices of our apparatus are connected to a single workstation running Windows 8.1
featuring an Intel Core i7-4790K processor (3.10 GHz), a GeForce GTX 980Ti graphics
card and 32 GB memory. On the software side we chose Unity 3D as rendering and
physics engine, and integrated both Oculus’ and Virtualizer’s SDK for scene viewing, head
orientation tracking and natural walking. We also integrated the Perception Neuron’s
Unity-Plugin, which provides a scene-graph including the world-position of all necessary
arm and hand parts with low latency and implemented our gesture recognition on top of
it. With the described setup, the dense 3D reconstruction can be explored at 60 frames
per second, the segmentation of a scene part with 21000 vertices can be performed in
480 milliseconds (20ms for region growing, 180ms for edge thinning, 260ms for physical
removal of the part).

5.1.4 Study Design

The study procedure for a single user consisted of four stages: 1) introduction and
pre-questionnaire, 2) training phase, 3) experiment, and 4) a post-questionnaire. At
stage 1, users were informed about the study and the procedure, followed by filling out
a pre-questionnaire. At stage 2, users were introduced to the VR input- and output
hardware as well as to the gesture set. Next, users were equipped with the VR hardware
and had time to familiarize with the hardware and both selection techniques by freely
interacting in a test environment, which comprised a simple Unity3D scene with some
artificial virtual objects that could be segmented and selected and where objects’ visibility
ranged from visible to fully occluded. As soon as the user reported to feel confident, the
experiment stage (3) started, comprising a randomized sequence of technique and task
combinations. Therefore, the user was positioned at a pre-defined starting point within
the immersive 3D point cloud while an info screen in the user’s HMD gave instructions
about the appearance of the target patch and the selection technique. Each task was
completed as soon as the user had correctly segmented and selected the target patch.
Then, the user was positioned at the starting point and was instructed with the next
task. Upon the completion of all task and technique combinations, users had to fill out a
post-questionnaire (5).

48

5.1. Setup

5.1.5 Test Environment

As test environment, we used the dense 3D reconstruction taken from [BMAW13] that
comprises approx. 650 000 vertices. A bird’s eye view onto the test environment is given
in Figure 5.1b where the positions of the target patches for each task can be seen.

(a) Test apparatus. (b) Bird’s eye view on the virtual scene.

Figure 5.1: The test setup

The model was provided as a textured mesh and covered a space of 25 × 34 m. After
importing the mesh into Unity3D, we scaled it so that 1 Unity3D unit ≈ 1 meter.
Furthermore, we manually added Unity3D colliders to the dense scene to prevent users
from walking through walls. With the setup from Section 5.1.3, the test model can
be explored at 60 frames per seconds. A test patch comprising 21.000 vertices can be
segmented with 200ms and extracted and thus selected within 260ms.

5.1.6 Tasks

We built three task scenarios that varied in target patch visibility and position. All
task scenarios were embedded in the test environment from Section 5.1.5. The target
objects of the task scenarios can be seen in Figure 5.2. During all tasks, test participants
were able to freely explore the scene but unable to walk or see through walls and other
obstacles. To prevent users’ disorientation in the large scene, we restricted segmentation
and selection to several key areas that were crucial for task completion. As a guidance for
the user the geometry of those areas was highlighted in yellow. The three scenarios differ
in the placement of the target patch, which in every case was a vase filled with flowers.
The goal of every task was to separate the vase from its pedestal with a horizontal
segmentation gesture followed by the selection of the segmented part of the vase. The
participants had to use both Raycast and Large Scale Cut Plane in combination with all

49

5. Experimental Results

three scenarios. That results in total in six different tasks which the participants perform
in random order. The difficulty of each task is given by the visibility and accessibility of
the task’s target patch.

No Occlusion - Object Fully Accessible

In this task, the vase with the flowers was not in the spatial vicinity of users, but clearly
visible from the starting point. With both techniques, users had the option to first walk
closer towards the target object or – since it is not occluded – try to segment and select
it from far distance.

(a) Fully visible (b) Partly occluded (c) Fully occluded

Figure 5.2: Different types of target objects.

Partly Occluded - Object Partly Accessible

Users were challenged with a target patch that was partly hidden behind three stone
pillars. With Raycast, it was either possible to segment and select one or more pillars to
obtain a better view onto the target patch, or to try to directly segment the semi-hidden
target vase between the pillars. The second approach required very precise positioning
as well as segmentation. With Large Scale Cut Plane it was possible to induce such
a CutPlane Visualization that presents the target patch fully visible and segmentable
during the refinement step.

Fully Occluded - Object Not Accessible

In this task, the vase was fully occluded by a wall within a separate room that entrance
was blocked by a wall; only the flowers were partly visible above the walls to indicate the
position of the vase. With Raycast, users first had to unblock the entrance by cutting
through the wall. With CutPlane, users could induce such a CutPlane Visualization that

50

5.2. Experimental Results

removed parts of the rooms to be able to directly access the vase by traveling along the
CutPlane during the refinement step.

Methods

We conducted the study using a within-subjects factorial design where the independent
variable was selection technique. In a second order evaluation, we introduced user
experience and favorite technique as third and forth independent variable. For analysis,
we both employed quantitative objective and subjective measures that are outlined in
Table 5.1.

[Task Duration] Accumulated time across all
tasks in seconds.

[Walk Distance] Sum of distances users walked
during all tasks in meters.

[Segmentation Miss] Number of performed segmen-
tation attempts in areas that
are non-relevant for task com-
pletion.

[Selection Miss] Number of performed selection
attempts in areas that do not
belong to the target patch.

Table 5.1: Objective Performance Measures.

In a post-questionnaire, we measured subjective measures as described in Table 5.2, using
a 5-point Likert scale rating:

Furthermore, we collected qualitative data through users’ comments and observations
during the experiment as well as written comments in the post-questionnaire.

5.2 Experimental Results
The quantitative objective and subjective data gathered from the test application and the
questionnaires were analyzed using repeated measures single factor ANOVA with repeated
contrast and Bonferroni confidence interval adjustment. To judge for significance, we
evaluated the F-ratio using both Huynh-Feldt and Greenhouse-Geisser adjustments; only
if both indicated a F-ratio below the significance value p = 0.05, we accept this F-ratio
as significant.

During the data analysis, we focused on 1) the evaluation of of all participants’ data re-
garding the employed selection techniques and 2) we looked at data of selected participants
- according to their experience - for each selection technique separately.

51

5. Experimental Results

[Task Load] Mean of the questionnaire’s
results measured with the
NASA Task Load Index
(TLX) [NA10]. Scale levels
were: very low (1), low (2),
average (3), high (4), and very
high (5).

[System Usability] Mean of the questionnaire’s
results measured with the
System Usability Scale
(SUS) [Bro96]. Scale levels
were: strongly disagree (1),
disagree (2), neither agree nor
disagree (3), agree (4), and
strongly agree (5).

[Ease of Use] Denoting participants’ degree
of agreement with "Rate each
selection technique in terms
on how easy it was to select
the target patch". Scale levels
were: Very poor (1), poor (2),
acceptable (3), good (4), very
good (5).

[Perceived Speed] Denoting participants’ degree
of agreement with "Rate each
selection technique in terms on
how fast you could select the
target patch", with the same
scale levels as above.

[Perceived Accuracy] Denoting participants’ degree
of agreement with "Rate each
selection technique in terms
on how accurate you could se-
lect the target patch", with the
same scale levels as above.

Table 5.2: Subjective Performance Measures.

5.2.1 Participants

Our test participants were found through local social media groups as well as amongst
students and staff of the university. Twenty-four (24) participants (19 males – 79,2%,
5 females – 20,2%) were involved in the experiment, while all participants successfully

52

5.2. Experimental Results

finished the it. Participants’ ages ranged between 22 and 56 years (mean µ = 31.92,
standard deviation σ = 7.87).

We asked all participants in the pre-questionnaire about their experience with VR
technology. One user indicated to have no (4,2%), seven slight (29,2%), four somewhat
(16,7%), eight moderate (33,3%) and four extreme (16,7%) VR experience. For later
evaluation, we grouped users according to their subjective experience, creating two
extreme groups: No Experts comprises users that indicate to have no or slight VR
experience (33,4%), as well as Experts that consists of users indicated to have moderate
or extreme VR experience (50,0%).

5.2.2 Overall Evaluation
In average, users trained both handling of the VR hardware and the two selection
techniques for µ = 399.17 [seconds] (σ = 128.331). To finish all tasks, users required in
average µ = 394.11 [seconds] (σ = 26.36) where they walked in average µ = 179.62 [m]
(σ = 11.09) while they performend µ = 5,83 (σ = 0.91) segmentation misses and µ =
2.95 (σ = 0.42) selection misses.

When analyzing these objective quantitative measures by technique, we found significant
differences between Raycast and CutPlane in all performance measures, as shown in
Figure 5.3.

 T
as

ks
 D

ur
a

on
 [s

]

(a) Task Duration

W
al

k
Di

st
an

ce
 [U

ni
ty

3D
 u

ni
ts

]

(b) Walk Distance

N
um

be
r o

f S
eg

m
en

ta
on

 M
is

se
s

(c) Segm. Misses

N
um

be
r o

f S
el

ec
on

 M
is

se
s

(d) Sel. Misses

Figure 5.3: Objective measures for both techniques across all tasks.

CutPlane outperforms Raycast in [Task Duration] with p = 0.025 (Raycast: µ = 239.62,
σ = 76.56 / CutPlane: µ = 191.57, σ = 91.43), [Walk Distance] with p = 0.031 (Raycast:
µ = 96.83, σ = 20.85 / CutPlane: µ = 82.78, σ = 38.62), [Segmentation Miss] with
p = 0.032 (Raycast: µ = 3.41, σ = 2.70 / CutPlane: µ = 2.41, σ = 2.22), and [Selection
Miss] with p = 0.00 (Raycast: µ = 2.54, σ = 2.06 / CutPlane: µ = 0.41, σ = 0.77).
An example of the user’s interaction in Task 3 – both with Raycast and with Cutplane
– while selecting a fully occluded patch is illustrated in Figure 5.4. Travel trajectories,
CutPlane interactions, segmentation (red) and selection (green) attempts are shown.

53

5. Experimental Results

(a) Raycast (b) CutPlane

Figure 5.4: User interaction while selecting a fully occluded patch.

Analyzing the subjective data, participants reported a significant difference between
Raycast and CutPlane for [Task Load] with p = 0.013. To draw further conclusions, we
looked separately at the results of each question of the TLX questionnaire and found
significance for "How physically demanding was the task?" with p = 0.010 (Raycast: µ
= 2.50, σ = 1.06 / CutPlane: µ = 2.00, σ = 0.83), and "How hard did you work to
accomplish your level of performance? with p = 0.015 (Raycast: µ = 3.00, σ = 0.78
/ CutPlane: µ = 2.58, σ = 0.82). No significance was found within the other TLX
questions. These results indicate that users felt to spend significantly less physical effort
across all tasks when using CutPlane compared to Raycast, while feeling alike with both
techniques in terms of success and confidence. This latter tendency is further backed
by the results of the overall subjective measure [System Usability], where no significant
difference between Raycast and CutPlane was found (p = 0.087). We further found no
significant differences between Raycast and Cutplane for the detailed subjective measures
[Perceived Speed] with p = 0.765 (Raycast: µ = 4.12, σ = 0.79 / CutPlane: µ = 4.21, σ
= 0.93) and [Perceived Accuracy] with p = 1.00 (Raycast: µ = 4.00, σ = 0.88 / CutPlane:
µ = 4.00, σ = 0.72). In contrast, users reported a significant easier selection ([Ease of
Use]) using Raycast compared to CutPlane with p = 0.001 (Raycast: µ = 4.54, σ = 0.65
/ CutPlane: µ = 3.83, σ = 0.86).

This subjective tendency was backed by comments from eight users describing Raycast as
very easy to understand and "direct". However, there was also mixed feedback for Raycast.
Three users felt annoyed when they needed to use RayCast ("So in this task I cannot use
CutPlane?") and two commented on the physical demands ("Oh that requires so much
walking and cutting."). Furthermore, five users commented on the obstacles within their

54

5.2. Experimental Results

way to the target object ("Oh that is mean (the obstacle), "I cannot directly select the
object. So do I need to cut through the wall first?" "Can I walk through the walls?").
Despite the clear out-performance of CutPlane regarding the quantitative measures, its
qualitative feedback was indifferent as well. In general, users commented more positively
about CutPlane the longer the experiment lasted ("Ah, now I understood." "Now I see
the advantages of the CutPlane visualization"), which is notably since all participants
reported to have understood the principles of both techniques in the training stage. Nine
users commented in a very enthusiastic way on the CutPlane visualization ("That’s so
cool - that is kind of an X-Ray view"), while one did not find the interface intuitive
("I do not really understand the CutPlane visualization") and two asked – during the
experiment – which part of the scene will be shown during the CutPlane visualization.
While some users did not realize across all tasks that you can view through walls with the
CutPlane Preview (4 users) and then walk through walls (which has been cut by the cut
plane) within the CutPlane Visualization (1 user), ten users heavily used the CutPlane
technique by indicating the plane cut from the initial position before even start to walk.

5.2.3 Evaluation on Preference & Expertise
To further analyze the above quantitative and qualitative findings, we evaluated the
collected data regarding the users’ experience level. Firstly, we found that Non Experts
preferred Raycast over Cutplane (87,5%), while Experts favored Cutplane over Raycast
(66,6%). This is notable, since both user groups had better results with CutPlane
regarding all objective performance measures, as given in Figure 5.5. It can be further
seen that Non-Experts achieve similar results with CutPlane across all measures as the
Experts.

Analyzing the subjective measures, Non Experts reported a similar perceived [Task Load]
for Raycast (µ = 2,43, σ = 0,43) and CutPlane (µ = 2.375000, σ = 0.54), while Experts
perceived more [Task Load] for Raycast (µ = 2,62, σ = 0,62) than for CutPlane (µ = 2,36,
σ = 0,47). Non Experts showed the tendency to clearly prefer Raycast over CutPlane in
terms of [Ease of Use] (Raycast: µ = 4.38, σ = 0.744 / CutPlane: µ = 3.38, σ = 0.775)
and [Perceived Speed] (Raycast: µ = 4.38, σ = 0.743 / CutPlane: µ = 3.75, σ = 0.707)
but not in terms of [Perceived Accuracy] (Raycast: µ = 3.63, σ = 1.061 / CutPlane: µ
= 3.63, σ = 0.518). Experts did not indicate a clear preference between both techniques
in terms of [Ease of Use] (Raycast: µ = 4.56, σ = 0.669 / CutPlane: µ = 4.17, σ =
0.835) or [Perceived Accuracy] (Raycast: µ = 4.25, σ = 0.754 / CutPlane: µ = 4.08, σ
= 0.793). However, they reported to prefer Cutplane over Raycast in terms of [Perceived
Speed] (Raycast: µ = 4.00, σ = 0.853 / CutPlane: µ = 4.50, σ = 0.793).

When analyzing users’ preference for one of the tested techniques, we further asked in the
post-questionnaire about the factors that users influence during their subjective technique
ranking. Therefore, they had to indicate on a 5-point Likert scale their perceived influence
of [Importance: Ease of Use], [Importance: Speed], [Importance: Accuracy], the possibility
to straightforwardly select objects at far distance – referred as [Importance: Distance]
– and the straightforward selection of fully occluded objects, referred as [Importance:

55

5. Experimental Results

Raycast
CutPlane

 T
as

ks
 D

ur
a

on
 [s

]

(a) Task Duration

Raycast
CutPlane

W
al

k
Di

st
an

ce
 [U

ni
ty

3D
 u

ni
ts

]

(b) Walking Distance

Raycast
CutPlane

N
um

be
r o

f S
eg

m
en

ta
on

 M
is

se
s

(c) Segmentation Misses

Raycast
CutPlane

N
um

be
r o

f S
el

ec
on

 M
is

se
s

(d) Selection Misses

Figure 5.5: Objective performance measures, grouped by expertise.

Occlusion]. Scale levels were: not important (1), slightly important (2), moderately
important (3), important (4), and very important (5).

While there was no noticeable difference in influence of [Importance: Ease of Use],
[Importance: Speed] and [Importance: Accuracy], users in favor of Raycast did not regard
[Importance: Distance] as a strong influential factor on their decision making (µ = 2.33,
σ = 1.557), while users favoring CutPlane found that measure much more influential (µ
= 4.00, σ = 1.537). Notably, not only users favoring Cutplane regarded [Importance:
Occlusion] as an important factor for their decision making, but also those in favor of

56

5.2. Experimental Results

Raycast but with a less strong tendency (Raycast: µ = 3.42, σ = 0.900 / CutPlane: µ =
4.25, σ = 0.754). Details are given in Figure 5.6a. Furthermore, when looking at the
users expertise, we found that Non Experts tend to rate both measures less important
than experts, as shown in Figure 5.6b.

Li
ke

rt
 S

ca
le

 L
ev

el
s

Favorite Technique

(a) By Favorite

Li
ke

rt
 S

ca
le

 L
ev

el
s

(b) By Expert

Figure 5.6: Influencing factors for technique ranking.

5.2.4 Discussion

Evaluating the objective performance measures, tendencies for all measures favoring
CutPlane over Raycast were reported, in particular in cases of more complex selections,
reflected by Task 2 and Task 3. While no significant difference between the techniques
was reported on [Walk Distance] across the tasks, CutPlane outperformed Raycast in
[Task Duration], significantly for Task 2 and with a strong tendency for Task 3. Thus,
Raycast cannot compensate with its direct nature the additional time that is required
for cut-away of obstacles in scenarios where the target patch is partly or fully occluded.
In Task 1 with no object interaction, we reported a tendency favoring Raycast’s direct
nature over CutPlane, however not significantly. Furthermore, we found strong tendencies
that Cutplane enables users to select more precisely and faster, as less segmentation and
selection misses occurred when using CutPlane compared to Raycast, in particular for the
complex selections in Task 2 and Task 3. Here, significant less errors could be reported in
Task 2 using CutPlane compared to RayCast. The above findings can support developers
and researchers when designing selection within a large immersive 3D reconstruction. We
plan to conduct more research in smaller as well as even larger environments to identify
thresholds at which one technique begins to outperform the other. As it was described
above, qualitative feedback on both techniques was mixed. This is also reflected by the

57

5. Experimental Results

fact, that no technique was subjectively favored over the other. In fact, tendencies of
preference were found when looking at users’ VR knowledge, where Non-Experts favored
RayCast while Experts preferred CutPlane. This is surprisingly due to the fact, that also
the Non-Experts performed significantly faster and more precise with CutPlane. However,
these results suggest that Non-Experts can quickly familiarize with CutPlane which
indicates that the technique’s underlying properties are well integrated and proved to
be beneficial for task completion. This enables Non Experts to correctly use it, however
additional investigations should be conducted regarding CutPlane’s user interface. Based
on the comments, we found that both CutPlane Preview and CutPlane Visualization
might invoke a lack of understanding. We will tackle this point in our future work. To
conclude, we can suggest to rather use CutPlane for selection of visible, partly as well as
fully occluded patches of dense point clouds as it was found superior over Raycast.

58

CHAPTER 6
Conclusion

In this thesis, the novel selection technique Large Scale Cut Plane was presented, that
enables users to select visible, partly as well as fully occluded patches with interactive
frame rates in immersive large dense reconstructions. It combines the visualization design
patterns Multiple Views and Virtual X-Ray. To the authors’ best knowledge, no prior
art exists that combines those patterns in a scenario of user-driven selection of target
patches within a large and dense 3D reconstruction that is immersively explored.

6.1 Contribution
The contribution of this thesis consists of the following items:

1. Large Scale Cut Plane We designed and developed the occlusion management
technique Large Scale Cut Plane that provides means for target patch discovery and
access in dense large 3D reconstructions while preserving the spatial relation be-
tween the target patch and its context. The technique is based on the visualization
design patterns Virtual X-Ray and Multiple Viewports([ET08]). The Large Scale
Cut Plane technique enables selection of visible, partly as well as fully occluded
target patches while being fully context preserving during the refinement phase to
allow for enhanced scene understanding.
The workflow of the Large Scale Cut Plane technique required the following imple-
mentation tasks to be done:

a) enable the navigation with the help of an ODT inside a dense reconstructed
environment with correct collision detection

b) develop the motion tracked gestures to indicate CutPlane Alignments
c) provide a correct visualization of the CutPlane Alignment View

59

6. Conclusion

d) perform the transition of the user into the CutPlane View
e) implement the changed navigation behavior reduced to one-axis movement

inside the CutPlane View
f) detect and process the gestures that induce painting onto the geometry to

indicate segmentation boundaries
g) develop the segmentation algorithm, which works based on those raycast

hitpoint results
h) implement a mesh separation algorithm to generate separate selectable objects

across the found boundary
i) enable the selection of the segmented parts

2. Segmentation Algorithm As a necessary pre-requisite to the selection step,
segmentation of the 3D reconstruction was a requirement. Several segmentation
algorithms (user-input-driven and automatic methods) were evaluated and as a
result we developed a segmentation technique that fitted our needs regarding
processing time and flexibility, especially for large scale dense reconstructions. The
segmentation algorithm was designed to operate on local raycast hitpoint results
on the surface of the target patch and tried to find a segmentation boundary only
by using information in spatial proximity of the given user’s paint stroke.

3. Preparation of a reconstructed Scene To use a dense reconstructed scene with
the Unity engine, some pre-processing steps had to be done. The importing of the
mesh and the preparation with correct and usable collision detection objects was
necessary.

4. Partial Geometric Transparency for CutPlane Alignment View We ex-
plored the possibilities of the Unity Engine to create the necessary visual adaptations
for the CutPlane Alignment View, since it was crucial to present the user a mixture
of opaque and transparent parts of the geometry at the same time within acceptable
real-time rendering times. We developed and integrated our own cut-out shaders
to achieve those results.

5. Combination Of VR Devices The VR setup consisting of a HMD, an ODT
and a hand gesture recognizing motion suit, which is used to enable interaction in
the Immersive VR environment, was combined in an effort to provide the user a
frictionless VR experience. Natural walking inside the ODT, while turning the head
into another direction, and the simultaneous execution of arm and hand gestures
was made possible. All of these systems independent tracking information had to
be joined in the correct way.

6. Easy to learn and accurate Gesture System A Gesture System with two
different main gestures was developed to give the user a natural, but efficient way
to interact with the VR environment. The gestures were designed in a way to
provide first-time users an easy learning curve, and nevertheless provide more

60

6.2. Future Work

experienced users accurate tools to interact with the virtual environment. The
technical implementation tried to allow performing the necessary movements in
an imprecise way and nevertheless provide execution of the correct action in the
system. The gesture system was complemented with an overhead button-click-menu
for additional tasks to prevent the necessity of learning too many gestures at once.

7. User Study A user study was conducted, that explored occlusion management in
dense large 3D reconstructions by statistically evaluating the novel Large Scale Cut
Plane technique in terms of ease of use and performance and compared with a state-
of-the-art technique as baseline. With this user study we evaluated the technique
in terms of speed, precision and ease of use, both quantitatively and qualitatively.
Our promising results indicate that Large Scale Cut Plane outperforms the prior art
technique RayCast, significantly for more complex selection tasks. However, is is not
considered as preferred option by non experts which suggests that improvements of
the user interface are required.

6.2 Future Work
The current implementation of the presented Large Scale Cut Plane technique explores
the basic concept of the presented idea in a very specific and constrained way. It serves
as a proof-of-concept of the idea to combine the patterns Multiple Views and Virtual
X-Ray. The overall design space of the combination of those patterns is much larger.

6.2.1 Exploring the Design Space of the Method
As future work, we plan to conduct further research on Large Scale Cut Plane’s user
interface to explore more possibilities of its design space, obtain an in depth understanding
of its current limitations and to draw conclusions on how to improve it to enable a better
(subjective) understanding of the technique’s core functionality for users. The extension
of the following parts of the technique could be worth examining:

• Allowing multiple (instead of currently one) geometry cutting steps in sequence
in advance of the selection step to further reduce the visible geometry and get a
better view of the selection target

• Experimenting with a different cut-away geometry than a plane, for instance
applying a cylindrical cut around the desired target patch

• Allowing the user to freely navigate after applying the cutting step instead of being
constrained to the direction of the plane

6.2.2 Testing Different Environment Types and Sizes
Furthermore, we plan to evaluate selection in both smaller and larger environments to
obtain findings if a threshold exists at which a one step technique such as Raycast begins

61

6. Conclusion

to be outperformed by our two step technique. Also the type of the used environment
could be varied at a follow-up user study to measure the performance of both methods.
Impacts of changes could be analyzed, e.g. if a more open space is used or in the opposite
case if a more maze-like environment is used.

6.2.3 Technical Improvements of the Algorithms
Finally, we aim at improving our current segmentation technique to overcome current
limitations. The usage of a plane in 3D space as segmentation base, as described in
Section 3.3.3 was a design decision to keep the drawing of segmentation boundaries
a simple and comprehensible task. Also, by using this technique we could implement
the necessary boundary finding algorithm relatively straightforward. If the user wanted
to create non-plane based segmentation boundaries, for instance cutting a hole out of
existing geometry by drawing a boundary circle, the segmentation method would require
a more sophisticated approach.

62

List of Figures

2.1 The Virtualizer ODT . 6
2.2 Perception Neuron Motion Suit . 6
2.3 For PC usage: HTC Vive . 7
2.4 For mobile usage: Oculus GO . 7
2.5 Multiple views: Drill sample [MVK13] . 9
2.6 X-Ray Visualization [HPGK94] . 9
2.7 Automatic mesh segmentation results . 10
2.8 Interactive mesh segmentation results . 12
2.12 Kinect fusion example [NIH+11] . 14
2.13 Lidar example [GIS18] . 14

3.1 Occlusion types (occluder: blue box, occluded object: red circle) 16
3.2 Scanned scene: Hanghaus 2 - Ephesos . 18
3.4 Different Gestures for interactivity. 20
3.5 State diagram of the Large Scale Cut Plane. The viewports are coded in

violet, gestures in blue and interactions in green. 22
3.7 Geometric representation of the Large-Scale-Cut-Plane-Algorithm 24
3.8 Created segmentation plane with or without user position taken into account 26

4.1 Split-up mesh from unity asset importer (parts highlighted as blue wire-frame
overlay). 30

4.2 Custom-built box colliders for collision detection 30
4.3 Additional target objects and obstacles . 31
4.4 Wrong and correct arm positioning . 32
4.5 Used Perception neuron setup . 33
4.10 X-Ray view in CutPlane Align Mode:left side of the geometry is untouched,

right side is visualized semi-transparent, plane cut is visually enhanced on the
adjacent geometry with blue coloring . 38

4.11 Disabled backface culling for opaque part of the cutplane 39
4.12 Progress lines: Visual indication of gesture progess 40
4.16 Progress lines: Visual indication of gesture progess 43

5.1 The test setup . 49
5.2 Different types of target objects. 50

63

5.3 Objective measures for both techniques across all tasks. 53
5.4 User interaction while selecting a fully occluded patch. 54
5.5 Objective performance measures, grouped by expertise. 56
5.6 Influencing factors for technique ranking. 57

List of Tables

4.1 Render options of the two different passes . 38

5.1 Objective Performance Measures. 51
5.2 Subjective Performance Measures. 52

64

List of Algorithms

3.1 Cutplane-Creation and ViewChange . 24

3.2 Region-Growing Algorithm . 27

4.1 Algorithm for transforming the robot arm to the right position 32

4.2 Algorithm for detecting the Vertical Hand posture 35

4.3 Algorithm for detecting the Pointing posture 36

4.4 Shader calculation that decides if a pixel has to be discarded. 39

4.5 Create vertex-neighbour graph structure 42

65

Bibliography

[AA13] Ferran Argelaguet and Carlos Andujar. A survey of 3D object selection
techniques for virtual environments. Computers and Graphics (Pergamon),
37(3):121–136, 2013.

[Aut18] Autodesk. Maya. https://www.autodesk.com/products/maya/
overview, 2018. Accessed: 2018-03-08.

[AVF04] C. Andujar, P. Vazquez, and M. Fairen. Way-Finder: guided tours through
complex walkthrough models. Computer Graphics Forum, 2004.

[BKLP04a] Doug Bowman, Ernst Kruijff, JJ LaViola, and Ivan Poupyrev. Direct
Manipulation: Virtual Hand Techniques. In 3D User Interfaces: Theory
and Practise, chapter 5.4.3, page 158. Addison Wesley, 2004.

[BKLP04b] Doug Bowman, Ernst Kruijff, Joseph J LaViola Jr., and Ivan Poupyrev.
Interacting by Pointing. In 3D User Interfaces: Theory and Practise, chapter
5.4.2, page 150. Addison Wesley, 2004.

[BKLP04c] Doug A. Bowman, Ernst Kruijff, Joseph J. LaViola, and Ivan Poupyrev. 3D
User Interfaces: Theory and Practice. Addison Wesley Longman Publishing
Co., Inc., Redwood City, CA, USA, 2004.

[BMAW13] Michael Birsak, Przemyslaw Musialski, Murat Arikan, and Michael Wimmer.
Seamless texturing of archaeological data. In Digital Heritage International
Congress (DigitalHeritage), 2013, pages 265–272. IEEE, October 2013. DOI:
10.1109/DigitalHeritage.2013.6743749.

[Bro96] John Brooke. SUS - A quick and dirty usability scale. Usability evaluation
in industry, 189(194):4–7, 1996.

[CKL04] Charlotte H Campbell, Bruce W Knerr, and Donald R Lampton. Virtual
environments for infantry soldiers: virtual environments for dismounted
soldier simulation, training and mission rehearsal. Technical report, DTIC
Document, 2004.

67

https://www.autodesk.com/products/maya/overview
https://www.autodesk.com/products/maya/overview

[CWJ12] J. Cashion, C. Wingrave, and J. J. LaViola Jr. Dense and dynamic 3d
selection for game-based virtual environments. IEEE Transactions on
Visualization and Computer Graphics, 18(4):634–642, April 2012.

[Cyb13] Cyberith. Cyberith virtualizer. http://cyberith.com/product/,
2013. Accessed: 2018-03-08.

[ET08] Niklas Elmqvist and Philippas Tsigas. A taxonomy of 3D occlusion manage-
ment for visualization. IEEE Transactions on Visualization and Computer
Graphics, 14(5):1095–1109, 2008.

[FB81] Martin A. Fischler and Robert C. Bolles. Random sample consensus: A
paradigm for model fitting with applications to image analysis and automated
cartography. Commun. ACM, 24(6):381–395, June 1981.

[FLL11] Lubin Fan, Ligang Liu, and Kun Liu. Paint mesh cutting. Computer Graphic
Forum (Proceedings of Eurographics), 30(2):603–611, 2011.

[FML12] Lubin Fan, Min Meng, and Ligang Liu. Sketch-based mesh cutting. Graph.
Models, 74(6):292–301, November 2012.

[GIS18] GISGeography. lidar. https://gisgeography.com/
lidar-light-detection-and-ranging/, 2018. Accessed: 2018-10-
28.

[Goo15] Google. Google cardboard. https://www.google.com/get/
cardboard/, 2015. Accessed: 2015-11-18.

[HPGK94] Ken Hinckley, Randy Pausch, John C Goble, and Neal F Kassell. Passive
Real-world Interface Props for Neurosurgical Visualization. Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (CHI
’94), 30:452–458, 1994.

[HTC13] HTC/Valve. Htc vive. https://www.htcvive.com/, 2013. Accessed:
2016-03-19.

[ITHG12] Yani Ioannou, Babak Taati, Robin Harrap, and Michael Greenspan. Differ-
ence of normals as a multi-scale operator in unorganized point clouds. In
2012 Second International Conference on 3D Imaging, Modeling, Processing,
Visualization & Transmission, pages 501–508. IEEE, 2012.

[JLCW06] Zhongping Ji, Ligang Liu, Zhonggui Chen, and Guojin Wang. Easy Mesh
Cutting. Computer Graphics Forum, 2006.

[KHS10] Evangelos Kalogerakis, Aaron Hertzmann, and Karan Singh. Learning
3d mesh segmentation and labeling. In ACM SIGGRAPH 2010 Papers,
SIGGRAPH ’10, pages 102:1–102:12, Los Angeles, California, 2010. ACM.

68

http://cyberith.com/product/
https://gisgeography.com/lidar-light-detection-and-ranging/
https://gisgeography.com/lidar-light-detection-and-ranging/
https://www.google.com/get/cardboard/
https://www.google.com/get/cardboard/
https://www.htcvive.com/

[LBLS14] P. Lubos, R. Beimler, M. Lammers, and F. Steinicke. Touching the cloud:
Bimanual annotation of immersive point clouds. In 3D User Interfaces
(3DUI), 2014 IEEE Symposium on, pages 191–192, March 2014.

[LG94] Jiandong Liang and Mark Green. Jdcad: A highly interactive 3d modeling
system. Computers and Graphics, 18(4):499 – 506, 1994.

[Low04] David G. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91–110, Nov 2004.

[MFL11] Min Meng, Lubin Fan, and Ligang Liu. icutter: A direct cut out tool for 3d
shapes. Journal of Computer Animation and Virtual World, 22(4):335–342,
2011.

[Mic13] Microsoft. Microsoft kinect. https://dev.windows.com/en-us/
kinect, 2013. Accessed: 2015-09-29.

[MK16] Annette Mossel and Christian Koessler. Large scale cut plane: An occlu-
sion management technique for immersive dense 3d reconstructions. In
Proceedings of the 22Nd ACM Conference on Virtual Reality Software and
Technology, VRST ’16, pages 201–210, Munich, Germany, 2016. ACM.

[MVK13] Annette Mossel, Benjamin Venditti, and Hannes Kaufmann. Drillsample:
Precise selection in dense handheld augmented reality environments. In
Proceedings of the Virtual Reality International Conference: Laval Virtual,
VRIC ’13, pages 10:1–10:10, Laval, France, 2013. ACM.

[NA10] National Aeronautics Nasa and Space Administration. NASA TLX: Task
Load Index. In Planta Medica, volume 35, pages 308–315, 2010.

[Neu15] NeuronMoCap. Perception neuron. https://neuronmocap.com/, 2015.
Accessed: 2015-11-18.

[NIH+11] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison,
P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon. Kinectfusion: Real-time
dense surface mapping and tracking. In 2011 10th IEEE International
Symposium on Mixed and Augmented Reality, pages 127–136, Oct 2011.

[NL13] Anh Nguyen and Bac Le. 3d point cloud segmentation: a survey. In 2013
6th IEEE Conference on Robotics, Automation and Mechatronics (RAM),
pages 225–230. IEEE, 2013.

[Noi15] Noitom. Perception neuron. https://neuronmocap.com/, 2015. Ac-
cessed: 2018-03-08.

[NZIS13] Matthias Niessner, Michael Zollhöfer, Shahram Izadi, and Marc Stamminger.
Real-time 3D Reconstruction at Scale Using Voxel Hashing. ACM Trans.
Graph., 32(6):169:1—-169:11, 2013.

69

https://dev.windows.com/en-us/kinect
https://dev.windows.com/en-us/kinect
https://neuronmocap.com/
https://neuronmocap.com/

[Ocu13] Oculus. Oculus rift. https://www.oculus.com/en-us/rift/, 2013.
Accessed: 2018-03-08.

[OF03] Alex Olwal and Steven Feiner. The flexible pointer: An interaction technique
for augmented and virtual reality. In Proc. of ACM Symposium on User
Interface Software and Technology (UIST, pages 83–84, 2003.

[PBWI96] Ivan Poupyrev, Mark Billinghurst, Suzanne Weghorst, and Tadao Ichikawa.
The go-go interaction technique: Non-linear mapping for direct manipulation
in vr. In Proceedings of the 9th Annual ACM Symposium on User Interface
Software and Technology, UIST ’96, pages 79–80, Seattle, Washington, USA,
1996. ACM.

[Pri15] PrioVR. Priovr. http://www.priovr.com/, 2015. Accessed: 2015-11-18.

[PSH+04] Helmut Pottmann, Tibor Steiner, Michael Hofer, Christoph Haider, and
Allan Hanbury. The isophotic metric and its application to feature sensitive
morphology on surfaces. In Tomás Pajdla and Jiří Matas, editors, Computer
Vision - ECCV 2004, pages 560–572, Berlin, Heidelberg, 2004. Springer
Berlin Heidelberg.

[Raz15] Razer. Razer hydra. http://www.razerzone.com/
gaming-controllers/razer-hydra-portal-2-bundle, 2015.
Accessed: 2015-11-18.

[RM12] Henry Roth and Vona Marsette. Moving Volume KinectFusion. Proceedings
of the British Machine Vision Conference, pages 112.1—-112.11, 2012.

[RN10] D. A. W. Rosa and H. H. Nagel. Selection techniques for dense and occluded
virtual 3d environments, supported by depth feedback: Double, bound and
depth bubble cursors. In Chilean Computer Science Society (SCCC), 2010
XXIX International Conference of the, pages 218–225, Nov 2010.

[Sam15] Samsung. Samsung gear vr. http://www.samsung.com/at/
promotions/galaxynote4/feature/gearvr/, 2015. Accessed: 2015-
11-18.

[SCS+10] R. Szeliski, B. Curless, S. M. Seitz, N. Snavely, Y. Furukawa, and S. Agarwal.
Reconstructing rome. Computer, 43:40–47, 06 2010.

[Son15] Sony. Playstationvr. https://www.playstation.com/de-at/
explore/ps4/features/playstation-vr/, 2015. Accessed: 2015-
11-18.

[SSCO08] Lior Shapira, Ariel Shamir, and Daniel Cohen-Or. Consistent mesh parti-
tioning and skeletonisation using the shape diameter function. The Visual
Computer, 24(4):249, Jan 2008.

70

https://www.oculus.com/en-us/rift/
http://www.priovr.com/
http://www.razerzone.com/gaming-controllers/razer-hydra-portal-2-bundle
http://www.razerzone.com/gaming-controllers/razer-hydra-portal-2-bundle
http://www.samsung.com/at/promotions/galaxynote4/feature/gearvr/
http://www.samsung.com/at/promotions/galaxynote4/feature/gearvr/
https://www.playstation.com/de-at/explore/ps4/features/playstation-vr/
https://www.playstation.com/de-at/explore/ps4/features/playstation-vr/

[Str15] Structure. Structureio. http://structure.io/, 2015. Accessed: 2015-
11-18.

[TTN15] K. Tateno, F. Tombari, and N. Navab. Real-time and scalable incremental
segmentation on dense slam. In Intelligent Robots and Systems (IROS),
2015 IEEE/RSJ International Conference on, pages 4465–4472, Sept 2015.

[Uni18] Unity. Unity 3d engine. https://unity3D.com/, 2018. Accessed: 2018-
03-08.

[Unr18] Unreal. Unreal 3d engine. https://www.unrealengine.com/, 2018.
Accessed: 2018-03-08.

[VGC07] L. Vanacken, T. Grossman, and K. Coninx. Exploring the effects of en-
vironment density and target visibility on object selection in 3d virtual
environments. In 2007 IEEE Symposium on 3D User Interfaces, March
2007.

[Vir13] Virtuix. Virtuixomni. http://www.virtuix.com/, 2013. Accessed:
2016-03-19.

[VL02] Nikos Vlassis and Aristidis Likas. A greedy em algorithm for gaussian
mixture learning. Neural Processing Letters, 15(1):77–87, Feb 2002.

[VTHLB15] Anh-Vu Vo, Linh Truong-Hong, Debra F Laefer, and Michela Bertolotto.
Octree-based region growing for point cloud segmentation. ISPRS Journal
of Photogrammetry and Remote Sensing, 104:88–100, 2015.

[WBG+12] Matt Westoby, James Brasington, Neil Glasser, Michael Hambrey, and John
Reynolds. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective
tool for geoscience applications, volume 179. 12 2012.

[WGCB12] Jonathan Wonner, Jérôme Grosjean, Antonio Capobianco, and Dominique
Bechmann. Starfish: A selection technique for dense virtual environments.
In Proceedings of the 18th ACM Symposium on Virtual Reality Software
and Technology, VRST ’12, pages 101–104, Toronto, Ontario, Canada, 2012.
ACM.

[XSe15] XSens. Motionsuite. https://www.xsens.com/products/
xsens-mvn/, 2015. Accessed: 2015-11-18.

[ZCW+03] Keqi Zhang, Shu-Ching Chen, Dean Whitman, Mei-Ling Shyu, Jianhua
Yan, and Chengcui Zhang. A progressive morphological filter for removing
nonground measurements from airborne lidar data. IEEE Transactions on
Geoscience and Remote Sensing, 41(4):872–882, 2003.

[Zei15] Zeiss. Zeiss vr one. http://vr-one.eu/de/VR-ONE/VR-ONE.html,
2015. Accessed: 2015-11-18.

71

http://structure.io/
https://unity3D.com/
https://www.unrealengine.com/
http://www.virtuix.com/
https://www.xsens.com/products/xsens-mvn/
https://www.xsens.com/products/xsens-mvn/
http://vr-one.eu/de/VR-ONE/VR-ONE.html

[ZT10] Youyi Zheng and Chiew-Lan Tai. Mesh decomposition with cross-boundary
brushes. Comput. Graph. Forum, 29(2):527–535, 2010.

72

	Kurzfassung
	Abstract
	Contents
	Introduction
	Problem Statement
	Motivation
	Contribution
	Structure

	State-of-the-Art
	VR-Hard- and Software for Immersive Exploration
	VR-Hardware
	VR-Input Devices
	VR-Output Devices
	VR-Tracking

	Software

	Interaction Techniques in Immersive VR
	Methods for Mesh Segmentation
	Automatic Mesh Segmentation Methods
	Learning 3D Mesh Segmentation and Labeling
	Real-Time and Scalable Incremental Segmentation on Dense SLAM

	Manual Mesh Segmentation Methods
	Easy Mesh Cutting
	Cross Boundary Brushes
	iCutter
	Shape Diameter

	Methods for Surface Reconstruction
	Structure From Motion (SFM)
	Kinect Fusion
	3D Laser Scanning

	Methodology
	Design Requirements
	VR Environment
	Optimized Selection of Target Patch
	Interaction Steps
	Preceding Step for a Selection Task
	Navigation
	Accessibility

	Developed Concepts
	Building the Virtual Environment
	Virtual Reality Setup
	Combination of VR-Devices
	Design of Input Gestures

	Optimized Selection of Target Patch

	Large Scale Cut Plane Selection Technique
	Workflow of Interaction Technique
	Interaction Technique Algorithm
	Interactive Segmentation within Large Dense 3D Surfaces
	Finding a Segmentation Plane from Hitpoints
	A Region Growing Algorithm to create a Thick Boundary
	Edge Thinning Technique
	Region-Growing to create Target Patch

	Implementation
	Employed Frameworks and Technologies
	Building the Immersive Environment
	Integration & Combination of the used VR-Devices
	Implementation of Arm and Hand Gestures System
	Hardware Preparation
	The Software Interface
	Obtaining 3D Pose
	Detecting Gesture Patterns
	Apply Detected Patterns

	Implementation of Large Scale Cut Plane Technique
	Step 1: Cut Plane Alignment
	Step 2: Transition into Cut Plane View
	Step 3: Raycast in Cut Plane View

	Implementation of Segmentation
	Selection and Target Patch Creation

	Implementation of the VR-User Interface
	Software Components

	Experimental Results
	Setup
	The Raycast-Technique as Comparison
	Objectives
	Apparatus
	Implementation

	Study Design
	Test Environment
	Tasks
	No Occlusion - Object Fully Accessible
	Partly Occluded - Object Partly Accessible
	Fully Occluded - Object Not Accessible
	Methods

	Experimental Results
	Participants
	Overall Evaluation
	Evaluation on Preference & Expertise
	Discussion

	Conclusion
	Contribution
	Future Work
	Exploring the Design Space of the Method
	Testing Different Environment Types and Sizes
	Technical Improvements of the Algorithms

	List of Figures
	List of Tables
	Bibliography

