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Kurzfassung

Über die Jahre hinweg wurde eine Vielzahl an Algorithmen zur globalen Beleuchtung
entwickelt, welche in Echtzeit rechnen, Interaktivität erlauben und einen hohen Grad an
Realitätstreue bestreben. Jedoch ist es oftmals schwierig, die unterschiedlichen Herange-
hensweisen direkt miteinander zu vergleichen.

Daher wird in dieser Arbeit ein Framework vorgestellt, welches sich genau dieser Pro-
blemstellung annimmt und versucht, ein Fundament zum Vergleich von Algorithmen
zur Berechnung von globaler Beleuchtung in Echtzeit zu schaffen. Dabei wird auf eine
vereinheitlichte Behandlung der Algorithmen gesetzt, unter der Voraussetzung, diese
dadurch nicht einzuschränken. Alle Module des Frameworks sind dahingehend konzipiert,
um so anpassbar, generisch, erweiterbar und wiederverwendbar wie möglich zu sein, um
die wiederholte Implementierung von ähnlichen Konzepten zu vermeiden. Zudem zieht
sich ein einheitliches Konzept zur Konfiguration durch das Framework, um auch während
der Laufzeit die Anpassung möglichst vieler Parameter zu garantieren.
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Abstract

If someone were in need of a real-time global illumination algorithm regarding their
specific requirements, they would have no issue finding many possible options nowadays.
There are many algorithms that are unmatched in realism, interactivity or performance.
However, it might be challenging to compare different approaches side by side.

In this thesis, a framework is proposed that is capable of building a foundation for the
comparison of real-time global illumination algorithms. This framework depends on an
unified handling of various algorithms while aiming to be nonrestrictive towards them.
All modules of the application are designed to be as mutable, generic, extendable, and
reusable as possible to avoid the reimplementation of similar concepts. A consistent
concept is integrated into the framework to provide a great amount of configurability,
even at runtime.
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CHAPTER 1
Introduction

Nowadays, there is a vast amount of global illumination algorithms that operate in real
time, support interactivity, and look as realistic as possible. For example, Crassin et
al. [CNS+11] introduced voxel-cone tracing in 2011, where a hierarchical voxel octree
representation of the scene is used for fast estimation of visibility and illumination
intensity. Another approach based on voxel cone tracing was suggested by Sugihara et
al. [SRS14], where the radiance is looked up in prefiltered layered reflective shadow maps.
An algorithm by Kaplanyan [Kap09] uses the idea of light propagation volumes to create
indirect lighting. Silvennoinen et al. [SL17] introduced the reconstruction of radiance
from a sparse number of precomputed radiance probes.

However, it might be a difficult task to compare different approaches side by side. For
example, it could be interesting to see which algorithm performs best in terms of realism
and speed. To complicate the idea of comparing multiple global illumination algorithms
further, each one might have slightly different preconditions. They may use different data
structures, varying numbers of render passes or use either forward rendering or deferred
rendering.

We recognize that there is the need for a tool that facilitates this kind of comparison.
This tool should be capable of meeting various requirements of different algorithms to
represent a foundation for their comparison. Furthermore, it has to provide the user
with a wide range of configuration possibilities and little to no unmodifiable constants.
Lastly, such an application would allow switching between implementations of different
approaches at runtime to directly compare them against each other. The goal of this
thesis is the development of such an application in order to build a foundation for the
comparison of real-time global illumination algorithms.
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1. Introduction

1.1 Related Works
The idea of comparing rendering algorithms is not new. A paper published by Meißner
et al. [MHB+00] focuses on four different volume rendering algorithms — raycasting,
splatting, shear-warp, and hardware-assisted 3D texture-mapping. The researchers tested
those algorithms against each other using different datasets while algorithm-independent
parameters were unaltered. Tiede et al. [THB+90] compared four rendering algorithms
to find the one that produces the best medical visualizations.

The Mitsuba renderer [Jak10] is a rendering system created by Wenzel Jakob for experi-
menting with different rendering techniques and their parameters to produce photorealistic
images. Since it is an offline-renderer, it neglects real-time illumination and interactivity,
though. Its configurability has been a great inspiration for this work.

Naturally, there are also industry-driven projects that can be used to implement and
compare rendering techniques. Two rather well-known industrial engines might be
Unity [Tec20] and Unreal Engine [Gam20]. They are real-time 3D development tools
that allow creators to build their own 3D applications by providing a vast amount of
general functionality needed for rendering. They aim for a high level of mutability and
configurability to give developers the freedom to create applications regarding their
specific requirements.

By examining the related works it can be observed that they do not meet all the
requirements stated above. The projects of Meißner et al. and Tiede et al. restrict
their comparison to a small amount of rendering algorithms. The Mitsuba renderer
does not provide the comparison of real-time global illumination algorithms. Due to the
extensiveness of the industrial engines Unity and Unreal Engine, they may come along
with a higher complexity and more effort at each introduction of a new algorithm to the
comparison.

The tool proposed in the following chapters aims to be tailored to the comparison of
real-time global illumination algorithms while being highly mutable and configurable,
even at runtime.
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CHAPTER 2
Overview

The purpose of this thesis is to develop a tool to simplify the comparison of multiple real-
time rendering algorithms. Therefore, it is essential to keep all parts of the application
as mutable, generic, extendable, and reusable as possible, so there would not be the need
for restructuring the architecture to be able to add a new algorithm.

The application was written in C++, using OpenGL [Gro20] as graphics interface, and
the Qt framework [Com20a] for the GUI.

Figure 2.1: All modules and their connections.

Generally, the application is divided into five major modules, as depicted in Figure 2.1:

1. Framework Module. The first — as well as the most important — module
combines all other modules and makes them accessible to each other. It also handles
the initialization of predefined settings and the application itself (Chapter 3).

2. Scene Module. Second, there is a module for all scene-related components,
combining definitions of entities, light sources, and cameras (Chapter 4).

3



2. Overview

3. Shading Module. The third module facilitates the creation of shaders for either
forward or deferred rendering (Chapter 5).

4. Algorithm Module. The fourth module includes the different rendering algo-
rithms and additionally a mandatory super class that unifies their handling and
allows the user to switch between them at runtime (Chapter 6).

5. Graphical User Interface Module. The last module contains Qt-related con-
figurations and implementations for the GUI (Chapter 7).

In the following sections the mentioned modules will be explained in more detail.
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CHAPTER 3
Framework Module

The framework module represents the core of the application. It is mainly responsible
for initializing, managing, and connecting all other modules. It only consists of three
classes: main.cpp, Framework.cpp, and Controller.cpp.

The main class itself is only needed for starting the application by creating an instance
of QApplication for Qt and one of the framework class which is then accepting
responsibility for further procedures.

By running the application, the program starts initializing the GUI and implementations
concerning the Qt framework including the OpenGL context. In the course of setting up
OpenGL, the scene is loaded from a configuration file and a default algorithm is being
prepared. When all components are set up properly, a repeated process for drawing one
single frame — the rendering loop — is started. In simplified terms, this process consists
of four steps:

1. First, all user inputs — key press events or manipulations of the GUI — are handled
and propagated to the responsible module.

2. Afterwards, an update procedure is performed to handle possible changes in the
scene or in the current illumination algorithm.

3. The third step is the actual rendering according to the chosen algorithm and
execution of all the procedures that need to be done to draw the updated scene to
one frame.

4. Lastly, logging and display of debug information for the user are taken care of.

These four steps are repeated in quick succession to draw as many FPS as possible. The
more frames are drawn the more interactive the rendering can be, which is an important
criterion for the practicability of real-time global illumination algorithms.
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3. Framework Module

3.1 Framework
As stated before, the framework class is also responsible for connecting all modules with
each other. The goal was to have bidirectional connections, so any module can access
the framework module and further access other modules via the framework module. To
achieve this goal, circular dependencies were needed (Section 9.1).

Bidirectional connections were established between the framework class and each of the
following: the controller class (Chapter 3.2), the scene class (Chapter 4.5), and each
algorithm (Chapter 6.1). A connection to the shading module was not necessary, because
it is only needed by the scene module and the algorithms. The GUI module represents a
special case, because its components have direct access to the framework and all connected
modules, but most of them can only be accessed over the signal-slot-mechanism of Qt
that will be explained in Chapter 7.

The last major responsibility of the framework class is loading the configuration file and
a scene file. Input streams were used to load these files correctly. The configuration file
holds definitions of global constants. Its correct syntax can be found in Appendix A.2.
A scene file is used to define all scene objects and their placement within a scene. The
correct syntax of a scene file can be found in Appendix A.3.

3.2 Controller
The controller class was designed to be a container for all commonly used global constants
and variables. For example, it contains values for camera settings and the sizing of the
OpenGL context. Most of these variables are loaded from the configuration file.

Furthermore, the controller class is meant to be an interface for communication with
external components. Therefore, it is responsible for handling user inputs such as GUI
related events, key press events, or mouse movements. The controller is also capable of
propagating debug information to the user.

The default key bindings and other connections to input devices can be found in Ap-
pendix A.4.

6



CHAPTER 4
Scene Module

The scene module contains all scene-related implementations. Additionally, it is responsi-
ble for the administration of all scene objects — either entities, light sources, or cameras
— and provides mechanisms for updating and drawing the scene. Each scene object
can be identified by its unique name and provides a parameter map for configurability
(Chapter 9.2).

4.1 Entities
Entities are objects of any shape that can be rendered and seen on the screen. Besides
the unique name and a parameter map, all entities contain the following information:

• one or more polygon meshes. A description of the representation of meshes can be
found in Appendix A.1.

• a VAO that holds information about vertex positions, surface normals, and texture
coordinates

• a number of materials to describe their reflectance characteristics

• a model matrix to determine their position, rotation, and scaling within the scene

• a definition of their outer bounding box

There are two available means to initialize an entity in the framework: the creation of a
simple cuboid or the loading of a more complex entity from a file.

The first option is to describe an cuboid parallel to the coordinate system by only two
points — a minimum point and a maximum point. This type makes use of a technique

7



4. Scene Module

Figure 4.1: The studyroom scene with a cuboid as the floor and two more complex
entities loaded from files.

described in Chapter 9.3, where only two points are needed to determine the positions
of all eight vertices of a cuboid. The calculated vertex points are then connected by
multiple triangles to create a solid mesh.

The other option to obtain more complex entities is by loading them from a file of either
the .obj file format or .dae file format. For model loading the Open Asset Import
Library [Kim18] was integrated into the framework. This library provides means to
import various 3D model formats in a uniform manner.

The calculation of the outer bounding box is the same for both entity types. During
the creation of the entity, a minimum coordinate and a maximum coordinate is found
for each axis to determine a minimum point and a maximum point. These two points
define a cuboid, called the bounding box, surrounding the whole entity. The use for the
bounding box of an entity is explained in Chapter 4.4.

4.2 Light Sources

The definition of different light sources is vital for illuminating a scene.

There are four types of light sources implemented in the framework: ambient lights,
directional lights, point lights, and spot lights. As they are scene objects, they all have a
unique name and provide a parameter map. Furthermore, each light source emits light
of a certain color at a defined intensity.

8



4.3. Camera

Figure 4.2: The studyroom scene with one blue point light and a red spot light.

Ambient Light. Ambient light describes an omni-directional light that does not
originate from any specific position. It illuminates all entities equally from all directions
with a constant intensity.

Directional Light. The light of a directional light does not have a specific origin and
illuminates all entities with a constant intensity. It differs from ambient light by emitting
parallel light rays in a certain direction instead of being omni-directional.

Point Light. A point light emits its light rays in all directions originating from one
single point. Its intensity reduces with the distance to the illuminated entity. This
attenuation is characterized by the constant, linear, and quadratic coefficients.

Spot Light. A spot light is an extension of a point light. In addition to originating
from a certain origin, it also defines a direction and an aperture. Therefore, it emits light
rays in a cone-shaped form.

4.3 Camera

The camera defines which parts of the scenes are visible from a certain position and
direction. The camera can be moved or tilted freely within the scene using the keyboard
and the mouse (Appendix A.4).

9



4. Scene Module

Whereas the position is defined by a single three-dimensional vector, the direction is
described by two angles called yaw and pitch, as shown in Figure 4.3.

Figure 4.3: Yaw (Ψ) defines a tilting angle going from right to left. Pitch (Φ) describes
the tilting angle going up and down.

By limiting pitch to a 85° angle in both directions starting from the horizontal, the
camera can be prevented from rolling over and ending up upside down.

The camera is updated for each frame. Before the update, the camera is sent input
information — whether the camera should be moved or tilted — from the Controller
(Chapter 3.2).
//update tilting
_yaw -= tiltingOffset.x * deltaTime;
_pitch += tiltingOffset.y * deltaTime;

while (_yaw > 360.0f) {
_yaw -= 360.0f;

}
while (_yaw < 000.0f) {

_yaw += 360.0f;
}
if (_pitch > 85.0f) {

_pitch = 85.0f;
}
if (_pitch < -85.0f) {

_pitch = -85.0f;
}

_front.z = (-1) * cos(_yaw) * cos(_pitch);
_front.x = (-1) * sin(_yaw) * cos(_pitch);
_front.y = sin(_pitch);

_front = normalize(_front);

10



4.4. View Frustum

_right = normalize(cross(_front, _worldUp));
_up = normalize(cross(_right, _front));

//update movement
if (direction == FORWARD) {

_position += _front * movingSpeed * deltaTime;
}
if (direction == BACKWARD) {

_position -= _front * movingSpeed * deltaTime;
}
if (direction == RIGHT) {

_position += _right * movingSpeed * deltaTime;
}
if (direction == LEFT) {

_position -= _right * movingSpeed * deltaTime;
}
if (direction == UP) {

_position += _worldUp * movingSpeed * deltaTime;
}
if (direction == DOWN) {

_position -= _worldUp * movingSpeed * deltaTime;
}

Listing 4.1: (Simplified) update procedures for a camera.

The update procedure per frame for the camera can be seen in Listing 4.1. At first, yaw
and pitch are adjusted taking incoming tilting information into account. Afterwards, the
recalculation of the viewing direction using yaw and pitch is being processed.

To help with further calculations, two other directions, one pointing to the right and
one pointing up, are also calculated. The limitation of pitch to 85° prevents the viewing
direction from pointing in the same/opposite direction as the constant world-up vector
(0, 1, 0). Otherwise the two other calculated directions might result in zero vectors
and hence be invalid.

Lastly, the new position of the camera is being determined by translating it in the
requested direction along the recalculated directions.

4.4 View Frustum
Connected to each camera is a view frustum that describes the region visible to this
specific camera. It is described by six planes. Each plane is defined by a position and
a normal vector which is always pointing inwards into the view frustum. Any point is
considered inside of a plane, if the dot product of the normal vector and a vector between
the plane’s position and the tested point is greater or equal to 0. Because the view
frustum is dependent on the camera, its planes are always updated as part of the camera
update.

The view frustum is an essential part of view frustum culling: a technique to reduce
rendering calculations by checking if an entity is within the camera’s view. To save

11



4. Scene Module

calculation costs, only the entities bounding box vertices are consulted for culling. If all
eight vertices of the bounding box are outside of any of the six planes describing the view
frustum, it can simply be disregarded from any further rendering calculations for the
current frame.

4.5 Scene Class
The scene class acts as the container for all scene objects — entities, light sources, and
cameras — and takes responsibility for their administration.

It provides methods to add or remove any scene object and takes responsibility for giving
each scene object an unique name by creating one if needed.

Also, a mechanism to help draw all entities within the camera’s view is provided. All
entities are tested if they are inside of the view frustum and afterwards passed through a
shader program (Chapter 5.1) to be drawn.

Furthermore, it supplies an update mechanism to help update scene objects for each
frame. At the moment, the mechanism only updates the camera, because entities and
light sources are currently static and do not implement an update mechanism themselves.

12



CHAPTER 5
Shading Module

In general, the rendering of an entity in OpenGL means passing each of its meshes through
a shader program to draw it onto one or multiple render targets. A shader program is a
sequence of different shaders that execute various calculations which ultimately result
in the mesh to be drawn properly. A render target may either be the screen itself or a
texture that can be used in subsequent rendering passes.

The shading module is responsible for providing a variety of measures needed to render a
scene. It encapsulates various parts of the OpenGL functionality [Gro20] to make them
commonly usable for different algorithms.

5.1 Shader
As stated before, a shader program is a linkage of multiple shaders. A shader itself is
autonomous from the framework. It is written in C and has access to various functions of
the GLSL. There are currently three types of shaders available for use in the framework.

Vertex Shader. A vertex shader performs calculations based on a meshes’ vertex
positions. It can be used to transform the vertices’ coordinates from object space into
their designated position in screen space.

Geometry Shader. A geometry shader is capable of creating new geometries. A single
point that would not have been visible on the screen could be transformed into a small
quad that can be rendered onto the screen.

Fragment Shader. The fragment shader performs calculations on small fragments of
polygons in between of vertices. This can be used to calculate the resulting color of a
given fragment.

13



5. Shading Module

The functionality of shader programs is encapsulated in the BaseShader class in the
framework. It takes paths to shader code files of different shader types as input and is
responsible for loading and linking them to a single shader program.

Shader programs are solely given information stored in the VAO of a mesh as input from
OpenGL. However, this information is in most cases not sufficient to do all necessary
calculations for rendering. Therefore, a shader program can additionally have multiple
uniforms. Uniforms are variables or constants that are set externally and are not modified
within the program.

There are various uniforms used commonly by different shader implementations, e.g.
the model matrix of an entity or information about light sources. The WorldShader
class is aiming to encase such variables or constants and simplify their usage within the
framework. It is a subclass of the BaseShader class and provides multiple methods to
set commonly used uniforms to the shader program.

The ScreenShader class is meant to be used for two-dimensional rendering and the
processing of images. It represents a special case within the framework for it is a
combination of a shader program and an entity. Similar to the WorldShader class, the
ScreenShader class is also a subclass of the BaseShader class and provides different
methods to set various uniforms. However, it also contains a two-dimensional quad
representing the screen and provides means to render any image onto the quad and hence
onto any render target.

5.2 Framebuffer Object
Instead of rendering a frame directly onto the screen, it is also possible to render it to
an image by using a FBO. While the frame rendered to the screen is no longer usable
or modifiable, the rendered image in a FBO can be used afterwards in further render
processes. Therefore, it is possible to perform post-processing, apply image filters to it or
use it for deferred rendering (Chapter 9.4).

The functionality regarding FBOs provided by OpenGL is encapsulated in the FBO class
in the framework. The class currently offers two types of FBOs: one for rendering colors
to a single render target and one for rendering the depth buffer. Furthermore, the FBO
class provides methods to activate the FBO before rendering and to bind the rendered
image to any color attachment afterwards.

5.3 G-Buffer
A G-buffer is in simple terms a FBO with multiple render targets used for deferred
rendering (Chapter 9.4). Each target is responsible for extracting different information
from the rendered scene. As shown in Figure 5.1, one target could hold information
about surface colors of entities in the rendered scene whereas another target contains
data about surface normals.

14



5.3. G-Buffer

Figure 5.1: Example of resulting images in the G-buffer after its render pass.

The GBuffer class accepts responsibility for a whole render pass. It takes shader code
files and the number of render targets as input and encases the creation of a FBO and the
initialization of a shader program. Additionally, the GBuffer class provides functionality
to process one render pass and to retrieve the rendered data from the embedded FBO
afterwards.

A built-in standard G-buffer implementation provides four images after its render pass:
one for world positions, one for surface normals, one for surface colors, and one for the
depth buffer (Figure 5.1).
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CHAPTER 6
Algorithm Module

A specific technique or procedure, involving several steps to create a frame, and being
repeated for each rendering loop is labeled as algorithm within the framework. Algorithms
may be quite different from one another, yet have some similarities.

Therefore, it has been a main focus of this work to create a uniform base for different
algorithms to be able to compare them. They also need to be configurable at runtime
(Chapter 9.2). Furthermore, all algorithms depend on a variety of measures to help
render a scene (Chapter 5).

6.1 Integration Of Additional Algorithms
The uniform base for all algorithms in the framework is the BaseAlgorithm class and
therefore, it must be the super class of any algorithm implementation.

The BaseAlgorithm class provides a reference to the framework for each algorithm. It
also supplies the following variables:

• _name. a unique name

• _updateRequested. flag to determine whether the update mechanism should
be executed

• _setupRequested. flag to determine whether the setup mechanism should be
executed

• _parameterMap. a container for all parameters that are modifiable

• _fbo (optional). this FBO can be used to render the resulting image

• _gbuffer (optional). this may hold a reference to a G-buffer
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• _worldShader (optional). this may hold a reference to a 3D-shader program

• _screenShader (optional). this may hold a reference to a 2D-shader program

To harmonize the handling of algorithms within the framework, each one must implement
the following methods:

process(int outputTextureUnit). This method is responsible for rendering one
frame. It has one input parameter that determines the texture unit the resulting image
needs to be bound to for further proceedings in the rendering loop. This method is
responsible for executing the update and/or setup mechanism if either one of them has
been requested.

update(). The update method should be used for any updates of the algorithm. It is
usually requested if scene objects or parameters in the parameter map change. Therefore,
it may be used to update uniforms of a shader or recalculate other parameters. An
exception from the update mechanism is the camera for it is assumed to be updated for
each frame and therefore does not request an additional update.

setup(). This method should be used for initial preparations and calculations before
using the algorithm within the rendering loop. It is requested every time the algorithm
is selected by the user.

resize(). This method is called whenever the frame size has changed. Due to FBOs
being error-prone on resizing, they should be reinitialized here.

setParameter(string key, string value). This method is called by the frame-
work whenever a parameter is modified. To avoid timing issues, modified parameters
should at first only be set within the parameter map and request an update rather than
setting it directly to a shader or similar.

The implementation of an algorithm also needs to be added to the algorithms map
within the setupGLModules method in the framework class. An example of this can
be found in Listing 6.1.

shared_ptr<GoochAlgorithm> goochAlgorithm =
make_shared<GoochAlgorithm>(this, "GoochAlgorithm");

_algorithmsMap[goochAlgorithm->getName()] = goochAlgorithm;

Listing 6.1: Integration of additional algorithms in setupGLModules() method within
framework.cpp.
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6.2 Exemplary Algorithm Implementations
Currently, there are three implementations of algorithms in the framework: two ap-
proaches of Phong Shading [Pho75] and one of Gooch Shading [GGSC98].

Phong Shading describes a rendering technique for calculating the color of a fragment
in regard of the surface color, the surface normal-vector, and a reflection model. The
reflection model combines ambient, diffuse, and specular reflection to imitate realistic
lighting scenarios.

Gooch Shading describes a non-photorealistic rendering technique that uses warm and
cold tones to differentiate between surfaces facing towards a light source and those facing
away from it. Additionally, object edges are highlighted in black.

The implementations of these algorithms serve solely as examples for possible algorithms
and are not optimized in performance or realism.

Phong Shading (Forward Rendering). This may be an example of a simple imple-
mentation of any algorithm in the framework using forward rendering. The resulting
image is shown in Figure 6.1. As shown in Listing 6.2, its process method only consists
of the following basic steps:

1. Execute update/setup functionality if requested.

2. Bind the FBO.

3. Clear the Viewport

4. Propagate camera variables to the shader program.

5. Draw the scene.

6. Unbind the FBO and bind the resulting image to the given texture unit.

void process(int outputTextureUnit) {
if (_setupRequested) {

setup();
}
else if (_updateRequested) {

update();
}

_fbo->bindBuffer();

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glClearColor(0.2f, 0.2f, 0.2f, 1.0f);
glViewport(

0,
0,
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_framework->getController()->getWindowWidth(),
_framework->getController()->getWindowHeight()

);

Scene* scene = _framework->getScene();

_worldShader->useShader();
_worldShader->setCameraPos(

scene->getCamera()->getCameraPosition()
);
_worldShader->setViewProjection(

scene->getCamera()->getViewProjectionMatrix()
);

scene->draw(_worldShader);

_fbo->unbindBuffer();
_fbo->bindTexture(outputTextureUnit);

}

Listing 6.2: Exemplary implementation of the process method for forward rendering.

Phong Shading (Deferred Rendering). This implementation displays the usage of
deferred rendering (Chapter 9.4). The G-buffer renders all needed information about the
scene into multiple render targets. All shading calculations are then done in screen space
within a 2D-shader program. For testing purposes, the resulting images of the G-buffer
are also rendered into the final frame. The resulting image is shown in Figure 6.2.

Gooch Shading. This is a rather free interpretation of the gooch shading algorithm,
as seen in Figure 6.3. It lacks the creation of black edges and the usage of the warm tone
relates to the position of the camera rather than to a light source. The implementation
of this algorithm serves as an example for the usage of the parameter map and the
configurability of an algorithm during runtime.
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Figure 6.1: Phong Shading (Forward Rendering).

Figure 6.2: Phong Shading (Deferred Rendering).
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Figure 6.3: Gooch Shading.
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CHAPTER 7
Graphical User Interface Module

This module is concerned with all GUI related implementations. The GUI has been
created with Qt, a framework for creating cross-platform applications [Com20a].

The Qt functionality is separated into several modules. For this framework, only the
following modules needed to be integrated:

• Qt Core. the core functionality of Qt

• Qt GUI. Qt functionality for creating GUIs

• Qt Widgets. extension of the Qt GUI module for C++

• Qt OpenGL. extension of the Qt GUI module for OpenGL

7.1 GUI Components

As shown in Figure 7.1, the application consists of one main window. This main window
is separated into the following three areas.

Configuration Tabs. The tabs are used to configure and modify various parameters
of the framework and its modules (Chapter 9.2). In general, a tab contains a table view
for accessing the parameter map of an object. If there are multiple objects of the same
kind, they can be switched via selection in a combobox. For some objects, instances can
be added or removed per button clicks.

There are currently four configuration tabs:

• “General”-tab. contains global settings
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Figure 7.1: The GUI of the framework.

• “Algorithm”-tab. algorithms can be switched and configured

• “Camera”-tab. provides methods to switch between different cameras. Camera
perspectives can also be added or removed.

• “Scene”-tab. contains configurations for entities and light sources

OpenGL View. The OpenGL view shows the rendered scene. It is responsible for
initializing the OpenGL context and further initiates the initialization of the scene and
all available algorithm implementations. Afterwards, a timer is set to repeatedly trigger
the rendering loop. To react to mouse inputs properly, the OpenGL view also propagates
various mouse events to the controller.

Debug Output. The debug output consists of a textbox that is dynamically filled
with log entries. Logs throughout the framework are handled by the MessageHandler
header class. The MessageHandler provides functionality for logging with various
severity levels. The logged entries are then formatted and emitted to the debug output.
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The GUI components are inherently structured in a tree hierarchy and only the root
component — the main window — is accessible via the framework. Therefore, two
mechanism were introduced that recursively execute methods in the GUI components.

The injection mechanism injects the framework instance into all components of the GUI.
Hence, they have full access to the framework and all connected modules.

The setup mechanism is triggered during the setup of the framework. It is responsible
for filling the GUI with needed information about configurable objects throughout the
framework.

Every other communication with the GUI components originating from within the
framework has to be done over the signal slot mechanism, as described in the upcoming
chapter.

7.2 Signal Slot Mechanism
The Qt framework uses event based communication where components can emit and
receive signals [Com20b]. A component is also able to react to any signal from another
component by executing a slot function, i.e., a callback function. However, a component
needs to connect a signal to a slot beforehand for this mechanism to work properly.

In this framework, all GUI components and additionally the controller, acting as the
interface for the communication with external components, can emit and receive signals.
This mechanism is important for synchronizing parameter changes within the framework
with the GUI. Otherwise, there may be outdated values shown in the GUI components.
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CHAPTER 8
Results

As addressed in the introduction, the goal of this thesis is the development of an applica-
tion in order to build a foundation for the comparison of real-time global illumination
algorithms. It should be capable of meeting various requirements of different algorithms,
would allow switching between implementations of different approaches at runtime and
provide the user with a wide range of configuration possibilities.

The application that has been developed aims to meet these requirements. It is separated
into several self-contained modules that are accessible over a common connecting link
(Chapter 3). Hence, the functionality of modules is available throughout the framework.
Commonly used concepts have been supplied to be used in various algorithm implementa-
tions (Chapter 5). Therefore, it is possible to extend the framework with new algorithms
or new concepts without the reimplementation of already existing functionality.

By creating a uniform base for all algorithms it is possible to unify their handling
throughout the application (Chapter 6). Furthermore, the framework is capable to switch
between different algorithms at runtime. The uniform base has been designed to have
no restrictive requirements to allow the implementation of different algorithms with
contrasting preconditions or process flows.

The design of a consistent concept for handling parameters of various objects (Chapter 9.2)
in the application brings a great amount of configurability, even at runtime. The scene can
be remodeled, camera perspectives can be added, changed, or removed, and algorithm
parameters can be adjusted. This concept can furthermore be used for additional
algorithms without adaptions in the framework code base.

8.1 Discussion
As stated before, the introduction of parameter maps enhanced the configurability of
components of the framework. The FlexibleValue class describes a decorator class
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for different data types by transforming a value into a string representation. However,
the utilization of the FlexibleValue itself could have been improved for it is not
used in the getParameter method or the setParameter method. Each object using
parameter maps is responsible for casting the formatted string representation back to
the data type it needs. Hence, the potential of the FlexibleValue being a container
for different data types and taking care of all type conversion was not used to its
fullest extent. By enforcing the usage of the FlexibleValue in the getParameter
and setParameter methods, type conversion can be encapsulated thoroughly in the
implementation of the FlexibleValue.

A point of criticism may also be the inconsistency of connections for communications
between the framework and the GUI components (Chapter 7). The GUI components
have full access to the framework whereas the framework either communicates via the
signal slot mechanism, the injection mechanism, or the setup mechanism with the GUI
components. A better approach might be the enforcement of the signal slot mechanism as
the only connection with the framework. This way, the interface for all communications
with the GUI components would be the controller which is meant to handle all external
inputs.

8.2 Next Steps
There are some extension that are yet to be integrated into the developed application.

For example, to help with the evaluation of an algorithms’ interactivity, it might be
interesting to implement update mechanisms for entities and light sources (Chapter 4).
As of now, the only non-static scene objects are cameras.

Furthermore, the configurability of the scene could be improved by implementing the
subsequent loading of additional entities at runtime. It is possible to add or remove light
sources at runtime and entities can be disable to exclude them from rendering. However,
entities can only be loaded during the initialization of the framework via a scene file.

In the end, the most important next step for this application would be the integration
and implementation of various real-time global illumination algorithms. This may reveal
weaknesses of the framework, but moreover, some undetected strengths of it might also
be disclosed. Furthermore, the framework would fulfill its purpose by revealing the
strengths and weaknesses of real-time global illumination algorithms by simplifing their
comparison.
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CHAPTER 9
Learned Lessons

During my work I was confronted with challenges and concepts that were new to me or
needed sophisticated solutions. In the following sections a selection of interesting lessons
I learned can be found.

9.1 Circular Dependencies
A circular dependency refers to a mutual dependency of two classes. For example, the
framework class uses and depends on the scene class, whereas the scene class also uses
functionality of the framework class. To resolve this in C++, there is the need for forward
declarations.
#include "scene.hpp"

class Framework {
public:

//constructor, destructor & other public methods
//would be defined here.

private:
Scene* _scene;

};

Listing 9.1: Example header file without forward declaration.

A simple class declaration for a header file can be found in Listing 9.1. At the beginning
of the file are all include statements for declarations of classes that are needed for this
class to work. If a class would use another class that was not declared yet, the compilation
fails.

This is also the reason why circular dependencies cannot be resolved this way: the
compiler would visit a class, find a reference to a mutually dependent class and would
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try to compile the referenced class first. However, the referenced class again would have
a reference to the initial class so the compiler jumps back to the first visited class and so
forth, which would ultimately result in an infinite loop.
class Scene;

class Framework {
public:

//constructor, destructor & other public methods
//would be defined here.

private:
Scene* _scene;

};

#include "scene.hpp"

Listing 9.2: Example header file with forward declaration.

The modified class using a forward declaration is depicted in Listing 9.2. The include
statement was moved to the end of the file and a substitute declaration of the required
class is placed before the actual class declaration of this file. This way, the compiler
knows that a proper class declaration will follow later during compilation and circular
dependencies can be resolved properly.

9.2 Configurability And Parameter Maps
One of the main goals of this work is to provide a great amount of configurability with
almost no immutable constants. Therefore, there has been the need for a consistent con-
cept to make parameters modifiable for different objects such as scene objects (Chapter 4)
or algorithm implementations (Chapter 6). The concept also has to work at runtime if
the user wants to do adjustments via the GUI. Timing issues must be preventable as
well as possible. Hence, the owner of the parameter map must have full control whenever
a new value for a parameter is set.

To meet these requirements, parameter maps were introduced. Parameter maps store
each parameter of a certain object as a key-value pair where the key usually is the
name of the parameter as a string. However, the values are usually not all of the
same data type. This led to the introduction of the FlexibleValue class and the
TypeConverter header class.

FlexibleValue. A FlexibleValue unifies different data types by storing their
type as an enumeration constant and their value as a formatted string representation. It
also stores a flag if the value is modifiable. The constructor of the FlexibleValue for
the vec2 data type can be found in Listing 9.3.
FlexibleValue(vec2 value, bool editable) {

_type = ValueType::vVEC2;
_value = TypeConverter::vec22string(value);
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_editable = editable;
}

Listing 9.3: The constructor of the FlexibleValue for the vec2 data type.

TypeConverter. The functionality for formatting a value to a string representation is
provided by the TypeConverter. This header class is also responsible for transforming
the string representation back to the initial value.

Currently, both the FlexibleValue class and the TypeConverter class support
the following data types:

1. boolean

2. float

3. int

4. string

5. vec2

6. vec3

7. vec4

As stated before, parameter maps should be available to all different kinds of objects.
Therefore, there are very few requirements for the usage of parameter maps. An object
that uses a parameter map only needs to provide the following three methods:

string getParameter(string key). This method returns the value as formatted
string for a given key.

bool setParameter(string key, string value). This method should set a
value for a given key. The value can be validated before storing it in the map. Additionally,
other calculations regarding the new value or requesting further updates may be done
here. If the operation was successful, it returns true. An implementation of this method
can be found in Listing 9.4.

map<string, FlexibleValue> getParameterMap(). This returns the map with
all parameters that need to be configurable.
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bool setParameter(string key, string value) {
if (key == "warmColor") {

// use TypeConverter for value conversion
vec3 newColor = TypeConverter().string2vec3(value);

// validate value
if (isValidColor(newColor)) {

// set in parameter map
_parameterMap[key] =

new FlexibleValue(newColor, true);

// request further updates
requestUpdate();

return true;
}

}

return false;
}

Listing 9.4: Exemplary implementation of the setParameter method.

There are currently two different ways parameter maps are used in the framework. In
some cases the parameters of an object are already persisted in another way. Therefore,
a new parameter map is generated and filled with all parameters of this object ever time
it is requested by the getParameterMap method. Examples for this would be light
sources or the camera.

In contrast, entities and algorithm implementations use permanent parameter maps. The
parameters of these objects are only persisted in the map and therefore, the parameter
map is generated only once.

9.3 Cuboid Defined By Two Points
A technique that is commonly used within the framework to determine the vertex positions
of a cuboid is based on the unit cube vertex positions.

The vertex positions shown in Figure 9.1 could also be considered as weights for an
interpolation between a minimum point, being (0, 0, 0) in the unit cube, and a
maximum point, being (1, 1, 1) in the unit cube. The resulting formula for calculating
any point of a cuboid is described in Listing 9.5.
x = (1 - weight.x) * minimumPoint.x + weight.x * maximumPoint.x
y = (1 - weight.y) * minimumPoint.y + weight.y * maximumPoint.y
z = (1 - weight.z) * minimumPoint.z + weight.z * maximumPoint.z

Listing 9.5: Formula for calculating any cuboid vertex position using two points and a
weight.
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Figure 9.1: A unit cube and its vertex positions.

For example, the point (0, 1, 1) of the unit cube could be calculated by using its
coordinates as the weight, as shown in Listing 9.6.

minimumPoint = (0, 0, 0)
maximumPoint = (1, 1, 1)
weight = (0, 1, 1)

x = (1 - 0) * 0 + 0 * 1
x = 0

y = (1 - 1) * 0 + 1 * 1
y = 1

z = (1 - 1) * 0 + 1 * 1
z = 1

Listing 9.6: Interpolation of (0, 1, 1).

This technique is applicable for any two points acting as a minimum point and maximum
point, whereas the vertex positions of the unit cube can always be used as weights for
the interpolation.

The only vital condition is that the minimum point and the maximum point have to be
on opposing ends of the cuboid. A line connecting those two points has to intersect the
center point of the cuboid to fulfill this condition, as depicted in Figure 9.2.

9.4 Forward Rendering — Deferred Rendering

Forward Rendering describes a technique using only one render pass to create a frame. All
calculations regarding the illumination of the scene are done for each mesh individually.
Yet, for many light sources and meshes this results in increased computational costs.
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Figure 9.2: The line between minimum point and maximum point intersects the center
point of a cuboid.

Some meshes might even be hidden by others, so rendering calculations regarding them
might have been unnecessary.

To countermeasure the amount of computational cost, deferred rendering proposes a
different approach. It uses at least two render passes to create a frame: one for extracting
information from the scene and one for drawing the resulting frame properly.

The first pass renders different information about the scene into images using multiple
render targets of a FBO. Each pixel of the resulting images contains data of a fragment
belonging to a certain mesh at the corresponding position — e.g., information about
surface normals or about surface colors. The data is only available for the meshes visible
to the camera, whereas information about hidden surfaces is disregarded. This render
pass is usually done by a G-buffer (Chapter 5.3).

The second render pass only uses the resulting images from the first pass to create the
frame using proper illumination techniques. All calculations are only done once per pixel
and no longer per fragment of multiple entities which can reduce computational costs
significantly.

However, transparency presents a problem in deferred rendering. There would be the
need for information about the mesh behind a transparent object, but only data about
the meshes nearest to the camera is extracted in the first render pass.
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APPENDIX A
Appendix

A.1 Polygon Meshes
In 3D rendering, a commonly used data structure to describe complex entities is the
polygon mesh. The shape of a polygon mesh is defined by multiple vertices that are
connected by numerous polygons (e.g. triangles).

Figure A.1: The polygon mesh of a cat, rendered as wireframe.

Besides the position coordinates, a vertex can also contain additional data needed for
rendering. For example, a vertex may also stores a normal vector and texture coordinates.
For the rendering of fragments within a polygon, the vertex data of all attached vertices
is interpolated.

In OpenGL [Gro20], a VBO holds a defined number of values per vertex and therefore,
each buffer can persist a different type of data of a vertex. For example, the position
buffer contains three values for each vertex whereas the texture buffer contains only two
texture coordinates per vertex.
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To simplify the handling of mesh data even further, all VBOs can be collectively stored
in a VAO. Whenever the mesh needs to be drawn, only the VAO has to be bound to
transfer the mesh data correctly to the shader program.

A.2 Configuration File Syntax

The configuration file contains most global constants which can be altered within the file.
It is loaded only once at the start of the application, any further modification within the
file are disregarded. The file named “config.txt” is located in the “resources”-folder.

Generally, each line has to start with a certain indicator following some value(s). Values
are separated by whitespace characters. Each parameter can only be set once in the
configuration file. Comments are indicated by a # (hash) and are skipped.

The following parameters can be set:

Moving Speed. This parameter defines how sensitive the camera reacts to keyboard
input.
Syntax: movingspeed [float value]

Mouse Sensitivity. This parameter defines how sensitive the camera reacts to mouse
movement.
Syntax: mousesensitivity [float value]

Near/Far Planes. This parameter defines the distance of the near plane and the far
plane to the camera. Entities in front of the near plane or behind the far plane are not
considered for rendering.
Syntax: nearfar [float near plane distance] [float far plane distance]

Path To Scene File. A scene file describes all scene objects and their placement
within a scene. Its path needs to be in relation to the application-executable.
Syntax: scenefile [string path]

Vertical Field Of View. This parameter defines the cameras’ aperture angle in de-
grees in vertical direction.
Syntax: fieldofview_y [float value]

# This is an example for a configuration file.
scenefile resources\\scene_studyroom.txt
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movingspeed 5.0
mousesensitivity 0.25
fieldofview_y 60.0
nearfar 0.01 100.0

Listing A.1: Exemplary Configuration File

A.3 Scene File Syntax

A scene file is used to define all scene objects and their placement within a scene. It can
be set in the configuration file and is only loaded once at the start of the application.

Generally, each line describes one scene object and has to start with a certain indicator
following some value(s). Values are separated by whitespace characters. Comments are
indicated by a # (hash) and are skipped. Multiple occurences of each scene object type
are allowed. A given name might be altered if it is not unique within the scene.

In the following, vec3 is defined as three float-values, separated by whitespace characters.
A boolean is either 0 (false) or 1 (true).

The following scene object types can be set:

Mesh Entities. Mesh Entities describe entities loaded from a file. Its path needs to
be in relation to the application-executable. If a file contains multiple meshes, they can
either be loaded as individual entites or one combined entity.
Syntax : m [string name] [string path] [boolean load as individual entities] [vec3
translation] [vec3 rotation] [float scaling factor]

Cuboid Entities. Cuboid Entities describe cuboids defined by two points.
Syntax : b [string name] [vec3 minimum point] [vec3 maximum point] [vec3 trans-
lation] [vec3 rotation] [float scaling factor]

Ambient Light. Ambient Light describes omni-directional light. The color of a light
should be in the interval between 0.0 and 1.0 and will otherwise be cut off.
Syntax: a [string name] [vec3 color]

Directional Light. Directional Light describes parallel light rays coming from one
direction. The color of a light should be in the interval between 0.0 and 1.0 and will
otherwise be cut off.
Syntax: d [string name] [vec3 color] [vec3 direction]
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Point Light. Point Light describes light rays emitting from one point. The color of a
light should be in the interval between 0.0 and 1.0 and will otherwise be cut off.
Coefficients for constant, linear, and quadratic attenuation are combined in one vector.
Syntax: p [string name] [vec3 color] [vec3 position] [vec3 attentuation]

Spot Light. Spot Light describes light rays emitting from one point in a certain
direction and aperture. The color of a light should be in the interval between 0.0 and 1.0
and will otherwise be cut off.
Coefficients for constant, linear, and quadratic attenuation are combined in one vector.
Syntax: s [string name] [vec3 color] [vec3 position] [vec3 attentuation] [vec3 di-
rection] [float aperture in degrees]

Camera. A camera is an seeing eye within the scene.
Syntax: c [string name] [vec3 position] [float yaw] [float pitch]

# This is an example for a scene file.
m Table resources\\table.obj 0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
b Floor 0.0 -0.1 0.0 5.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
a AmbientLight 0.2 0.2 0.2
d DirectionalLight 0.5 0.2 0.2 0.5 -1.0 0.5
p PointLight 0.96 0.92 0.82 0.0 5.0 -5.0 1.0 0.1 0.1
s Spot 1.0 0.0 0.0 0.0 5.0 5.0 1.0 0.1 0.1 0.0 -1.0 0.0 50.0
c Camera 0.0 5.0 10.0 0.0 -10.0

Listing A.2: Exemplary Scene File

A.4 Key Bindings And Mouse Controls
• W. Move camera forwards.

• A. Move camera to the left.

• S. Move camera backwards.

• D. Move camera to the right.

• R. Move camera up.

• F. Move camera down.

• Q. Tilt camera to the left.

• E. Tilt camera to the right.

• Left Mouse Button + Mouse Moving. Tilt camera in any direction.
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Acronyms

FBO Framebuffer Object

FPS frames per second

GLSL OpenGL Shading Language

GUI graphical user interface

VAO Vertex Array Object

VBO Vertex Buffer Object
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