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Does the Layout Really Matter?
A Study on Visual Model Accuracy Estimation
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Figure 1: These two different-looking plots show the results of the same image classification model. The images are paired with
their predictions as indicated by colored borders. The top plot utilizes a strong grouping of the data items, while the bottom one
does not. We investigated how these differences affected the users’ capability to predict a model’s accuracy visually.

ABSTRACT

In visual interactive labeling, users iteratively assign labels to data
items until the machine model reaches an acceptable accuracy. A
crucial step of this process is to inspect the model’s accuracy and de-
cide whether it is necessary to label additional elements. In scenarios
with no or very little labeled data, visual inspection of the predic-
tions is required. Similarity-preserving scatterplots created through
a dimensionality reduction algorithm are a common visualization
that is used in these cases. Previous studies investigated the effects
of layout and image complexity on tasks like labeling. However,
model evaluation has not been studied systematically. We present the
results of an experiment studying the influence of image complexity
and visual grouping of images on model accuracy estimation. We
found that users outperform traditional automated approaches when
estimating a model’s accuracy. Furthermore, while the complexity
of images impacts the overall performance, the layout of the items
in the plot has little to no effect on estimations.

Index Terms: Human-centered computing— Visualization—
Empirical studies in visualization Human-centered computing—
Visualization—Visualization design and evaluation methods

1 INTRODUCTION

Interactive machine learning (IML) combines the strengths of hu-
mans and algorithms and enables rapid, focused, and incremental
learning cycles through which a model’s training progress can be
steered [1]. Visual interactive labeling [3] (VIAL) is a promising
strategy for users to assign one or multiple labels to one or mul-
tiple data elements and train a classification model. Color-coded
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similarity-preserving scatterplots (SPS) are a commonly used visual-
ization technique [4] to enable users explore data characteristics [11],
steer the labeling process [3], evaluate the underlying classification
model [5], and explain misclassifications [15]. These SPS are 2D
plots created through dimensionality reduction (DR) [4] of the in-
put data or activation vectors extracted from a neural network [15].
Observable data patterns in SPS can either directly be based on struc-
tural data characteristics revealed with unsupervised DR methods,
or be based on label distributions, and class predictions revealed
with supervised DR methods, or both (see Figure 2). In any case,
the final layout of SPS is influenced by data-inherent properties and
parameters of the DR algorithm. It has been shown that a stronger
visual grouping of similar data items in the layout supports users
performing labeling tasks [2]. However, labeling is only one part of
the VIAL process. Model evaluation, i.e., analyzing the model’s per-
formance, is the crucial next step. As especially in the early stages
of the labeling process, ground truth (GT) labels for most items
are unknown, automatic evaluation approaches like leave-one-out
cross-validation get unstable [10]. Therefore, it is helpful to have
humans in the loop who visually inspect the model’s classification
quality and decide if it is necessary to label more elements [2].

Previous studies on SPS in the IML context have focused pri-
marily on visual interactive labeling [2,6]. We complement these
studies by investigating SPS for accuracy estimation of an image
classification model. Layout factors, such as the grouping of classes,
are considered to be crucial for SPS [17,19]. We, therefore, sys-
tematically investigate how the similarity-preserving layout and
(predicted) class grouping influence users’ ability to estimate the
model’s accuracy. To this end, we conducted a crowd-sourced user
study where we ask users to evaluate the results of an image classifi-
cation model by estimating its accuracy through visual inspection of
the predictions.

The study aims at answering the following questions:
RQ1 Can users reliably estimate a model’s classification accuracy
from SPS?
RQ2 How does visual image complexity affect accuracy estimation?
RQ3 How does visual grouping affect accuracy estimation?
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RQ4 Does grouping facilitate model accuracy estimation for the
users subjectively?

We contribute a study whose results provide the first evidence
that the similarity-preserving layout and visual class grouping have
little influence on users’ visual model accuracy estimations.

2 RELATED WORK

Recent studies focused on the effect of visualizations and the layout
in SPS on the labeling process but did not take model evaluation into
account. For example, Bernard et al. and Chegini et al. [2,6] have
shown that VIAL can outperform traditional active learning methods
when the shown SPS visually separates the underlying class struc-
tures. However, they did not systematically investigate the influence
of the layout. Sips et al. [17] and Wang et al. [19] also focused
on the beneficial aspects of perceived separability between classes
in SPS. However, these effects were only shown for SPS encoding
GT data, which differs from our setup where we ask users to check
whether the predicted label, which is shown through colored borders,
matches the image content. Work with a focus on the perceptual
aspects of visual search tasks like the one by Haroz et al. [8] or Gra-
mazio et al. [7] show that grouping benefits the search for outliers
and the overall heterogeneity estimation of elements. Only simple
color-coded plots were used for these works, whose pre-attentive
features might not be applicable for VIAL. Here, users also have to
interpret image content in combination with color-coding.

Model evaluation without ground truth requires (selective)
instance-level inspection of images [12]. Hoque et al. [9] used
2D image embeddings as a tool to create hierarchically grouped
image layouts that allow users to more efficiently narrow down their
search target. They found that grouped embeddings allow users to
solve complex search tasks faster, yet not more accurately. Similar
experiments were conducted by Strong et al. [18]. Users preferred
search interfaces where images are ordered in separate clusters based
on their content. Still, they were not more accurate. Their works
also showed that image complexity impacts search performance
considerably. The work by Yang et al. [22] shows a way to perform
model evaluation by letting users evaluate the accuracy of a model
by showing them the prediction results for a single image along
with visual explanations and asking them whether they agree with
the prediction. These works required users to find or evaluate only
individual images. Our goal is for users to acquire an overview of
the embedding as a whole.

3 EXPERIMENT

In our experiment, we investigated three aspects that can make vi-
sual model evaluation challenging in IML scenarios: (1) For the vast
majority of data items, the labels are unknown. Instead of GT labels,
we can only visualize predicted labels, and these predictions may be
false. (2) The data-inherent features, which define the spatial prox-
imities of items in the SPS, may not reflect the desired class structure.
(3) The complexity of the data requires an instance-level inspection
to evaluate the predicted labels. To systematically explore the effects
of these factors, we define them as the independent variables of our
experiment. For (1), we vary the accuracy of the model predictions
displayed, and for (2), we vary the grouping in the DR plot based
on the data-inherent features (feature-strength) and predicted labels
(degrees of supervision). Lastly (3), we test how the data complex-
ity affects the estimation results by using different kinds of image
datasets, namely MNIST, Fashion-MNIST (FMNIST) [21], and the
animals with attributes dataset (AwA) [20].

To simulate different accuracies, we developed a greedy algo-
rithm that computationally selects items to be labeled to achieve a
dedicated target accuracy. This algorithm is based on the greedy ap-
proaches used as an upper bound in active learning [2]. We adapted it
to select the sample that minimizes the difference between the model
accuracy and the set target accuracy. As an additional constraint, the
target classes in the training data are balanced. For each dataset, we
trained a KNN classifier to approximate low (50%), medium (75%)
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Figure 2: The same data elements across all nine between-subject
conditions (feature-strength x degree of supervision). Here, dots are
the images, and color encodes the GT labels (not predicted labels).

and high (100%) target accuracy, by labeling 20 out of 400 samples.
The actual model accuracies are shown in Figure 3b.

DR methods try to preserve data-inherent patterns in their lower-
dimensional representation. Ideally, those patterns follow the ex-
pected class distribution and group elements of similar classes in the
SPS. This grouping may or may not be true in reality. To emulate
less ideal cases, we apply a Principal Component Analysis (PCA)
to the image feature vectors before applying the DR to vary the
feature-strength systematically. With PCA, we obtain the princi-
pal components ranked by their variance. By selecting PCs with
lower eigenvalues as feature vectors, we can artificially decrease
the data-inherent grouping of classes. For high feature-strength, we
selected the original data (Figure 2); medium features use 75% of
data-inherent variance; for the low feature condition, we only chose
50%.

To enhance grouping in the layout, we vary the degree of super-
vision during DR. For this, we chose UMAP [13] as it allows us to
control the influence of global and local patterns. The unsupervised
layout, which is commonly used [4], relies entirely on the image
features and therefore reveals data-inherent patterns. In contrast,
the supervised layout aims to maximize class separation. In our
case, this creates a visual grouping based on predicted labels. We
chose to create three layouts for each input data configuration: unsu-
pervised, fully supervised, and semi-supervised with a partial label
set (Figure 2). To avoid image overlaps, we apply quantile-based
normalization to the data.

To investigate how datasets of varying visual image complexity
affect the users’ performance, we chose two different kinds of image
datasets to be tested in our study. Fashion-MNIST [21] is a com-
monly used dataset in the machine learning community. It contains
easily identifiable images of clothing items, easily identifiable even
on an overview level. On the other hand, animals with attributes [20]
is a dataset that has complex images of animals in various poses,
that requires users to look more closely.

3.1 Task

By scaling up the approach by Yang et al. [22], we derived our
model evaluation task. We showed users 400 images that should
be associated with four classes. Each image has a colored border
representing the model prediction (Figure 1). The class color associ-
ation is shown in a legend. Based on this information, users should
then estimate the percentage of correctly predicted image classes,
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i.e., the model accuracy. The result could be set using a slider from
0% to 100%. We provide users with standard interaction methods
like zooming and panning. Users are shown a one-minute timer as a
guideline to self-check how long they have been working on a task.
Users were instructed to finish within one minute, but the system
did not enforce the time limit. This temporal guidance was chosen
based on a pilot study with the goal to prohibit users from counting
all individual items independently of the layout.

3.2 Design and Procedure

We used a mixed design, with degree of supervision and feature-
strength as between-subject factors and accuracy and image com-
plexity as within-subject factors. We employed all layout variations
as between-subjects factors as qualitative feedback of twelve pilot
users indicated that users employ different principal task solving
strategies based on the amount and quality of visual grouping. To
avoid adverse learning effects for users who are shown both well
separated and mixed up patterns, we kept the grouping defined by
the feature-strength and supervision constant within users. Each
user was then shown in random order all three GT accuracies of the
FMNIST and AwA datasets. In addition, the MNIST dataset was
used as a tutorial example as the first task. Here, the users are also
informed on how well they estimated the accuracy.

Before the study, participants were asked basic demographic
questions like age, gender, and proficiency with visualization and
machine learning. Here we also conducted a simple color-blindness
test with Ishihara plates. This test was necessary as color vision was
required to differentiate the colored borders. After all tasks, users
were asked if they found the visualization helpful and were confident
in their choices using 5-point Likert scales.

3.3 Apparatus

The study was hosted on Amazon Mechanical Turk (MTurk). Users
who signed up for the study were re-directed to our server. The visu-
alizations were created on the fly using JavaScript and D3. Although
our layout creation process creates spread-out images across the
whole area, we also use a force-based algorithm to push overlapping
images apart, ensuring that each image can be inspected individually.
A unique ID was assigned to each worker, and their responses, task
completion time, and motions were logged. The server assigned
each participant one of 27 configurations.

To assure the quality of the responses, we used an attention task
after the first half of the tasks. Users were shown a SPS of 400
images from four classes out of the MNIST dataset with ground
truth labels. Users who guessed anything below 80% accuracy on
this task were excluded. If users either failed the attention task or
the color-blindness test initially, they were instructed to return the
HIT. The task was then re-assigned to a new user, and the previous
user received no penalty on their MTurk metrics.

We also inspected the results manually to check if users provided
reasonable responses, i.e., not submitting the same response for
every task. From a pilot study with nine users, we determined a
maximal completion time of 15 minutes. Assuming a fair wage of
12 USD an hour, we paid each user that completed the study 3 USD.

3.4 Participants

We collected the data of 74 users, at least eight for each configuration.
The number was decided following other crowdsourced and visual
search studies [9, 18]. As an added benefit, many MTurk workers
perform labeling tasks regularly. Therefore, we required participants
to have completed 10.000 HITs with an average approval rate above
95% that are commonly used to ensure data quality [14, 16]. Users
were also screened for common forms of color-blindness using seven
Ishihara plates. A challenge for visual MTurk studies is to account
for different screen resolutions and input devices. Therefor we
performed a pre-screening, where only users of non-mobile devices
were allowed to proceed.

Out of 74 users, two users were excluded due to being outliers as
they either took longer than 70 seconds on average time or skipped

over tasks. Their tasks were then re-assigned. The mean age of
users was 36.6, and 39.4% were female. Only 18.3% of users stated
above-average knowledge about data visualization and 31.0% with
regards to machine learning.

4 RESULTS & DISCUSSION

In total we, obtained 432 measurements (72 users X 3 accuracies X
2 image complexities). We tested the dependent variables for nor-
mality and applied parametric or non-parametric tests as appropriate
to answer our four research questions. As we only have up to eight
data points per between-subject conditions, there is a risk of Type
II errors. We, therefore, also report the effect sizes. Details of our
analysis are in the supplemental document.

To answer whether users can estimate model accuracies from SPS
in general (RQ1), we performed a Friedman test to see if users pro-
vided distinct estimates for low, medium, and high model accuracies.
The results show a large and significant difference between users’
accuracy estimations dependent on the model’s accuracy (FMNIST:
22(2,N =72) =42.5;p < 0.001, AwA: y%(2,N =72) =40.9;p <
0.001). Compared to traditional cross-validation (Figure 3b), hu-
mans are more accurate in their estimations. Yet, users tend to
overestimate low accuracies (FMNIST: 3.85%, Awa: 7.57%) and
underestimated medium (FMNIST: —9.83%, Awa: —6.01%) and
high accuracies (FMNIST: —10.9%, Awa: —16.0%). In summary,
these results show that users can visually estimate model accuracies
fairly reliably, while cross-validation leads to unstable accuracy
estimations.

To assess how image complexity affects accuracy estimation
(RQ2), we performed a paired samples t-test. The average time
to judge the model accuracy, based on 400 images, is 32.1 sec-
onds. There exists a strong, significant difference between the
two datasets (FMNIST: 29.1, AwA: 35.1; #(71) = —=5.727;p <
0.001;d = —0.675). The number of motions follows the same
patterns: The average is 17.8 motions (zooms and pans), with a
large, significant difference between the datasets (FMNIST: 13.6,
AwA: 22.1; 1(71) = —7.330; p < 0.001;d = —0.864). The higher
image complexity of the second dataset leads to a significantly
higher completion time and number of interactions, but the estima-
tion results are still comparable (FMNIST: —5.83%, AwA —4.80%;
t(71) = —0.467; p = 0.642;d = —0.055).

There are moderately strong correlations between estimation er-
ror, completion time, and the number of motions (Figure 3c). Time
shows a strong positive correlation with the number of motions
(r(70) = 0.742; p < 0.001) and a moderate with the signed error
(r(70) = 0.453;p < 0.001). Time also has a moderate, negative
correlation with the absolute estimation error (r(70) = —0.622; p <
0.001). These correlations indicate that user behavior has a substan-
tial effect on the estimation error. Quick users viewed the data on
a higher zoom level and only focused on few images, while slower
users spent more time zooming in on details and panned over large
plot regions. The more closely users inspected the results, the better
their estimations. To compensate for the different user behaviors
when analyzing the between-subjects factors, we used time and error,
respectively, as covariates for the following analysis steps.

We then investigated the influence of layout (i.e., feature-strength
and degree of supervision) on estimation error, completion time, and
amount of interactivity (RQ3) using an ANCOVA. Feature-strength
has a medium effect on the estimation error that fails to reach signif-
icance (F(2,62) =2.538;p = 0.087;175 =0.076). As shown in Fig-
ure 3a, users tend to underestimate the error less for higher feature-
strength (L: —6.25%, M: —7.70%, H: —1.59%). The effect of
feature-strength on time (F(2,62) = 1.245; p = 0.295; n‘,% =0.039)
and motions is very small and insignificant (F(2,62) = 0.228;p =
0.797;1][% = 0.007). The degree of supervision has a very small
and insignificant effect on error (F(2,62) = 0.213; p = 0.809; T[,z, =
0.007), time (F(2,62) = 0.461;p = 0.633;175 = 0.015), and mo-

tions (F(2,62) = 0.252; p = 0.778;112 = 0.008). There is also no
relevant interaction effect between t%ature—strength and supervi-
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Figure 3: Overview of the study results.

sion on the error (F(4,62) = 0.313;p = 0.869;71; = 0.020), time
(F(4,62) =0.522; p = 0.720; 7712; = 0.033), or motions (F(4,62) =
1.548;p = 0.199;n[2, =0.091).

These results suggest that grouping has little to no influence
on users’ estimations. The layout variants we tested were highly
diverse, ranging from nearly randomly arranged images in the case
of unsupervised DR and low feature-strength up to tightly packed
homogeneous clusters in high feature-strength and full supervision
(Figure 1). Our results indicated no benefit of separated clusters
for the task of model evaluation, neither for the completion time
nor the estimation error. These results are in contrast to previous
studies [2, 8] where visual grouping facilitated task performance.
One contributing factor could be that this task could not be solved
pre-attentively. It required the user to scan the images, even in the
case of simple images. Scanning the images group-wise did not
facilitate this task to any considerable extent. We assume that it
was sufficient to selectively zoom into any part of the image canvas
to estimate the amount of incorrectly classified images within this
region. With such a zoomed-in view, the overall layout probably
played a minor role in the accuracy estimation. These results indicate
that the task is more similar to visual search tasks like the ones
described by Hoque et al. [9].

Overall, most users found the shown SPS helpful (H; 56.9%) and
were confident (C; 72.2%) in their accuracy estimations (RQ4). A
Kruskal-Wallis test showed no statistically significant preferences
for plots depending on degrees of supervision (H: y%(2,N = 72) =
0.362; p = 0.834; C: xz(Z,N =72) =0.707; p = 0.702) or feature-
strength(H: x%(2,N = 72) = 1.914;p = 0.384; C: x>(2,N ="72) =
0.373; p = 0.692).

Summarized, users appropriately judged their ability to predict
the accuracy and found SPS primarily helpful. However, we found
no indications that the grouped layouts were perceived as more
helpful or provided users more confidence in their predictions.

5 STUDY LIMITATIONS & FUTURE WORK

The participants of our study were crowd-sourced workers, as they
represent non-expert users that very likely come in touch with data

labeling tasks. However, non-expert users may not have the same
motivation and capabilities as expert users to infer knowledge from
the grouped layouts. A closer investigation of business analysts or
data scientists actively developing models would require a different
recruitment strategy and study procedure but might yield interesting
results.

The task of model evaluation is only one sub-task of a larger
visual IML workflow, which was studied in isolation here. Future
studies could investigate the effects of grouping and image com-
plexity on other tasks like outlier detection or searching for specific
sub-groups in the data. Another option would be to test other visual
encodings than SPS for visual model evaluation. If the layout is not
crucial for this task, maybe simpler representations are even more
effective.

The size of the dataset in terms of shown images and classses
was either larger [9] or similar [2] to previous studies but may still
be limited compared to real-world IML scenarios. Nevertheless,
our results suggest that selectively looking at a subset of elements
may be sufficient to estimate model accuracy. Further studies could
analyze the scalability of model evaluation and labeling tasks both
in terms of items displayed and the number classes.

6 CONCLUSION

SPS are widely used to visualize model performance [4]. Our exper-
iment shows that users can estimate the model accuracy reliably in
an IML scenario, where the SPS shows images with their predicted
labels. Coming back to the question proposed in the title, we can
say that our experiment indicates that the DR-driven layout has a
negligible influence on the task performance and users’ satisfaction
when used for visual model evaluation, requiring instance-based
inspection. Our results point to that the effective use of SPS relies
on the task at hand, and their use should be critically examined.
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