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Kurzfassung

Ziel dieser Masterarbeit ist es, aktuelle Visual-Analytics-Methoden zur Erforschung und
Analyse kultureller Modelle zu überprüfen und zu verstehen. Anschließend entwarfen
und entwickelten wir einen Rahmen für die interaktive Darstellung von Kulturmodellen.
Dieser Rahmen kann für die Generierung neuen Wissens über Kulturmodelle und für die
Bestätigung neuer Hypothesen im Bereich der Kulturwissenschaften verwendet werden.
Unsere Methodik basiert auf dem Forschungsrahmen „three-cycle design science research
framework“.

Bei der Literaturrecherche stellten wir fest, dass die wenigen bereits vorhandenen Visual-
Analytics-Methoden im Bereich der Kulturwissenschaften nicht flexibel genug sind. Aus-
gehend davon entwarfen und implementierten wir ein Programm, das eine Kombination
aus Python- und JavaScript- Programmbibliotheken verwendet. Dies bietet Benutzern
die Flexibilität, die Visualisierungen nach Bedarf zu ändern und anzupassen.

Nachdem wir Anforderungen basierend auf relevanter Literatur im Bereich der Kultur-
wissenschaften festgelegt hatten, teilten wir die Anforderungen auf vier Aufgaben auf.
Um ihren Zweck zu erfüllen, wählten wir für jede Aufgabe geeignete Visualisierungs- und
Interaktionsmethoden aus.

Um das implementierte Visualisierungsprogramm zu evaluieren, überprüften wir drei
verschiedene Fallstudien aus dem Bereich der Kulturwissenschaften. Wir versuchten,
die Ergebnisse der Fallstudien zu reproduzieren, indem wir deren Methodik in unser
Programm einsetzten. Wir verglichen die Ergebnisse der Fallstudie mit den Ergebnissen
unseres Programms unter Verwendung unseres Visualisierungs-Frameworks. Schließlich
prüften wir, ob alle definierten Aufgaben erfüllt werden konnten.

Nach Abschluss der Evaluierung stellten wir unseren Prototyp mit Docker fertig, so-
dass andere Forscher unser Visualisierungstool wiederverwenden und unser Ergebnis
reproduzieren können. Schließlich wird unser Ansatz in einem Rahmen zusammengefasst,
mit dem das aktuelle Visualisierungswerkzeug angepasst und geändert oder völlig neue
Ansätze für andere Kulturmodelle erstellt werden können.
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Abstract

The purpose of this master thesis is to review and comprehend current Visual Analytics
methods and tools for the exploration and analysis of cultural models. Subsequently, we
design and develop a framework for the interactive representation of cultural models, for
the generation of new knowledge about cultural models, and for the confirmation of new
hypotheses within the domain of cultural science. We based our methodology on the
three-cycle design science research framework.

Reviewing the existing literature, we identified that the few, already existing Visual
Analytics methods used in the cultural science domain lack flexibility. Using this literature
gap as a motivation, we aim to design and implement a framework, using a combination
of Python and JavaScript libraries, which gives users the flexibility to change and adapt
the visualizations on demand.

After establishing requirements based on related literature in the cultural science domain,
we break down the requirements into four medium-level tasks and select appropriate
visualization and interaction methods to fulfill each task.

To evaluate the implemented visualization framework, we review three different case
studies from the cultural science domain. We attempt to reproduce previous results by
following their methodology in our developed framework. We compare the original results,
and the results achieved, using our visualization framework. Eventually, we examine if
all the defined tasks can be fulfilled.

After the evaluation is finished, we finalize our prototype using Docker, enabling other
researchers to reuse our visualization tool and reproduce our result. Finally, our approach
is summarized into a framework that can be used to adapt and change the current
visualization tool or to create completely new approaches for other cultural models.
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CHAPTER 1
Introduction

1.1 Motivation and Problem Definition
Understanding culture, norms, and cultural differences in society is essential for many
reasons. It aids scientists in understanding more about human behavior and uncovers
facts related to a society from a socioeconomic perspective. In order to understand more
about culture, researchers have tried to come up with methods and models to measure
different aspects of culture. Geert Hofstede has defined a six-dimensional cultural model,
which summarizes characteristics of different cultures [1]. Other examples of cultural
models include the GLOBE project [2], which sets nine dimensions (different from those
of Hofstede’s model) to describe a culture. These cultural models allow researchers to
quantify the definition of culture, making the comparison of differences within countries
more effortless and straightforward.
By finding correlations between cultural dimensions, as well as between social attributes,
behaviors, and monetary or societal measures of different countries, we find answers
to phenomena in various aspects of a society that may be beneficial for marketing and
economics. There might be a correlation between characteristics of a culture and other
attributes; for instance, a country’s educational level, its national average income, or
its population. The exploration of these correlations leads to a profound explanation
of a society’s purchase behavior, which may be used for marketing purposes. Papers
such as De Mooij and Hofstede [3], used the Hofstede Cultural model and applied it to
advertising research. Shackleton and Ali [4] examined managers in different corporations
to understand their work-related values and culture based on the Hofstede model, and
Erman and Medeiros [5] tried to examine if there is a correlation between cultural
characteristics (via the Hofstede model) and COVID-19 death rates in different countries.
Therefore, culture may heavily influence other socioeconomic aspects.
A visual representation of cultural models has been attempted by researchers within the
domain of cultural science. However, current tools for the visualization of cultural models
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1. Introduction

make use of rudimentary representations, such as bar charts, boxplots, and scatterplots
[6]. All current implementations are mainly static and inflexible. Conjointly, they do not
provide the necessary insights on several aspects of the employed cultural models, such
as insights on correlations, patterns, or cultural partitions. These visualizations have
so far only represented a small subset of the data and are, therefore, missing valuable
information. This in-depth knowledge is necessary to gain a better and more complete
understanding of the multitude of available cultural data and of how the cultural models
have developed. At the same time, it can support the application of the gained knowledge
to various professional fields and business-related applications.

Often researchers have to cope with missing data—also within the exploration of cultural
models. Acquired datasets can contain missing data, which reduce the “representative-
ness” of the sample and can, therefore, distort inferences about the population, leading
potentially to wrong conclusions. Therefore, it is necessary to handle missing data in an
appropriate way. Like any other domain, the cultural science domain is not an exception
in coping with missing data. For this reason, we also investigate methods and approaches
of handling missing data and include it in our framework.

Without adequate visualization tools, obtaining such an in-depth insight into the complex
phenomena that determine cultures and societies is a challenging task. The domain of
Visual Analytics [7] is able to provide suitable alternative solutions for the exploration and
analysis of multi-variate heterogeneous data [8], which describe characteristics of cultural
models and of society, by combining the strengths of visualization with automatized
analysis processes and with other disciplines, such as statistics, in highly interactive and
expressive environments.

1.2 Aim of the Work

Our research question is: How can Visual Analytic strategies aid the exploration and
knowledge discovery in cultural and societal models? The purpose of this master’s
thesis is to review and comprehend current Visual Analytics methods and tools for the
exploration and analysis of cultural models. Subsequently, we aim to design and develop
a framework for the interactive representation of cultural models, for the generation of
new knowledge about cultural models and societal links, and for the confirmation of new
hypotheses within the domain of cultural sciences. The outcome of this research is the
development of a new framework, which supports the flexible manipulation (addition
or removal) of dimensions to a cultural model, facilitates the analysis of the underlying
data and exciting phenomena in them (e.g., correlations, patterns, cultural partitions)
and provides a flexible, interactive framework for new knowledge discovery or hypothesis
confirmation/generation.
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1.3. Methodological Approach

1.3 Methodological Approach
The principal intention of this master’s thesis is to create a new framework, which
visualizes information retrieved from cultural models for analytical purposes. The end
product of this research is a framework that can visually represent data. The design
research paradigm is concerned with creating and designing new frameworks that meet
the requirements and have an additional research value [9]. It is suitable to be used as our
methodical framework in this master’s thesis since we aim to create a framework. This
thesis is oriented on the three-cycle research framework introduced by Hevner [10], which
is based on the already existing Information Systems (IS) research framework created
by himself a couple of years before in 2004 [11]. It overlays there cycles (described in
Section 1.3.1, 1.3.2 and 1.3.3) on the preexisting IS research framework. Figure 1.1 gives
an overview of the different stages.

Figure 1.1: Three cycle methodology of design science research adapted from [10] - Details
of relevance, design, and rigor cycle used in this master’s thesis.

1.3.1 Relevance Cycle

Hevner’s research model primarily starts with identifying a problem and the desire to
enhance and improve processes. This desire can be seen as the basic problem description,
where the incremental improvements are generated in an environment that is being
interpreted as “artifacts” by Hevner. Here, as an artifact, we denote our framework. This
thesis starts by identifying a demand for a framework by reviewing existing literature
from both the visualization and cultural science domain. We first identify the existing
methods of knowledge discovery in the cultural science domain. Furthermore, we study
what the Visual Analytics domain can offer to discover knowledge in the cultural science
domain. We focus on the literature gap between what exists and what can be offered by
the Visual Analytics domain. The literature review is an input into the cycle, and the
output is the research problem with the specific domain challenges to be addressed and
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1. Introduction

the tasks to be fulfilled by the final product. We discuss more the components of the
relevance cycle in Chapter 2.

1.3.2 Design Cycle

The design cycle includes the construction, i.e., design and evaluation of the developed
framework in different iterations until the goal is achieved. This is usually when the
problem described in the relevance cycle is solved, the identified challenges are solved,
and all tasks are fulfilled. In this cycle, we have the tasks, i.e., well-defined items that our
visualization framework needs to perform to solve the research problem as input. The
tasks are influenced by the rigor cycle (discussed in the following subsection), which gets
its input from guidelines, i.e., established visualization principles and evaluation methods.
Using these guidelines, our framework is designed, developed, and evaluated. If the
framework’s components successfully address our research problem, then the design cycle
can be stopped. In order to ensure that the designed framework answers the research
question, an evaluation is also required. The evaluation methods are explored and defined
in the rigor cycle, as discussed in the next subsection. We discuss more the different
aspects of the design cycle in Chapters 3–5.

1.3.3 Rigor Cycle

The rigor cycle is being described as the source of knowledge gathered from related
research papers, experiences, experts, and theories. Since this thesis is mainly related to
the visualization of cultural data, the scientific source of the rigor cycle are guidelines,
principles, and frameworks introduced by other research in the visualization domain.
Additionally, it is crucial to find suitable evaluation methods which are employed to
approve or reject the designed framework. As a consequence, each iteration in this cycle
might be unique and evaluated differently, as it is an ongoing process and does not have
a definitive end. The output of the rigor cycle is design principles and mock-ups of
the system, which are based on visualization principles. These mock-ups are then be
used in the design cycle as a reference to ensure that the framework complies with the
appropriate principles of visualization while also satisfying the previously determined
tasks. The rigor cycle is further addressed in Chapters 4–5.

1.3.4 Evaluation

Numerous authors have used design science research in their visualization research
[12, 13, 14, 15, 16]—each conducting different ways of evaluation. Reviewing the evalu-
ation methods for visualization, we determine two of them are suitable for evaluating
the outcome of this master’s thesis since they are both designed to evaluate research
conducted in the information visualization domain. First, Lam et al. [17] reviewed a
broad literature survey of more than 800 visualization papers and derived seven guiding
scenarios describing evaluation practices and common scenarios in information visualiza-
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tion. Second, Munzner [18] presented a nested model for the validation of visualization
strategies in four layers. We discuss more the evaluation of our outcomes in Chapter 6.

1.4 Contributions
There are two significant contributions in this master’s thesis. First, this work contributes
to an interactive and flexible visualization framework that can be used in the cultural
science domain to explore and discover new knowledge. With the aid of Visual Analytics
strategies, this framework provides the user with dynamic plots that can be interactively
explored to discover new knowledge or confirm existing hypotheses from the cultural
science domain. Our work’s second contribution is a study on the steps that should be
followed to create such a visualization framework. In the process of this master’s thesis,
we convey our journey in the form of a reproducible methodology, which other researchers
can use to create similar visualization frameworks for the domain of cultural science.

1.5 Structure of the Work
This master’s thesis has the following structure:

Chapter 2: State of the Art This chapter reviews the current literature on cultural
models and defines the Hofstede cultural model in detail. We review existing approaches
of visualization of cultural models.

Chapter 3: Principles of Visualization Since the main focus of this master’s thesis
is visualization, we explain in this chapter in detail basic concepts from the domains of
information visualization and Visual Analytics. We also describe the process of Visual
Analytics and explore how to visualize multidimensional data and missingness, i.e.,
uncertainty. Lastly, we review existing methods of evaluation in visualization.

Chapter 4: Visualization Design In this chapter, we define the requirements of our
visualization framework. We break down the requirements into tasks that the framework
needs to support and create UI mock-ups based on them.

Chapter 5: Implementation Here we explain how we have implemented the visual-
ization framework and what technologies have been used in the process.

Chapter 6: Results This chapter follows the methodology of three different case studies
and attempts to re-produce their research result. We then evaluate our visualization
framework and create its final version. We also create a methodological framework out
of our entire process.

Chapter 7: Conclusion and Future Work Finally, in this chapter, we briefly sum-
marize the process of the master’s thesis and provide ideas for future research directions.
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CHAPTER 2
Cultural Models Background and

State of the Art

2.1 Cultural Models
Cultural models aim to ease the process of comparing countries with each other by
introducing dimensions for culture and assigning values for different countries based on
certain data [19]. As mentioned in section 1.1, there are different cultural models, and in
this section, the two most common models are discussed.

2.1.1 Hofstede Model
Geert Hofstede was a Dutch psychologist and researcher. He believed that many societal
variables could potentially be explained with four major dimensions [20]. Hofstede created
in 1970 a four-dimensional cultural model based on a survey questionnaire conducted with
116,000 employees in IBM corporation, located in 72 different countries. This approach
was well received and reviewed positively by leading psychologists and sociologists such
as Eysenck [21] and Triandis [22]. The initial four dimensions of the model, as published
in his book [23] are the following:

2.1.1.1 Dimension 1: Power Distance (PDI)

This dimension is related to social inequality. Hofstede [23] defines this dimension as
“The extent to which the less powerful members of institutions and organizations within
a country expect and accept that.” This dimension can be reflected in role pairs such
as boss–subordinate, parent–child, and student–teacher. Table 2.1 shows differences
between a society with a small power distance as compared to a society with a large
power distance. For example, countries such as Russia, Romania, Malaysia, and China
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2. Cultural Models Background and State of the Art

Small Power Distance Large Power Distance
Minimized inequality Inequality is expected
Parents have a respectful relationship to-
wards their children

Parents’ relationship towards their chil-
dren is based on obedience from children

Learning is based on communication be-
tween students, and teachers

Learning is merely based on the excellence
of the teacher

Strict hierarchical structure in companies A rather flat structure in companies where
superiors and subordinates are treated
equally

Table 2.1: Difference between small and large power distance in a society.

Collectivist Individualist
The word “I” is not being used Regular use of the word “I”
The larger portion of tax goes into public
healthcare

A small portion of tax goes into public
healthcare

More people are introverts More people are extroverts

Table 2.2: Difference between a collectivist and individualist society.

have high values in the PDI dimension, whereas countries such as Austria, Denmark,
Ireland, and Israel have low values in this dimension.

2.1.1.2 Dimension 2: Collectivism vs. Individualism (IDV)

This dimension is defined by Hofstede [1] as “individualism on the one side, versus
its opposite Collectivism, as a societal, not an individual characteristic, is the degree
to which people in a society are integrated into groups.” In an individualist society,
every single person puts themselves before everyone else, and they look after themselves
instead of looking for each other within the society. On the other hand, in a collectivist
society, people feel integrated into a group and have a strong feeling of loyalty towards
the remainder of the society [24]. Countries such as the United States of America,
Australia, Canada, and the Netherlands are individualist countries (have a high score
in this dimension), while countries such as Colombia, Costa Rica, Indonesia, and South
Korea are collectivist, meaning that they a have low score. Table 2.2 shows the key
differences in values and norms between a collectivist and individualist society.

2.1.1.3 Dimension 3: Femininity vs. Masculinity (MAS)

The definition of femininity vs. masculinity as a dimension of the Hofstede model is
that “masculinity, versus its opposite femininity, again as a societal, not as an individual
characteristic, refers to the distribution of values between the genders which is another
fundamental issue for any society, to which a range of solutions can be found.” In a
masculine society, roles between the genders are clearly distinguished. Men are supposed

8



2.1. Cultural Models

Feminine Masculine
No clear roles between men and women,
both are equally contributing towards fam-
ily and career

Clear split in roles between men and
women in the society

Both male and female are modest Men should be assertive, goal-oriented,
and tough

Family-oriented society, where relation-
ships are important

Career, success, income, and recognition
are important

Table 2.3: Difference between a feminine and masculine society.

to be focused on careers, should be tough, and show no emotions. Women are supposed
to be concerned with tender roles, such as taking care of the home and children in
the family [19]. A feminine society does not have predetermined roles for its members
based on their gender. The Republic of Slovakia, Japan, Hungary, and Austria is rather
masculine countries—meaning that they have a high score in this dimension. While
Sweden, Norway, Latvia, the Netherlands, and Denmark have low scores in this dimension
and are, therefore, feminine countries. Table 2.3 shows the key differences in values and
norms between feminine and masculine society.

2.1.1.4 Dimension 4: Uncertainty Avoidance (UAI)

Hofstede [1] defines this dimension as: “Uncertainty Avoidance is not the same as risk
avoidance; it deals with a society’s tolerance for ambiguity. It indicates to what extent a
culture programs its members to feel either uncomfortable or comfortable in unstructured
situations.” In a country with high uncertainty avoidance, people tend to avoid uncertain
situations due to reasons such as anxiety and fear. These countries feel threatened by
ambiguous situations and are not keen on experiencing new things. On the other hand,
countries with low uncertainty avoidance are open to new challenges, are curious to
explore new and unknown things, and do not feel threatened by them [24]. Countries such
as Greece, Portugal, Malta, and Uruguay have high values in this dimension, meaning that
they are not tolerant when it comes to uncertain situations. While Singapore, Denmark,
China, Sweden, Vietnam are countries, which are more open towards risks and uncertain
situations, meaning that they have a low score in this dimension. Table 2.4 represents
a comparison of values and norms between a society with high and low uncertainty
avoidance.

2.1.1.5 Dimension 5: Long Term vs. Short Term Orientation (LTO)

In 1991, Hofstede et al. [25] added an extra dimension to the initial four dimensions
described above. This was due to a study conducted on 23 different countries using a
Chinese Value Survey (CVS)[26]. This study published a four-dimensional model, three
of which were correlated with three dimensions from the Hofstede model. However,
there was one dimension that did not have any overlap. For this purpose, Hofstede
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2. Cultural Models Background and State of the Art

Weak Uncertainty Avoidance High Uncertainty Avoidance
Curious to explore unknown Conservative to unknown situations
Low anxiety and no stress to new situa-
tions

High anxiety and stress to new situations

People are more likely to do risky invest-
ments

People stay away from risky investments

Table 2.4: Difference between high and low uncertainty avoidance in a society.

Short Term Oriented Long Term Oriented
Spending is encouraged Sparing resources is important
More effort into quick result Effort into slow and stable results
Traditions are very important and strict Traditions are flexible and can be adapted

Table 2.5: Difference between a short term and a long term oriented society.

added a new dimension to its model named Long Term Vs. Short Term Orientation
[20], and defined it as: “Long term pole were perseverance, thrift, ordering relationships
by status, and having a sense of shame; values at the opposite, short term pole were
reciprocating social obligations, respect for tradition, protecting one’s ‘face’, and personal
steadiness and stability.” When a country is more long-term oriented, it means that the
country is more concerned about stable growth towards long-term goals. Short-term
oriented countries are rather focused on the past and have a tendency towards quick
results. Japan, China, South Korea, and Taiwan have high scores in this dimension and
are long-term-oriented countries. On the other hand, Colombia, Iran, Morocco, and
Venezuela are short-term-oriented countries since they have low values in this dimension.
Table 2.5 shows the key differences in values and norms in long-term versus short-term
societies.

2.1.1.6 Dimension 6: Indulgence vs. Restraint (IVR)

The sixth and last dimension was added by Minkov [27]. This dimension is the outcome
of his latest research and describes to what extend people in a society can enjoy happiness
in their life. Minkov states that “indulgence stands for a tendency to allow relatively
free gratification of basic and natural human desires related to enjoying life and having
fun. Its opposite pole, restraint, reflects a conviction that such gratification needs to be
curbed and regulated by strict social norms”. Countries such as Colombia, El Salvador,
Mexico, and Venezuela have a high score in this dimension and are indulgent societies.
Countries such as Bulgaria, Estonia, Latvia, Lithuania, and Pakistan have a low score in
this dimension and, consequently, are restrained societies. Table 2.6 shows a comparison
between the characteristics of indulgent and restrained societies.

10
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Restrained Indulgent
The majority of people are happy Majority of the population unhappy and

unsatisfied
Leisure is very important Leisure is not important, there is no time

for it
Likely to remember some positive memo-
ries

Likely to remember negative thoughts

Table 2.6: Difference between indulgent and restrained society.

2.1.2 GLOBE’s Project
Another example of a cultural model is coming from the GLOBE (Global Leadership
and Organizational Behaviour Effectiveness) project. In a period of the three years
between 1994 and 1997, a study on roughly 17,000 managers working in 1,000 different
organizations was conducted. The outcome of this study was published by House et al.
[28]. Here, nine dimensions were used to describe a cultural model. GLOBE’s nine
dimensions were based on Hofstede’s dimensions:

• PDI and UAI were maintained (not necessarily with the same interpretation).

• MAS was split into two dimensions: Assertiveness and Gender Egalitarian.

• IDV was split into two dimensions: In-group and Institutional Collectivism.

• LTO changed name: Future Orientation.

• New dimension Human Orientation was added.

• New dimension Performance Orientation was added.

As the Hofstede model is more popular in the cultural sciences than the GLOBE model,
we decided to focus on the former. Yet, theoretically, it should be possible to apply our
method to any other cultural models with a finite amount of dimensions.

2.2 Visualization of Cultural Models
There is no dedicated method for the visualization of cultural models. Different researchers
have used different techniques to represent cultural models. In this section, we discuss
related visualization strategies and their limitations.

A world map for each different dimension was used by House et al. [28]. This can also be
found on Hofstede’s website [29] and was used by Zhang [30] in their research to compare
the dimensions between a set of countries. Figure 2.1 shows the world map for all six
dimensions of the Hofstede model beside each other. A scale on the bottom left side
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Figure 2.1: Visualization of six dimensions of the Hofstede Model using a world map
[27]. Each dimension is represented in a separate panel; hence, six different panels are
required for this visualization.

shows a range of values corresponding to the saturation of the color on the map. For
example, saturated purple indicates more individualist countries. One limitation of this
method is that this visualization lacks accuracy in the comparison between countries,
i.e., it is possible to conclude that the United States has a higher value in individualism
compared to Russia; however, it is not possible to specify the exact difference in the value,
without additional interactions. Also, for the comparison of six dimensions, six maps are
needed across six different panels, which require a higher memory load from the user.

Bar charts have also been used to compare different values of Hofstede’s model across
different countries. An online tool named “Hofstede Insights” exists for this purpose,
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Figure 2.2: Visualization of the Hofstede Model using bar chart Insights [31]. Comparing
the six dimensions of the Hofstede model for Bangladesh, Colombia, Costa Rica, and
Estonia. Missing values are left blank, while the visualization supports by default the
comparison of up to four countries.

which is able to visualize the data of different countries [31]. Each country is represented
by a bar chart color, and the data for each dimension is displayed on the Y-axis. The
limitation is that only a limited amount of countries can be added to this type of chart,
as the Hofstede Insights tool can only support up to four countries. Figure 2.2 shows a
visualization example of a comparison between Bangladesh, Colombia, Costa Rica, and
Estonia for all the dimensions of the Hofstede model. Here we see that, for instance,
Bangladesh has the highest value (80) in the Power Distance dimension, while Costa Rica
has the lowest value (35). Additionally, there is no specific encoding for missing values.
As seen in the dimensions of Long Term Orientation and Indulgence, Costa Rica’s values
are missing, and there is only a blank space in the bar chart to indicate this.

Other related work for the visualization of Hofstede’s cultural model does not go beyond
simple, static visualizations, which are mainly used for the dissemination of the results
of cultural studies as illustrations in manuscripts. Rana et al. [32] used a bar chart
to visualize a comparison between Brazil and the United States. Xiumei and Jinying
[33] attempted to compare China and the United States. Yap [34] visualized the six
dimensions of the Hofstede model using a bar chart to show a comparison between
Malaysia and Australia’s dimensions. Bar charts have been used in other works as well
to show a comparison between the values of Hofstede’s model within a set of countries
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[35, 36, 37]. Other approaches used scatterplots. This approach has been limited to four
dimensions only. Each country is represented by a dot on the chart. The individual
values for each dimension can be read from a country’s position with respect to the axis
representing the dimension [38, 39]. An example of a scatterplot can be seen in Figure
2.3a. In other previous work, Hofstede’s dimensions for different countries are represented
with tables to enable comparison [40, 41, 42]. An example of the tabular comparison can
be seen in Figure 2.3b.

The study result of the GLOBE project is shown in a more interactive way on their
website [43]. First, there is a world map view where a country can be selected. After
selecting the country, the data is displayed. Second, for each dimension, a boxplot is
created, on which the highest and the lowest value, as well as the mean value and the
selected countries position, is marked, as shown in Figure 2.4a. House et al. [28], however,
uses a radar chart (spider chart) to represent the values of each dimension for a specific
country, as seen in Figure 2.4b. In this radar chart, we see all the dimensions of the
GLOBE project.

All of the aforementioned visualization methods serve only the comparison across different
countries, but they do not support an interactive analytical process for knowledge
discovery. The visual representations (with the exception of the GLOBE project) are
not interactive, and each of the figures shown above needs to be re-drawn if some other
country needs to be represented. Also, the visual comparison of countries is tedious.
For instance, in order to compare eight countries together, eight different boxplots,
scatterplots, or bar charts need to be drawn. Other tasks, such as correlation, pattern,
cultural partitions, and outlier identification, are not supported, while data missingness
is addressed as a simple missing visual attribute in the representations.

Reviewing existing visualization tools in the field, we came across a visualization tool
implemented by Bayat [44] to be useful as a basis for our purposes. The visualization
tool displays the six dimensions of the Hofstede model on a world map, heatmap, and
hive-plot. The dataset is a pre-loaded CSV file obtained from Hofstede’s website [45]
containing the data of 121 countries. The selection is done via drop-down boxes. A user
can select a specific dimension and country by choosing it, the world map then highlights
the select country. A color scale on the right side is a reference to indicate how high
or low a chosen dimension is. An example can be seen in Figure 2.5, where the chosen
dimension is UAI for Greece. In the world map, Greece is marked as yellow and on the
heatmap, the value of UAI which is 112 can be seen.

2.3 Cluster Analysis in Cultural Models
The process of creating sub-groups (clusters) of data, where the data belong to a specific
cluster with similar attributes, is named cluster analysis [46]. It is widely used in computer
science for the purpose of grouping data and finding similar patterns within the clusters
[47]. Cluster analysis is also used in cross-cultural researches to identify patterns across
different cultures. Clustering of countries enables the prediction of attitudes [48, 49].
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(a) Visualization of Hofstede’s IDV dimension using a scatterplot [38].

(b) Comparing dimensions of Hofstede’s model for Russia and the United States, using a tabular
representation [40].

Figure 2.3: Different approaches for the visualization of the Hofstede model, using a
scatterplot and a tabular representation.
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(a) Visualization of the GLOBE model’s dimensions for the USA using boxplots
[43].

(b) Visualization of the GLOBE models’ dimensions for Southern Asia using
a radar chart [28].

Figure 2.4: Radar chart and boxplot visualization method - two different approaches of
visualization for GLOBE’s model.
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Figure 2.5: Visualization tool implemented by Bayat [44]. The world map, hive-plot,
and heatmap show the value of the UAI dimension for Greece, which is selected in the
drop-down list.

Clustering can be performed using different techniques, and below, we briefly discuss
some of them. Then, we discuss approaches specifically applied to the cultural domain.

2.3.1 The k-means Clustering Method
This clustering method is used for clustering a set of observations into a user-defined
amount of k groups. Starting with a random set of k center-points (µ), every observation
x is assigned to the nearest center-point as described in the equation 2.1). If more than
one observation has the same distance to the center-point, a random one is chosen.

S
(t)
i =

�
xp :

��xp − µ
(t)
i

��2 ≤ ��xp − µ
(t)
j

��2 ∀j, 1 ≤ j ≤ k
�

(2.1)

After the first step, the mean of the assigned observation x is getting used to re-calculate
the center-points; see equation (2.2). This update step gets repeated until all the
observations are assigned to center-points.
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The k-means algorithm attempts to optimize the target function shown in equation (2.3).
As there is solely a finite number of potential assignments for the number of centroids
and observations available, and every iteration must end in an improved solution, the
algorithm continually ends in a local minimum.

J =
N�

n=1

K�
k=1

rnk||xn − µk||2 (2.3)

2.3.2 The Hierarchical Clustering Method
Maimon and Rokach [50] explains that in this clustering method, the clusters are created
either from a top-down or bottom-up fashion and can be sub-divided into Agglomerative
or Divisive hierarchical clustering. In Agglomerative methods, each observation initially
is in its own cluster. Then, the clusters are merged until the desired cluster structure is
created. Whereas in Divisive hierarchical clustering methods, the observations are initially
in one cluster and eventually get divided into sub-clusters till the desired clusters are
produced. The result of the hierarchical clustering method is represented as a dendrogram
[51], which can be cut at different heights, i.e., at the desired similarity level, to retrieve
different groupings.

The hierarchical clustering methods can be further sub-divided into how the similarity is
calculated. Different methods of calculation are listed below:

• Single linkage: considers the distance between two clusters to be equal with the
distance of the two closest members

• Complete linkage: distance between two clusters is equal to the distance of the
longest distance from any member of one cluster to the other

• Average linkage: distance equals the average distance of any point in one cluster to
any point of the other

2.3.3 Distance Calculation
In Sections 2.3.1 and 2.3.2, we briefly described how different clustering methods. In
both methods, we used the term distance numerous times. The distance between two
points can be calculated in different ways. Some commonly used metrics as defined by
Kaufman and Rousseeuw [52] are shown in Table 2.7. In this master’s thesis, we always
use euclidean distance in all our calculations for clustering, since it is the most commonly
used metric [53].
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Method Name Formula

Euclidean distance �a − b�2 =
��

i

(ai − bi)2

Manhattan distance �a − b�1 =
�

i

|ai − bi|
Maximum distance �a − b�∞ = max

i
|ai − bi|

Table 2.7: Formula of different calculation methods for distance—Euclidean, Manhattan,
and Maximum [52].

2.3.4 Performance of Clustering
Once the clustering is finished, it is possible to measure how well the clustering algorithm
has performed. A good clustering method has minimal within-cluster distance and
maximal inter-cluster distance. Once again, the distance between the points can be
calculated with any of the distance methods discussed in Section 2.3.3.

The Silhouette Coefficient [54] uses two scores of a and b to evaluate the performance of a
clustering algorithm. The parameter a refers to the mean distance between a sample and
all other points in the same class, and the parameter b is the mean distance between an
observation and all the other points in the next nearest cluster. The Silhouette Coefficient
for a sample can be calculated using Equation (2.4). A high score in this coefficient
means that the density of each cluster is high and the distance to the other clusters is
well separated, which relates to the standard definition of a cluster.

s = b − a

max(a, b) (2.4)

2.3.5 Use of Cluster Analysis in the Cultural Domain
Russett [55] clustered countries in his book into Afro-Asian, Latin American, Western, and
Eastern Europe using data from his research. Hofstede [56] then used Russet’s approach
as an inspiration, and clustered the 53 countries and regions of the IBM survey into
12 different clusters using a hierarchical clustering method with the statistical program
named SPSS, and eventually visualized the clusters using a dendrogram seen in Figure
2.6.

Other researchers clustered Hofstede’s model alongside additional dimensions in order to
find a correlation within the existing dimensions of Hofstede’s model, and newly added
dimensions [57, 58, 59]. For example, Kökalan [60] made a cross-country comparison of
EU countries in terms of female participation in entrepreneurial activity. In this study,
five economic variables were used: Women’s unemployment rate, Gross Domestic Product
(GDP), foreign direct investment, government expenditure, and women’s education level.
These were combined with the six dimensions of the Hofstede model to understand
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Figure 2.6: Visualization of 12 clusters created in a dataset with 53 countries—identified by
Hofstede [56] and shown in a form of a dendrogram. The author divided this dendrogram
into 12 arbitrary clusters, the split can be seen on the left side marked with numbers.
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Figure 2.7: Visualization of clusters on a world map by Braithwaite et al. [61]. Countries
marked with the same color belong to the same cluster.

the correlation between economic and social parameters. Hierarchical clustering with
squared Euclidean distance as a classification method and average linkage as the linkage
method was used in this analysis. The result was represented with deprograms and a
correlation table for economic variables and cultural variables. Braithwaite et al. [61]
used the same approach to compare Hofstede’s six cultural dimensions against health
system performance in 35 countries, which are a member of Organisation for Economic
Co-operation and Development (OECD). The clustering approach used in this study is the
agglomeration method of complete-linkage. Additional to the dendrogram, Braithwaite
et al. [61] uses a world map to visualize the different clusters with different colors on the
map, as shown in Figure 2.7.

2.4 Missing Data in Cultural Models
Dealing with cultural models and social science-related data, we often encounter data
missingness. Missing data is a frequent issue, which reduces the available information.
For this purpose, various techniques have been identified to fill in the missing values
[62, 63], which we discuss in this section.

2.4.1 Categorization of Missing Data
Little and Rubin [64] categorized missing data into Missing data At Random (MAR),
Missing data Not at Random (MNAR), and Missing Completely At Random (MCAT),
where each of them has different approaches to overcome.

The probability of an observation missing in MCAR is independent of observed and not
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observed data, meaning that a missing value has no relation to any other observed and
non-observed data. As an example, if we take a random sample from a population, each
member has the same probability to be taken into the sample. The members who are not
taken (non-observed) are MCAR. If the probability of missing is only the same within
the observed data, then we are dealing with MAR; as an instance, taking samples from a
population is depending on a known property. Lastly, if neither MCAR nor MAR holds,
then MNAR holds. For instance, there might be missing data in a survey due to a reason,
and managers tend to not share their salary range, or elderly participants not wanting to
share their age [65].

2.4.2 Coping With Missing Data
There are two main approaches to handle missing data, deletion and imputation. In the
deletion approach, records of the data which are incomplete are dismissed. Deletion can
be list-wised, where only records with all existing variables are used, or pair-wised, where
a new sample of complete cases for each variable is used. Depending on the pattern of
missingness, deletion can cause problems in the data analysis such as biased estimates
[66, 67].

Imputation replaces the missing data with a new value based on an arithmetic calculation
rather than dismissing the data completely. Imputation can be single or multiple, wherein
single imputation all missing values in a feature are filled with one value [68]. Methods
used for single imputation are the following:

• Mean imputation: Missing values to be replaced with the mean value of the observed
data.

• Median imputation: Missing values to be replaced with the median value of the
observed data.

• Most frequent imputation: Replaces missing data with the most frequent value
among each column of observed data.

In order to overcome the issues with single imputation, Rubin [63] introduced a novel
method of imputation named multiple imputation (MI). MI uses both Bayesian and
classical statistical techniques to predict the missing value. This method aims to handle
missing data by keeping existing relationships and reflect uncertainty [69]. The main
concept behind MI is to fill in missing values multiple times, analyze by standard
techniques and eventually combine them to a single best result. In contrast to ad-hoc
methods of imputation (deletion, mean, median, and most frequent imputation), this
method considers the uncertainty of the data [70, 71].

Multiple imputation by chained equations (MICE) [72] is a MI method, which operates
under the assumption that all missing values in the variables are MAR, then the data
are imputed in four major steps.

22



2.4. Missing Data in Cultural Models

1. A single imputation method (ex. mean imputation) is performed for every missing
value. The mean imputations are referred to as M .

2. M is set to missing for one entry (referred to as E).

3. E is regressed, meaning E is the dependent variable in a regression model and all
other variables are independent.

4. The missing value that was created for E is replaced with the prediction(imputation)
from the regression model. When E subsequently is used as an independent variable
in the regression model, both observed and imputed values are used.

2.4.3 Evaluation of Imputation
An imputation method’s goal is to complete incomplete data; thus, the quality of this
imputation method shall be evaluated based on this goal. The evaluation is challenging
since when a dataset has missing entries, the truth values of those missing entries are
unknown. A comparison in the performance of the imputation method can only be
achieved by artificially introducing missing data points in the dataset [73].

Once there is an artificially created dataset with missing entries, the performance of
imputation can be measured by first imputing this dataset and then comparing it with
the original values. A widely used method to evaluate the performance is the Root Mean
Square Error (RMSE) score [74, 75, 76, 77, 78]. Equation (2.5) shows how the RSME
value is being calculated, where n is the size of the sample, ŷi is the predicted (imputed)
value, and yi is the original (truth) value. The smaller the RMSE is, the better effective
was the imputation method, since the predicted values are closer to the original values.

RMSE =

	

�( 1
n

)
n�

i=1
(ŷi − yi)2 (2.5)

2.4.4 Handling Missing Data in the Cultural Domain
The imputation techniques described above are used frequently in the cultural science
domain. Yoon [79] tried to predict the voice behavior of employees based on the PDI
dimension of the Hofstede model. This research coped with missing data by using the
list-wise deletion method. Huang and Crotts [80] focused on finding a correlation between
tourist satisfaction and the six dimensions of the Hofstede model. The main dataset used
in this study had a total of 39,959 records which 15,997 of them were related to the scope
of the study. Using the list-wise deletion method, 14,892 values out of the total available
records were used in the study. Several other studies related to the Hofstede model or
cultural models, in general, can be found which use list-wise or pair-wise deletion methods
[81, 82, 83, 84, 85], single imputation methods [86, 87, 88, 89] or multiple imputation
methods [90, 91, 92, 93, 94], in order to purify their data.
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CHAPTER 3
Principles of Visualization

In this chapter, we take a closer look into visualization principles, visual design principles,
and evaluation methods related to creating an analytical tool for exploring multidimen-
sional cultural models. This, in addition to the related work discussed in Chapter 2,
builds up the knowledge basis described in Figure 1.1. The knowledge acquired from
Chapters 2 and 3 will serve as an input for our first framework design, which is dis-
cussed in the upcoming chapters. Two key terms—information visualization and Visual
Analytics—are described below to give us a better understanding of how to meaningfully
design a visualization framework. At the end of this chapter, the framework’s basic
requirements among the required representation methods and evaluation methods should
be discovered.

3.1 Information Visualization
Card [95] describes information visualization as "the use of computer-supported, interac-
tive, visual representations of abstract data in order to amplify cognition." Information
visualization is the art of transforming data into a geometric representation that enables
humans to achieve a rapid understanding of abstract information [96, 97]. The concept of
information visualization is also used in the computer science domain to denote the field
that enables users to benefit from visual data exploration and data analysis. The process
of visual data exploration is seen as a method that allows users to better understand
the data by exploring and interacting directly with the data. It could also be used for
knowledge discovery, confirmation of hypotheses, decision making, or presentation of
results [98].

3.1.1 Process and Methods of Information Visualization
The process of information visualization consists of four main components: data, repre-
sentation, presentation, and interaction [97]. In the representation stage, methods of data
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representation are identified. Methods such as point representation, scatterplots, star
plots, or parallel coordinate plots exist, which depending on the following three principal
as described by Spence [97] are differently suitable for a purpose:

• Type: Depending on the data type, which can be numeric (i.e., price of real estate),
categorical (i.e., gender), or relational (i.e., a family tree).

• Dimension: The representation method is strongly influenced by the number of
dimensions in the data.

• User: The person who interprets and explores the data has an influence on the
method of representation user. As an example, if an information visualization tool
is mainly used by children, complex numerical representation methods would not
be suitable to use.

The above principles are crucial through all stages of information visualization. In the
presentation stage, the main goal is to identify the most suitable methods to present the
previously identified data representations, i.e., to show it on display. Spence [97] argues
that a single-page presentation with adequate size, with a minimal amount of references
to any other page, shall be enough in the majority of information visualization cases. He
also mentions that a computer-based display has the ability to provide features (such
as filtering and interaction) for data presentation, which is difficult or impossible for
paper-based documents to match.

The aim in the last stage of Spence’s information visualization process is to use techniques
such as reordering data, filtering, and brushing to enable users to interact and change
the presented visualizations. Reordering of data requires rearranging the data to show
the result more understandably. Filtering, however, does not rearrange the data, as it
only removes irrelevant data by filtering them out. Brushing was introduced by Becker
and Cleveland [99]. This is a technique that enables the user to select a subset of the
data in space and to view their corresponding points in another space. An example of
each method can be found in Figure 3.1.

Figure 3.1a shows two tables representing the results of the same experiment. The rows
are a collection of crops, and the columns represent different treatment methods. Black
indicates a successful treatment, and white indicates an unsuccessful treatment. After
rearranging the table, a pattern is visible, raising questions about a particular type of
treatment and crops.

Williamson and Shneiderman [100] created a Dynamic Home Finder tool to make the
exploration of data easier. In this tool, sliders provide the user with a dynamic user
interface that allows the user to filter properties based on price, number of bedrooms,
and commute time to their workplace. An illustration of the tool is in Figure3.1b. In
this example, the user applied a price filter ranging between roughly £45,000 to £80,000,
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(a) Reordering data [97] used as an interac-
tion method.

(b) Filtering data [100] used as an interaction
method.

(c) Brushing data [101, 102] as an interaction
method.

Figure 3.1: Example of different interaction methods such as reordering, filtering, and
brushing in information visualization [97].

several bedrooms between 1.5 and 2.5, and distance to their workplace between 10 to 30
minutes. The red dots show available properties which meet these criteria.

An example of the brushing method can be found in a tool named Attribute Explorer,
which uses brushing in a histogram diagram that [101, 102]. The data belongs to a
specific collection of 50 car prices and their Miles-per-Gallon (MPG) rating. Figure 3.1c
shows the relation between a category of price and its corresponding MPG, where the
selection of price is brushed on the second histogram.

The above-defined interaction methods are used as an inspiration in our visualization
framework to enable users to interact and change the presented visualizations.

3.2 Visual Analytics
As described in Section 3.1, information visualization is mainly concerned with how to
represent non-spatial data. This, however, is not sufficient for the purpose of this master’s
thesis since, in addition to the representation of data, a user should be able to generate
hypotheses by analyzing the data. For this purpose, Keim et al. [7] has introduced Visual
Analytics, which is a field that to combines statistics, machine learning, or data mining
methods with interactive visualizations to enable users for a better understanding and
decision making.

The fundamentals and methods used in Visual Analytics are an adapted version of the
information-seeking mantra used for information visualization, which broadly describes
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the process of having an overview of the data first—zooming and filtering—and then
obtaining details on demand. The adapted version for Visual Analytics is slightly different;
analyze–show the important–filter, zoom, and analyze further–details on demand [7]. The
main difference is in analyzing the data first before showing it. Following are some
concepts in Visual Analytics which are used in this thesis:

• Multiple views enable users to see the data in different representations, which
gives the possibility to comprehend the relationship between data by brushing and
linking.

• Brushing and linking, as also described in Section 3.1.1, allows the user to select
data on one view and see its corresponding highlighted data in another view.

3.2.1 Process of Visual Analytics
Keim et al. [7] introduced a sense-making loop framework for Visual Analytics initially
introduced by Van Wijk [103] represented in Figure 3.2. An initial analysis needs to be
applied to the data followed by visualization; the user then can discover new knowledge
and ultimately confirm hypotheses. The user has control over the process and has the
ability to interact with the visualizations to fulfill their tasks.

By reviewing the above Visual Analytics process and the information visualization process
introduced by Spence [97] it is possible to apply them to this master’s thesis. Starting
with the three principles described in Section 3.1.1, we can define the principles as follows:

• Type: The data required for this visualization framework is acquired from Hofstede’s
website [45]. The dataset contains 121 rows (countries), with numerical data. The
data consist of integer values between 0 and 100, 1 being the minimum and 100
being the maximum value. The data might contain missing values which need to
be deleted or imputed. Any additional data added two the model should comply
with the two specifications of being an integer between 0 and 100.

• Dimensions: Each country has a maximum of six dimensions by default and can
be extended by the user if it required to explore the correlation between the
newly added dimension and the default six dimensions. Thus, multidimensional
visualization methods should be considered for a proper representation since the
data has more than a singular dimension.

• User: The users are researchers with academic backgrounds in the cultural science
domain who would like to discover knowledge by exploring the data related to
different dimensions of Hofstede’s model.

Knowing the type and dimension, it is possible to choose appropriate representation
charts for the visualization framework. Some of the potentially suitable charts have been
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Figure 3.2: Process of Visual Analytics based on sense-making loop introduced by
Van Wijk [103]. The user has control over the process and can fulfill tasks with interactions
on the visualization tool.

described in Section 2.2, and are representation methods already used in the literature
that have the ability to show some aspects of the multidimensional data. In the upcoming
section, the required visualization methods and techniques are analyzed as to whether
they introduce a possibility for knowledge discovery in the visualization framework.

3.3 Multidimensional Visualization
Numerous researches have explored the visualization of multidimensional data [98]. In
this section, we explore some of them which fit the type, dimension, and user of our
visualization as described in Section 3.2.

While exploring different multidimensional visualizations, we discovered that the scat-
terplot matrix and parallel coordinates are two suitable, basic methods and have been
heavily used by other visualization tools for representing multidimensional data.

Scatterplots [104, 105] are one of the most widely used visualization methods for multidi-
mensional data, due to their simplicity and yet flexible nature [106]. Scatterplots have
a two-dimensional grid. Each entry in the data set is rendered as a point on the grid
representing the value in the two-dimensional Cartesian space defined by the axes. In
order to visualize multiple dimensions, a different and unique graphical property such as

29



3. Principles of Visualization

shape, color or size can be assigned to each dimension. This method was applied to tools
such as XmdvTool[107] and GGobi [108], which use scatterplots in their visualizations.
Only two or three dimensions can be fit into a single scatterplot. For this purpose,
some scatterplot visualizations allow to dynamically select the dimensions which a user
wants to see [106]. Alternatively, multiple scatterplots can be set beside each other in a
matrix-like configuration, where each dimension has its own dedicated scatterplot, as
seen in Figure 3.3b. This is called a scatterplot matrix.

Parallel coordinates [109] are also a widely used representation for multidimensional data.
They have the ability to represent N-dimensional data by polyline crossing axes at a given
value. Each axis represents a dimension and is parallel to all other axes. Using brushing
as a method to interact with parallel coordinates, users are able to understand relations
and patterns in the data [110, 111]. Hauser et al. [112] used linking and brushing in
order to explore highly dense data in parallel coordinates, as the user is only interest in
part of the data and not the whole dataset. An example of parallel coordinates can be
seen in Figure 3.3a.

A radar chart or also named spider chart, is a graphical approach to represent multidi-
mensional data in the form of a two-dimensional figure. The name "radar" comes from
the similarity to a radar screen [114]. Radar charts have axes integrated into a radial
figure; each property’s value is presented as a dot on each axis [115]. All the dots are
connected via lines creating a polygon or circle-like shape depending on the chart’s design.
An example of a radar chart can be seen in Figure 2.4b where nine dimensions of the
GLOBE project are visualized using a radar chart.

3.4 Visualization of Uncertainty
Uncertainty an often debated term [116]. Uncertainty can be defined as an error, difference
to the truth value, missing data, or statistical variation [117]. Uncertainty is an often
occurring phenomenon in data derivation, transformation, and imputation. If these kinds
of uncertainty are not considered in the visualization, wrong assumptions can be made
by the user [117]. Visualization of uncertainty has been ignored in the past by most of
the research conducted in the visualization domain [118]. However, the importance of its
influence was brought up multiple times [119, 120].

Uncertainty can be visualized in different ways. Size, shape, color, texture, or fuzziness
can be used to show uncertainty in a visualization that [121, 122, 117]. The main challenge
is to prevent information overflow since uncertainty is yet another channel of information
that needs to be interpreted by the user and often tends to occlude the underlying data.
The visualization of uncertain data should not pollute the visualization of specific data
and not burden the understanding of the user. In an attempt to achieve that, Cedilnik
and Rheingans [123] used procedural generated annotation to show uncertainty. As seen
in Figure 3.4, the annotation lines of uncertain data have a softer-edged, while places
with low uncertainty data have sharp and bright lines.
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(a) Parallel coordinates representing the car dataset [106]. Each axis represents a dimension in
the dataset, meaning that this dataset has six dimensions. The value ranges of each axis are
within the minimum and maximum value of that particular dimension.

(b) Scatterplot matrix representing the car dataset [113]. Each dimension has its own dedicated
scatterplot, meaning the dataset consists of eight dimensions.

Figure 3.3: Scatterplot matrix vs. Parallel coordinate plot, representing the same
multidimensional data.
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3. Principles of Visualization

Figure 3.4: Uncertainty visualization via annotation [123]: uncertain data have a softer-
edged overlaid grid.

3.5 Evaluation of Visualization
Several papers have been published which cover the subject of evaluation in the information
visualization domain [124, 125, 17, 126, 127, 18]. The evaluation in this master’s thesis,
however, is based on one of the seven guidelines introduced by Lam et al. [17]:

• Understanding environments and work practices (UWP): relies on quantitative data
such as interviews from domain experts; the questions are focused on the set of
functions and features a visualization tool should have.

• Evaluating visual data analysis and reasoning (VDAR): to evaluate if the visualiza-
tion tool has the ability to perform the required analysis, the evaluation can be
based on quantifiable metrics such as the number of insights or qualitative data
based on the user experience, experiments, or case studies.

• Evaluating communication through visualization (CTV): In aspects such as learning
and teaching, CTV can evaluate how effective communication is supported by
visualization. This is usually performed by controlled experiments or observation
in the field.

• Evaluating collaborative data analysis (CDA): Weather a tool supports collaboration
or collaborative decision making can be measured using CDA. Only a few papers
exist which have performed an evaluation for collaborative information visualization
system; however, this can be done by reviewing user feedback or interviews with a
domain expert.

• Evaluating user performance (UP): Time accuracy and task quality are the two
usual metrics measured in a user performance evaluation. The numerical values
are analyzed using statistical methods.

• Evaluating user experience (UE): User’s verbal or written feedback is evaluated to
understand how people react to the visualization in the short or long term.

32



3.5. Evaluation of Visualization

• Evaluating visualization algorithms (VA): measures the performance of the algorithm
used for visualization.

Our visualization framework mainly aids the user for knowledge discovery and hypothesis
generation. For this category of visualization frameworks, the VDAR evaluation method
is usually being used [17, 128]. This evaluation method’s main goal is to assess the
ability of the visualization framework to support visual analysis and reasoning about data.
Although some studies might collect numeric metrics, the main aim is to understand how
the whole framework supports the analytic process. The VDAR evaluation method can
be conducted via case studies, in which the framework is evaluated by answering a set of
questions and evaluating if the required tasks are being fulfilled. A detailed evaluation of
our visualization framework can be found in Section 6.4.
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CHAPTER 4
Visualization Design

In Chapter 2, we reviewed the literature related to existing visualizations of the Hofstede
model. The existing methods in the cultural domain mentioned discussed in Section 2.2
and the visualization methods in the domain of multidimensional visualization introduced
in Section 3.3 can be combined to identify literature gaps and to create a basis for a
visualization framework for knowledge discovery in cultural models. The goal of this
chapter is to present a set of requirements for our framework (as resulting from our
literature search), and a detailed task analysis designed to fulfill the previously set
requirements.
After reviewing the existing cultural visualization methods in Section 2.2, we identified
that these methods lack dynamic interaction. All of them are static visualization methods,
which do not give the user the capability to use filtering or brushing. The dynamic
interactions give the user the freedom to explore and digest the data better, which
aids the knowledge discovery process, which is currently missing. Additionally, none of
them accounted for cluster visualization, missing data, and uncertainty in their methods,
resulting in a loss of information. This all leads to the demand for a visualization
framework that covers this gap and satisfies the relevance cycle of the three-cycle research
framework introduced in Section 1.3. In order to create such a visualization framework,
it is crucial to understand the process of designing and implementing a visualization
framework. The framework design is discussed in this chapter and the implementation in
the upcoming Chapter 5.
In Chapter 3, we introduced methods such as parallel coordinates and scatterplot matrices
as basic methods for the visualization of the data coming from cultural models, which
are inherently multidimensional and with a varying number of dimensions. We then
discussed the process of Visual Analytics in Section 3.2, which serves as a guideline when
we create our first prototype. Finally, we introduced the seven guidelines established
by Lam et al. [17] as our evaluation method, which is used to evaluate the prototype in
the design cycle. The guideline and evaluation method establishes our knowledge base
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4. Visualization Design

and is the input in our rigor cycle as discussed in Section 1.3. This chapter’s focus is
on exploring what is required to build the first artifact (prototype) of the visualization
framework. This is the final input required in the design cycle before creating the first
prototype.

Based on the identified gaps between the current visualization methods found in the
literature and our goal, we formulate the following design requirements:

1. R1—Loading Data: Users need a way to represent the data from the Hofstede
models. These data are multidimensional and with a varying number of dimensions.

2. R2—Handling Missing Data: The Hofstede model with six dimensions has
missing data. The user must be able to deal with the missing data.

3. R3—Cultural Profiling: User must be able to choose a clustering method and
apply it. They should be able to determine countries with similar cultural profiles,
compare them, and find interesting insights and patterns regarding these countries’
cultural backgrounds.

4. R4—Knowledge Discovery: The user must be able to interact with the vi-
sual representations of the Hofstede model data in a flexible manner, to discover
additional knowledge about the cultural background of different countries.

For each of these requirements, we discuss the appropriate design for tackling them in
the upcoming sections. This is done based on the typology for task analysis by Brehmer
and Munzner [129].

4.1 Task Analysis and Abstraction
The term task can be interpreted in different ways. To avoid this issue, we rely on our
task description based on a taxonomy introduced by Brehmer and Munzner [129] (refer
to Figure 4.1). Tasks can be described at a high-level or in a low-level of detail. For
instance, if we would define a task as “a user wants to explore Hofstede’s cultural data”,
it would be too general. On the other side, defining a task as “a user wants to investigate
the PDI dimension of Hofstede’s model and filter out only three clusters” would be a
low-level task.

The high-level task gives the designer of the framework only an overview of the user’s
actual intent; the low-level task only gives precise information on a specific task without
understanding the user’s actual motivation. This is the “gap” as described by Brehmer
and Munzner [129]. They try to solve this gap by introducing medium-level tasks, which
gives the designer an understanding of what specific task a user wants to achieve and the
factual background and motivation. This multi-level typology targets to remove this gap
between high and low-level tasks by answering three questions: why a task is performed,
what are the input and outputs, and how this task is performed.
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4.1. Task Analysis and Abstraction

Figure 4.1: Multi-level typology introduced by Brehmer and Munzner [129]. High-level
tasks can be drilled down to medium-level tasks by answering why, what, and how.

Looking at Figure 4.1, we see the three terms why, how, and what consecutively shown
in a, b and c, respectively. Three sub-sections divide the why section:

• Produce: Here, the intention is to produce a new artifact such as an annotation,
recorded visualization, visualization interaction.

• Consume: Here, the user uses the visualization to consume information. This
can be achieved by presenting the information in a storytelling way, by discovering
hypotheses and confirming them, or by casually interacting with the visualization
framework and enjoying it.

• Search: Here, lookup or locate are used for searching known targets, whereas browse
and explore are used when a user is searching for a target matching particular (or
even unknown) characteristics. For example, if a user is familiar with the geography,
they locate a country on the map. If they are unfamiliar they need to explore the
map.

• Query: Once an element or a set of elements is found after conducting a search,
the user can compare, identify or summarize these elements.

The how part of the typology shown in Figure 4.1 is classified into three sections:

• Encode: How the data is encoded into a visualization.

• Manipulate: Users can manipulate existing elements by interacting with the
elements in the visualization. The term select refers to directly clicking or lassoing
elements. Navigate includes methods such as zooming or rotating, which is changing
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4. Visualization Design

the user’s viewpoint. Arrange means organizing and arranging the elements spatially,
for instance, to re-order axes of parallel coordinates. Change refers to changes in
the visual encoding, such as altering the size and transparency of points. Filter is
when we add exclusion and inclusion methods in the visualization. Aggregate is to
change the granularity of visualization. For example, a user aggregates some daily
values into monthly values by changing the granularity of a continuous time scale
in a time graph.

• Introduce: The term introduce is creating new elements. Annotation is when an
additional text or graphical annotation is added into a visualization element. Import
keyword is used when a new element is added into the visualization by importing
it. Derive is used when new elements are being created using an existing element.
A user can derive new elements using some algorithm in the visualization. Record
keyword is used to save and record a visualization state, mostly via a screenshot.

The typology finally defines the term what in a flexible manner with a “bring your own
what” mentality. The only requirement is that it should define the input and output
explicitly.

As a basis for our cultural model visualization prototype, we employ the typology
discussed above. Below, we formulate the four tasks that our prototype can support
following the typology conventions.

Task 1: Visualizing and Comparing Cultural Dimensions

Task 1 addresses the visualization of the multidimensional data of the cultural model of
Hofstede and the comparison of different countries. This relates directly to requirement
R1 (Loading Data), and indirectly to R2 (Handling Missing Data).

• Why: To cover this task for the user, it should be possible to present values of
different dimensions for the cultural model of Hofstede. The user needs to look up
and find countries and be able to compare different dimensions to each other.

• How: First of all, the data are encoded in visual representations (radar chart, world
map). It should be also possible to select specific countries and change them if the
user requires to.

• What: As input, we consider the data from the model and as output, a set of
countries to be compared.

Task 2: Discovering New Knowledge
The user should be able to confirm or reject hypotheses, such as “the higher the PDI
is in the model, the lower is the GDP of the country”, which fulfills R4 (Knowledge
Discovery).
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Present
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of countries

Compare

Select

Change

Figure 4.2: Typological diagram for Task 1: Visualizing and comparing cultural dimen-
sions of different countries.

• Why: This task goes along with discovering knowledge using our visualization
framework. The goal of the user is to explore the countries and to identify a
correlation between the dimensions.

• How: The user should be able to select a specific set of countries or to filter countries
based on criteria, while it should be also possible to re-arrange the data.

• What: The input is the standard six dimensional Hofstede model, and additional
socio-economic dimensions, as added by the user. The output is the discovered
knowledge to confirm or reject a pre-determined hypothesis.

Task 3: Cultural Profiling of the World
As seen in Figure 2.6 and 2.1, visualization of clusters exists in the current literature;
the clustering is being used to identify similar characters or cultural clusters in the data.
Task 3 is designed to fulfill R3 (Cultural Profiling).
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Figure 4.3: Typological diagram for Task 2: Discovering knowledge in the cultural model.

• Why: To discover which countries belong to similar cultural backgrounds, or what
countries can be grouped with each other.

• How: By looking up the country and identifying if there is a special characterization
in the cluster to which they belong. Users should be able to select different clusters
and change the clustering method.

• What: As input, we consider the data from the model and a clustering method
which results in a visualization that we use, in order to understand a specific
pattern within the clusters and to see if the countries in the cluster have similar
characterization.

Task 4: Visualizing Uncertainty (Data Missingness)
As described in Section 3.4, the uncertainty of a visualization can be described as the
error or difference to the truth. In our framework, we impute missing data. These
imputation methods have an impact on the values, and the user needs to be able to
distinguish between imputed and non-imputed values. This task relates directly to R2
(Handling Missing Data), and indirectly to R4 (Knowledge Discovery).
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Figure 4.4: Typological diagram for Task 3: Cultural profiling of the world.

• Why: To produce visualizations, which show the effect of uncertainty (missingness)
in the cultural models. Additionally, to compare the impact of different imputation
method and their uncertainty.

• How: By changing parameters of imputation and by producing different visualiza-
tion.

• What: As input, we consider the data from the model and a clustering method,
which results in a visualization. As output, a heatmap is represented which
annotates the missing values.

4.2 Designing the First Prototype
We first identified gaps in the current visualization methods of the cultural models, and
based on these gaps we identified requirements and described middle-level tasks following
Brehmer’s multi-layer task typology. It is now possible to design the first prototype before
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Produce
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Input: Data and 
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Output: Impact of 
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Compare

Figure 4.5: Typological diagram for Task 4: Visualizing the uncertainty (missingness) of
cultural models.

implementation. As illustrated in Figure 4.6, the initial UML activity diagram shows
the flow of how the visualization framework works. Starting from the top, the user loads
the data into the framework, which satisfies requirement R1. The user then can choose
imputation and clustering methods, modify their parameters, and apply them to the
data, which is required to fulfill requirements 2 and 3. Finally, to fulfill requirement R4,
the user can view a dashboard that includes all the visualization methods. Which exact
visualization method is shown is discussed in the next Section refch4:choosevismethod.

4.2.1 Choosing Visualization Methods
After our detailed task analysis, we can make an informed choice on the most appropriate
visualization methods for fulfilling our previously discussed requirements and tasks. We,
hereby, discuss the general motivation and rationale behind our choices. The specific
visualization encodings used in each one of the selected visual representations are discussed
in the upcoming section.

As discussed in Section 2.2 and illustrated in Figure 2.4b, to compare two or more
countries with each other, the current literature used bar charts and radar charts. Taking
this as an inspiration, we choose radar charts as the visualization method to fulfill Task
1. We adapt it by giving the user the possibility to interact and dynamically change the
radar chart. Radar charts are a suitable visualization method for comparing one or more
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4.2. Designing the First Prototype

Figure 4.6: Activity diagram showing the flow of the visualization framework and how it
fulfills requirements R1–4.
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countries. A bar chart such as the one in Figure 2.2 is too crowded, if more than five
countries are selected. Providing the user the ability to select and change the countries
which are intended to be compared can be done via checkboxes. All the countries are
listed, and the user can decide which to pick to compare. The visualization projected in
a radar chart adapts after the user’s selection and changes. This goes along with what is
required in Task 1. Presenting a visualization, where different countries can be looked up
and compared to each other by selecting different countries.

Task 2 requires a visualization method that has the possibility to filter and re-arrange
dimensions, so that it is possible to detect co-relations. Based on Andrienko and Andrienko
[130] parallel coordinates give the user the ability to compare characteristics of individual
objects, understand the correlation between objects, change the order of axes and do a
pairwise comparison. Parallel coordinates must have the possibility to re-arrange the
axes and filter the countries via brushing. This ensures select, filter, and arrange is
fulfilled and complies with what is required in Task 2.

Task 3 requires a visualization method that shows all the countries in their geographical
position and their cluster membership. This is possible to achieve using a world map
similar to how it was used in the current literature shown in Figure 2.1 and 2.7. The
world map gives the user an understanding of the geographical location of the clusters.
Additional visualizations, such as a clustermap [131], aid the user to understand which
countries belong to the same cluster. The clustermap plots a matrix dataset as a
hierarchically-clustered heatmap with an additional dendrogram [132] and illustrates
which group of data belongs to one cluster in a tree diagram. Clustermaps are used to
visualize and explore the impact of clustering on the data [133, 134, 135]. Visualizations
such as elbow plots [136, 137] and dendrograms can help a user to select a suitable
clustering method (refer to Section 6.3.1 for a detailed explanation). Using a combination
of the world map and the clustermap, users can discover new knowledge and identify
patterns by looking up countries belonging to the same cluster. For example, they can
identify that all values of a particular dimension, belonging to a specific geographical
cluster, have a high or low value.

As described in Section 3.4, the visualization of uncertainty in Task 4 can be achieved
with the use of different methods. The uncertainty, which we thrive on visualizing, is the
bias introduced in the data by our imputation methods. We visualize this uncertainty by
using annotations for the imputed values on the clustermap. The produced visualization,
gives the user the ability to compare the values of imputed data on a heatmap and view
the pattern of branching of the clusters. changing the input parameters of imputation
the imputation or clustering method affects the visualization.

A summary of the selected visualization methods and their purposes has been summarized
in Table 4.1.
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Visualization Method Fulfills Explanation
Radar Chart Task 1 Presenting a visualization where

users can look up countries and
change the visualization by select-
ing different values. The main
goal is to compare countries with
each other.

Parallel Coordinates Task 2 Discovering, exploring knowledge
and confirming hypotheses by re-
arranging axis and filtering data
to select different countries with
different specifications. This also
enables the user to identify co-
relation within the data.

World Map Task 3 Discover and identify geograph-
ically related trends by looking
up different countries or clusters
on the world map representation
which can be changed by selecting
different countries or clusters.

Clustermap Task 3, Task 4 Producing a visualization that
can be used to compare the im-
pact of changing different hi-
erarchical clustering parameters.
Also used to discover and iden-
tify the uncertainty of different
imputation methods.

Table 4.1: selected visualization methods to fulfill the Tasks 1–4, as resulting from the
use of Brehmer’s multi-layer task typology.

4.2.2 Description of Visualization Methods and Their Encoding

Under this section, we discuss in detail each implemented visualization method chosen to
fulfill Tasks 1–4. The reasoning behind each choice is shown in Table 4.1 and has already
been discussed in Section 4.2.1. A detailed explanation of the implementation for each
visualization method is discussed in Chapter 5.

4.2.2.1 Radar Chart

As defined in Section 3.3, radar charts can be used to represent multidimensional data in
two dimensions. We use a radar chart to represent the dimensions of Hofstede model
(see Figure 4.7). Additionally, the radar chart represents the lower and upper boundary
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of the 50% central region which is calculated with the following math Equation (4.1), to
generate a functional boxplot [138]:

C0.5 =
�

(t, y(t)) : min
r=1,....,�n/2�

y[r](t) ≤ y(t) ≤ max
r=1,....,�n/2�

yr (t)
�

(4.1)

Figure 4.7a shows a visualization when only two countries are selected. In this visualiza-
tion, we can see a comparison between Australia and Austria. Hovering over the vertices
shows information about the dimension value and country. The red line in Figure 4.7b,
shows the central value of the functional boxplot. The orange line shows the upper limit
of the functional boxplot, which is 1.5 times the 50% central value. On each axis, the
values can be found written behind the polygons.

4.2.2.2 Parallel Coordinates

As defined in Section 3.3, parallel coordinates [109] are also a widely used representation
for multidimensional data. In this visualization method, we show each dimension of
Hofstede’s model on an axis. The user can filter the values on each axis by brushing and
selecting a specific range. The filtered countries are additionally shown in a table located
below the parallel coordinates. An example can be seen in Figure 4.8, where the values
are filtered between scores ranging from 40 to 100. The coloring of the coordinates is
based on the Z-score [139]. The Z-score is the number of standard deviations in which
the value of the observation is below or above the mean and is calculated using Equation
(4.2) where µ is the mean, and σ is the standard deviation of the population.

z = X − µ

σ
(4.2)

Z-scores above the mean is colored blue, whereas Z-scores below the mean are red (see
Figure 4.8). The coloring is always based on a single dimension that is dynamically
changeable by selecting each axis’s title. If the data is clustered, the coordinates’ coloring
is grouped based on the cluster, meaning each unique cluster has a unique coloring as
seen in Figure 4.9.

The values on each axis can also be inverted by double-clicking on the same axis, and this
makes the comparison of negatively correlated data more manageable, which is discussed
in detail in Chapter 6.

4.2.2.3 World Map

The world map represents a two-dimensional map where the values of a selected dimension
are shown for each country. A similar visualization has been used by Minkov [27] which
we illustrated in Figure 2.1. However, in our world map, the user can dynamically change
the dimensions in the world map. The coloring of the world map is the same as the
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(a) Comparing Austria and Australia via our implemented radar chart.

(b) Upper limit of functional boxplot.

Figure 4.7: One-to-one and many-to-many comparisons via radar chart.

parallel coordinates, based on Z-score where negative Z-scores are colored red, positive
Z-scores are colored blue, and countries with no entries are colored as grey. A legend
on the right side of the world map shows the coloring scale. Optionally, if the data is
clustered, the coloring can be grouped based on clustering where countries belonging to
the same cluster have the same color. The colors of the clusters in the world map are
the same colors chosen for the clusters in the parallel coordinates shown in Figure 4.9.
An example of the world map, where the Hofstede model’s PDI dimension is selected,
can be seen in Figure 4.10. The tool-tip shows Russia’s values for each dimension of the
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Figure 4.8: Parallel coordinates plot showing 6 dimensions of the Hofstede model. Coloring
is based on the PDI dimension and the values of PDI are filtered between 40 and 100.

Figure 4.9: Parallel coordinates plot showing 6 dimensions of the Hofstede model. Coloring
is based on the detected clusters.

48



4.2. Designing the First Prototype

Figure 4.10: World map showing the values of PDI in Hofstede model. Coloring is based
on the PDI dimension and their Z-score values. Hovering the mouse over a country shows
full description of each dimension and the values. A small heatmap in the bottom of the
world map shows the values of all the other dimensions.

Hofstede model.

Heatmaps located below the world map represent the actual values of all the dimensions
for each country, the coloring of this heatmap is also based on the Z-score of each
dimension. Alternatively, the values can be observed using a tool-tip, i.e., by hoovering
the mouse over any country.

Figure 4.11 shows an example where the coloring of the world map is based on clusters.
Each cluster has its unique coloring on the map. Detailed explanation on how the world
map is used for knowledge discovery is discussed in Chapter 6.
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Figure 4.11: A world map representation of countries that have values in the Hofstede
model. Coloring is based on the detected clusters.

4.2.2.4 Clustermap

A clustermap is a combination of heatmap and dendrogram, which is used to identify the
hierarchical structure (like a taxonomy) [140].

Figure 4.12a shows a full view of the clustermap, where in the middle, there is a heatmap
representing each data point. The coloring is based on the scale shown on the right
side, where 0 is set to white. The color gets darker and closer to blue when the value
of the observation increases. There are dendrograms attached on the left and the top
side of the heatmap showing the pattern of the hierarchical clustering. On the heatmap,
imputed data are annotated with a dot symbol. The size of this symbol depends on the
uncertainty of the imputation, the bigger the uncertainty is, the bigger is the size of the
dot.

A zoomed-in example of the clustermap is shown in Figure 4.12b. In this clustermap, six
dimensions from the Hofstede model containing data from Bosnia, Austria, Chad, Czech
Republic, and Kyrgyzstan is represented. PDI and IDV dimensions had no missing values.
Thus, no imputation is applied. However, for Bosnia and Austria, there are missing values
in the IDV, IVR, MAS, and UAI dimensions (marked with the dot symbol). Comparing
the size of the dots, it is evident that the imputation method’s uncertainty was highest
in IDV and lowest in UAI dimension.
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(a) Clustermap (full view): dendrogram and annotated heatmap with un-
certainty. Dots are representing imputed data, the size is depending on the
uncertainty: the higher uncertainty—the bigger the dots. A dendrogram on
the left shows the pattern of agglomerative clustering.

(b) Clustermap (zoomed-in view): dendrogram and annotated heatmap with
uncertainty. Dots are representing imputed data, the size is depending on the
uncertainty: the higher uncertainty—the bigger the dots. Bosnia and Austria
have both imputed values in IDV, IVR, MAS and UAI dimensions. IDV’s
imputation has the highest uncertainty and UAI has the loweset uncertainty.

Figure 4.12: Clustermap visualization method: full and zoomed-in view. A dendrogram
on the side shows the pattern of clustering in the zoomed-out view. Dots represent
imputed data and the uncertainty of the imputation.
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4.2.3 Choosing Imputation and Clustering Methods

As discussed in Section 2.4, in the current literature, a mixture of simple and iterative
imputation methods have been applied to handle missing data in the domain of cultural
science and in some cases, records with missing data were just deleted. For this purpose,
the system should offer the users the possibility to do simple imputations such as mean,
median, and most frequent and additionally apply iterative imputations, such as MICE
and KNN. In Section 2.3.5, we have analyzed papers that applied clustering into the
cultural science domain. All of them used a hierarchical clustering method. Thus, the
system needs to support hierarchical clustering due to prior familiarity with the method.

4.2.4 User Interface Design

Knowing the user requirements and understanding the specific tasks the system needs
to fulfill makes it possible to design a user interface. The flow in which the system
shall behave can be understood by reviewing the UML activity diagram illustrated in
Figure 4.6. Additionally, it is known which clustering and imputation methods need to
be supported.

Statistical studies have shown that the use of user interface mock-ups eases comprehension
and reduces the effort of development time [141]. For this purpose, we used mock-ups
to get quick feedback and ease the supervision process. The first prototype was created
using an online application named Moqups [142], which an online tool for creating UI
prototypes. Moqups has a user-friendly UI with drag and drops features, which enables
users to create interactive and clickable UIs quickly; for this reason, the tool got popular
among researchers who intend to design applications [143, 144, 145, 146].

4.2.4.1 Mock 1: File Upload

To fulfill requirement 1, the file upload page was designed. The user first selects an
imputation and clustering method, as seen in Section B and C of Figure 4.13. Then,
after selecting a CSV file, the user uploads the file. On the left side of the screen, Section
A shows a placeholder for a menu, which serves for navigation purposes.

4.2.4.2 Mock 2: Dashboard

After the user successfully loads a file and selects an imputation and clustering method.
The result is shown in a dashboard. Section A shown in Figure 4.14 changes, and all
the navigation options to other pages are available for the user. Section B, C, and D
are placeholders for the visualization methods which fulfill Task 1, 2, and 3 as shown
in Table 2.1. The dendrogram and clustermap diagrams are conditionally populated
visualizations, and these two diagrams are only visible to the user if the hierarchical
clustering method is used.
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Figure 4.13: Mock 1: Upload screen. Here, the user can select the imputation and
clustering method and upload a CSV file.

Figure 4.14: Mock 2: Dashboard. This is the screen where the world map, parallel
coordinates, and radar chart visualization gets populated after the user uploads a file.
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4.3 Designing the Second Prototype

After presenting the mock-ups and reviewing the process of Visual Analytics, as described
in Section 3.2, we decided to change the application flow, since the loop between perception
and knowledge discovery is missing in the first prototype. The user cannot see and
comprehend the impact of imputation and clustering, although choosing the correct
method has an enormous impact on every other visualization. Thus, a user should be able
to preview the impact of the chosen imputation and clustering method before applying
it. This change requires an adaption to the activity diagram illustrated in Figure 4.6 and
the file upload mock-up shown in Figure 4.13.

The newly adapted activity diagram illustrated is designed to be closer to the Visual
Analytics process. The user can first preview the pattern of missingness in the data. This
gives the user a general overview of what imputation method would be more appropriate.
For example, choosing the deletion method for a dataset with a majority of its data
missing in a single dimension is not the best solution.

Once the imputation method is chosen, the user is able to select a clustering method, with
the difference that now the user is able to preview the impact of the chosen clustering
method via dendrogram and elbow plot. It is possible to modify the input parameters or
change the clustering method and preview these plots again; this goes in accordance with
the Visual Analytics feedback loop between perception and knowledge shown in Figure
3.2.

4.3.1 Additional Visualization Methods Added for the Second
Prototype

After revising the conceptual design of the first prototype in Figure 4.15, it is required to
add new visualization methods in order to be able to preview the impact of clustering
and imputation. A dendrogram and an elbow plot are two additions to the visualization
methods for the purpose of previewing the impact of the hierarchical and k-means
clustering method. A heatmap is added as well to present the pattern of missing data in
the dataset. These additional visualization methods are described below.

4.3.1.1 Dendrogram

As defined in Section 2.3.2, a dendrogram shows the clusters’ arrangement in the hierar-
chical clustering method. The potential clusters are indicated with the different colors.
The representation is in the form of a tree with branches, where each leaf of a branch
contains an observation in the dataset. The number of clusters depends on the user’s
input parameters, which sets the height of cutting the tree. Figure 4.16 shows that the
height is set to 105, which is drawn as a straight horizontal line. The number of clusters
is equal to the number of times the horizontal line crosses with the dendrogram, which
are five in this example.
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Figure 4.15: Adapted activity diagram designed in a way that is closer to the Visual An-
alytics process. The user has the option to preview diagrams before applying imputation
and clustering.
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4. Visualization Design

Figure 4.16: Dendrogram visualizing clusters in a dataset, where the number of clusters
are cut to five by setting the cutting line’s height to 105.

4.3.1.2 Elbow Plot

The elbow plot [136, 137] is used to preview the impact of a different number of clusters
in k-means clustering method. The elbow plot shows the sum of squared error (SSE) on
the y axis against the number of clusters in the x axis. The SSE can be calculated using
Equation (4.3), where Xi is a single observation and X̄ is the mean.

n�
i=1

�
Xi − X̄

�2
(4.3)

The optimal number of clusters can be selected by determining at which point the elbow
plot has the quickest increase (i.e., identification of the “elbow”) [147]. The goal is to
have a small SSE, meaning the error between the data point and center of the cluster is
minimal. Logically, the SSE is 0 when the number of clusters equal to the number of data
points (each entry is its own cluster). However, our aim is to choose the smallest possible
value of k having a low SSE value. Figure 4.17 shows an example of the elbow plot. In
this example, the “elbow” can be seen at the value of 3, meaning that the optimal k is
set to three.
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Figure 4.17: Elbow plot for finding the optimal number of clusters in k-means clustering
algorithm. The “elbow” is seen when the k value is set to three.

4.3.2 Missingness Heatmap
A heatmap can be used to visualize the patterns of missingness in the data. This is to
fulfill the “preview” feature for the imputation step. Before choosing an imputation, the
user can preview the number of missing entries in every dimension. We use an abstracted
tabular view, where each row is a country and each column is a cultural dimension.
Each white line in Figure 4.18 represents a missing entry, and each black line indicates a
complete entry. The vertical line chart on the right of the visualization shows how much
missing data is in each row. This can be seen as an abstracted histogram, where the
longer the line towards the left, the more data is missing in that particular row.

4.3.3 Pearson’s Correlation Matrix
To aid users in determining correlations among dimensions of the data, we use a heatmap
to encode the value of the Pearson’s Correlation Coefficient (PCC, also referred to with the
Greek letter ρ) [148]. The formula to calculate the PCC between two random variables X
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Figure 4.18: Heatmap showing missing data. White lines indicate that the data in this
row are missing.The histogram in the right indicates the quantity of data missingness.

and Y can be found in Equation (4.4). Cov is the covariance, σ is the standard deviation.
The PCC has a value ranging between -1 and 1. The value of 1 represents a perfect
positive relationship, -1 a perfect negative relationship, and 0 indicates the absence of a
relationship between variables.

ρ = cov(X, Y )
σxσy

(4.4)

Figure 4.19 shows an example of how the correlation matrix would look like. The heatmap
is annotated with the result of ρ. It is based on the Z-score coloring, where negative
values are red and positive values are blue.

The ”*” symbol beside the values (as also indicated on the top left) shows the significance
level of the correlation where ”*” denotes 0.05, ”**” is 0.01, and ”***” means 0.001,
similar to common practice of denoting the significance level.

4.3.4 Revised User Interface Design
In the second prototype, the focus is on enabling the user to preview changes. For this
purpose, the design shown in Figure 4.13 is adapted to Figure 4.20. In the revised UI,
the user is able to select an imputation method in Section A, to choose a CSV file by
clicking on a button marked in Section B, to preview the pattern of missing data by
clicking on the button in Section C, and finally to apply the changes. The preview plots
appear under Section E and are specifically generated based on the selected imputation
method and provided parameters.

After the user applies the imputation method, another similar screen is shown to choose
the appropriate clustering method. This screen, as shown in Figure 4.21 as well as the
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Figure 4.19: Pearson’s correlation matrix of 3 dimensions showing that PDI and IDV
have a positive correlation (ρ=0.52), statistically significant at 0.01.

option to preview the impact of the clustering method (marked as Section D). In Section
D, plots such as a dendrogram and an elbow plot are shown, which can be changed based
on the clustering method and parameters.

All the other mock-ups shown for the first prototype are unchanged for the second
prototype. No user requirement or system task was changed. The revised UIs still fulfill
all the requirements and tasks, with the only significant difference being according to the
Visual Analytics process [149]. Our final interface is shown in the upcoming chapter, see
Figure 5.2, Figure 5.4 and Figure 5.3.
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Figure 4.20: Revised Mock-up: Imputation page. First, the user is able to select an
imputation method and preview the impact.
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Figure 4.21: Revised Mock-up: Clustering page. The user is able to select a clustering
method and preview the impact.
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CHAPTER 5
Implementation

In Chapter 4 we defined the user requirements, and we designed mid-level tasks based
on the gaps found in the current research field of cultural sciences. Then, a prototype
was designed using mock-ups, which were evaluated and re-designed, and revised to a
second version. Using these mock-ups, it is possible to choose the appropriate technology
stack to build a visualization framework that satisfies all the requirements and fulfills the
tasks. Before starting to write code, the final step is to analyze existing programs and
libraries that have to support the required visualization methods mentioned in Table 4.1.

5.1 Choosing Appropriate Tools and Technologies
As mentioned in Section 2.2, Bayat [44] has implemented a visualization tool for visu-
alization the dimensions of the Hofstede model that enables researchers to explore the
dimensions on a world map. The visualization tool is written in HTML, JavaScript, and
D3.js [150] library, which gives a user the flexibility to interact with the tool. There
are, however, some limitations in this tool that need to be reworked. Although it is
possible to select multiple countries consecutively by choosing them in the drop-down
box, a filtering option is not given in this tool. The dataset loaded into the tool has
missing values that are untreated and ignored, which does not fulfill the purpose of Tasks
2, 3, and 4. The tool needs to be extended in order to be able to discover knowledge,
find correlations, confirm hypotheses, perform a grouping and profiling of the countries,
and visualize uncertainty. Finally, it is not possible to revert a selection or update the
hive-plot or histogram. Once a country is selected, these plots remain unchanged.

We assessed other alternative technologies such as Tableau Desktop [151], Google-Charts
[152], Qlick Sense [153], or Visual.ly [154]. For our visualization purposes, we found that
D3.js dominates all the other options. For the purpose of fulfilling our requirements
and tasks, we require a technology that is open source, able to be customized, and
support interactive visualization methods. Out of all the alternatives, only D3.js and
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Google-Charts are free to use; however, Google-Charts has a limited number of charts
available and does not give the user the ability to create interactive custom visualizations
by coding.

D3 has the ability to bind arbitrary data to Domain Objective Model (DOM) and gives the
possibility to do data-driven transformations on the document [155]. The visualizations
are created with HTML, CSS, and SVG, which can be represented using a web browser; it
has the ability to handle CSV and JSON as input. The fact that it is free and open-source,
and the existing community support, is the cause of the increasing use of this library in
the visualization domain. D3.js (Data-Driven Documents) has been extensively used to
create visualization tools such as DonVis [156], INSVis [157] and libraries like StArE.js
[158], networkD3 [159], GenomeD3Plot [160], which prove its usability for visualization
purposes.

While D3 is only a client-side scripting library, it has its limitations when it comes to
statistical analysis and machine learning features. At the same time, it is a great library
to be used to visualize diagrams on a web browser. To reassure that our visualization
framework can perform imputation and clustering, which is required for Task 2 and Task
3, another programming language such as Python is helpful.

Python [161] is an interpreted language with an expressive syntax that is freely accessible
for programmers. It is superior to other competitors such as R and MATLAB since it is
easy to read and it has various libraries and modules available for machine learning and
statistical purposes. Guo [162] claims that Python is one of the top coding languages and
is superior to its competitors due to its commonplace. Using Python in the visualization
framework gives us greater access to public libraries such as NumPy [163], Pandas [164],
Scipy [165], and Sklearn [166] which can be used for imputation and cluster analysis.
Additionally, Plotly [167] library on Python has a wide range of access to visualization
methods that can be used. Figure 5.1 shows the visualization framework’s architecture
design, and the API establishes the connection between the server and client-side.

5.2 Implementation of the Visualization Methods
Since we have chosen JavaScript and Python as our technology stack, we have a wide
range of options to choose from to base our visualizations on. Some of the visualizations
are simple enough to create via the D3.js library. Others can be created faster and easier
by using the Plotly library in Python. This section describes how the world map, parallel
coordinates, radar chart, dendrogram, elbow plot, heatmap, and clustermap have been
implemented.

5.2.1 Parallel coordinates
The application’s core relies on this visualization method since it connects all the other
components to each other for knowledge discovery. For this purpose, we started our
implementation journey with the implementation of this visualization.
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Figure 5.1: Client-server architecture design of the visualization framework. A web-based
client communicates with the server using an API. The user interacts with the server
using a WebUI through an API implemented in Python.

A D3 library named d3.parcoords.js [168] can be used to create visualizations for parallel
coordinates in d3. The two methods of reorderable() and brushMode("1D-axes") written
in Listing 5.1 make the parallel coordinates axis re-orderable and brushable.

1 d3.parcoords()("#Parallel-coordinates")
2 .data(data)
3 .render()
4 .reorderable() //make it re-ordable
5 .brushMode("1D-axes"); //make it brushable

Listing 5.1: Creating a re-orderable and brushable parallel coordinate plot using D3.js
library.

5.2.2 World Map

As mentioned in Section 5.1, we based our implementation on the existing visualization
framework for dimensions of the Hofstede model named Cultural Model Visualization
(CMV), which already had the world map implemented via D3. For our purposes, we had
to modify this visualization by first removing the country’s dropdown list. Our filtering
is based on a connection between the world map and the parallel coordinates. Hence,
this dropdown list is redundant. Secondly, we removed the hive-plots since they were not
identified as part of the requirements or tasks. Lastly, the code was improved to be more
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dynamic so that in the future, we could add or remove more dimensions to the data set
if required.

The world map was created using the d3.geoMercator() function to create the Mercator
projection from a given TopoJSON file [169]. A TopoJSON file is a GeoGSON [170] that
encodes topology. It contains several types of JSON objects in a way that represents
data about geographical features.

1
2 //Getting the mercator projection
3 var merecator = d3.geoMercator()
4 .scale(130)
5 .rotate([352, 0, 0])
6 .translate([width / 2, height / 1.5]);
7
8 projection = d3.geoPath().projection(merecator);
9

10 //Going through all the entries of the TopoJson file and appending
11 //the projection
12 d3.json("110m.json", function (error, world) {
13 mapSVG.selectAll("path")
14 .data(function (d) {
15 return topojson
16 .feature(world, world.countries)
17 .features})
18 .enter().append("projection")
19 .attr("d", projection)
20 }

Listing 5.2: Creating the world map using textitd3.geoMercator() function in D3.js.

5.2.3 Radar Chart
The radar chart is an extended version of the radar chart implemented by Zhou [171]. We
have extended the visualization by adding a filtering option. The user is able to search
for a country and show or hide the represented axes and vertices on the chart. This
enables the user to be able to compare the countries in a pairwise or in a many-to-many
manner.

5.2.4 Dendrogram
The dendrogram is implemented using the dendrogram function in scipyċlusterḣierarchy
package. This visualization is created and converted into JSON on the server-side using
the Mpld3 library [172]. Then it return a JSON result to the client side, where the
JSON is converted into a visualization using Mpld3’s JavaScript library by simply using
mpld3ḋraw_figure function. The server-side code for the generation of a dendrogram is
seen in Listing 5.3.

1
2 #importing required packages
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3 import pandas as pd
4 import scipy as sc
5 from matplotlib import pyplot as plt
6
7 def plot_dendrogram(data, linkage_method, p=None, max_d=None):
8
9 #Get the data frame

10 df = pd.DataFrame.from_records(data)
11
12 #Get the linkage method
13 linked = sc.linkage(df_numeric, linkage_method)
14
15 #Create dendrogram
16 sc.dendrogram(
17 linked,
18 labels=labels.to_numpy(),
19 max_d
20 )
21
22 #Add labels and title to the plot
23 plt.title('Hierarchical Clustering Dendrogram')
24 plt.xlabel('sample index or (cluster size)')
25 plt.ylabel('distance')
26
27 #Draw the max_d line (where we "cut" the tree)
28 if max_d:
29 plt.axhline(y=max_d)
30
31 return json.dumps(mpld3.fig_to_dict(fig))

Listing 5.3: Creating a dendrogram using scipy on the server-side; Returning the result
as JSON using the Mpld3 library.

5.2.5 Elbow plot
The same method as for the dendrogram (see Section 5.2.4), the elbow plot is created on
the server-side and sent to the client as a JSON formatted result. The matplotlib package
is used to generate the plot and KMeans function in scipy package is used to perform
k-mean clustering to calculate the value of k for each iteration as shown in Listing 5.4.

1
2 #importing required packages
3 import matplotlib.pyplot as plt
4 import mpld3
5 import pandas as pd
6 from sklearn.cluster import KMeans
7 import numpy as np
8 from scipy.spatial.distance import cdist
9 import json

10
11 def elbow_plot_json(data):
12 #Get the data frame
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13 df = pd.DataFrame.from_records(data)
14 distortions = []
15 #Loop 20 times to range between 1 to 20 number of clusters
16 K = range(1, 20)
17 for k in K:
18 #compute the SEE for each iteration and store value to distortions

array
19 kmeanModel = KMeans(n_clusters=k).fit(df)
20 kmeanModel.fit(df)
21 distortions.append(sum(np.min(cdist(df, kmeanModel.cluster_centers_),

axis=1)) / df_numeric.shape[0])
22
23 # Plot the elbow plot and return result as JSON format
24 fig, ax = plt.subplots()
25 ax.plot(K, distortions, 'bx-')
26 ax.set_xlabel('k')
27 ax.set_ylabel('Distortion')
28 ax.set_title('The Elbow Method showing the optimal k')
29 return json.dumps(mpld3.fig_to_dict(fig))

Listing 5.4: Creating a elbow plot using scipy on the server-side; Returning the result as
JSON using the Mpld3 library.

5.2.6 Heatmap to Show Pattern of Missing Data
Using missingno [173] library, we implemented a heatmap that can be used to visualize
the pattern of missing data. This is to fulfill the ’preview’ feature for the imputation
step. Before choosing an imputation, the user can preview how many entries in each data
dimension are missing. Listing 5.5 shows the implementation details of this heatmap.
The result is returned in JSON format using the Mpld3 library.

1 #importing required packages
2 import pandas as pd
3 import missingno as msno
4 from matplotlib import pyplot as plt
5 import numpy as np
6 import json
7
8
9 def plot_msno(data):

10 #create a pandas DataFrame
11 df = pd.DataFrame.from_records(data)
12 df.replace('', np.nan, inplace=True)
13 #create figure
14 plt.figure(figsize=(15, 10))
15 msno.matrix(df)
16
17 #return as json
18 return json.dumps(mpld3.fig_to_dict(fig))

Listing 5.5: Creating a heatmap to show the pattern of missing data using Missingno
library.
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5.2.7 Pearson’s Correlation Matrix
We use the Seaborn package [174] to create the correlation matrix as seen in Listing 5.6.
The calculation of ρ is based on .corr() function provided in Pandas package. To add
the ”*” symbol, we iterate through the result and add it accordingly as a suffix to the
result. Lastly, we annotate the heatmap using our modified labels (value of ρ and the
start symbols) and return it in a JSON format.

1 #importing required packages
2 import matplotlib
3 import searborn as sns
4 import pandas as pd
5 import numpy as np
6 import json
7
8 def correlation_matrix(data):
9 #Create Pandas data frame

10 df = pd.DataFrame.from_records(data)
11 #Calculate value of PCC
12 pval = df.corr(method=lambda x, y: pearsonr(x, y)[1])
13 #Add the * for significance level
14 p = pval.applymap(lambda x: ''.join(['*' for t in [0.001,0.01,0.05] if x

<= t]))
15 annotation = rho.round(2).astype(str) + p
16
17 ax = sns.heatmap(
18 rho,
19 annot=annotation,
20 )
21
22 #return as json
23 return json.dumps(mpld3.fig_to_dict(fig))

Listing 5.6: Creating a Pearson’s correlation matrix using Searborn.

5.2.8 Clustermap
We created a clustermap using Python’s Plotly [175] library. Alternatives such as Seaborn
[176], or DashBio [177] clustermap libraries were found not to be useful. We were facing
a bug in Seaborn, where zooming between the dendrogram and heatmap was not in sync,
meaning that zooming into a particular section in the dendrogram would not represent
the correct position in the heatmap. DasBio uses, Plotly’s Dash library [178] to create a
bioinformatics oriented suite of components that make visualizations for bioinformatic
purposes easier. Thus, for our purpose, Plotly is the best option since it gives us the
highest flexibility.

First, we create a dendrogram using the figure factory module in Pltotly. Then, an
annotated heatmap is being created. Finally, they both get combined by adding the
traces to a figure. The code behind this logic can be found in Listing 5.7.

1
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2 import plotly.figure_factory as ff
3 import pandas as pd
4 import numpy as np
5
6 #Create the side dendrogram
7 fig = ff.create_dendrogram(data_array, orientation='right')
8 for i in range(len(dendro_side['data'])):
9 fig['data'][i]['xaxis'] = 'x2'

10 .
11 .
12 .
13 # Add Side Dendrogram Data to Figure
14 for data in fig['data']:
15 fig.add_trace(data)
16
17 heatmap = ff.create_annotated_heatmap(
18 x=dendro_leaves,
19 y=dendro_side['layout']['yaxis']['tickvals'],
20 z=heat_data,
21 annotation_text=missing_df.values,
22 pbias=pbias_array,
23 colorscale='Blues',
24 showscale=True,
25 colorbar={"xpad": 100}
26 )
27 .
28 .
29 .
30 # Add Heatmap Data to Figure
31 for data in heatmap['data']:
32 fig.add_trace(data)
33 return json.dumps(mpld3.fig_to_dict(fig))

Listing 5.7: Creating a clustermap using Plotly’s figure factory package.

We change the create_annotated_heatmap() function in Plotly library to visualize the
uncertainty of the data by marking the imputed data entries in the heatmap with a dot.
The bigger the dot is, the higher is the uncertainty of the imputed entry as explained in
Section 4.2.2.4. Figure 4.12 illustrates the final visualization, with the dendrogram on
the right side, the heatmap in the middle with marking imputed entries via a dot. This
visualization is interactive in a way that when the user zooms into the heatmap or the
dendrogram, the visualization is changed.

5.3 Implementation of the Imputation and Automated
Algorithms for Data Mining

To ensure that our visualization framework can perform Task 2 and Task 3, it is required
to implement the imputation and clustering algorithms. The Scikit-learn [179] library,
which has been purely written in Python, gives us a wide range of options to use for
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imputation and clustering purposes. In this section, we discuss each of the implemented
methods in detail.

In order to perform simple imputations such as mean, median, and most frequent
imputation, the sklearn.impute.SimpleImputer [180] can be used. As seen in Listing 5.8,
by calling the function simple_imputation_df, putting a data frame with missing data,
and one of the strategies defined in the documentation as a string, a simple imputation
can be performed.

1 from sklearn.impute import SimpleImputer
2
3 missing_df #A data frame with missing data
4 mean_imp_result_df = simple_imputation_df(missing_df, "mean")
5 median_imp_result_df = simple_imputation_df(missing_df, "median")
6 mf_imp_result_df = simple_imputation_df(missing_df, "most_frequent")
7
8 def simple_imputation_df(data_missing_value, strategy):
9 imputer = SimpleImputer(missing_values=np.nan, strategy=strategy)

10 imputer = imputer.fit(data_missing_value)
11 return imputer.transform(data_missing_value)

Listing 5.8: Simple imputation algorithm based on sklearn.impute.SimpleImputer library.

The k-nearest neighbor imputation (KNN) was implemented using the KNNImputer
class in the Skit-learn library. The Multivariate Imputation by Chained Equations
(MICE) method was implemented by using the IterativeImputer. The details of their
implementation can be seen in Listing 5.9.

1 from sklearn.impute import KNNImputer
2 from sklearn.impute import IterativeImputer
3
4 def knn_post(json_data, neighbors):
5 df = json_to_df(json_data)
6 impute = KNNImputer(n_neighbors=cast_val(neighbors, int))
7 result = impute_values(df, impute)
8 return result
9

10
11 def iterative_post(json_data, max_iter):
12 df = json_to_df(json_data)
13 impute = IterativeImputer(max_iter=cast_val(max_iter, int), verbose=0)
14 result = impute_values(df, impute)
15 return result
16
17 def impute_values(df, imp):
18 #Get bias of imputation method
19 bias = calculate_bias(df, imp)
20
21 #indicate which values are missing, gives a matrix of missing values only
22 indicator = MissingIndicator(missing_values=np.nan, features="all")
23 mask_missing_values_only = pd.DataFrame.from_records(indicator.

fit_transform(df))
24
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25 #Impute missing values
26 df_imputed = pd.DataFrame(imp.fit_transform(df),
27 columns=list(df.columns.values))
28
29 #Return a JSON with imputed data with
30 # a matrix which marks missing values in the dataset and the bias
31 result = jsonify(data=df_imputed.to_dict(orient='records'),
32 missing=mask_missing_values_only.to_dict(orient='records

'),
33 pbias=bias)
34
35 return result

Listing 5.9: Implementation of KNN and MICE imputation.

Lastly, Listing 5.10 shows how the k-means, meanshift and a hierarchical clustering
is implemented using the sk-learn package. All parameters having a _val suffix are
parameters in which the value needs to be set by the user. These values are sent as input
from the client.

1 from sklearn.cluster import KMeans, MeanShift, AgglomerativeClustering
2
3 #k-means clustering
4 km = KMeans(
5 n_clusters=n_clusters_val,
6 n_init=n_init_val,
7 tol=tol_val,
8 random_state=random_state_val
9 )

10 km_result = km.fit_predict(df._get_numeric_data())
11
12 #meanShift clustering
13 mean_shift = MeanShift(
14 bandwidth=bandwidth_val,
15 max_iter=max_iter_val
16 )
17 mean_shift_result = mean_shift.fit_predict(df._get_numeric_data())
18
19 #Spectral clustering
20 spectral = SpectralClustering(
21 n_clusters=n_clusters_val,
22 assign_labels=assign_labels_val,
23 random_state=assign_labels_val
24 )
25 spectral_result = spectral.fit_predict(df._get_numeric_data())
26
27 #Agglomerative or hierarchical clustering
28 agglomerative = (
29 linkage=linkage_val
30 )
31 agglomerative_result = agglomerative.fit_predict(df._get_numeric_data())

Listing 5.10: Algorithms for clustering.
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5.4 Implementation of API
Application Programming Interface (API) is referred to as a computing interface that
defines the interaction between software intermediates. We created a web API using Flask
[181] library, which provides functionalities and features of a web framework enabling
developers to build web applications. Any software client can communicate with the API
via the defined paths on a running server. For instance, as listed in the Listing 5.11,
sending a post request to http://SERVER_ADDRES:PORT/clustering/kmean with a
body containing JSON values of data returns the dataset as a JSON format, but the data
is clustered using the k-means clustering algorithm. Any output coming from the API
(the result of imputation or clustering or plots) has a JSON format. The client-side needs
to be able to interpret JSON objects and use Mpld3’s library to draw figures. Complete
documentation on the API describing all the possible input parameters can be found in
a form of Postman documentation [182] (see Section 6.5).

1 from flask import Flask
2
3 #Routing path
4 @app.route('/clustering/kmeans', methods=["POST"])
5 def clustering_kmean():
6 #Getting the JSON data from request
7 json_data = request.get_json()
8
9 #Passing the parameters defined in the request to the k-means clustering

method
10 clusters_result = cluster_kmeans(json_data['data'],
11 json_data['n_cluster'],
12 json_data['init'],
13 json_data['n_init'],
14 json_data['max_iter'],
15 json_data['tol'],
16 json_data['random_state'])
17 #convert to json, if it is not already the case
18 return json.dumps(clusters_result)

Listing 5.11: API implementation via Flask library.

5.5 Implementation of the User Interface
Below, we present different UIs of the application and describe their functionality. All
of the UIs described below are based on the mock-ups we have created in Section 4.2.4.
The bootstrap framework [183] was used during the UI implementation process.

5.5.1 Dashboard User Interface
Figure 5.2 demonstrates the implemented dashboard, which contains four major com-
ponents. Section A shows the menu. In this section, the user can navigate through
the different visualizations and explore them separately. Section B shows the parallel
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coordinates, Section C the adapted world map from Bayat [44], and in Section D we
show a radar chart. The three sections are connected to each other through parallel
coordinates, where we can select countries and filter them.

5.5.2 User Interface for the Imputation
The user interface of the imputation screen is a replica of the mock-ups screen with some
minor design improvements. Figure 5.3 illustrates the imputation screen which is the
first screen the user sees in the system. Section A serves as a navigation bar, in Section
B the user can choose between the available imputation methods which are as following:

• Deletion

• Simple imputations

– Mean
– Median
– Most Frequent

• Iterative imputations

– MICE
– KNN

• No imputation

Section C serves for choosing a file. The system supports only CSV files, and upon
choosing other files, it throws an unsupported error. The preview button in Section C
generates a heatmap on the bottom side of the screen, which shows the pattern of missing
data in a heatmap.

The “apply” button in Section E applies the chosen imputation method and goes to the
clustering screen described in the next section. The user has the ability not to choose any
imputation method. In this case, a case deletion is applied, and every row that includes
missing data is dropped.

5.5.3 User Interface for Partitioning
After the imputation is applied to the dataset and there is no missing data anymore, the
system goes to the clustering screen as demonstrated in Figure 5.4. In this screen, the
user has the option to choose one of the following clustering methods:

• K-Means

• Mean Shift
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• Spectral

• Hierarchical

• No clustering

The preview button acts differently based on the chosen clustering method. For k-means
clustering, an elbow plot is generated. For Hierarchical clustering, a dendrogram is
shown and gives the user an overview of where to cut the dendrogram. A detailed
description of how these plots should be interpreted can be found in Section 6.3.1. In
addition to the dendrogram in the preview section, once the user chooses the hierarchical
clustering method, a clustermap is populated. A detailed overview of the visualizations
and how they get populated are summarized in Table 5.1. After choosing the appropriate
clustering method, the system populates the visualizations by pressing the apply button.

Visualization method Populated by
Heatmap for missing data “Preview” button in imputation screen.
Elbow plot “Preview” button in partitioning screen. Only for k-

means clustering method.
Dendrogram “Preview” button in partitioning screen. Only for the

agglomerative clustering method.
Pearson correlation matrix Navigation to the dedicated screen through the menu

bar.
Radar chart

Upon loading the dashboard or navigation to its dedicated screen.Parallel coordinates
World map
Clustermap Navigation to the dedicated screen. Only for the agglom-

erative clustering method.

Table 5.1: Overview of all the visualization methods supported in the visualization
framework and how to populate the visualizations.
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Figure 5.2: Implemented User Interface for the Dashboard. The UI is created based on
the mock-ups, showing the menu, parallel coordinates, world map, and radar chart.
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Figure 5.3: Implemented screen for imputation. The UI is created based on the mock-ups,
giving the possibility for the user to select a file, choose imputation method, preview the
impact and apply.
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Figure 5.4: Implemented screen for selecting and previewing clustering methods. The UI
is created based on the mock-ups; enabling the user to select clustering method, enter
parameters, preview the impact and apply.
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CHAPTER 6
Results

After the implementation of the visualization framework is finished as described in
Chapter 5, we look at the finished artifact and evaluate based on the evaluation method
described in Section 3.5. This evaluation is necessary to complete the design cycle of
Henver’s three-cycle methodology approach described in Section 1.3. Our evaluation is
based on case studies, by reviewing existing literature and attempting to reproduce their
scenarios using our newly implemented visualization framework and trying to confirm
the same hypotheses while assessing our approach’s usability.

6.1 Case Study 1: Cultural Dimension of Corruption
Achim [184] examines if culture plays a role in determining corruption levels within a
country. This study is conducted using data from 98 countries, with the six dimensions
of Hofstede and combining them with the Corruption Perception Index (CPI) acquired
from Transparency International’s annual report [185]. The CPI report provides an index
of 175 countries; the score ranges between 0 (highly corrupt) and 100 (no corruption);
however, Achim [184] invert each value, meaning 0 being low and 100 highly corrupted
countries. We assume this is done to make the hypothesis tests more understandable.
Within this case, we do not invert the values and keep the scoring as in the original
report.

As claimed by the author, the hypotheses are tested on an initial sample of 98 countries
that had both data of Hofstede’s dimension and corruption level available. The method-
ology of the study of Achim [184] is first to define one main and six sub-hypotheses
(see list below). Statistical methods such as ordinary least squares (OLS) analysis and
ANOVA are used to identify the correlation coefficients. In the following sections, each
of the hypotheses and the corresponding results found by Achim [184] are described and
compared to the results found with our visualization framework’s support. We provide
the six hypotheses, which were tested within our case study:
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• H1.1: The higher the power distance, the higher the level of corruption

• H1.2: The less individualistic (more collectivist) a society is, the higher the level of
corruption.

• H1.3: The greater the masculinity of a society, the higher the level of corruption.

• H1.4: The greater the level of uncertainty avoidance, the higher the level of
corruption.

• H1.5: The shorter the term of orientation, the higher the level of corruption.

• H1.6: The more indulgent the society is, the lower the level of corruption.

Achim [184] uses three tables to show their result. The table shown in Figure 6.1 represents
a Pearson’s correlation matrix between the dimensions of the Hofstede model and CPI.
Figure 6.2 shows the result of simple regression analysis and Figure 6.3 demonstrates the
result of running a multivariate regression analysis. All the hypotheses in the study of
Achim [184] were assessed with our proposed framework’s help, using these three tables
and visualizing the correlation in a scatterplot.

Figure 6.1: Pearson’s correlation matrix shown by Achim [184] including six dimensions
of the Hofstede model and CPI index.1

In order to compare the results, we use our newly implemented visualization framework
and upload the same data set used in Achim [184]’s methodology. First, it is required to
combine the data from the six dimensions of the Hofstede model with the CPI values,
which was done by simply adding a new dimension to the Hofstede model data (6
dimensions + CPI). Thus, our final dataset contains seven dimensions. The result is an

1**Correlation is significant at the 0.01 level (2-tailed); *Correlation is significant at the 0.05 level
(2-tailed).

2*p < 0.05; **p < 0.01; ***p < 0.001
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6.1. Case Study 1: Cultural Dimension of Corruption

Figure 6.2: Result of simple regression analysis conducted by Achim [184], where the
CPI index is the dependent variable and the six dimensions of the Hofstede model are
the independent variables.

initial sample of 63 countries, as seen in the Appendix A.1, which is lower than what
was used by the author. Unfortunately, it is not clear which countries are missing since
Achim [184] does not explicitly mention which countries are used in their sample.

6.1.1 Testing for H1.1: The higher the power distance, the higher
the level of corruption

Achim [184] shows that there is a positive and medium correlation between PDI (power
distance) and corruption. This hypothesis is accepted, after examining the correlation
coefficient between PDI and CPI (ρ=0.585), as shown in Figure 6.1. This figure indicates
a positive and medium correlation with a 1% level of significance. The result remains
significant for the initial regression (Figure 6.2) and controlled for another cultural
variable in the multiple regression analysis (Figure 6.3). This positive correlation is also
represented in a scatterplot, as illustrated in Figure 6.4.

We examine the correlation between CPI and PDI with the support of our implemented
visualization framework. For this purpose, we use the parallel coordinates, which in their
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Figure 6.3: Result of multivariate regression analysis conducted by Achim [184].2

initial state is shown in Figure 6.5.

It is not possible to spot correlations within dimensions quickly. The user needs to
interact with the visualization and modify it according to the task to inspect this. In
this case, we first arrange the axes so that PDI and CPI are adjacent. The adjustment
is possible by simply dragging the PDI dimension with the mouse and re-positioning it
beside CPI, as shown in Figure 6.6. An additional change in this visualization is that the
CPI axis is inverted since the corruption level is higher in countries with a lower CPI
score. Thus, it is easier to examine the correlation by inverting the axis. The axis of any
dimension can be inverted by simply double-clicking on the title.

The parallel coordinate plot’s coloring reflects the Z-score of any selected dimension,
where blue is high values, and red is low values of Z. The coloring can be changed by
clicking on the title of any axis in the parallel coordinates. Figure 6.6, the coloring is
based on the PDI dimension; hence, the axis’s title is in bold text format.

A correlation between PDI and CPI is already visible in Figure 6.6, since high PDI
values are mapped to low values of CPI and vice versa. However, this correlation is even
more visible if the user filters high and low PDI values by using the available brushing
method. The visualization can be filtered based on each axis in the parallel coordinates
by dragging and selecting the required value on the dimension’s axis. Figure 6.7 shows
the parallel coordinates in a state where the user has filtered only countries with a PDI
level over 90 by brushing the PDI axis. While on the contrary, Figure 6.8 shows the
visualization when the user filters the PDI level below 35. The result can be seen in the
table below the parallel coordinates.

Finally, we review Pearson’s correlation matrix in the visualization framework (shown in
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Figure 6.4: Scatterplot visualization of CPI and PDI created by Achim [184], where the
y axis is showing the corruption level and the x axis representing the PDI score.

Figure 6.9). Similar to the parallel coordinates, low values are colored with red and high
values are blue. Based on Pearson’s correlation matrix, it is evident that the correlation
coefficient between PDI and CPI is -0.67 with a significance level of 1%. Meaning, the
higher the PDI score, the lower the CPI level (higher corruption in the country), which
confirms H1.1.

H1.1, as proposed by Achim [184], is confirmed with the support of our
framework. PDI has a negative correlation with CPI.

6.1.2 Testing H1.2: The less individualistic (more collectivist) a
society is, the higher the level of corruption

The result of testing H1.2 by Achim [184] reveals that based on Figure 6.1, there is a
negative and medium Pearson correlation between IDV (individualism vs. collectivism)
and corruption with a correlation coefficient of -0.613 at 1% of significance. Both Figure
6.2 and Figure 6.2 show a negative correlation with a significance level of (p < 0.001 and
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Figure 6.5: Initial state of parallel coordinates for Hofstede’s six dimensional model and
CPI used for case study 1 (data source is Table A.1). There are seven axes in the parallel
coordinate plot, and each axis is representing one cultural dimension or CPI. The coloring
is based on the Z-score.

Figure 6.6: Visualization of parallel coordinates in Hofstede’s six dimensional model and
CPI, used for case study 1 (data source is Table A.1). Here we changed the position
of the PDI axis to be beside CPI. Changing the arrangement of coordinates leads to a
better overview and comparison between dimensions.

p < 0.05) between IDV and CPI, meaning that the less individualistic society is, the
higher the level of corruption, which confirms H1.2. Figure 6.10 shows the scatterplot
which represents the correlation between these two dimensions.

Using the same approach as in H1.1 from Section 6.1.1, we use the same parallel
coordinates without loading the data again. Re-arranging the axis and putting IDV
beside CPI enables easy comparison between these two dimensions. Also, the color of
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Figure 6.7: Parallel coordinates in Hofstede’s six dimensional model and CPI, used for
case study 1 (data source is Table A.1). Filtering PDI to values over 95 to investigate
countries that have a high value of PDI, using the brushing method on the PDI axis.

Figure 6.8: Parallel coordinates of Hofstede’s six dimensional model and CPI, used for
case study 1 (data source is Table A.1). We filtered here PDI to values below 35, using
the brushing method on the PDI axis to investigate countries which have a low value of
PDI.

the parallel coordinates polylines should be changed to reflect the value of IDV. Double-
clicking IDV’s title can achieve this. Figure 6.11 shows the visualization of the parallel
coordinates after the re-arrangement is applied. A positive correlation between these
two dimensions appears. However, some outliers are visible, as well. Figure 6.12 shows
countries with high IDV (such as Australia, Great Britain, and the U.S.A.) also having
high CPI, meaning that corruption in these countries is lower. Figure 6.13 shows countries
with low values of IDV (such as Colombia, Indonesia, Venezuela, Peru) have low CPI
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Figure 6.9: Pearson’s correlation matrix generated using our visualization framework for
the six dimensions of the Hofstede model and the CPI index Used for case study 1 (data
source is Table A.1).

values, meaning that the corruption in these countries is higher. Referring to Pearson’s
correlation matrix shown in Figure 6.9, a correlation coefficient of 0.66 with a significance
level of 1% can be detected. Therefore, a positive correlation between the two dimensions
of IDV and CPI is confirmed. Hence, the less individualistic (or more collectivist) a
society is, the higher the corruption level, which accepts H1.2.

H1.2, as proposed by Achim [184], is confirmed with the support of our
framework. IDV has a positive correlation with CPI.
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Figure 6.10: Scatterplot of CPI and IDV as indicated by Achim [184]. The y axis showing
the corruption level and the x axis representing the IDV score.

6.1.3 Testing for H1.3: The greater the masculinity of a society, the
higher the level of corruption

H1.3 investigates if there is a correlation between MAS (masculinity vs. femininity)
and CPI. Achim [184] rejects this hypothesis based on the reasoning that the Pearson’s
correlation between these two dimensions is weak (ρ=0.162) and not statistically significant
as seen in Figure 6.1. Figure 6.2 and Figure 6.3 show a positive correlation between MAS
and CPI (ρ=0.304), but statistically not significant.

The same result can be derived using the visualization framework. Again, the axes of the
parallel coordinates need to be re-arranged in a way that MAS and CPI are beside each
other. The coloring needs to be changed by double-clicking on the MAS axis title as
seen in Figure 6.14. Looking at Figure 6.15, it is not easy to detect a particular pattern
between high values of MAS and CPI. Only eight countries are having a MAS value
higher than 70. However, these country’s CPI value ranges between 17 (Venezuela) and
86 (Switzerland) seen in Figure 6.16, indicate a clear pattern. This means that countries
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Figure 6.11: Visualization of parallel coordinates in Hofstede’s six dimensional model and
CPI, used for case study 1 (data source is Table A.1). After re-arrangement of the axis:
changing the position of the IDV axis to set it beside CPI. This makes the comparison
between the two axes easier.

Figure 6.12: Parallel coordinates in Hofstede’s six dimensional model and CPI, used for
case study 1 (data source is Table A.1): filtering high values of IDV using the brushing
method on the IDV axis.

with low values of MAS, such as Denmark, Sweden, and the Netherlands, are less corrupt.
However, this is not sufficient to accept the hypothesis since both of the statements do
not hold. Additionally, Pearson’s correlation matrix illustrated in Figure 6.9 shows a
low correlation coefficient score (ρ=-0.17) without any statistical significance. Therefore,
with evidence provided by our visualization framework, H1.3 is rejected.

H1.3, as proposed by Achim [184], is also rejected with the support of our
framework. MAS and CPI do not correlate with each other.
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Figure 6.13: Parallel coordinates in Hofstede’s six dimensional model and CPI, used for
case study 1 (data source is Table A.1): filtering low values of IDV using the brushing
method on the IDV axis.

Figure 6.14: Visualization of parallel coordinates in Hofstede’s six dimensional model
and CPI, used for case study 1 (data source is Table A.1). Re-arranging and changing
the position of MAS to set it beside CPI dimension or easier comparison.

6.1.4 Testing for H1.4: The greater the level of uncertainty
avoidance, the higher the level of corruption

This hypothesis examines if the level of UAI (uncertainty avoidance index) explains the
level of corruption. Based on Figure 6.1, it is understandable that there is a positive
and low correlation (ρ=0.0048) between UAI and CPI dimension, and not statistically
significant. As the result of the simple regression analysis shown in Figure 6.2 and the
multivariate regression analysis shown in Figure 6.3, both are statistically not significant.
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Figure 6.15: Parallel coordinates in Hofstede’s six dimensional model and CPI, used for
case study 1 (data source is Table A.1). We filter high values of MAS, using the brushing
method on the MAS axis.

Achim [184] rejects H1.4, meaning that there is no correlation between CPI and UAI.

Figure 6.17 represents the parallel coordinates after re-arranging its axis to place UAI
beside CPI and changing the coloring based on the values of UAI. Looking at the bottom
side of the CPI axis, it is visible that the coloring of the polylines is red. This indicates
that the countries with a low level of corruption tend to have a low level of UAI.

Upon a closer look at Figure 6.18, we discover that countries with a high level of UAI
tend to have a lower rate of corruption with some exceptions, such as Russia, El Salvador,
and Greece. On the other hand, referring to Figure 6.19, it is impossible to detect a
correlation with low values of UAI easily. Countries such as Indonesia, India, China, and
Vietnam seem to have a high level of corruption even though their uncertainty avoidance
level is low. The correlation coefficient shown in the Pearson’s correlation matrix of the
visualization framework (Figure 6.9) indicates a negative correlation (ρ=-0.28) with a
statistically significance level of 5%, which is a low level of correlation. For this reason,
with the support of our visualization framework, we reject H1.4.

H1.4, as proposed by Achim [184], is rejected with the support of our frame-
work. There is no correlation between UAI and CPI.

6.1.5 Testing for H1.5: The shorter the term of orientation, the
higher the level of corruption

This hypothesis examines if LTO (short-term vs. long-term orientation) can explain
the level of corruption in a country. The result presented by Achim [184] in Figure 6.1,
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Figure 6.16: Parallel coordinates in Hofstede’s six dimensional model and CPI, used for
case study 1 (data source is Table A.1). We filter low values of MAS, using the brushing
method on the MAS axis.

Figure 6.17: Visualization of parallel coordinates in Hofstede’s six dimensional model
and CPI, used for case study 1 (data source is Table A.1). Re-arranging the position of
the UAI axis to set it beside CPI for easier comparison between the two dimensions.

Figure 6.2 and Figure 6.3 show a negative correlation between LTO and CPI (ρ=-0.344)
which is statistically significant at a 1% level. The result of the simple linear regression
and the multiple regression also revealed a negative correlation with a significance level
of 1%. Thus, H1.5 is accepted and the correlation between LTO and CPI is illustrated in
Figure 6.20.

The dataset loaded into our visualization framework labeled the LTO dimension of
the Hofstede model as LTOWVS. Both of these terms refer to the short-term versus
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Figure 6.18: Parallel coordinates in Hofstede’s six dimensional model and CPI, used for
case study 1 (data source is Table A.1). Filtering high values of UAI, using the brushing
method on the UAI axis.

long-term orientation levels of a country. Referring to Pearson’s correlation matrix of
the visualization framework in Figure 6.9, the calculated correlation coefficient is 0.21,
indicating a low level of positive correlation between the dimensions with a 10% level of
statistical significance.

Upon closer investigation of Figure 6.21, it is impossible to spot any positive or negative
correlation between the two axes of LTOWVS and CPI. Some countries such as Russia,
China, and South Korea have a high level of LTOWVS and a low level of CPI. Even if the
filtering of the countries is changed in the parallel coordinates by filtering countries with
a high level of CPI, a correlation cannot be detected as seen in Figure 6.22. Countries
such as New Zealand, Norway, Finland, and Denmark have a low level of LTOWVS but
a high CPI level.

Figure 6.23 shows the parallel coordinates, where the filter is applied to countries with a
low level of LTOWVS. Countries such as Argentina, Colombia, Iran, and Mexico have a
low CPI level; in contrast, countries such as Australia, the U.S.A, and Uruguay have a
high CPI level. Based on the visualization, neither a positive or negative relationship can
be identified as the result is not conclusive. Figure 6.24 shows the parallel coordinates
filtered with a high level of CPI. The LTOWVS value of countries with a high CPI value
ranges between 33 and 83, and a pattern cannot be identified.

None of the visualizations show any correlation between LTOWVS and CPI. Thus, H1.5
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Figure 6.19: Parallel coordinates in Hofstede’s six dimensional model and CPI, used for
case study 1 (data source is Table A.1). Filtering low values of UAI, using the brushing
method on the UAI axis.

is rejected. This contradicts the findings of Achim [184]. However, this result is in
accordance with the finding of another study by Tong [186], who found that long-term
orientation (e.g., maintaining a relationship) may relate to corrupt activities.

H1.5, in contrast to what is proposed by Achim [184], is rejected. There is
no correlation between LTO (LTWVS) and CPI.

6.1.6 Testing for H1.6: The more indulgent the society is, the lower
the level of corruption

The last hypothesis in the study of Achim [184] examines the correlation between
indulgence and corruption level. The results shown in Figure 6.1 indicate a negative
low and statistically not significant correlation coefficient (ρ=-0.165) between IND and
CPI levels. Additionally, the significance level of the linear regression was not significant
(Figure 6.2). When evaluating the other cultural variables, the influence becomes
statistically significant, as seen in Figure 6.3. Given these contradicting and mixed
results, the author rejected H1.6.

A similar result is achieved with our visualization framework. Figure 6.25 shows the
adapted visualization of the parallel coordinates, where the axes are re-arranged to
position the IVR dimension beside CPI, and the coloring is based on the values of IVR.
We also invert the CPI axis to have a better overview of the relation. Note to the author:
our visualization framework labeled the indulgence dimension as IVR, instead of IND,
which was used by Achim [184]. At first glance, no relation or trend can be found between
these two dimensions by only looking at this visualization.

Figure 6.26 and 6.27, show the filtered dimensions IVR and CPI, for high values. As
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Figure 6.20: Scatterplot of CPI and LTO as indicated by Achim [184]. The y axis is
showing the corruption level and the x axis is representing the LTO score.

seen in Figure 6.26, countries having high value of IVR, with the exception of Venezuela,
El Salvador, Mexico, Colombia, and Trinidad and Tobago have high values of CPI
(meaning low corruption rate). If we filter countries based on their low value of CPI
(high corruption), as shown in Figure 6.27, we do not see a clear pattern with regard to
the IVR.

Figure 6.28 shows the parallel coordinates when we filter the low values of IVR. Figure 6.29
shows when the filter is applied to high values of CPI. Both of these representations do not
show a specific pattern, which can be described as a relationship or correlation between
these two dimensions. The Pearson’s correlation coefficient shown in Figure 6.9 indicates
a low and positive correlation coefficient of 0.25 with a statistically significance level of
10%. The low correlation coefficient and the lack of a pattern in the representations lead
to a rejection of H1.6.

H1.6, as proposed by Achim [184], is rejected with the support of our frame-
work. There is no correlation between IVR and CPI.
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Figure 6.21: Parallel coordinates in Hofstede’s six dimensional model and CPI, used for
case study 1 (data source is Table A.1). Filtering high values of LTOWVS, using the
brushing method on the LTOWVS axis.

Figure 6.22: Parallel coordinates in Hofstede’s six dimensional model and CPI, used for
case study 1 (data source is Table A.1). Filtering high values of CPI, using the brushing
method on the CPI axis.
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Figure 6.23: Parallel coordinates in Hofstede’s six dimensional model and CPI, used for
case study 1 (data source is Table A.1). Filtering low values of LTOWVS, using the
brushing method on the LTOWVS axis.

Figure 6.24: Parallel coordinates in Hofstede’s six dimensional model and CPI, used for
case study 1 (data source is Table A.1). Filtering low values of CPI, using the brushing
method on the CPI axis.
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Figure 6.25: Visualization of parallel coordinates in Hofstede’s six dimensional model and
CPI, used for case study 1 (data source is Table A.1). After re-arrangement: changing
the position of the IVR axis to set it beside CPI or better comparison.

Figure 6.26: Parallel coordinates in Hofstede’s six dimensional model and CPI, used for
case study 1 (data source is Table A.1). Filtering high values of IVR, using the brushing
method on the IVR axis.
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Figure 6.27: Parallel coordinates in Hofstede’s six dimensional model and CPI, used for
case study 1 (data source is Table A.1). Filtering high values of CPI, using the brushing
method on the CPI axis.

Figure 6.28: Parallel coordinates in Hofstede’s six dimensional model and CPI, used for
case study 1 (data source is Table A.1). Filtering low values of IVR, using the brushing
method on the IVR axis.
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Figure 6.29: Parallel coordinates in Hofstede’s six dimensional model and CPI, used for
case study 1 (data source is Table A.1). Filtering low values of CPI, using the brushing
method on the CPI axis.
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6.2 Case Study 2: Partitioning and Clustering Data
In Hofstede’s published book [56], 53 countries are clustered into 12 groups based on four
dimensions. Hofstede’s goal in clustering the data was to form an empirical typology
based on the dimensions. He argues that using this typology the academic research on
cultures is easier. In principle, using clustering analysis, Hofstede tried to summarize the
cases into a smaller numbers of clusters on the basis of PDI, UAI, IDV and MAS.

The clustering is done using a hierarchical clustering method with average linkage using
Statistical Package for the Social Sciences (SPSS) [187] program. The result is represented
in a dendrogram (Figure 2.6) and a Pearson’s correlation matrix (Figure 6.30). The full
details on each cluster member can be found in Table 6.1.

Figure 6.30: Pearson’s Correlation matrix of the four dimensions of the Hofstede model
created by Hofstede [56] in his book.

This case study aims to replicate the study results in Hofstede’s book with the support
of our visualization framework and to compare the achieved results. First, in Section
6.2.1, we perform the clustering on the same dataset provided by Hofstede in his book
[56], where only four dimensions of the data exist. Then, in Section 6.2.2, we perform
the clustering on the six dimensional data and compare it to the four dimensions.

6.2.1 Clustering Performed on Four Dimensions
The dataset provided by Hofstede [56] can be found in Table A.2. The dataset has
no missing value in any of the observations. This can be seen in Figure 6.31, in our
missingness heatmap. Since there are no white lines found in any row, it means that this
dataset does not require any imputation method.

We generate a dendrogram (Figure 6.32) using the hierarchical clustering with an average
linkage method similar to what Hofstede used in his book. Differences can be spotted
when comparing branches of our dendrogram with what was presented by Hofstede
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Figure 6.31: Heatmap showing the pattern of missing data. The source of the data comes
from Table A.2 and used in Case study 2. Since there are no white lines in the heatmap,
we conclude that no data is missing.

(Figure 2.6). The 12 clusters created by Hofstede are arbitrary, as they do not represent
a cut at a specific height. To get the closest possible result, we cut the dendrogram at
the height of 36.85, resulting in a silhouette coefficient of 0.33 and 12 clusters.

Table 6.1 shows a comparison between the result of our and Hofstede’s clustering. Cluster
1 to 6 are the same, both defined by Hofstede and our visualization framework. The
differences are in some branches’ splits. Hofstede’s cluster 7 is split into two clusters:
7 and 8 in our case. Cluster 9 is split into our clusters 9 and 10, while clusters 9 and
10 are merged into our cluster 11. Lastly, clusters 11 and 12 are merged into cluster 12
in our visualization framework. We visualized the result of our clustering on a world
map in Figure 6.33 and using parallel coordinates in Figure 6.34. Reviewing the clusters
created by our visualization framework, we can identify geographical similarities. Cluster
1 shows a Nordic cluster (Denmark, Sweden, Netherlands, Norway, and Finland). Cluster
3 shows a Latin American cluster (Ecuador, Venezuela, Colombia, and Mexico). Cluster
5 shows a geographical cluster between Belgium and France. Cluster 8 is an East-Asian
cluster (Malaysia, Philippines, and India). Lastly, cluster 9 shows a Central American
cluster (Guatemala and Panama).

Reviewing the world map together with the parallel coordinates, we can identify the
following knowledge:

Knowledge 1: After applying agglomerative hierarchical clustering on the
four dimensions (PDI, UAI, IDV, and MAS) of the Hofstede model, we
grouped countries into 12 clusters. A geographical and/or linguistic area is
reflected in Nordic countries, Latin America, East-Asia, Belgium and France;
and Guatemala and Panama.
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Figure 6.32: Using a dendrogram representation to visualize the effect of agglomerative
hierarchical clustering. The source of the data comes from Table A.2 and used in Case
study 2. We cut the tree at a height of 36.85 giving us a coefficient of 0.33 and 12 clusters.

Figure 6.35 shows the Pearson’s correlation matrix plot generated by our visualization
framework. All the ρ values and significance indication are the same with Pearson’s
correlation matrix shown by Hofstede in Figure 6.30. A strong negative correlation (ρ=-
.68) exists between IDV and PDI at a 0.001 level of significance. A negative correlation
between IDV and UAI (ρ=-0.33) at 0.01 level of significance is also seen. Thus, we
discover the following knowledge:

Knowledge 2: Using the four dimensions of the Hofstede model (PDI, UAI,
IDV, and MAS), we found a negative correlation between IDV and PDI; and
between IDV and UAI.
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Figure 6.33: Using a world map, we show the different clusters found after applying an
agglomerative hierarchical clustering analysis. The source of the data comes from Table
A.2 and used in Case study 2. The colors correspond to the coloring shown in the related
parallel coordinates in Figure 6.34.

Figure 6.34: A parallel coordinate plot for Hofstede’s four dimensional model. The
coloring is based on the clusters, each different color represents a cluster. The source of
the data comes from Table A.2 and used in Case study 2.
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No. Clusters Found by Hofstede Clusters Found by our Visualization
Framework

No.

1 Denmark, Sweden, Netherlands,
Norway, and Finland

Denmark, Sweden, Netherlands,
Norway, and Finland

1

2 Pakistan, Iran, Indonesia, Thailand
and Taiwan, East, and West Africa

Pakistan, Iran, Indonesia, Thailand
and Taiwan, East, and West Africa

2

3 Ecuador, Venezuela, Colombia, and
Mexico

Ecuador, Venezuela, Colombia, and
Mexico

3

4 Austria and Israel Austria and Israel 4
5 Belgium and France Belgium and France 5
6 Japan Japan 6
7 Malaysia, Philippines, India, Hong

Kong, Singapore, and Jamaica
Hong Kong, Singapore, and Ja-
maica

7

Malaysia, Philippines, and India 8
8 Guatemala, Panama, and Costa

Rica
Guatemala and Panama 9

Costa Rica 10
9 Yugoslavia, Turkey, Arabic-

speaking countries, Greece,
Argentina, Spain, and Brazil

Yugoslavia, Turkey, Arabic-
speaking countries, Greece,
Argentina, Spain, Brazil, Korea,
Peru, Salvador, Chile, Portugal,
and Uruguay

11

10 Korea, Peru, Salvador, Chile, Por-
tugal, and Uruguay

11 Australia, United States, Canada,
Great Britain, Ireland, and New
Zealand

Australia, United States, Canada,
Great Britain, Ireland, New
Zealand, Germany, Switzerland,
South Africa, Italy

12

12 Germany, Switzerland, South
Africa, and Italy

Table 6.1: Comparison between clustering groups established by our visualization frame-
work for four dimensions of the Hofstede model vs. and Hofstede’s cluster analysis on
four dimensional data. We used the data in Table A.2 and applied an agglomerative
clustering algorithm with the average linkage method.
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Figure 6.35: Pearson’s correlation matrix for four dimensions of Hofstede model showing
a negative correlation between IDV and PDI (ρ=-.68, statistically significant at 0.001),
and IDV and UAI (ρ=-.33, statistically significant at 0.01). The source of the data comes
from Table A.2 and used in Case study 2.
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6.2.2 Clustering Performed on Six Dimensions
Using the implemented visualization framework, we first have acquired and loaded the
complete dataset from Hofstede’s website [45]. The full dataset, shown in Table A.3,
contains scores for six dimensions for 110 countries. However, it contains missing data.
A preview of the pattern of missing data can be seen in Figure 6.36, as discussed in
Section 5.5.2.

Figure 6.36: Heatmap showing the pattern of missing data in the six dimensional dataset
of Hofstede. The source of the data comes from Table A.3 and used in Case study 2.
Since there are white lines in the heatmap, a portion of the data is missing.

The dataset has 110 rows, with 45 of them having missing values in at least one dimension.
Since Hofstede did not apply any imputation method to the data, we choose deletion as
our imputation method, which deletes missing values list-wise.

There are different clustering alternatives within our visualization framework, as discussed
in Section 5.5.3. To replicate the study conducted by Hofstede, we choose hierarchical
clustering, using an average linkage method. Once the appropriate clustering method is
chosen, it is possible to preview the clustering in a dendrogram, as illustrated in Figure
6.37.

It is possible to set a specific distance, where the dendrogram gets cut by filling the
max_d parameter value. The number of clusters is reflected by the crossings of the
horizontal line with the dendrogram branches. If we set the max_d parameter to 52, the
result is 12 clusters as seen in Figure 6.37. The reason behind cutting the tree at this
height is to replicate the 12 clusters found by Hofstede. Members of each cluster can be
found in Table 6.2.

Reviewing the clusters created by our visualization framework, we can identify a clear
linguistic area in cluster 1 (Australia, Canada, Great Britain, Ireland, New Zealand, and
the U.S.A.) which reflects an English speaking cluster. Nordic countries are reflected
in cluster 2 (Denmark, Finland, Netherlands, Norway, and Sweden), Baltic countries in
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Figure 6.37: Using a dendrogram representation to visualize the effect of agglomerative
hierarchical clustering in Hofstede’s six dimensional model. The source of the data comes
from Table A.3 and used in Case study 2: cutting the tree at height of 52, to reflect 12
clusters.

cluster 4 (Estonia, Latvia, and Lithuania) and Central European countries in cluster
5 (Austria, Belgium, Czech Republic, France, Germany, Hungary, Italy, Luxembourg,
Poland, and Switzerland). An Eastern-Asian cluster appears in clusters 7 (Malaysia and
Philippines), 8 (China, Hong Kong, India, Indonesia, Singapore, and Vietnam), and 10
(Korea South and Taiwan ).

This pattern is also visible when visualizing the clusters on a world map, as demonstrated
in Figure 6.38. The coloring of each country is according to its color when the cluster
axis on the parallel coordinates is selected (Figure 6.39). Additionally, hovering over
each country with the mouse displays a tooltip that includes all the country’s related
information. Figure 6.38, the tooltip for Canada, shows each dimension’s information
and the cluster where the country belongs. The missing countries are greyed out.

Figure 6.39 shows the parallel coordinates, color-coded by cluster value. The user has
the ability to apply brushing on this axis and filter the values of each cluster and view
the respective dimensions of the members.

Based on the clustering shown in Table 6.2, the parallel coordinates (Figure 6.39, and the
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No. Cluster Members of the Cluster
1 Australia, Canada, Great Britain, Ireland, New Zealand, U.S.A.
2 Denmark, Finland, Netherlands, Norway, Sweden
3 Africa West, Colombia, Mexico, Trinidad, and Tobago, Venezuela
4 Estonia, Latvia and Lithuania
5 Austria, Belgium, Czech Rep, France, Germany, Hungary, Italy, Luxem-

bourg, Poland and Switzerland
6 Japan
7 Malaysia and Philippines
8 China, Hong Kong, India, Indonesia, Singapore, and Vietnam
9 Africa East, Arab countries, Argentina, Brazil, Chile, El Salvador,

Greece, Iran, Malta, Morocco, Peru, Portugal, Slovenia, Spain, Thailand,
Turkey, and Uruguay

10 Korea South and Taiwan
11 Bangladesh, Bulgaria, Croatia, Pakistan, Romania, Russia, and Serbia
12 Slovakia

Table 6.2: Clustering groups established by our visualization framework on Hofstede’s
six dimensional model. We used the data in Table A.3 and applied an agglomerative
clustering algorithm with an average linkage method.

world map (Figure 6.38) we can discover following pattern after we clustered Hofstede’s
six dimensional model:

Knowledge 3: After applying agglomerative hierarchical clustering on six
dimensions (PDI, UAI, IDV, LTO, IVR, and MAS) of the Hofstede model,
we grouped countries into 12 clusters. We identified linguistic clusters in
English-speaking and Nordic (Clusters 1 and 2) regions, and geographical
clusters in the European region (cluster 4 and 5), and in Eastern-Asia region
(clusters 7,8 and 10).

The Pearson’s correlation matrix created by our visualization framework in Figure
6.40 indicates a clear negative correlation between PDI and IDV (ρ=-0.65), which is
statistically significant at 0.001. This is similar to the result found by Hofstede, who
found PDI and IDV to be negatively correlated (ρ=-.68) at a significance level of 0.001
as shown in Figure 6.30. The IVR dimension has a negative correlation (ρ=-0.5) with
LTOWVS (LTO) dimension statistically significant at 0.001 and a negative correlation
with PDI (ρ=-0.28) statistically significant at 0.01.

Comparing the Pearson’s correlation matrix in this section, with the Pearson’s correlation
matrix from Section 6.2.1 seen in Figure 6.35, it is evident that increasing the model’s
dimension from four to two changed the correlation within dimensions. IDV and PDI,
which are still negatively correlated, IDV and UAI do not show any correlation in the six
dimensional model. Thus, we can summarize the knowledge discovery in this section as
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Figure 6.38: Visualization of clusters on the world map for the six dimensions of Hofstede
model after agglomerative clustering with average linkage method was applied. Countries
having the same color belong to the same cluster. A tooltip shows the information on
each entry while hovering over the map. The source of the data comes from Table A.3
and used in Case study 2.

follows:

Knowledge 4: Adding the two dimensions of LTOWVS (LTO) and IVR into
the four dimensional models of Hofstede (PDI, UAI, IDV, and MAS) does
not affect the negative correlation between PDI and IDV. However, it re-
moves the negative correlation between IDV and UAI dimension and adds a
negative correlation between IVR and LTOWVS; and between IVR and PDI.
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Figure 6.39: Visualization of parallel coordinates for six dimensions of Hofstede model,
where the cluster axis is selected. The coloring of the parallel coordinates is based on the
coloring of the clusters. The source of the data comes from Table A.3 and used in Case
study 2.

Figure 6.40: Pearson’s correlation matrix, as generated for the six dimensions of the
Hofstede model. The source of the data comes from Table A.3 and used in Case study 2.
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6.3 Case Study 3: Knowledge Discovery and Beyond
This section aims to fully utilize every functionality available in the visualization frame-
work for the purpose of knowledge discovery in the cultural science domain. For this
free exploration and analysis, we extend the Hofstede model with additional dimensions
and explore the available data, using all the offered visualization functionalities in the
visualization framework.

Erman and Medeiros [5], alongside with numerous other researches [188, 189, 190],
explored recently the correlation between cultural dimensions and different aspects of
Covid-19, such as mortality rate and social distancing. Erman and Medeiros [5] attempted
to use the six dimensions of the Hofstede model to investigate whether the mortality
rate of the Covid-19 pandemic can be identified as an independent predictor of Covid-19
fatalities. The author used data from 49 countries with adequate health information
and system capacity and prominent Covid-19 epidemics. The data was extracted from
sources, such as the World Bank [191], the World Health Organization (WHO) [192],
Organisation for Economic Co-operation and Development (OECD) [193] and Hofstede’s
website [45]. Any missing data were imputed using the iterative multiple imputation
method, and no cluster analysis was performed in this study. Using a bootstrap variable
selection approach, Erman and Medeiros [5] shows that individualism and uncertainty
avoidance are independent predictors of Covid-19 fatalities. The author used case fatality
rate and mortality rate per thousand population as two dependant variables to perform
a meta-regression analysis on economic indicators (i.e., gross domestic product (GDP)
per capita in 2018), demographics (i.e., age distribution), the extent of SARS-CoV-2
testing coverage, differential timing of the outbreak (i.e., days since first death on record),
indicators of health system capacity (i.e., numbers of healthcare workers and hospital
beds per 1,000 population) and pertinent cultural dimensions for each nation as defined
by Hofstede.

Inspired by this idea of combining Covid-19 epidemiological data with Hofstede’s cultural
model, we extend the model by two extra dimensions of Covid-19 mortality rate in
confirmed cases and the quantity of death per 100,000 people. We acquired the data
from the Johns Hopkins Coronavirus Resource Center [194]. Our goal is to explore this
new model and identify patterns or correlations and not only reproduce the exact results
found in Erman and Medeiros [5]. Thus, we generate and accept new hypotheses after
the data is loaded and the knowledge discovery is started.

Figure 6.41 shows a preview of the data before choosing an imputation method. The
next step is to apply an iterative imputation.

6.3.1 Clustering Exploration and Analysis

Once the imputation is applied, we apply clustering to reveal groups of countries with
similar characteristics regarding their cultural aspects and how the pandemic has been
handled. We first preview the elbow plot of the k-nearest neighbors clustering. In this
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Figure 6.41: Pattern of missing data in the dataset shown in Table A.4 represented by a
heatmap. Missing entries are marked with white color. Rows indicate countries, while
columns indicate a cultural dimension. The dataset contains eight dimensions, six are
the standard dimensions of the Hofstede mode, and two are added by us which is the
Covid-19 mortality rate and death per 100,000 population.

case, the elbow plot in Figure 6.42 does not indicate any quick increase, and for this
reason, the k-nearest neighbors clustering method cannot be used.

Previewing the hierarchical clustering impact with complete linkage method results in a
dendrogram shown in Figure 6.43. Altering the maximum height (max_d) parameter to
cut the dendrogram in different heights (and also partitions of the examined countries
set) results in different values of the Silhouette Coefficient [54]. The higher the Silhouette
Coefficient, the better is the split within the cluster. For example, setting the height to
98 would result in eight country clusters, with a Silhouette Coefficient rate of 0.19 (Figure
6.43), while setting its value to 105 results in seven country clusters with a Silhouette
Coefficient rate of 0.23 (Figure 6.44) and setting its value to 115 results in six clusters
with a Silhouette Coefficient of 0.22 (Figure 6.45). A height of 105 with the highest
Silhouette Coefficient value is selected and applied to the data resulting in seven country
clusters. The full detail on each cluster’s content can be found in Table 6.3.

Representing the resulting clusters in the World Map indicates the geographical proximity
of these clusters. The countries in clusters 1 and 7 are geographically nearby to each
other—similar to cluster 5. In Figure 6.46, cluster 1 (dark blue) is mainly within Europe,
cluster 7 (magenta) reflects South East Asian countries, and cluster 5 (dark beige)
reflect East European countries and Russia. These colors are propagated to the parallel
coordinates (Figure 6.47). The user also has the ability to hover over each country and
see its full details on a tooltip box, as illustrated in Figure 6.48 for South Korea, where
the country’s name and the value of each dimension are shown. Grey colored countries
are those for which we do not have any data in the dataset; no tooltip box is shown while
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Figure 6.42: Elbow plot of k-nearest neighbors clustering method in an eight dimensional
dataset (six standard dimension of the Hofstede model combined with two dimensions
from Covid-19 epidemiological data) used for case study 3 (data source is Table A.4). A
clear “elbow” cannot be identified in this figure; thus, this clustering algorithm is not
suitable for this dataset.

hovering over those countries.
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Figure 6.43: Cutting the dendrogram at a height of 98 (Silhouette Coefficient 0.19),
resulting in eight clusters. This is to preview the impact of an agglomerative clustering
method applied on in an eight dimensional dataset used for case study 3 (data source is
Table A.4).

Figure 6.44: Cutting the dendrogram at a height of 105 (Silhouette Coefficient 0.23),
resulting in seven clusters. This is to preview the impact of an agglomerative clustering
method applied on in an eight dimensional dataset used for case study 3 (data source is
Table A.4).
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Figure 6.45: Cutting the dendrogram at a height of 115 (Silhouette Coefficient 0.22),
resulting in six clusters. This is to preview the impact of an agglomerative clustering
method applied on in an eight dimensional dataset used for case study 3 (data source is
Table A.4).

No. Clusters Members
1 Belgium, Czech Rep, France, Germany, Hungary, Italy, Luxembourg,

Switzerland
2 Brazil, Chile, Colombia, Costa Rica, Croatia, Greece, Iran, Poland,

Portugal, Romania, Slovenia, South Africa, Spain, Turkey
3 Mexico
4 Australia, Austria, Canada, Denmark, Finland, Iceland, Ireland, Israel,

Netherlands, New Zealand, Norway, Sweden, U.S.A
5 Estonia, Latvia, Lithuania, Russia, South Korea
6 Japan, Slovak Rep
7 China, India, Indonesia, Malaysia, Singapore

Table 6.3: Clusters resulting from hierarchical clustering with complete linkage applied
to an eight dimensional dataset (six standard dimension of the Hofstede model combined
with two dimensions from Covid-19 epidemiological data) used for case study 3 (data
source is Table A.4).
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Figure 6.46: World map to reflect the clustering of countries, with regard to the Hofstede
model and Covid-19 pandemic measurements (data source found in Table A.4) used for
case study 3. Countries with the same color belong to same cluster.

Figure 6.47: Parallel coordinates plot that reflects the clustering of countries, with regard
to the Hofstede model and Covid-19 pandemic measurements used for case study 3.
Countries with the same color belong to same cluster.
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Figure 6.48: Demonstration of a tooltip, appearing when hovering the mouse over a
country (South Korea) to reveal the dimensions of the Hofstede model and Covid-19
pandemic measurements.
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6.3.2 Mortality Rate (mrate) Exploration and Analysis
After the data has been grouped, we investigate the two newly added dimensions of
mortality rate (mrate) and death per 100,000 population (death_per100k). We also
investigate each clustering group to identify interesting trends or patterns within each
country cluster. This can be achieved using the parallel coordinates, combined with the
world map and the radar chart.

Figure 6.49 shows the parallel coordinates, where the top five countries with the highest
mortality rate (i.e., Mexico, China, Iran, Italy, and Greece) have been selected. The
geography, culture, and language of these countries are different, and they do not show
any specific trend—except for all of them being in the northern hemisphere (Figure 6.50).
Except for Italy, the rest of the countries have unequally distributed power (high PDI
value) and are collectivist countries (low IDV value). Except for Iran, all countries are
masculine countries (high MAS), and except for China, all countries feel threatened by
uncertain situations (high UAI). Therefore, there is no clear pattern within these five
countries concerning the six Hofstede model dimensions.

Based on the parallel coordinates showing high mortality rate (Figure 6.49), and the
observations we did within the top five countries with the highest mortality rate, we
generate two new hypotheses which we investigate in this section further:

H3.1 The higher the Covid-19’s mortality rate of a country is, the higher is
the uncertainty avoidance in the country.
H3.2 The higher the Covid-19’s mortality rate of a country is, the higher is
the more masculine the country is.

Figure 6.51 shows that Singapore, Malaysia, Iceland, Israel, and Norway have the lowest
mortality rate for Covid-19. All five countries are feminine (low MAS score) and are
comfortable with uncertainty (low UAI score), except for Israel. Iceland and Norway,
Malaysia, and Singapore are geographically close to each other. However, Israel has no
graphical or cultural connection to any of the other countries, as seen in Figure 6.52.

Comparing the population of countries with the highest mortality rate, i.e., Mexico
(127.6 million), China (1.398 billion), Iran (82.91 million), Italy (60.36 million), and
Greece (10.72 million), to the population of countries with lowest mortality rate, i.e.,
Singapore (5.704 million), Malaysia (31.95 million), Iceland (356,991), Israel (9.053
million) and Norway (5.328 million ), may suggest that population and mortality rate
could potentially have a positive correlation. This knowledge discovery can be formed
into a new hypothesis:

H3.3 The higher the population of a country, the higher is the Covid-19
mortality rate.

We investigate this newly formulated hypothesis by adding the population value to our
visualization framework as a new dimension. The results are discussed in Section 6.3.5.1.
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Figure 6.49: Parallel coordinates for the top five countries, with highest mortality rate in
an eight dimensional dataset (six standard dimension of the Hofstede model combined
with two dimensions from Covid-19 epidemiological data) used for case study 3 (data
source is Table A.4). This is to investigate countries with high mortality rate. China,
Greece, Iran, Italy and Mexico have the highest mortality rate of Covid-19.
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Figure 6.50: World map for the top five countries with highest mortality rate used for
case study 3 (data source is Table A.4). China, Greece, Iran, Italy and Mexico jave the
highest mortality rate of Covid-19, which are marked with blue color on the world map.

Figure 6.51: Parallel coordinates for the five countries, with least mortality rate in an
eight dimensional dataset (six standard dimension of the Hofstede model combined with
two dimensions from Covid-19 epidemiological data) used for case study 3 (data source is
Table A.4). Iceland, Israel, Malaysia, Norway, and Singapore have the lowest mortality
rate of Covid-19.

120



6.3. Case Study 3: Knowledge Discovery and Beyond

Figure 6.52: World map for the top five countries with lowest mortality rate used for
case study 3 (data source is Table A.4). Iceland, Israel, Malaysia, Norway, and Singapore
have the highest mortality rate of Covid-19, which are marked with blue color on the
world map.
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6.3.3 Death per 100,000 people (death_per100k) Exploration and
Analysis

If we filter the top five countries with the highest death rate by brushing the death_per100k
axis on the parallel coordinates (Figure 6.53), we identify Belgium, Slovenia, Czech Re-
public, Italy, and the U.S.A as those countries with the highest values. Except for
Slovenia, the countries are masculine (high value in MAS) with an individualist attitude
(high IDV score). All countries, except for the U.S.A, have a high tendency to avoid
uncertain situations (high UAI value). Hence, we generate the following hypotheses to
investigate further:

The world map (Figure 6.54) shows that four of these countries are centered in the
European region, but there is no other particular geographical indication about them.

Figure 6.53: Parallel coordinates with regard to the Hofstede model and Covid-19
pandemic measurements (data source found in Table A.4) used for case study 3. Here
we filter the top five countries with highest death rate per 100,000 population which are
Belgium, Slovenia, Czech Republic, Italy, and the U.S.A.

As seen in Figure 6.55, after filtering the parallel coordinates to include only countries
with low death rates, Singapore, New Zealand, China, Malaysia, and South Korea have
the lowest death rates per 100,000 population. Except for New Zealand, all countries
have a high PDI and low IDV value and are geographically close to each other. Except
for South Korea, the countries are comfortable with uncertainty (low UAI score). We
generate a new hypothesis for the UAI dimension:

H3.4 The higher the Covid-19 death rate per 100,000 of population, the
higher is the uncertainty avoidance in the country.

6.3.4 Correlation Exploration and Analysis
Exploring the Pearson’s correlation matrix (see Figure 6.57) to confirm our hypotheses,
we see that there is a positive correlation (ρ=0.25) between mortality rate (mrate)
and uncertainty avoidance (UAI) statistically significant at 0.05. Higher uncertainty
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Figure 6.54: World map for the top five countries with highest death rate per 100,000
population used for case study 3 (data source is Table A.4). Belgium, Slovenia, Czech
Republic, Italy, and the U.S.A have the highest death rate per 100,000 population of
Covid-19, which are marked with blue color on the world map.

avoidance in a country results in a higher mortality rate for Covid-19. H3.1
is accepted. Masculinity (MAS) and mortality rate have a positive correlation (ρ=0.3)
as well, statistically significant at 0.01. Additionally, a strong negative correlation (ρ=-
0.59) between IVR and LTO (LTOWVS), PDI and IDV (ρ=-0.6) exists (statistically
significant at 0.001). Other correlations at a significant level of 0.01 also exist between
MAS and mortality rate (ρ=0.3), and between PDI and IVR (ρ=-0.36). The higher the
masculinity level in a country is, the higher is the mortality rate for Covid-
19. H3.2 is accepted. A strong positive correlation (ρ=0.46) between death rate per
100k population and UAI exists (statistical significant at 0.01). Higher uncertainty
avoidance in a country results in a higher death rate per 100,000 of the
population for Covid-19. H3.4 is accepted.

A closer look at the parallel coordinates (Figure 6.58) confirms; once we re-arrange the
axis where PDI is beside IDV (cf. A), LTOWVS beside IVR (cf. B), and UAI beside
death_per100k (cf. C) that different correlation exists in the data. In A and B, there is
a clear negative correlation, i.e., the high values of PDI are connected to the low values
of IDV, whereas in C, there is a rather positive correlation, i.e., the majority of the high
values in LTOWVS connected to the high values in IVR. By reviewing the Pearson’s
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Figure 6.55: Parallel coordinates with regard to the Hofstede model and Covid-19
pandemic measurements (data source found in Table A.4) used for case study 3. Here
we filter the top five countries with lowest death rate per 100,000 population which are
China, Malaysia, New Zealand, Singapore, and South Korea.

correlation matrix and the parallel coordinates, following knowledge is discovered:

Knowledge 5: A positive correlation exists between the mortality rate of
Covid-19 and the PDI.

6.3.5 Additional findings
So far, in Section 6.3.1 we have shown that our visualization framework is capable of
supporting clustering, as well as subsequent analysis and exploration of the clustering.
In Section 6.3.2 and 6.3.3 we have analyzed in detail the two newly added dimensions
related to Covid-19 with regard to the Hofstede model dimensions, which resulted in
some new hypothesis generation related to the geographical position of countries with
Covid-19 death and mortality rate. Lastly, in Section 6.3.4, we explored the correlation
across the dimensions of our extended model (Hofstede + Covid-19 dimensions) and
concluded that UAI positively correlates with the death rate per 100k population. This
means that countries with a high tendency to avoid uncertain situations (high values
of UAI) have higher death rates per 100,000 population, and countries that are more
comfortable with uncertain situations (low score of UAI) have a lower death rate per
100,000 population. While evaluating the mortality rate in Section 6.3.2, we generated a
new hypothesis, that this dimension might have a positive correlation with population.
In the section below we will investigate this new hypothesis.

6.3.5.1 Mortality Rate (mrate) and Population

We reloaded the data from Table A.5 into the visualization tool to investigate if a corre-
lation between population and mortality rate of Covid-19 exists. Since the mortality rate
is a percentage between 1 and 100, and the population is a positive integer with typically
large values, a Z-score normalization was performed on the data before visualization.
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Figure 6.56: World map for the top five countries with lowest death rate per 100,000
population with regard to the Hofstede model and Covid-19 pandemic measurements
(data source found in Table A.4) used for case study 3. The countries China, Malayisa,
New Zealand, Singapore, and South Korea are marked with red color on the world map.

Next, we we-arranged the parallel coordinates in a way that the dimension pop, which
stands for population, is next to mortality rate (mrate). This can be seen in Figure 6.59.
Although there seems to be a positive correlation between these two dimensions, a closer
look at the Pearson’s correlation matrix in Figure 6.60, shows that this correlation is not
statistically significant.

There is no correlation between mortality rate of Covid-19 and a country’s
population; thus H3.3 is rejected.

Furthermore, Pearson’s correlation matrix shows a strong positive correlation between
population with PDI (ρ=0.29) at 1% of significance level; with UAI (ρ=0.28) and with
death per 100,00 population (ρ=0.26) 5% level of significance. As there was no hypothesis
for any of those dimensions, we formulate them as new knowledge discoveries:

• The more populated a country is, the higher is the power distance.

• The more populated a country is, the higher is the uncertainty avoidance
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Figure 6.57: Case study 3 - Pearson’s correlation matrix, after adding the two additional
dimensions of mortality rate and death rate per 100,000 population to the six dimensions
of the Hofstede model with regard to the Hofstede model and Covid-19 pandemic
measurements (data source found in Table A.4) used for case study 3.

• The more populated a country is, the higher is the death ratio per
100,000 of population

6.3.5.2 Comparing Set of Countries Using Radar Chart

Using the radar chart provided, it is possible to lookup a specific set of countries and
compare the value of each of their dimensions to each other. The set of countries can
either be selected and changed by using the parallel coordinates or by using the search
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6.3. Case Study 3: Knowledge Discovery and Beyond

Figure 6.58: Parallel coordinates with regard to the Hofstede model and Covid-19
pandemic measurements (data source found in Table A.4) used for case study 3. Re-
arranging the axes to investigate correlations across dimensions of the Hofstede model
and the Covid-19 measurements.

Figure 6.59: Parallel coordinates after population (pop) was added as a new dimension
with Hodstede’s standard dimensions, Covid-19 epidemiological dimension, making the
model consist of 9 dimensions. The source of the data is in Table A.4 and Table A.5.
We-rearranged the mrate axis to be beside pop in order to be able to investigate potential
correlation between these two dimensions.

box under the radar chart. Using the brushing method on the parallel coordinates’ axes
causes the countries to be filtered to the selection, and these filtered countries are reflected
in the radar chart. As an example, if we filter in the parallel coordinates as in Figure 6.54
the top five countries with highest death rate per 100,000 population, the result of the
radar chart is as in Figure 6.61a. If we filter the parallel coordinates as in Figure 6.56,
we can compare the radar chart of the top five countries with the lowest death rate per
100,000 of the population (Figure 6.61b) to the highest death rate as seen in Figure 6.61.

Alternatively, countries can be looked up using the search bar (cf. A) where the cor-
responding countries are shown on the radar chart and the legend (cf. B) if the user
checks the checkbox beside the country’s name. Figure 6.62 a comparison between all
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6. Results

Figure 6.60: Pearson’s Correlation matrix after population (pop) was added as a new
dimension (making the model 9 dimensional). We see a positive correlation in the
dimension of population with PDI, UAI and death per 100,000 of population. The source
of the data is in Table A.4 and Table A.5

the dimensions of Australia, Austria, Belgium, Brazil, and Canada can be seen. The
color of the vertices is corresponding to the colors in the legend.

6.3.5.3 Visualization of Missingness and Uncertainty

As discussed in Section 4.2.2.4, we use a clustermap to produce a representation. Figure
6.63 shows and eight dimensional representation of a clustermap for Hofstede’s six
dimension, Covid-19’s mortality and death per 100,000 population. On the bottom left,
the RSME value (discussed in Section 2.4.3) of each imputed dimension. This value can
be used to compare the performance of the imputation within each dimension or between
different imputation method if the user changes the method.
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6.3. Case Study 3: Knowledge Discovery and Beyond

Using the iterative imputation method, the RSME of IDV is 0.73; MAS is 0.34; IVR is
1.27; PDI is 0.56, and UAI is 0.46. The remaining dimensions have no missing value.
Hence the RSME will be 0 and not shown. Thus, the glyph (dot) symbol of IVR
dimension is the biggest and UAI the smallest size. Additionally, the clustermap shows
the dendrogram on the left side, which the user can select a range by brushing and
investigate a branch closely.

Hovering the mouse over each cell in the heatmap shows the country name and value of
the dimension. In Figure 6.64 we zoomed into a section of the same clustermap shown in
Figure 6.63. A closer look shows that Israel has a missing value in the IVR dimension,
and Iceland has missing values in MAS and PDI dimension.
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6. Results

(a) Radar chart of countries with high death rate per 100,000 of population.

(b) Radar chart of countries with low death rate per 100,000
of population.

Figure 6.61: Radar chart of top five countries in the eight dimensional model (Hofstede
and Covid-19 epidemiological data). with highest and top five countries with the lowest
death rate per 100,000 of population. This is to explore the radar chart for case study 3.
The source of the data is available in Table A.4.130



6.3. Case Study 3: Knowledge Discovery and Beyond

Figure 6.62: Radar chart with regard to the Hofstede model and Covid-19 pandemic
measurements (data source found in Table A.4) used for case study 3. Here we see a
comparison between the all the dimensions of Australia, Austria, Belgium, Brazil, and
Canada. This is to demonstrate the search and filtering capability of the radar chart.
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6. Results

Figure 6.63: Clustermap with regard to the Hofstede model and Covid-19 pandemic
measurements (data source found in Table A.4) used for case study 3. Using the iterative
imputation method, the RSME of IDV is 0.73; MAS is 1.34; IVR is 1.27; PDI is 0.56 and
UAI is 0.46. A dendrogram on the left side shows the pattern of hierarchical clustering
applied. It is possible to zoom in by selecton of an area either on the dendrogram or the
heatmap.

132



6.3. Case Study 3: Knowledge Discovery and Beyond

Figure 6.64: Clustermap with regard to the Hofstede model and Covid-19 pandemic
measurements (data source found in Table A.4) used for case study 3. Zooming into the
clustermap shown in Figure 6.63 reveals a closer look into the missing data of countries.
Hovering the mouse over the cell reveals all the information i.e. Israel’s PDI score is 56.
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6.4 Evaluation of the Visualization Framework
We have already mentioned in Section 3.5 that we use the Visual Data Analysis and
Reasoning (VDAR) approach to evaluate the visualization framework. For this reason,
we have created three case studies. Section 6.1 showed how it is possible to add a new
dimension to the Hofstede model and confirm or reject hypotheses. The six hypotheses
used were based on Achim [184] who investigated the correlation between Hofstede’s
cultural model and corruption level in the countries. Each of these hypotheses was
investigated using the parallel coordinates where a user could discover knowledge while
exploring different axis on the parallel coordinates to identify correlations. selection and
filtering of countries were possible by brushing the axis of each dimension. Additionally,
each axis could be re-arranged by dragging it across the visualization with the mouse.
Lastly, the coordinates’ coloring can be changed by just clicking on the title of the
different axis. All of these interactions fulfill what we have defined for Task 2 in Section
4.3 and 4.1.

In Section 6.2, we attempted to reproduce the clustering and grouping of the countries
based on the method used in the literature written by Hofstede [56]. Using the dataset
provided by Hofstede, we acquired data of 53 countries and clustered them using hierar-
chical clustering with the average linkage method. The result was presented in table 6.2.
The difference between the clusters can be explained by Hofstede’s arbitrary method of
choosing clusters in the dendrogram and not cutting it at a specific height. However, if
necessary, the exact result can be reproduced by not choosing any clustering method in
the visualization tool. The user can create a new column in the dataset named cluster
and manually perform the clustering in the CSV file. Alternatively, any external tool
can be used to perform the clustering. The result can be imported into our visualization
tool. More details can be found in the API documentation 3, where the details on
communication and sample requests between the client and server are documented.

Using a combination of the world map (see Figure 6.38) and the parallel coordinates (see
Figure 6.39), the user has the ability to identify a set of countries belonging to a specific
region or cluster by locating different clusters of countries on the world map. Different
clusters have different colors on the map, meaning different regional clusters which are
specific to a region can be easily discovered.

The parallel coordinates allowed us to select different clusters or set of countries by
changing the countries using a brushing method on a different axis. This enabled us
to discover different clusters on the world map and identify different regional clusters
which have been created due to cultural or linguistic characteristics. Using the world
map, we could lookup for a specific country or cluster and study them more in detail.
These interactions fulfill what was required in Task 3 as described in Section 4.4

In the third case study discussed in Section 6.3, we have added two additional dimensions
of mortality rate and death per 100,000 population into the Hofstede model, which are

3https://documenter.getpostman.com/view/1113133/TzCV2j2C
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6.4. Evaluation of the Visualization Framework

related to the recent Covid-19 pandemic. This section aimed to use every feature available
in the visualization framework and discover some knowledge.

Figure 6.41 presents a preview of the pattern on how missing data exists in our dataset of
49 countries using a heatmap. The white lines indicate that there is indeed missing data;
hence an iterative imputation method was applied to the dataset to fill these missing
data. After the imputation was applied, we investigated in Section 6.3.1 which clustering
method is suitable for our dataset. k-means clustering method was not selected since the
elbow plot in Figure 6.42 which presents the elbow plot showing the changes on the sum
of the squared error (SSE), did not have a clear "elbow." In Figure 6.43, 6.44, and 6.45
we presented the impact of hierarchical clustering and cutting the "branch" in different
heights in form a dendrogram. Previewing different values and using the Silhouette
Coefficient, we indicated the most suitable height to cut the branches, resulting in seven
clusters.

Once the chosen imputation and clustering method were applied, further visualizations
such as the world map (6.46), parallel coordinates (6.47), radar chart, and clustermap
get visible to the user. This process complies with the Visual Analytics process discussed
in Section 3.2.1, illustrated in Figure 3.2 and eventually applied in a form of a UML
activity diagram in Figure 4.15.

In Section 6.3.3 We have identified a pattern between Covid-19’s mortality rate and
a country’s population by exploring the parallel coordinates and the world map. We
selected different countries by arranging and filtering the parallel coordinates in a way
in which we only showed the top five countries with the highest and the lowest rate of
mortality. The pattern was identified which showed us that the countries with a higher
population tend to have a higher mortality rate of Covid-19. This newly discovered
knowledge was then transformed into a hypothesis that needs to be investigated further.
The knowledge discovery falls under what we have defined for Task 2 in Section 4.3 which
our interactions do align with.

The parallel coordinates, world map, heatmap, elbow plot, and dendrogram were so
far sufficient to fulfill Task 2 and 3. However, to fulfill Task 1 and 4, we have to use
the spider chart (radar chart) and clustermap as discussed in Section 6.3.5. Using the
spider chart, we presented a comparison within the countries with the highest and lowest
mortality or death rate per 100,000 of population. This comparison was also changed
by looking up and comparing other countries used by other researchers such as Furner
[40] and House et al. [28]. Finally, we produced a clustermap that had imputed values
encoded as a dot to represent the uncertainty. Using the clusterrmap, the user is able
to compare the performance of the imputation method in each dimension within the
same model. Changing the parameters of the imputation allows users to compare the
performance of different imputation methods as well. Thus, Task 4 is fulfilled by our
visualization framework.

An overview of the case studies and their corresponding tasks can be found in Table 6.4.
Using the three case studies, we showed that a user is able to perform all four tasks which
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we have created in Chapter 4 based on our identified requirements. Thus, the evaluation
process is finished, and this version of the visualization framework can be finalized.

Case Study Fulfills Visualization methods used
1. Hofstede and CPI Task 2 Parallel coordinates, and Pear-

son’s correlation matrix
2. Clustering in Hofstede Task 3 Parallel coordinates, World

map, Pearson’s correlation
matrix, Dendrogram, and
Heatmap

3. Hofstede and Covid-19 Task 1, 2, 3, and 4 Parallel coordinates, World
map, Radar chart, Clustermap,
Pearson’s correlation matrix,
Elbow plot, Dendrogram, and
Heatmap

Table 6.4: Overview of the three case studies discussed in Section 6.1, 6.2, and 6.3 and
which task they evaluate.

6.5 Final Framework
We have evaluated our designed visualization framework using the VDAR evaluation
method explained in Section 6.4. We showed that our visualization framework supports
the four tasks defined based on our requirements in Section 4.1. Additionally, we showed
that the flow of the visualization framework is according to the UML activity diagram
designed in Figure 4.15 which is based on Van Wijk [103] Visual Analytic approach. The
three case studies show how the four defined tasks aid knowledge discovery in the cultural
domain, and the evaluation confirms that our visualization framework has the ability
to perform them. Thus, we stop the iteration in the design cycle and publish the final
version of the framework.

Reproducibility of research is vital in computer science [195, 196]. For this purpose,
researchers suggest using methods that make re-using software easier. As explained in
Chapter 5, our visualization framework has a server-client architecture and uses a mixture
of Python and JavaScript libraries. These libraries can get outdated or deprecated in the
future, making the reproducibility of our result challenging by other researchers. To cope
with this challenge, we published our final artifact in the form of a docker image that
can be accessed from a public repository via the following command:

docker pull payamcf/cmvserver

Alternatively, the source code can be accessed using following git commands:

git clone https://gitlab.com/payamcf/cmvserver.git
git clone https://gitlab.com/payamcf/cmv.git
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CHAPTER 7
Conclusion and Future Work

In this chapter, we review our work which we have discussed in the previous sections.
We start by describing the main goal and aim of the thesis. We review the methodology
framework and the multilayered task framework that we relayed while creating our tasks.
We also discuss and review an overview of the implementations and developments we did
towards the creation of the visualization framework. In the end, we review the evaluation
method and each case study that we discussed in the previous chapters.

7.1 Summary
The goal of this master’s thesis was to determine which visual analytic methods could
aid the knowledge discovery in the cultural domain. We choose Hevner [10] three-cycle
research framework for our methodology approach to create a framework that fulfills this
purpose.

In the relevance cycle, we have described in detail the meaning of Hofstede’s cultural
model and its six dimensions which can be seen in Section 2.1.1. In Section 2.2, we
investigated different visualization methods applied by other researchers in the cultural
domain. Visualizations such as the world map and spider chart were inspired based
on the findings in this section. Furthermore, we discovered in Section 2.3.5 different
clustering methods, which we used in later sections to group and cluster our data. Lastly,
in Section 2.4, we categorized how missing data is observed in datasets and how to use
imputation techniques to cope with them.

Upon reviewing current visualization techniques in the cultural science domain, we
identified some limitations, such as a lack of dynamic changes in them. Moreover, we
articulated that computer-based displays have more ability to provide information in a
representation than paper-based documents since they can filter and interact with. These
are the output of the relevance cycle and used as in input in the design cycle.

137



7. Conclusion and Future Work

We also described in Chapter 3 the process of visual analytic introduced by Van Wijk
[103] which is the output of our rigor cycle, and we used a basis in our design cycle
in Chapter 4. The parallel coordinates were chosen after describing and reviewing the
different types of multidimensional visualizations in Section 3.3. Finally, we reviewed
different evaluation methods in the information visualization domain and chose the
VDAR evaluation method introduced by Lam et al. [17]. These are all the basis and
source of our knowledge gathered from existing research papers.

In Chapter 4, we defined requirements for our visualization framework based on the gaps
identified in the existing visualization methods (output from rigor and relevance cycle).
This was the primary step in the design cycle. Based on a taxonomy introduced by
Brehmer and Munzner [129], we broke down the requirements into four a medium-level
tasks discussed in 4.2, 4.3, 4.4 and 4.5. Based on these tasks, we have chosen the
appropriate visualization methods shown in Table 4.1, which then were considered while
designing the UIs using mock-ups. The medium-level tasks, UI mock-ups, and activity
diagram are all outputs of the rigor cycle and input in the design cycle; based on these
inputs, we then implemented the visualization framework in Chapter 5.

We chose a client-server architecture for the implementation, and this enabled us to utilize
a combination of JavaScript and Python libraries. The world map was an extension
to an already existing visualization framework for Hofstede’s six cultural dimensions
implemented by Bayat [44]. Mainly D3.js was used for the implementation of the
parallel coordinates, radar chart, and world map. The rest of the visualizations such
as clustermap, dendrogram, and heatmap were implemented using Plotly. Additionally,
all the machine learning algorithms for imputation and clustering were implemented
using Python libraries such as Scipy. In our case, the client is a web application and
communicates via jQuery with the API, which is implemented using flask.

In Chapter 6, we defined three different case studies to show the features of the imple-
mented visualization framework and verify if the framework has the ability to perform
the designed tasks. In all three case studies, the focus was on using the datasets from
the same data sources mentioned by the researchers and attempt to re-evaluate the
hypotheses in their studies using our visualization framework.

In the first case study described in Section 6.1, the author attempted to understand the
relation between corruption level and the six dimensions of the Hofstede model by adding
one additional dimension named CPI (Corruption Perception Index) to the standard six
dimensions of the Hofstede model. We tried to re-visit the six hypotheses in this study
with our visualization framework and compared our result with the paper’s result.

The second case study in 6.2 showed how it is possible to use the clustering feature
in our visualization framework to group the countries. These groupings can then be
visualized in the parallel coordinates and world map. Lastly, in Section 6.3 we showed
how we could fully utilize our visualization framework to impute missing data, cluster
data, discover knowledge, compare a set of countries and visualize uncertainty. All these
were performed on a case study where Erman and Medeiros [5] attempted to combine
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two new dimensions of mortality rate and death per 100,000 population to investigate
a potential correlation between culture and Covid-19 pandemic. We could confirm the
hypothesis that UAI has a positive correlation with death per 100,000 population and
discovered additional findings of a potential correlation with the mortality rate that other
researchers can investigate further.

Eventually, we reviewed all the case studies and summarized the VDAR evaluation in
Section 6.4. The requirements have been identified by reviewing existing literature and
building a knowledge base in the rigor cycle. Based on the requirements, we identified
four tasks and showed that the visualization framework could perform all the designed
tasks. After the evaluation, we created a docker image that other researchers can use to
re-use our visualization framework. This whole process can be seen as a framework as
illustrated in Figure 1.1, which other researchers can use in the future.

7.2 Future Work and Improvements
By reviewing the current literature and identifying four tasks for our visualization
framework, we ended up with an implementation of six visualization methods in our
framework. Additional visualization methods such as scatterplots, barcharts, or box plots
can be added as an extension to the framework in the future if found to be helpful in the
process of knowledge discovery in the cultural science domain. We suggest following the
framework presented in the last section to identify the tasks and requirements, identify
appropriate visualization methods, design and extend the current framework, evaluate
and publish the final version of the visualization framework in a reproducible environment.

Another improvement on the framework would be to add the ability to reduce the
dimensions of the data. Our current framework has a limited ability to add high dimen-
sional (e.g., 20 dimensions) data. For this, reducing the dimensions with dimensionality
reduction methods, such as Principle Component Analysis (PCA) [197] or t-Distributed
Stochastic Neighbor Embedding (t-SNE) [198] would be necessary. Increasing the number
of data dimensions would also have implications for the employed visualizations, which
would need to be reworked to accommodate a higher data dimensionality.

Currently, the user has the ability to dynamically add or remove dimensions to the
cultural model by adapting the dataset. If the visualization framework gets extended in
a way where the addition or subtraction of the dimension is comparable with the old
model, domain experts would have the ability to compare the impact of the dimensional
changes. Studying these impacts, new and more robust cultural models can be generated.

Due to time limitations, we only had the ability to evaluate the visualization framework
in a VDAR scenario with case studies. An important point for future work would be to
perform additional controlled experiments with domain experts to evaluate the practical
value of the designed framework and its usability in the cultural domain.

All in all, this framework is the first step towards the usage of Visual Analytics methods
in the cultural science domain. We hope that in the future, more visualization methods
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are used to explore cultural models in a flexible manner, to make knowledge discovery in
this domain easier and faster.
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APPENDIX A
Datasets Used in the Case Studies

A.1 Case Study 1: Combining Hofstede’s Model with
CPI

Table A.1: Used dataset in case study 1 - Hofstede’s 6 dimensions + CPI

country pdi idv mas uai ltowvs ivr cpi
Africa East 64 27 41 52 32 40
Africa West 77 20 46 54 9 78
Albania 61 15 36
Algeria 26 32 36
Andorra 65
Arab countries 80 38 53 68 23 34
Argentina 49 46 56 86 20 62 32
Armenia 61 35
Australia 38 90 61 51 21 71 79
Austria 11 55 79 70 60 63 76
Azerbaijan 61 22 29
Bangladesh 80 20 55 60 47 20 25
Belarus 81 15 32
Belgium 65 75 54 94 82 57 77
Belgium French 67 72 60 93
Belgium Netherl 61 78 43 97
Bosnia 70 44 38
Brazil 69 38 49 76 44 59 38
Bulgaria 70 30 40 85 69 16 41
Burkina Faso 27 18 38

Continued on next page
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A. Datasets Used in the Case Studies

Table A.1 – continued from previous page
country pdi idv mas uai ltowvs ivr cpi

Canada 39 80 52 48 36 68 83
Canada French 54 73 45 60 83
Chile 63 23 28 86 31 68 70
China 80 20 66 30 87 24 37
Colombia 67 13 64 80 13 83 37
Costa Rica 35 15 21 86 55
Croatia 73 33 40 80 58 33 51
Cyprus 70 61
Czech Rep 57 58 57 74 70 29 56
Denmark 18 74 16 23 35 70 91
Dominican Rep 13 54 33
Ecuador 78 8 63 67 32
Egypt 7 4 36
El Salvador 66 19 40 94 20 89 39
Estonia 40 60 30 60 82 16 70
Ethiopia 46 33
Finland 33 63 26 59 38 57 90
France 68 71 43 86 63 48 70
Georgia 38 32 52
Germany 35 67 66 65 83 40 81
Germany East 78 34
Ghana 4 72 47
Great Britain 35 89 66 35 51 69 81
Greece 60 35 57 112 45 50 46
Guatemala 95 6 37 101 28
Hong Kong 68 25 57 29 61 17 75
Hungary 46 80 88 82 58 31 51
Iceland 28 67 79
India 77 48 56 40 51 26 38
Indonesia 78 14 46 48 62 38 36
Iran 58 41 43 59 14 40 27
Iraq 25 17 16
Ireland 28 70 68 35 24 65 75
Israel 13 54 47 81 38 61
Italy 50 76 70 75 61 30 44
Jamaica 45 39 68 13 41
Japan 54 46 95 92 88 42 75
Jordan 16 43 53
Korea South 60 18 39 85 100 29 54
Kyrgyz Rep 66 39 28

Continued on next page
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Table A.1 – continued from previous page
country pdi idv mas uai ltowvs ivr cpi

Latvia 44 70 9 63 69 13 56
Lithuania 42 60 19 65 82 16 59
Luxembourg 40 60 50 70 64 56 85
Macedonia Rep 62 35
Malaysia 104 26 50 36 41 57 50
Mali 20 43 35
Malta 56 59 47 96 47 66 60
Mexico 81 30 69 82 24 97 31
Moldova 71 19 33
Montenegro 75 20 44
Morocco 70 46 53 68 14 25 36
Netherlands 38 80 14 53 67 68 84
New Zealand 22 79 58 49 33 75 91
Nigeria 13 84 26
Norway 31 69 8 50 35 55 88
Pakistan 55 14 50 70 50 0 30
Panama 95 11 44 86 39
Peru 64 16 42 87 25 46 36
Philippines 94 32 64 44 27 42 35
Poland 68 60 64 93 38 29 63
Portugal 63 27 31 104 28 33 64
Puerto Rico 0 90
Romania 90 30 42 90 52 20 46
Russia 93 39 36 95 81 20 29
Rwanda 18 37 54
Saudi Arabia 36 52 52
Serbia 86 25 43 92 52 28 40
Singapore 74 20 48 8 72 46 85
Slovak Rep 104 52 110 51 77 28 51
Slovenia 71 27 19 88 49 48 60
South Africa 34 63 44
South Africa white 49 65 63 49
Spain 57 51 42 86 48 44 58
Suriname 85 47 37 92 36
Sweden 31 71 5 29 53 78 89
Switzerland 34 68 70 58 74 66 86
Switzerland French 70 64 58 70
Switzerland German 26 69 72 56
Taiwan 58 17 45 69 93 49 62
Tanzania 34 38 30

Continued on next page
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Table A.1 – continued from previous page
country pdi idv mas uai ltowvs ivr cpi

Thailand 64 20 34 64 32 45 38
Trinidad and Tobago 47 16 58 55 13 80 39
Turkey 66 37 45 85 46 49 42
U.S.A. 40 91 62 46 26 68 76
Uganda 24 52 25
Ukraine 86 14 27
Uruguay 61 36 38 100 26 53 74
Venezuela 81 12 73 76 16 100 17
Vietnam 70 20 40 30 57 35 31
Zambia 30 42 38
Zimbabwe 15 28 21
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A.2 Case Study 2: Clustering the Hofstede Model
A.2.1 Hofstede’s Four Dimensional Model

Table A.2: Used dataset in case study 2 - Four dimensions of the Hofstede model

country pdi uai idv mas
Africa East 64 52 27 41
Africa West 77 54 20 46
Arab countries 80 68 38 53
Argentina 49 86 46 56
Australia 36 51 90 61
Austria 11 70 55 79
Belgium 65 94 75 54
Brazil 69 76 38 49
Canada 39 48 80 52
Chile 63 86 23 28
Colombia 67 80 13 64
Costa Rica 35 86 15 21
Denmark 18 23 74 16
Ecuador 78 67 8 63
El Salvador 66 94 19 40
Finland 33 59 63 26
France 68 86 71 43
Germany 35 65 67 66
Great Britain 35 35 89 66
Greece 60 112 35 57
Guatemala 95 101 6 37
Hong Kong 68 29 25 57
India 77 40 48 56
Indonesia 78 48 14 46
Iran 58 59 41 43
Ireland 28 35 70 68
Israel 13 81 54 47
Italy 50 75 76 70
Jamaica 45 13 39 68
Japan 54 92 46 95
Korea South 60 85 18 39
Malaysia 104 36 26 50
Mexico 81 82 30 69
Netherlands 38 53 80 14
New Zealand 22 49 79 58
Norway 31 50 69 8

Continued on next page
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Table A.2 – continued from previous page
country pdi uai idv mas

Pakistan 55 70 14 50
Panama 95 86 11 44
Peru 64 87 16 42
Philippines 94 44 32 64
Portugal 63 104 27 31
Singapore 74 8 20 48
South Africa white 49 49 65 63
Spain 57 86 51 42
Sweden 31 29 71 5
Switzerland 34 58 68 70
Taiwan 58 69 17 45
Thailand 64 64 20 34
Turkey 66 85 37 45
U.S.A. 40 46 91 62
Uruguay 61 100 36 38
Venezuela 81 76 12 73
Yugoslavia 76 88 27 21

A.2.2 Hofstede’s Six Dimensional Model

Table A.3: Used dataset in case study 2 - Hofstede’s 6 dimensions

country pdi idv mas uai ltowvs ivr
Africa East 64 27 41 52 32 40
Africa West 77 20 46 54 9 78
Albania 61 15
Algeria 26 32
Andorra 65
Arab countries 80 38 53 68 23 34
Argentina 49 46 56 86 20 62
Armenia 61
Australia 38 90 61 51 21 71
Austria 11 55 79 70 60 63
Azerbaijan 61 22
Bangladesh 80 20 55 60 47 20
Belarus 81 15
Belgium 65 75 54 94 82 57
Belgium French 67 72 60 93
Belgium Netherl 61 78 43 97
Bosnia 70 44

Continued on next page
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Table A.3 – continued from previous page
country pdi idv mas uai ltowvs ivr

Brazil 69 38 49 76 44 59
Bulgaria 70 30 40 85 69 16
Burkina Faso 27 18
Canada 39 80 52 48 36 68
Canada French 54 73 45 60
Chile 63 23 28 86 31 68
China 80 20 66 30 87 24
Colombia 67 13 64 80 13 83
Costa Rica 35 15 21 86
Croatia 73 33 40 80 58 33
Cyprus 70
Czech Rep 57 58 57 74 70 29
Denmark 18 74 16 23 35 70
Dominican Rep 13 54
Ecuador 78 8 63 67
Egypt 7 4
Ethiopia 46
El Salvador 66 19 40 94 20 89
Estonia 40 60 30 60 82 16
Finland 33 63 26 59 38 57
France 68 71 43 86 63 48
Georgia 38 32
Germany 35 67 66 65 83 40
Germany East 78 34
Ghana 4 72
Great Britain 35 89 66 35 51 69
Greece 60 35 57 112 45 50
Guatemala 95 6 37 101
Hong Kong 68 25 57 29 61 17
Hungary 46 80 88 82 58 31
Iceland 28 67
India 77 48 56 40 51 26
Indonesia 78 14 46 48 62 38
Iran 58 41 43 59 14 40
Iraq 25 17
Ireland 28 70 68 35 24 65
Israel 13 54 47 81 38
Italy 50 76 70 75 61 30
Jamaica 45 39 68 13
Japan 54 46 95 92 88 42

Continued on next page
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Table A.3 – continued from previous page
country pdi idv mas uai ltowvs ivr

Jordan 16 43
Korea South 60 18 39 85 100 29
Kyrgyz Rep 66 39
Latvia 44 70 9 63 69 13
Lithuania 42 60 19 65 82 16
Luxembourg 40 60 50 70 64 56
Macedonia Rep 62 35
Malaysia 104 26 50 36 41 57
Mali 20 43
Malta 56 59 47 96 47 66
Mexico 81 30 69 82 24 97
Moldova 71 19
Montenegro 75 20
Morocco 70 46 53 68 14 25
Netherlands 38 80 14 53 67 68
New Zealand 22 79 58 49 33 75
Nigeria 13 84
Norway 31 69 8 50 35 55
Pakistan 55 14 50 70 50 0
Panama 95 11 44 86
Peru 64 16 42 87 25 46
Philippines 94 32 64 44 27 42
Poland 68 60 64 93 38 29
Portugal 63 27 31 104 28 33
Puerto Rico 0 90
Romania 90 30 42 90 52 20
Russia 93 39 36 95 81 20
Rwanda 18 37
Saudi Arabia 36 52
Serbia 86 25 43 92 52 28
Singapore 74 20 48 8 72 46
Slovak Rep 104 52 110 51 77 28
Slovenia 71 27 19 88 49 48
South Africa 34 63
South Africa white 49 65 63 49
Spain 57 51 42 86 48 44
Suriname 85 47 37 92
Sweden 31 71 5 29 53 78
Switzerland 34 68 70 58 74 66
Switzerland French 70 64 58 70
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A.2. Case Study 2: Clustering the Hofstede Model

Table A.3 – continued from previous page
country pdi idv mas uai ltowvs ivr

Switzerland German 26 69 72 56
Taiwan 58 17 45 69 93 49
Tanzania 34 38
Thailand 64 20 34 64 32 45
Trinidad and Tobago 47 16 58 55 13 80
Turkey 66 37 45 85 46 49
U.S.A. 40 91 62 46 26 68
Uganda 24 52
Ukraine 86 14
Uruguay 61 36 38 100 26 53
Venezuela 81 12 73 76 16 100
Vietnam 70 20 40 30 57 35
Zambia 30 42
Zimbabwe 15 28
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A. Datasets Used in the Case Studies

A.3 Case Study 3: Hofstede Model and Covid-19

Table A.4: Used dataset in case study 3 - Hofstede’s 6 + Covid-19 dimensions

country pdi idv mas uai ltowvs ivr mrate death_per100
Australia 38 90 61 51 21 71 3.2 3.64
Austria 11 55 79 70 60 63 1.9 87.07
Belgium 65 75 54 94 82 57 3 184.43
Brazil 69 38 49 76 44 59 2.4 106.91
Canada 39 80 52 48 36 68 2.6 53.77
Chile 63 23 28 86 31 68 2.5 97.92
China 80 20 66 30 87 24 4.8 0.35
Colombia 67 13 64 80 13 83 2.6 108.06
Costa Rica 35 15 21 86 1.3 52.09
Croatia 73 33 40 80 58 33 2.2 122.22
Czech Rep 57 58 57 74 70 29 1.7 152.56
Denmark 18 74 16 23 35 70 1.1 36.34
Estonia 40 60 30 60 82 16 0.9 31.12
Finland 33 63 26 59 38 57 1.5 12.16
France 68 71 43 86 63 48 2.3 113.46
Germany 35 67 66 65 83 40 2.6 68.86
Greece 60 35 57 100 45 50 3.7 53.87
Hungary 46 80 88 82 58 31 3.4 127.58
Iceland 28 67 0.5 8.2
India 77 48 56 40 51 26 1.4 11.41
Indonesia 78 14 46 48 62 38 2.8 11.11
Iran 58 41 43 59 14 40 4.1 70.77
Ireland 28 70 68 35 24 65 1.7 67.83
Israel 13 54 47 81 38 0.7 53.33
Italy 50 76 70 75 61 30 3.5 146.08
Japan 54 46 95 92 88 42 1.5 4.5
Latvia 44 70 9 63 69 13 1.8 61.25
Lithuania 42 60 19 65 82 16 1.5 99.91
Luxembourg 40 60 50 70 64 56 1.1 94.94
Malaysia 100 26 50 36 41 57 0.4 2.37
Mexico 81 30 69 82 24 97 8.5 125.27
Netherlands 38 80 14 53 67 68 1.4 81.65
New Zealand 22 79 58 49 33 75 1.1 0.51
Norway 31 69 8 50 35 55 0.9 10.61
Poland 68 60 64 93 38 29 2.5 97.64
Portugal 63 27 31 99 28 33 1.7 118.45
Romania 90 30 42 90 52 20 2.5 93.79

Continued on next page
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A.3. Case Study 3: Hofstede Model and Covid-19

Table A.4 – continued from previous page
country pdi idv mas uai ltowvs ivr mrate death_per100

Russia 93 39 36 95 81 20 1.9 49.53
Singapore 74 20 48 8 72 46 0 0.51
Slovak Rep 100 52 100 51 77 28 1.8 83.81
Slovenia 71 27 19 88 49 48 2.1 168.81
South Africa 34 63 3 76.07
South Korea 60 18 39 85 100 29 1.8 2.75
Spain 57 51 42 86 48 44 2.1 124.82
Sweden 31 71 5 29 53 78 2 113.83
Switzerland 34 68 70 58 74 66 1.8 110.02
Turkey 66 37 45 85 46 49 1 31.42
U.S.A. 40 91 62 46 26 68 1.7 134.32

A.3.1 Case Study 3: Population of countries

Table A.5: Used dataset in case study 3 - Population of countries

country population
Australia 25499884
Austria 9006398
Belgium 11589623
Brazil 212559417
Canada 37742154
Chile 19116201
China 1439323776
Colombia 50882891
Costa Rica 5094118
Croatia 4105267
Czech Rep 10708981
Denmark 5792202
Estonia 1326535
Finland 5540720
France 65273511
Germany 83783942
Greece 10423054
Hungary 9660351
Iceland 341243
India 1380004385
Indonesia 273523615
Iran 83992949
Ireland 4937786
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A. Datasets Used in the Case Studies

Table A.5 – continued from previous page
country population

Israel 8655535
Italy 60461826
Japan 126476461
Latvia 1886198
Lithuania 2722289
Luxembourg 625978
Malaysia 32365999
Mexico 128932753
Netherlands 17134872
New Zealand 4822233
Norway 5421241
Poland 37846611
Portugal 10196709
Romania 19237691
Russia 145934462
Singapore 5850342
Slovak Rep 5459642
Slovenia 2078938
South Africa 59308690
South Korea 51269185
Spain 46754778
Sweden 10099265
Switzerland 8654622
Turkey 84339067
U.S.A. 331002651
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