
You can listen to our results and generate your own at: github.com/eibens/thesis-2021

sparsity: remove measures 

monotony: repeat measures within voice 

diversity: vary structure between voices 

Large-Scale Structure

Once global parameters have been set, 
the system generates an overall 
structure for the music. Below we show 
several examples of abstract parameters 
we use in our demo. Each line is a 
possible voice-structure;  each colored 
bar within represents a measure.

Small-Scale Motifs

Once an abstract structure exists, the 
system fills each measure with actual 
notes. We defined four types of voices, 
each with their own sub-grammar that 
generates short, random motifs over a 
given time-span. Each measure below is 
one possible result out of hundreds.

2x lead: main melodies, violin  / flute

4x drum: beats, various percussion 

1x pad: accompaniment, piano 

1x bass: accompaniment, contrabass 

We implemented our system as a TypeScript library. The screenshot below shows our 
browser-based playback environment. To the left the user can change parameters on 
the starting entity and thereby influence the outcome. The visualization on the right 
side shows notes as colored bars. Each color corresponds to one of the voice types.

Runs in Your Web-Browser

We demonstrated the practical application of our theoretic method by constructing a 
polyphonic music generator. It generates a single chord progression, a number of 
parallel voice structures, and finally random arrangements of notes that are 
synchronized to the chord progression. 

Evaluation

Polyphonic Music

time-span: arbitrary temporal structures

span: sequence with varying durations

none: sequence with constant durations 

Time Dimension

Similar systems either use no parametric 
encoding of time, or only note duration, 
leaving the absolute offset implicit and 
consequently limiting the possible 
structures. We associate each entity with 
two temporal parameters: time is the 
absolute offset of the note on the 
timeline, and span is its duration.   

simple melodies
rests are explicit

rhythmic melodies
rests are explicit

chords, voices
rests are implicit

Temporal Operators

Associating each note with a complete 
time interval means that the composer 
has to specify at least twice as many 
temporal parameters than in a purely 
sequential model. We define convenient 
operators that simplify working with 
interval arrangements, for example 
arranging them sequentially.

split(parts) 

arranges parts sequentially

query(parts)

finds parts that overlap

trim(parts)

removes everything hat does not overlap

Lukas Eibensteiner
Visual Computing

Polyphonic Music Composition 
with Grammars

TU Wien Informatics
Institute of Visual Computing and Human-Centered Technology

Research Unit of Computer Graphics
Supervisor: Univ.Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer

Assistance: Mag. Martin Ilčík
Contact: l.eibensteiner@gmail.com

�� pseudo-code example
export grammar(
  start ��� split(
    <chord:7 note:note+4>
    chord:M
  )
  chord=7 ��� choice(
    notes(4)
    split(notes(4))
  )
  chord=M ��� notes(3)
  play ��� gain:rand(0.5, 1)
) 
fun notes: n �� loop(n, i �� 
  <play:piano note:note+2*i>
)

Grammars in natural languages tell us how words from a vocabulary can be arranged 
into sentences. This principle can be applied to music, where the grammar tells us 
how notes can be arranged into melodies, rhythms, chord progressions, or complex 
polyphonic compositions. The example below demonstrates this for a simple melody. 

Composition with Grammars
Prior works on grammars for composition focused on the generation of monophonic 
structures, such as melodies, rhythms, and chord progressions. Polyphony, where 
notes can overlap on the timeline, was limited. We were able to integrate polyphony 
deeply into the generation process and address the following problems: 

representation: How can we generate polyphonic structures with a grammar?

expressiveness: How can a user describe common musical patterns? 

synchronization: How can we make multiple voices fit together?

G B D F C E G

G7 CM

melody

Music theorists have invented grammars to model different styles of music, such as 
jazz, blues, nursery rhymes, and northern Indian drum music. There is probably not 
one grammar that rules them all. We defined a programming language that can be 
used to build and evaluate new musical grammars. 

Music Programming

modular: users can define reusable 
sub-grammars and composable 
functional modules, e.g. notes

attributed: musical objects are sets 
of key-value pairs, e.g. chord:7

probabilistic: randomness can be 
used to cause variation in the output, 
e.g. rand, choice

parametric: attribute values can be used 
in logical and arithmetic expressions, 
e.g. chord=M, note+4

nested: sentences are first-class citizens 
and can be stored in attributes or passed 
to functions, e.g. split(notes(4)) 

While we use the term polyphony in a broad sense to mean any musical structure with 
overlapping notes, a more specific meaning is music with multiple leading voices. The 
third problem is therefore particularly interesting. We solve synchronization by
(1) generating a shared context, for example a chord progression, (2) branching into 
individual voices, and (3) using the query operator to read the common context.

melody G7 CM A B C D E F G 

melody

melody ��� G7 CM
G7 ��� G B D F
CM ��� C E G

One of the placeholders is our starting point.

A vocabulary contains placeholders and terminals.

Each rule replaces a placeholder with a sequence.


