
Temporal-Scope Grammars
for Polyphonic Music Generation

Lukas Eibensteiner
TU Wien

Vienna, Austria
l.eibensteiner@gmail.com

Martin Ilčík
TU Wien

Vienna, Austria
ilcik@cg.tuwien.ac.at

Michael Wimmer
TU Wien

Vienna, Austria
wimmer@cg.tuwien.ac.at

Abstract
We present temporal-scope grammars for automatic com-
position of polyphonic music. In the context of this work,
polyphony can refer to any arrangement of musical entities
(notes, chords, measures, etc.) that is not purely sequential
in the time dimension. Given that the natural output of a
grammar is a sequence, the generation of sequential struc-
tures, such as melodies, harmonic progressions, and rhyth-
mic patterns, follows intuitively. By contrast, we associate
each musical entity with an independent temporal scope,
allowing the representation of arbitrary note arrangements
on every level of the grammar. With overlapping entities
we can model chords, drum patterns, and parallel voices –
polyphony on small and large scales. We further propose the
propagation of sub-grammar results through the derivation
tree for synchronizing independently generated voices. For
example, we can synchronize the notes of a melody and bass
line by reading from a shared harmonic progression.

CCS Concepts: • Applied computing→ Sound and mu-
sic computing; • Theory of computation → Grammars
and context-free languages; • Software and its engineering
→ Domain specific languages; Functional languages.

Keywords: algorithmic composition, music, domain specific
language

ACM Reference Format:
Lukas Eibensteiner,Martin Ilčík, andMichaelWimmer. 2021. Temporal-
Scope Grammars for Polyphonic Music Generation. In Proceedings
of the 9th ACM SIGPLAN International Workshop on Functional
Art, Music, Modelling, and Design (FARM ’21), August 27, 2021, Vir-
tual Event, Republic of Korea. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3471872.3472971

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
FARM ’21, August 27, 2021, Virtual Event, Republic of Korea
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8613-5/21/08. . . $15.00
https://doi.org/10.1145/3471872.3472971

1 Introduction
Automation of musical composition certainly has interesting
implications. We can see its successful application in com-
puter games, where motifs, themes, and sound effects are
triggered by player actions. Similar systems could be built for
video platforms, which could offer generative soundtracks
that adapt to visuals, dialog, cuts, and cameramovements.We
might someday have procedural radio that reacts to the lis-
tener’s mood and plays variations of their favorite melodies.
Today, countless musicians and composers rely on automa-
tion in their workflow. Grammars are one of the tools in the
algorithmic and computer-aided composition toolbox.
When we use grammars to analyze music, we break it

into its smallest components, then group them into notes,
bars, phrases, themes, or whatever higher-level patterns we
find. The premise of using grammars generatively is that we
can reverse this process of reduction, beginning at an ab-
stract representation and replacing the abstractions until we
get something concrete. For music this could mean starting
with a particular style or song structure, successively adding
themes, phrases, bars, notes, and finally transforming the
notes into an audible signal.

The application of formal grammar theory for music anal-
ysis and composition has a long history. The use of abstrac-
tions in musical notation definitely predates the first for-
malization of grammar theory by Chomsky [2]. Schenker’s
work [26] is an early example of a generative approach,
where music is reduced to the Ursatz, a hidden structure
beyond the concrete musical surface. Another popular work
is A Generative Theory of Tonal Music by Lerdahl and Jack-
endoff [10], who model music as four hierarchical aspects
governed by various types of rules.
Since the output of a grammar is a sequence, modelling

sequential structures such as melodies, harmonic progres-
sions, or rhythms is very intuitive. Yet, within a sequential
model of time the representation of polyphonic aspects such
as chords, parallel voices, or exotic sound effects is difficult.
Existing solutions for generating polyphony with grammars
require context-sensitivity in the rules or sentence struc-
ture [11, 32] or external processing steps, where sequential
harmonic progressions are expanded into chord notes and
voices [20].

In this work we build a perspective where polyphony is
the norm and tightly integrated into the grammar itself:

https://doi.org/10.1145/3471872.3472971
https://doi.org/10.1145/3471872.3472971

FARM ’21, August 27, 2021, Virtual Event, Republic of Korea Lukas Eibensteiner, Martin Ilčík, and Michael Wimmer

• We define temporal-scope grammars, where each musi-
cal entity is associated with an explicit time-span that
can be independently divided, stretched, and moved.

• We propose a time-based query mechanism, which
gives entities in different parts of the derivation access
to the same local context. This allows us to synchro-
nize any number of parallel voices to a set of abstract
musical textures.

• Finally, for defining and evaluating temporal-scope
grammars, we developed a functional domain-specific
language (DSL) in form of a TypeScript library.

2 Related Work
Within the context of algorithmic composition research,
grammars are just one model for the composition process.
Consider the survey by Nierhaus [14] and the earlier survey
by Papadopoulos and Wiggins [16], who both use a flat clas-
sification system, where generative grammars, evolutionary
methods, and machine learning are the common clusters.
Fernández and Vico [4] propose a detailed hierarchical tax-
onomy of methods and provide a very useful visualization.

Grammars are a sub-category of rule-based systems, where
domain knowledge is encoded explicitly as a system of for-
mal rules. Another sub-category are constraint-based meth-
ods, where the composer defines a space of possible pieces
and uses logical constraints for selecting candidate solutions.
Consider the survey by Anders and Miranda [1]. The def-
inition of the solution space is of particular interest to us.
For example, PWConstraints by Rueda et al. [25] represents
polyphonic music as a set of parallel voices, where each
voice is a list of harmonies represented by sets of notes. The
music representation framework MusES by Pachet et al. [15]
uses a point in time and a duration for modelling temporal
structures. This representation has been used for constraint
programming by Roy and Pachet [24] and also as the basis
of this work.

One of our example generators uses basic constraint pro-
gramming for selecting rhythm andmelody fragments. Apart
from that, our system is based on generative grammars. It
uses a set of context-free replacement rules to develop an
abstract symbolic structure into concrete and detailed out-
put. We rely on the definition of a grammar hierarchy by
Chomsky [2].
Holtzman [7, 8] defined the Generative Grammar Defi-

nition Language (GDDL), which provides interesting meta-
level features, such as the selection of alternatives based on
prior rule applications. McCormack [11] proposes a musical
grammar system with stochastic rule selection, numeric pa-
rameters, and nested grammars. While the generations are
primarily sequential, limited polyphony can be achieved by
marking multiple notes as a chord.

Steedman [29] defined a context-sensitive grammar for
generating chord sequences for 12-bar Blues. The replace-
ment entities divide the time interval of the original entity
into equal parts, guaranteeing a monophonic and bounded
temporal organization. Steedman later revised the grammar,
making it context-free [28]. Rohrmeier [22, 23] derived har-
monic substitution rules from various works on harmonic
theory. The grammar is context-free, except for a special
rule for pivot chords, which was later also freed of context-
sensitivity. De Haas et al. [3] remodelled Rohrmeier’s earlier
grammar and applied it to automatic parsing of jazz pieces.
Gilbert and Conklin [5] defined probabilistic context-free

grammars (PCFG) for melody generation, which use pitch
intervals as non-terminals. Giraud and Staworko [6] used
context-free parametric grammars to model Bach inventions.
The ability to use sequences of notes as parameters is a
feature we also implemented for the system presented in
this paper. Tanaka and Furukawa [32] model music as a
list of voices, where each voice is a list of notes, and notes
are replaced in all voices at once. The number of voices is
consequently limited on the global level. Rules in this system
are not intended to be designed by hand.

Quick and Hudak used a relative time parameter for split-
ting entities in their temporal generative graph grammars
(TGGG) [20] and later probabilistic temporal graph gram-
mars (PTGG) [19]. PTGGs are used in the composition tool
Kulitta [17, 18] to generate harmonic progressions, based on
production probabilities that were learned from existing mu-
sic. PTGGs do not generate polyphonic structures, however,
Kulitta expands their output into voices in a subsequent
series of processing steps. Melkonian [12] later extended
PTGGs to melody and rhythm generation and generalized
the harmony generation using a Schenkerian approach. Its
capabilities were demonstrated by encoding various gram-
mars from musicologist literature, including the context-free
variant of the Steedman grammar [28].

Finally, split grammars from the computer graphics do-
main, proposed by Wonka et al. [33] and preceded by the
work on shape and set grammars by Stiny [30, 31], were
a significant inspiration for this work. In graphics, where
one usually deals with two or more spatial dimensions, an
explicit scope is a prerequisite. The initial split grammar
later evolved into the popular CGA Shape grammar [13] and
its successor CGA++ [27]. The latter introduces shapes as
first-class citizens, allowing operations on generations of
sub-grammars, which is a feature we also implemented.

3 Theory
The goal of this work is not to develop a particular program
that generates music, but rather to design a theoretic frame-
work that facilitates the development of such programs. We
construct this framework with a series of generalizations
starting from context-free grammars, including the addition

Temporal-Scope Grammars for Polyphonic Music Generation FARM ’21, August 27, 2021, Virtual Event, Republic of Korea

of abstract features described in this section (i.e., parameters,
attributes, nesting, and non-deterministic functions) as well
as the domain-specific musical models described in Section 4.

3.1 Context-Free Grammars
Context-free grammars have been used in various ways for
procedural generation, arguably because they strike a good
balance between power and simplicity. A general discussion
about different grammar types for music generation can be
found in the early survey by Roads and Wieneke [21]. We
will assume the use of context-free grammars throughout
this paper.

A context-free grammar 𝐺 = (𝑉 , 𝑃, 𝑆) consists of a vocab-
ulary of symbols 𝑉 , a set of rules 𝑃 , and a dedicated starting
symbol 𝑆 ∈ 𝑉 . A rule in 𝑃 can be written as 𝑙 : LHS −→ RHS,
where the left-hand side (LHS) is an element of 𝑉 and the
right-hand side (RHS) is a replacement string in𝑉 ∗, which is
the set of arbitrary-length sequences over 𝑉 . 𝑙 is an optional
label that we use to identify the rule. Consider the following
example:

𝑉 = {cadence,CM,G7 , 𝐴, 𝐵,𝐶, 𝐷, 𝐸, 𝐹,𝐺}
𝑃 = {𝑝1, 𝑝2, 𝑝3}
𝑆 = cadence

𝑝1 : cadence −→ (G7 ,CM)
𝑝2 : G7 −→ (𝐺, 𝐵, 𝐷, 𝐹)
𝑝3 : CM −→ (𝐶, 𝐸,𝐺)

We can interpret 𝑝1 musically as the fact that a cadence can
be realized by a G seventh chord followed by a C major chord.
Similarly, 𝑝2 (𝑝3) could mean that a G seventh chord (C major
chord) can be realized by the notes G, B, D, and F (C, E, and
G). In formal grammar theory we commonly differentiate
between terminal symbols, which only appear on the RHS,
and non-terminals, that may appear in the LHS and thus
are expected to be replaced by other symbols. However, this
distinction is not as important for context-free grammars as
it is for other types in the Chomsky hierarchy and therefore
we ignore it.

The one-to-many relationship between the elements of
𝑉 expressed by each rule is characteristic for context-free
grammars. If we trace the relationships starting at 𝑆 we
end up with a derivation tree, like the one shown in Figure 1,
where 𝑆 is the root, the internal nodes are non-terminals, and
the leaves are terminals. The sequence of terminals resulting
from the derivation is also called a sentence of the formal
language defined by the grammar.

Consider the sentence generated by our example grammar,
which is (𝐺, 𝐵, 𝐷, 𝐹,𝐶, 𝐸,𝐺). There is no indication that these
seven symbols represent two chords. For now,wewill assume
this knowledge is implicit, as the explicit handling of the time

cadence

G7

G B D F

CM

C E G

Figure 1. Derivation tree of a context-free grammar

dimension is central to our approach and will be discussed
Section 4.

3.2 Parametric Grammars
So far, our grammar generates only a single sequence of
seven notes. If we wanted to generate a cadence in another
key, we would have to add missing semitones to the vocab-
ulary and transposed copies of {𝑝1, 𝑝2, 𝑝3} to the rule set.
There are two underlying issues: (1) the vocabulary consists
of indivisible, nominal entities, and (2) the rules can only
describe replacement with constant sequences of symbols.
To address these, we first generalize the vocabulary to

an 𝑛-dimensional space 𝑉 = 𝑋1 × . . . × 𝑋𝑛 , which allows us
to normalize the information encoded in the symbols. For
example, the two-letter chord symbols G7 and CM encode
the root note of the chord (𝐺 or𝐶) and the type of the chord
(7 or𝑀). This implies a representation of a chord as a tuple.
We generalize this to the remaining symbols by using the
letter 𝑠 for the starting symbol and 𝑡 for the terminals:

𝑉 = 𝑋1 × 𝑋2

𝑋1 = {A, B♭, B,C,C♯,D,D♯, E, F , F♯,G,G♯}
𝑋2 = {7, 𝑀, 𝑠, 𝑡}

Since the term symbol implies some degree of indivisibility,
we will use the term entity from here on when referring to
elements of the multi-dimensional vocabulary.

Second, we allow replacement sequences to be defined in
terms of the input entity, i.e., the RHS can be any function
𝑉 → 𝑉 ∗ from an entity to a sequence of entities. The LHS
can be any binary function over 𝑉 that is true when the
input entity matches, and false otherwise. Both LHS and
RHS accept a single entity as input, and we will assume an
implicit binding of the variables (𝑥1, . . . , 𝑥𝑛) ∈ 𝑉 on either
side of the arrow.
We can now redefine the rules {𝑝1, 𝑝2, 𝑝3} using the two-

dimensional vocabulary with the implicitly bound parame-
ters 𝑥1 and 𝑥2. Instead of explicitly specifying notes, we calcu-
late the replacement based on the input parameters. Since all
notes are now relative, we may pick any tuple (𝑥1 ∈ 𝑋1, 𝑠) as
the starting entity and generate a cadence in the correspond-
ing key. Figure 2 shows the derivation tree for 𝑆 = (𝐺, 𝑠).

FARM ’21, August 27, 2021, Virtual Event, Republic of Korea Lukas Eibensteiner, Martin Ilčík, and Michael Wimmer

(𝐺, 𝑠)

(𝐷, 7)

(𝐷, 𝑡) (𝐹 ♯, 𝑡) (𝐴, 𝑡) (𝐶, 𝑡)

(𝐺,𝑀)

(𝐺, 𝑡) (𝐵, 𝑡) (𝐷, 𝑡)

Figure 2. Derivation tree of a parametric grammar.

𝑝1 : 𝑥2 = 𝑠 −→ ((𝑥1 + 7, 7), (𝑥1, 𝑀))
𝑝2 : 𝑥2 = 7 −→ ((𝑥1, 𝑡), (𝑥1 + 4, 𝑡), (𝑥1 + 7, 𝑡), (𝑥1 + 10, 𝑡))
𝑝3 : 𝑥2 = 𝑀 −→ ((𝑥1, 𝑡), (𝑥1 + 4, 𝑡), (𝑥1 + 7, 𝑡))

𝑋1 represents the notes of the chromatic scale, and we
can move between scale degrees by adding or subtracting
numeric intervals. Concretely, we can treat each pitch class
as equivalent to its zero-based index in the sequence (𝐴, 𝐵♭,
𝐵, 𝐶 , 𝐶♯, 𝐷 ,𝐷♯, 𝐸, 𝐹 , 𝐹 ♯, 𝐺 , 𝐺♯) and define a cyclic addition
operator. For example, 𝐶 + 7 = 𝐺 and 𝐺 + 4 = 𝐵.

+ : 𝑋1 × Z→ 𝑋1 : (𝑥1, 𝑧) ↦→ (𝑥1 + 𝑧) mod 12

Compared to simple symbolic replacement, parametric
replacement reduces the number of rules needed to express
more complex languages. Yet, they suffer from another kind
of scaling issue. In practice, the vocabulary will have more
dimensions, including parameters for meter, scales, loudness,
playback, and expressing custom semantics. An explicit tuple
representation for entities becomes increasingly unwieldy.

3.2.1 Attributes. Attributes solve scaling issues that arise
from higher-dimensional vocabularies. Their invention has
been credited to Peter Wegner by Knuth [9]. The idea is to
gradually change entities over the course of the derivation,
rather than explicitly replacing them at every step. We ac-
complish this with a setter function seti : 𝑋𝑖 → (𝑉 → 𝑉)
which sets the 𝑖th element of the entity tuple, but keeps the
other entries.

For example, instead of (𝑥1, 𝑡) in rules 𝑝2 and 𝑝3 we could
write set2 (t) to change 𝑥2 but keep 𝑥1. This is hardly an im-
provement in two dimensions, but in 𝑛 dimensions this will
eliminate 𝑛 − 1 redundant terms. We can further use classic
function composition to feed the output of one setter to the
next, which again allows us to set any subset of parameters.

With a large number of dimensions, numeric tuple indices
will increasingly obfuscate the semantics of our rules. We
can instead substitute the numbers with explicit attribute
names. For example, we can address 𝑥1 with the name note
and 𝑥2 with type. Consistent use of setters instead of the

tuple representation allows us to eliminate any dependence
on the order of the dimensions in 𝑉 .

The formalism is now parametric and supports any num-
ber of dimensions. Yet, our grammar is still a flat list of rules.
With a growing number of rules it becomes increasingly
difficult to orchestrate their application, guaranteeing that
they are applied in a certain order. We will solve this next by
splitting our grammar into multiple nested sub-grammars.

3.3 Nested Grammars
Context-free derivation can be understood as a mapping
from a starting entity in 𝑉 to a sequence of entities in 𝑉 ∗,
which is exactly the definition we use for the RHS. Conse-
quently, we can use grammars as the RHS of a rule, which
allows us to divide complex grammars into smaller, main-
tainable sub-grammars. Grammars with sub-grammars are
also known as hierarchical grammars and have been used
for music generation by McCormack [11].

The decomposition of context-free grammars follows from
the properties of the derivation tree, where each subtree can
be seen as the result of a sub-grammar. Still, more interesting
to us is grammar composition, where we combine multiple
grammars into a super-grammar using higher-order func-
tions. Context-free grammars are just one possible strategy,
albeit it is the most general one in our framework.

We further define a square bracket notation [𝑓1, . . . , 𝑓𝑛] to
concatenate the results of 𝑛 RHS’s into a single sentence. An
LHS can be used to ignore individual operands. For example,
if the LHS 𝑔 does not match the input entity, [𝑓1, 𝑔 −→ 𝑓2, 𝑓3]
is equivalent to [𝑓1, 𝑓3]. Note that concatenation does not
necessarily affect the temporal arrangement of the entities;
it simply combines the sentences for further processing.
Another strategy is grammar chaining, where the termi-

nals of a grammar are used as starting entities for another
grammar. We use an angle bracket notation ⟨𝑓1, . . . , 𝑓𝑛⟩ to in-
dicate that the input entity should be passed to 𝑓1, the result-
ing entities to 𝑓2, and so forth. The base case ⟨⟩ is equivalent
to an identity mapping of the input entity. An LHS can be
used to exit the chain early. For example, if the LHS 𝑔 does
not match any of the results of 𝑓1, ⟨𝑓1, 𝑔 −→ 𝑓2, 𝑓3⟩ is equiv-
alent to ⟨𝑓1⟩ = 𝑓1. If we only want to skip 𝑓2, we can wrap
it in another pair of angle brackets to get ⟨𝑓1, ⟨𝑔 −→ 𝑓2⟩, 𝑓3⟩,
which would result in ⟨𝑓1, ⟨⟩, 𝑓3⟩ = ⟨𝑓1, 𝑓3⟩.

Treating grammars and sentences as first-class citizens
opens up interesting possibilities. Consider Giraud and Sta-
worko [6], who pass motifs as parameters, and Schwarz and
Müller [27], who introduced this to shape grammars. For
example, one can define a parameter with a value space 𝑉 ∗

and propagate grammar results through the derivation tree
by using setx𝑘 , which stores the result of 𝑓 in the attribute 𝑘 .

setx𝑘 (𝑓) = (𝑣 ∈ 𝑉) ↦→ (set𝑘 (𝑓 (𝑣))) (𝑣)

Temporal-Scope Grammars for Polyphonic Music Generation FARM ’21, August 27, 2021, Virtual Event, Republic of Korea

The example below defines a super-grammar piece, which
is composed of three sub-grammars. We store a random
result of the progression grammar inside the chords attribute
and then pass the entity to the pad and bass grammars. We
assume that progression generates some sequence of entities
with harmonic information, while pad and bass generate
notes based on the entities in chords.

piece : ⟨setxchords (progression), [pad, bass]⟩

Instead of propagating sub-grammar results, one could
also propagate the sub-grammar itself using the normal setk
function. This is useful for grammars where users can inject
custom functionality.
We can now use parameters, attributes, and functional

composition to develop complex grammars, yet their results
will not be very surprising. Variation is the missing ingre-
dient that elevates the formalism from a complex tool for
music notation to a powerful tool for automatic composition.

3.4 Non-Deterministic Grammars
Some classic composers published musical games that allow
the composition of new pieces by randomly selecting from a
framework of predefined bars, most notably Mozart with his
minuet generator [34]. The player of the game needed no
musical knowledge, only a pair of dice. We will use a similar
approach, where the grammar is the framework, and the
replacement decisions are delegated to a non-deterministic
selection process.

We differentiate between two types of variation. Structural
variation directly affects the structure of the derivation tree
and occurs when there are multiple rules that can replace an
entity. For example, our familiar rule 𝑝1 and the new rule 𝑝1′
both match an entity with type = s. The derivation algorithm
randomly picks one of them.

𝑝1 : type = 𝑠 −→ ((note + 7 , 7), (note,M))
𝑝1′ : type = 𝑠 −→ ((note,M), (note + 5,M))

To achieve this effect within a single rule, we can define a
function choice that randomly returns one of its arguments.
For example, the two rules above could be expressed with a
single LHS and a choice with two options on the RHS.

type = s −→ choice(
((note + 7 , 7), (note,M)),
((note,M), (note + 5,M))

)

Parametric variation directly affects the values of parame-
ters and allows non-discrete randomization. A simple mech-
anism is a non-deterministic function rand with a uniform
distribution over [0, 1]. For example, to simulate varying
loudness of notes in a real-life performance, we can random-
ize the value of a numeric gain attribute:

type = t ∧ gain = 0 −→ setgain (rand ())

We can also use random numbers for structural variation.
For example, the pr function below applies an RHS 𝑓 with
probability 𝑝 ∈ [0, 1]:

𝑝𝑟 : (𝑝, 𝑓) ↦→ ⟨rand () ≤ 𝑝 −→ 𝑓 ⟩

The random numbers are sampled from a pseudo-random
number generator (PRNG) with an internal counter. We prop-
agate the PRNG downwards in the derivation tree as a pa-
rameter, which means per default the subtrees are all desyn-
chronized from each other. If we want to synchronize two
subtrees, we can initialize their PRNGs with the same value,
which guarantees that all random processes within both
subtrees have the same outcome.
As another option, the result of a non-deterministic sub-

grammar can be calculated before we branch into the sub-
trees, as we do with the 𝑐ℎ𝑜𝑟𝑑𝑠 attribute in the example
in Section 3.3. Either method works by providing shared
context to the subtrees. This shared context is especially im-
portant for polyphonic composition, as we must guarantee
that multiple voices fit together.We have now established the
theoretic foundation and will continue with the discussion
of our polyphonic composition model.

4 Temporal-Scope Grammars
Polyphony in the strictest sense denotes music with multiple
independent voices played in parallel. We use it in a broader
sense for music that is not monophonic (i.e., consisting only
of a single voice). This means that notes can overlap, like
for example the melody, chords, and bass voice in Figure 3.
The score in Figure 3 is actually an example of homophony,
which lies between monophony and polyphony, but is con-
sidered polyphonic under our use of the term. For generating
polyphony with a grammar, we have to (1) find a representa-
tion of polyphonic structures as a sentence, and (2) handle
relationships between entities in the same temporal context.
For (1) we could use a tree-like grouping in the sentence,

where child sentences can be arranged either in sequence
or in parallel on the timeline. For example, one could use a
parallel arrangement of sequential voices like Tanaka and
Furukawa [32], or a sequential arrangement of parallel notes
for chords like McCormack [11]. For accurately representing

FARM ’21, August 27, 2021, Virtual Event, Republic of Korea Lukas Eibensteiner, Martin Ilčík, and Michael Wimmer

�
�
��

�

��
�
�

���
�
�
�

�

�

�

�
���

�
� �� �� 34

�

�

� �� 34

Lent et douloureux �

���
��

�
� �

Music engraving by LilyPond 2.20.0—www.lilypond.org

Figure 3. Score representation of measures five to eight of
Gymnopédie No.1 by Eric Satie.

the score in Figure 3, we would need at least two parallel
grouping levels, one to model the melody, chords, and bass,
and a second one to model the chord notes. A disadvantage
of this method is that we need to consider the complete
sentence to determine a single entity’s position in time.
For (2) we have to consider how shared data propagates

through the derivation tree. An entity can only receive infor-
mation from its parent, so any data that is needed for synchro-
nizing two entities must be provided via a common ancestor.
In a polyphonic model two notes that are close in time – and
should therefore have common harmonic and metric proper-
ties – could be very distant in the tree. This is problematic,
as the level of detail in a derivation tree generally increases
towards the leaves, but we may already need to determine
these details at the root. Tanaka and Furukawa [32] avoid
this altogether by using context-sensitive rules that replace
notes in multiple places of the tree at once.

Temporal-scope grammars address both points without de-
pending on context-sensitive sentence structure or context-
sensitive replacement. First, we associate each entity with
an explicit time-span, which decouples its position on the
timeline from its position in the sentence. Representing mu-
sic with time intervals is a well established method and
used, for example, in MusES [15] or the MIDI format. Sec-
ond, using sub-grammars and parameters we can propagate
complex musical textures downwards in the tree and use the
time-span of an entity to locally sample these textures. For
example, we can generate a harmonic progression in the root
and sample it in the notes of an independently generated
melody and bass line.

4.1 Formal Definition
A temporal-scope grammar is context-free and parametric
as defined in Sections 3.1 and 3.2. An entity of its vocabulary
𝑉 is a tuple (𝑡0, 𝑡Δ, 𝑥1, . . . , 𝑥𝑛), where (𝑡0, 𝑡Δ) ∈ R2 is called
the time-span, and (𝑥1, . . . , 𝑥𝑛) ∈ 𝑋1 × . . . × 𝑋𝑛 are custom
parameters, for example pitch information, dynamics, or
semantic labels. The time-span encodes the temporal scope
of an entity as a point in time 𝑡0 and a duration 𝑡Δ. While
the use of a duration parameter is already very common
in similar systems, the absolute offset 𝑡0 is usually encoded
implicitly in the sentence structure. Instead of 𝑡Δ, a second
offset 𝑡1 = 𝑡0 + 𝑡Δ could be used to define the scope, but the
former is more convenient in practice.

Figure 4. A step by step construction of the temporal struc-
ture of measures 5 and 6 of Gymnopédie No.1 by Eric Satie.

Since the time-span is passed as a parameter, we can gen-
erate arbitrary interval arrangements, both absolute and
relative, on any level of the derivation tree. For example, we
can interpret the temporal structure of the score in Figure 3
as four levels of scope transformations visualized in Figure 4.
In (1) we split the piece into a sequence of whole measure
intervals. (2) replaces each measure with three parallel in-
tervals for the voices, which we split into notes and rests in
(3). In (4b) we once again use parallel placement to stack the
chord notes. Even though rests are shown in Figure 4, they
do not need to be represented in the sentence since entities
are completely independent.

A temporal-scope grammar may further have any number
of parameters defined over the set of sentences 𝑉 ∗. We can
use them to link entities and propagate sub-grammar results
through the derivation tree as explained in Section 3.3. Natu-
rally, the grammar must provide a mechanism for retrieving
entities from a sentence, for example filtering based on over-
lap with a time-span. In the next section, we define concrete
operators for generating and querying temporal structures.

4.2 Scope Operators
Changing 𝑡0 on the RHS of a rule moves the entity, while
changing 𝑡Δ resizes it. Yet, simply arranging notes sequen-
tially is now more work compared to purely monophonic
models, as we have to specify both durations and offsets.
Similar to the + operator for notes in Section 3.2, we can
define higher-level operators for common use-cases:

• The repeat operator fills the scope with𝑛 time-spans of
a fixed durationΔ.We calculate𝑛 = ⌊𝑡Δ/Δ⌋ to generate
zero or more entities that do not exceed the original
duration 𝑡Δ. An optional weighting factor distributes
the remaining space. Alternatively, we can calculate
𝑛 = ⌈𝑡Δ/Δ⌉ to generate at least one entity, where the
last entity potentially exceeds the original scope.

• The split operator divides the scope into 𝑛 intervals
with durations Δ1 . . . Δ𝑛 . Additionally, one can specify

Temporal-Scope Grammars for Polyphonic Music Generation FARM ’21, August 27, 2021, Virtual Event, Republic of Korea

unit factor base

second 1 second
minute 60 second
beat 1/𝑇 minute
measure 𝑁 beat
whole 𝐵 beat
half 1/2 whole
quarter 1/4 whole
eighth 1/8 whole

Table 1. Conversion table for temporal units. Reading: A
minute is equal to 60 seconds.

𝜔1 . . . 𝜔𝑛 as weights for the distribution of any remain-
ing space. Unlike the repeat operator, split can be used
to generate irregular divisions of an entity.

• The trim operator removes any part of an entity that
exceeds the scope of the input entity. Entities that
have an empty intersection with the current scope are
removed entirely. We can pass the result of a repeat or
split operation to the trim operator to guarantee that
the entities fit into the current scope.

• The query operator finds entities in a sentence that
overlap with the current scope. Queries allow us to
treat the results of sub-grammars as functions over
time, which is very useful when we need to share local
information between voices. For example, we would
use query to synchronize multiple voices to the same
harmonic progression.

Scope operators accept relative as well as absolute duration
notation. The latter requires a synchronized system of units
described in the following section.

4.3 Temporal Units
Time in music is usually not described in purely relative
and hierarchical terms, but rather through a temporal grid
established by the piece’s tempo and meter. We implement
this in our system with three parameters. (1) The tempo
parameter 𝑇 ∈ R+ is used for the conversion between beats
and physical time in seconds. We measure 𝑇 in beats per
minute (BPM). (2) The beat count parameter𝑁 ∈ R+ specifies
the number of beats per measure. Finally, (3) the beat type
parameter 𝐵 ∈ R+ allows us to calculate the length of a
whole note as 𝐵 beats.

The pair (𝑁, 𝐵) has the same semantics as the two num-
bers of the time signature in musical notation. For example,
if 𝑁 = 3 and 𝐵 = 4, there are three beats per measure, and
the duration of each beat is equivalent to 1/4 of a whole note.
We define conversion factors of various temporal units that
can be derived from these parameters in Table 1.
Temporal scopes are also well suited for modelling ad-

vanced musical phenomena. Polyrhythm and polymeter can

be achieved by desynchronizing the respective parameters
across the derivation tree. Gradual tempo changes such as
ritard. or accel. work independently of the meter, but require
durations and time offsets of the notes to be adjusted based
on the desired acceleration curve.

5 Examples
We demonstrate the theoretic constructs by definingmultiple
polyphonic music generators of increasing complexity. As
stated in Section 3, the development of a particular generator
is not the goal of this work. Due to spatial constraints, we
cannot provide a complete specification of the generators
and will instead confine the detailed discussion to a handful
of interesting sub-grammars, briefly showcasing possible
applications of the theory. The full specification of the gen-
erator in Section 5.1 is available in the online data repository
linked in Section 7.
The complexity of the presented generators can be com-

pared in Table 2. Individual writing styles produce different
structures of both the grammar and the wrapping DSL, so
the listed metrics give just rough estimates. For example, the
Waltz grammar consists of rules with twice as many com-
mands on average as the Fragments grammars. At the same
time, Waltz uses on average almost five times more data per
rule. This is due to heavy use of helper structures and native
TypeScript functionality. As the Fragments grammars are
less constrained thanWaltz, they produce a higher density
of notes with more overlaps despite the lower complexity of
the grammar definition.

5.1 Generator: Fragments
The first generator produces musical fragments for a small
ensemble of voices. There is no higher-level organization in
terms of structure, and it is largely randomized with minimal
synchronization. It consists of the following components:

• The piece grammar serves as the entry point. It first
randomizes global parameters such as tempo, beats,
beatType and key, then uses the grammars listed below
to structure and generate a chord progression that is
propagated to the voice layers.

• The layer grammar generates a binary tree that sets
a randomization strategy for voice parts. We can con-
trol the degree of repetition within a voice with the
monotony attribute and the degree of synchronization
between voices with the diversity attribute. The depth
of the binary tree dictates the total length of the song,
as a leaf equals one measure.

• The progression grammar assigns a random chord from
a chord pool to the leaves of a layer. We only evalu-
ate it once per piece and pass the result as a shared
parameter to each voice.

• The voices grammar defines the voice layers: two lead
voices (violin and flute), one pad voice (piano), one

FARM ’21, August 27, 2021, Virtual Event, Republic of Korea Lukas Eibensteiner, Martin Ilčík, and Michael Wimmer

bass voice (double bass), and a variable number of
drum voices. The two lead voices are constrained in
such a way that they either play an individual motif
alone, or a common motif in unison.

• The motif grammar queries the chord progression
layer and assigns the harmonic information to the
current entity. It then selects a dedicated sub-grammar
based on the voice type.

• The lead, pad, bass, and drum grammars generate the
actual notes within a measure. They frequently use
the repeat, split, and trim operators to fill measures
with melodic, rhythmic, and harmonic patterns.

The following examples discuss some of the sub-grammars
in more detail.

5.2 Grammar: Piece
The piece grammar generates a complete piece with multi-
ple voices. The initialization of global parameters such as
tempo is not shown here. First, we define a set of attributes
𝐻 that carry harmonic information. Next, we define the pro-
gression grammar, which uses layer to generate a sequence
of measures, each with a random chord from a chord pool
{𝑐1, 𝑐2, . . .}. The piece grammar uses angle brackets to apply
commands 𝑓1 . . . 𝑓6 sequentially (see Section 3.3).

𝐻 = {harmony, key,mode, chord}
progression : ⟨layer, choice(c1, c2, . . .)⟩
piece : ⟨

𝑓1 : setspan (2depth ∗ measure),
𝑓2 : setxchords (progression),
𝑓3 : [⟨setmotif (pad), setplay (′piano′)⟩,

⟨setmotif (bass), setplay (′doublebass′)⟩,
⟨setmotif (lead), setplay (′violin′)⟩],

𝑓4 : layer,

𝑓5 : append (⟨query(chords), select (H)⟩),
𝑓6 : motif

⟩

In 𝑓1 the total duration of the piece is determined based
on the depth attribute. A harmonic progression is generated
and stored in the chords attribute in 𝑓2. 𝑓3 uses the square
bracket notation to branch into three voices. Each has a mo-
tif attribute referencing a sub-grammar and a play attribute
with the instrument name. All voices inherit the chord pro-
gression from 𝑓2.

Step 𝑓4 generates measures for each voice, again using the
layer grammar. Before generating the actual notes, harmonic
information from the chord progression must be retrieved
for the respective measure. A query retrieves entities for the

current time-span from the chords attribute. Note that we
know that 𝑓2 produces a single entity per measure. Then, the
select function removes all attributes from the entity that
are not in 𝐻 . The append function merges the remaining
attributes into the input entity. This pattern allows us to
retrieve the harmonic attributes from the shared progres-
sion while preserving the voice-specific attributes. Finally,
𝑓6 generates the actual notes.

5.3 Grammar: Layer
The layer grammar generates a sequence of empty mea-
sures with different seeds. The measures are generated as
the leaves of a binary tree of a specified depth. 𝑓3 starts the
recursion, 𝑔1 and ℎ1 ensure the termination criterion, and ℎ3
generates the two children for the current node. In order to
introduce repetition of measures or phrases, we can use the
seed function, which creates a new PRNG for the respective
subtree based on the specified seed value.
We structurally synchronize layers by using the same

depth and use them as a harmonic and metric basis for the
voices. Seeds of the generated measures are controlled by
a pair of attributes. monotony is the probability that two
siblings are synchronized with the same seed. For example,
if the monotony is 1, all measures will end up with the same
seed. If the value is somewhere between 0 and 1, repeating
patterns will emerge, as shown in Figure 5. This is imple-
mented in steps ℎ2, ℎ4, and ℎ5. diversity is used to control
how similar layers are to each other. We retain a unique
value for each layer in 𝑓1, then synchronize all layers with
the global pieceSeed attribute. ℎ6 then randomly reintroduces
the entropy retained in 𝑓1, causing the node to diverge from
other layers in the piece, as shown in Figure 6.

layer : ⟨
𝑓1 : setlayerSeed (rand ()),
𝑓2 : seed (pieceSeed),
𝑓3 : derive(

𝑔1 : depth > 0 −→ ⟨
ℎ1 : setdepth (depth − 1),
ℎ2 : setsync (rand ()),
ℎ3 : split ([set𝜔 (1), set𝜔 (1)]),
ℎ4 : ⟨monotony < sync −→ setsync (rand ())⟩,
ℎ5 : seed (sync),
ℎ6 : pr (diversity, seed (layerSeed + rand ()))

⟩)⟩

5.4 Grammar: Pad
The pad grammar develops notes for a piano accompani-
ment. It adapts to the time interval, metric grid, and key of
the current entity. We first define a reusable helper function

Temporal-Scope Grammars for Polyphonic Music Generation FARM ’21, August 27, 2021, Virtual Event, Republic of Korea

Figure 5. Six random results of the layer grammar, where the
monotony𝑚 decreases from top (𝑚 = 1) to bottom (𝑚 = 0) in
steps of 0.2. The visualization is limited to 16 colors, which
causes the last row to show random repetitions.

Figure 6. Six random results of the layer grammar with
diversity = 0.25, demonstrating its effect on the similarity
between layers.

interval boundsnotetime

(3)

(1)

(2)

Figure 7. A step by step construction of a possible result of
the pad grammar.

cut, which splits an entity into two parts: a fixed part with
duration Δ and a flexible part that receives all of the remain-
ing space by setting the weight parameter 𝜔 = 1. We use
choice to randomize the order of these two parts. The outer
trim is useful when Δ exceeds 𝑡Δ of the input entity:

cut : Δ ↦→ trim(split (choice(
[set∆ (∆), set𝜔 (1)],
[set𝜔 (1), set∆ (∆)]

)))

We define the pad grammar using the angle bracket no-
tation to chain three right-hand sides: 𝑓1 applies cut with a
probability of 0.5. The choice picks a random duration for
the fixed part. The square bracket notation in 𝑓2 generates
three parallel notes forming a triad for every input entity,
similar to the RHS of 𝑝3 in Section 3.2. Finally, we apply 𝑓3
to each of the entities generated by 𝑓2. 𝑓3 is equivalent to 𝑓1,
only this time it is applied to three or six notes, depending
on whether cut was applied in 𝑓1:

Figure 8. Each measure shows a possible result of the 𝑝𝑎𝑑
grammar (File: pad.mp3) using four quarter notes per mea-
sure and the C major scale.

pad : ⟨
𝑓1 : pr (0.5, cut (choice(half , quarter, eighth))),
𝑓2 : [⟨⟩, setnote (note + 2), setnote (note + 4)],
𝑓3 : pr (0.5, cut (choice(half , quarter, eighth)))

⟩

The pad grammar does not use recursion or complex
matching criteria. Nevertheless, it demonstrates both sequen-
tial and parallel note arrangements and the use of temporal
units. Figure 7 shows the intermediate results for one possi-
ble derivation path. In (1) a quarter note is cut off from the
beginning of the input entity. (2) expands the two parts into
chords of three notes each. (3) applies the cut function to
three of the six notes. Either part of the three splits could
have been the flexible one in this example. Figure 8 shows a
selection of possible results.

5.5 Generator: Extended Fragments
The second generator builds directly on the previous one.
It uses the layer grammar on two levels, first to divide the
piece into sections, then to divide sections into measures.
Both sections and measures can be dropped randomly in par-
ticular voices to generate more interesting piece structures.
Instruments and motif variety can be configured by the user.

5.6 Generator: Waltz
The third generator is focused on short waltzes. It is aligned
with the strategy of the previous ones, but it adds synchro-
nization of various score aspects based on local continuities
and global patterns. For example, it features a duo of com-
plementary melodies. Variability is decreased in favor of
constraints that limit the selection of rhythms, melodies and
harmonies. Efficient stochastic selection under the given con-
straints is performed by additional utility components that
list all possible sequences of:

• waltz rhythms for a single measure with a granularity
up to a 1/16 note. Filtering of rhythms is accelerated by
precomputing additional features like: energy, diversity,
regularity. The generator selects a pair of rhythms
with contrasting energies that repeat in each musical
sentence. Users can introduce further constraints.

• key-agnosticmelodieswith derived features like: range,
leaps, monotony, diversity for better control of desired
melody types. Melodies can also be selected to respect

FARM ’21, August 27, 2021, Virtual Event, Republic of Korea Lukas Eibensteiner, Martin Ilčík, and Michael Wimmer

harmony on strong beats for a given rhythm. The gen-
erator also gives preference to melodies ending one
diatonic step away from the following harmony to
support harmonic development.

• harmonies build upon the database of melodies with
the degrees interpreted as harmonic functions. We in-
clude constraints which select only progressions end-
ing with a certain cadence.

The waltz generator further allows manually overriding
some of the random choices, for example harmony progres-
sions. Other parameters, like the rhythm energy, can be
limited to intervals or single values.

6 Implementation
We implemented the theoretic framework as a DSL in Type-
Script 4.1.2. It is roughly equivalent to the abstract notation
introduced in the previous sections. Some extra syntax is
required, for example, generic type parameters and type
constraints should be used to decouple components from a
specific entity definition. Entities are generally immutable.
Setting an attribute creates a new descendant entity with the
changed value. We copy unchanged attributes, but one could
also use a reference to the ancestor if memory is limited.

Since the DSL is embedded in TypeScript, a wide range of
functionality like global variables, classes, etc. can be used for
efficient specification of grammar instances. Note that while
the instances of our formalism, like the generator examples
from Section 5, are implemented as TypeScript programs,
we still refer to them as grammars throughout this work,
since the DSL only provides an interface for the underlying
grammar-based theory. The TypeScript code below imple-
ments the pad grammar from Section 5:

function pad<V extends Entity>(): Fun<V[], V> {

return pipe(

pr(0.5,

cut(choice<number, V>(half, quarter, eighth))),

x => fork(

pipe(),

set({ note: x.note + 2 }),

set({ note: x.note + 4 }),

),

pr(0.5,

cut(choice<number, V>(half, quarter, eighth))),

);

}

For playback we use theWeb Audio API, whichmeans that
grammars developed with our system work in any modern
web-browser. Figure 9 shows our browser-based graphical
interface. While the capabilities of a browser-based playback
environment are limited to a certain degree, the benefits
are significant. Composers can immediately deploy their

grammars to a wide range of devices, and users can generate
new pieces and listen to them with zero setup.
The generation process can be controlled on two levels.

Experts can work directly with the TypeScript code and de-
sign grammars, functional components, and define controls
for the parameters on the starting entity. Users without deep
knowledge of the framework can use these controls in the
web-interface to adjust the generated music without touch-
ing the code. Parameters exposed in the web-interface can
affect the whole piece, like the initial seed parameter, but
also fully isolated characteristics like the melody of a voice
or accents in some beats, while keeping all the rest of the
generated piece unchanged.

7 Results
The implementation of the generators described in Section 5
serves to demonstrate the capabilities of our theoretic con-
tribution. Live versions of the generators for try-out and a
selection of generated music can be found at:
https://github.com/eibens/farm-2021

Wehave further conducted an informal experts-studywith
five participants with backgrounds in musicology or compo-
sition. They were instructed to interact with the generators
on their own and judge the musical quality of the results.
Note that two specialists on classical music only reviewed
the Waltz Generator:

Evaluation: Fragments Generator (extended).
• P1 noted the high variability and ambient style of the
results. They found the structure, voicing, and effects
to be interesting, but also concluded that the results
are obviously generated by a program.

• P2 praised the interesting structure and contrasts, as
well as the use of pauses and repetition – only the
melody could be richer. They also suggested to im-
prove the distribution of cadences.

• P3 thought that the distribution of the drums was
sometimes bad and that the harmonic progression
sounded arbitrary. But the structure and repetition
were received positively.

Evaluation: Waltz Generator.
• P1 suggested additional form structures, pauses, and
dissonance for the melody. They recommended more
repetition to make the melody memorable.

• P2 praised the rhythm and harmonic progression as
very fitting to the musical style. They also suggested
increasing repetition in the melody and adding options
for solos.

• P3 found the quality of the harmonic progression sur-
prising, and overall judged the results to be good in
an almost uncanny way. They criticised the melody,
which sometimes leaps in ways that seem atypical for
the genre.

https://github.com/eibens/farm-2021

Temporal-Scope Grammars for Polyphonic Music Generation FARM ’21, August 27, 2021, Virtual Event, Republic of Korea

Generator Files size Rules Commands Instruments Notes Overlap Length
Fragments 7 KiB 23 172 4 232 5.5 32 s
Fragments (ext.) 29 KiB 50 413 4 971 8.0 66 s
Waltz 61 KiB 22 360 2 665 3.4 72 s

Table 2. Statistics for the example grammars: definition complexity (middle) and average results complexity (right).

Figure 9. The controls to the left can be used to manipulate parameters on the starting entity. The score visualization to the
right shows time on the X axis, logarithmic pitch on the Y axis, and the scope of the terminal entities as colored bars. Notes of
the same color belong to the same voice, and the opacity encodes the loudness.

• P4 praised the harmony, but criticised the melodic
movement, which contained too many leaps, as well
as the overall structure, which they did not find inter-
esting. They also called for more emotional expression,
yet concluding that the generator is a good source of
inspiration for beginning composers.

• P5 approved of the harmony, but noted that some-
times subsequent dissonance occurs without a specific
purpose. They liked the subtle use of dynamics and en-
couraged to further increase local dynamic contrasts.
Fine-grained control with parameters uncommon in
standard music theory and analysis was very inter-
esting for them, along with the possibility to adjust
features of an already generated piece.

All impressions were positive, praising mainly the har-
monic soundness and rich rhythms. Suggestions for improve-
ments were mostly targeted towards specific features of the
generators – better structuring of Waltzes, less randomness
for Fragments. Suggestions for better handling of melodies
point to the underlying framework with its strict tree-like
data flow. To get information about the surrounding entities,
it must be pre-computed and stored in attributes early in the
derivation. For complex pieces, direct horizontal and vertical
linking of neighboring entities would provide even more
efficient means for temporal smoothing of melodies.

A coherent seed in combination with parametric adjust-
ments enabled all experts to tweak the generated song on
different levels, but at the same time most of them felt over-
whelmed by the large number of parameters. As user inter-
face design and UX was not subject of our research, we are
sure that these aspects can be greatly improved.

8 Conclusion
In this work we presented temporal-scope grammars, a formal
grammar approach for generating polyphonic music. Each
musical entity is associated with an explicit time-span, and
replacement entities can be freely arranged on the timeline.
Placement of entities is facilitated by multiple scope-based
operators. Parallel voices can be endowed with common
context by retaining terminal strings of sub-grammars and
reading their entities with a time-based query mechanism.
Our model of time appears to be capable of expressing a

wide range of temporal structures. Its recursive parallelism
allows one to define pieces with an unbounded number of
entities within a temporal slice. We believe this is an impor-
tant feature since many types of music require polyphony
on at least two levels: voices and chords. Artifacts that arise
from implicit temporal representations are eliminated. For
example, a rest has no explicit representation because we can
simply discard an entity without affecting its surrounding.

FARM ’21, August 27, 2021, Virtual Event, Republic of Korea Lukas Eibensteiner, Martin Ilčík, and Michael Wimmer

Temporal hierarchies, where the replacement entities do
not exceed the original scope, are common in music and
our model is well capable of describing them with the split,
repeat, and trim operators. At the same time, we can easily
break the hierarchy by moving or resizing entities. For ex-
ample, we can randomly offset notes in a drum beat, or add
a prelude to a measure. However, after moving an entity one
should consider querying its new context.

Finally, synchronizingmultiple voices to one ormoremusi-
cal textures intuitively mirrors how a human composer may
initially define a metric grid and harmonic progressions, and
develop the notes for the instruments in a second pass. The
integrated generation of parallel structures such as chords
allows us to use this information while the derivation is still
in progress. For example, we can query the highest note in a
voice and generate a second voice that always stays above it.
This is more difficult when polyphonic structures are only
expanded in a post-processing step.

FutureWork. The selection of scope-based operators that
the system provides out of the box is still limited. Additional
operations on entity sequences could be used for more pow-
erful effects. As an alternative to random number generators,
one could integrate user input directly into the derivation
process. This would allow users to assume manual control
over any aspect of the generation.

References
[1] Torsten Anders and Eduardo R Miranda. 2011. Constraint program-

ming systems for modeling music theories and composition. Comput.
Surveys 43, 4 (2011), 1–38. https://doi.org/10.1145/1978802.1978809

[2] Noam Chomsky. 1956. Three models for the description of language.
IRE Trans. on Inf. Theory 2, 3 (1956), 113–124. https://doi.org/10.1109/
tit.1956.1056813

[3] WBas DeHaas, Martin Rohrmeier, Remco C Veltkamp, and FransWier-
ing. 2009. Modeling harmonic similarity using a generative grammar
of tonal harmony. In Proc. of the 10𝑡ℎ Int. Conf. on Music Inf. Retrieval.

[4] Jose D Fernández and Francisco Vico. 2013. AI methods in algorithmic
composition: A comprehensive survey. Journal of Artificial Intelligence
Research 48 (2013), 513–582. https://doi.org/10.1613/jair.3908

[5] Édouard Gilbert and Darrell Conklin. 2007. A probabilistic context-
free grammar for melodic reduction. In Proc. of the Int. Workshop
on Artificial Intelligence and Music, 20𝑡ℎ Int. Joint Conf. on Artificial
Intelligence (IJCAI), Hyderabad, India. 83–94.

[6] Mathieu Giraud and Slawek Staworko. 2015. Modeling musical struc-
ture with parametric grammars. In Mathematics and Computation in
Music. Springer, 85–96. https://doi.org/10.1007/978-3-319-20603-5_8

[7] SR Holtzman. 1981. Using generative grammars for music composition.
Computer Music J. 5, 1 (1981), 51–64. https://doi.org/10.2307/3679694

[8] Steven R Holtzman. 1980. A generative grammar definition language
for music. Journal of New Music Research 9, 1 (1980), 1–48.

[9] Donald E Knuth. 1990. The genesis of attribute grammars. In Attribute
Grammars and Their Applications. Springer, 1–12. https://doi.org/10.
1007/3-540-53101-7_1

[10] Fred Lerdahl, Ray Jackendoff, et al. 1983. A generative theory of tonal
music. Vol. 1996. The MIT Press.

[11] Jon McCormack. 1996. Grammar based music composition. Complex
systems 96 (1996), 321–336.

[12] Orestis Melkonian. 2019. Music as language: putting probabilistic tem-
poral graph grammars to good use. In Proc. of the 7𝑡ℎ ACM SIGPLAN
Int. Workshop. 1–10. https://doi.org/10.1145/3331543.3342576

[13] Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc
Van Gool. 2006. Procedural modeling of buildings. ACM Trans. on
Graph. 25, 3 (2006), 614–623. https://doi.org/10.1145/1179352.1141931

[14] Gerhard Nierhaus. 2009. Algorithmic composition: paradigms of auto-
mated music generation. Springer.

[15] François Pachet, Geber Ramalho, and Jean Carrive. 1996. Representing
temporal musical objects and reasoning in the MusES system. Journal
of new music research 25, 3 (1996), 252–275. https://doi.org/10.1080/
09298219608570707

[16] George Papadopoulos and Geraint Wiggins. 1999. AI methods for
algorithmic composition: A survey, a critical view and future prospects.
In Proc. of the AISB symposium on musical creativity, Vol. 124. 110–117.

[17] Donya Quick. 2014. Kulitta: A Framework for Automated Music Com-
position. Yale University.

[18] Donya Quick. 2015. Composing with kulitta. In Proc. of the Int. Com-
puter Music Conf.

[19] Donya Quick and Paul Hudak. 2013. Grammar-based automated music
composition in Haskell. In Proc. of the 1𝑠𝑡 ACM SIGPLAN workshop
on Functional art, music, modeling & design. ACM, 59–70. https:
//doi.org/10.1145/2505341.2505345

[20] Donya Quick and Paul Hudak. 2013. A temporal generative graph
grammar for harmonic and metrical structure. In Proc. of the Int. Com-
puter Music Conf.

[21] Curtis Roads and Paul Wieneke. 1979. Grammars as representations
for music. Computer Music J. (1979), 48–55. https://doi.org/10.2307/
3679756

[22] Martin Rohrmeier. 2007. A generative grammar approach to diatonic
harmonic structure. In Proc. of the 4𝑡ℎ Sound and music computing conf.
97–100.

[23] Martin Rohrmeier. 2011. Towards a generative syntax of tonal harmony.
Journal of Mathematics and Music 5, 1 (2011), 35–53. https://doi.org/
10.1080/17459737.2011.573676

[24] Pierre Roy and François Pachet. 1997. Reifying constraint satisfaction
in Smalltalk. Journal of Object-Oriented Prog. 10, 4 (1997), 43–51.

[25] Camilo Rueda, Magnus Lindberg, Mikael Laurson, Georges Bloch, and
Gerard Assayag. 1998. Integrating constraint programming in visual
musical composition languages. In Proc. of the Workshop on Constraints
for Artistic Applications (ECAI’98).

[26] Heinrich Schenker. 1935. Der Freie Satz. Universal Edition.
[27] Michael Schwarz and Pascal Müller. 2015. Advanced procedural mod-

eling of architecture. ACM Trans. on Graph. 34, 4 (2015), 1–12.
[28] Mark Steedman. 1996. The blues and the abstract truth: Music and

mental models. Mental models in cognitive science (1996), 305–318.
[29] Mark J Steedman. 1984. A generative grammar for jazz chord se-

quences. Music Perception 2, 1 (1984), 52–77. https://doi.org/10.2307/
40285282

[30] George Stiny. 1980. Introduction to shape and shape grammars. En-
vironment and Planning B: Planning and Design 7, 3 (1980), 343–351.
https://doi.org/10.1068/b070343

[31] George Stiny. 1982. Spatial relations and grammars. Environment
and Planning B: Planning and Design 9, 1 (1982), 113–114. https:
//doi.org/10.1068/b090113

[32] Tsubasa Tanaka and Kiyoshi Furukawa. 2012. Automatic Melodic
Grammar Generation for Polyphonic Music Using a Classifier System.
In Proc. of the 9𝑡ℎ Sound and Music Computing Conf.

[33] Peter Wonka, Michael Wimmer, François Sillion, andWilliam Ribarsky.
2003. Instant architecture. ACM Trans. on Graph. 22, 3 (2003), 669–677.
https://doi.org/10.1145/1201775.882324

[34] Neal Zaslaw. 2005. Essays in Honor of László Somfai on His 70th Birthday.
Studies in the Sources and the Interpretation of Music. Scarecrow Press,
Chapter Mozart’s Modular Minuet Machine, 219–235.

https://doi.org/10.1145/1978802.1978809
https://doi.org/10.1109/tit.1956.1056813
https://doi.org/10.1109/tit.1956.1056813
https://doi.org/10.1613/jair.3908
https://doi.org/10.1007/978-3-319-20603-5_8
https://doi.org/10.2307/3679694
https://doi.org/10.1007/3-540-53101-7_1
https://doi.org/10.1007/3-540-53101-7_1
https://doi.org/10.1145/3331543.3342576
https://doi.org/10.1145/1179352.1141931
https://doi.org/10.1080/09298219608570707
https://doi.org/10.1080/09298219608570707
https://doi.org/10.1145/2505341.2505345
https://doi.org/10.1145/2505341.2505345
https://doi.org/10.2307/3679756
https://doi.org/10.2307/3679756
https://doi.org/10.1080/17459737.2011.573676
https://doi.org/10.1080/17459737.2011.573676
https://doi.org/10.2307/40285282
https://doi.org/10.2307/40285282
https://doi.org/10.1068/b070343
https://doi.org/10.1068/b090113
https://doi.org/10.1068/b090113
https://doi.org/10.1145/1201775.882324

	Abstract
	1 Introduction
	2 Related Work
	3 Theory
	3.1 Context-Free Grammars
	3.2 Parametric Grammars
	3.3 Nested Grammars
	3.4 Non-Deterministic Grammars

	4 Temporal-Scope Grammars
	4.1 Formal Definition
	4.2 Scope Operators
	4.3 Temporal Units

	5 Examples
	5.1 Generator: Fragments
	5.2 Grammar: Piece
	5.3 Grammar: Layer
	5.4 Grammar: Pad
	5.5 Generator: Extended Fragments
	5.6 Generator: Waltz

	6 Implementation
	7 Results
	8 Conclusion
	References

