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Kurzfassung

3D Rekonstruktion mithilfe von Tiefenbildern ist in vielen Bereichen der Computergrafik
wie z.B. Virtual Reality und Augmented Reality etabliert. Dabei ist es umso wichtiger
dass die 3D Rekonstruktion genau und zuverlässig funktioniert um diese auch qualitativ
in anderen Bereichen verwenden zu können. Bei dieser Arbeit wird speziell das Verfahren
zur 3D Rekonstruktion aus dem Kinect Fusion Algorithmus behandelt. Dieser ermöglicht
es aus Tiefenbildern die 3D Oberfläche in Echtzeit zu rekonstruieren. Es ist einer der
bisher schnellsten und zuverlässigsten Verfahren zur 3D Rekonstruktion, wobei aber noch
Möglichkeiten zur Verbesserung offen stehen. Ein Tiefenbild ist im 3D Raum zurückproji-
ziert eine Punktwolke, in der jeder 3D Punkt einem Pixel im Tiefenbild zugeordnet ist.
Wenn mehrere Scans bzw. Aufnahmen von Tiefenbildern als 3D Modell rekonstruiert
werden, ist das Hauptproblem von Kinect Fusion, dass es die Information der Punkt-
wolken vorheriger/älterer rekonstruierter Scans nicht mehr zu den nächsten oder neuen
Scans miteinberechnet. Das hat auch zur Folge, dass die Berechnung der Oberfläche an
Genauigkeit verliert. Um das zu verbessern, werden die Punktwolken von Tiefenbildern
mitgespeichert und zur Berechnung der 3D Oberfläche miteinbezogen. Da der 3D Raum
bzw. die Oberfläche wie ein Gitter in gleich große Bereiche eingeteilt oder abgetastet wird,
muss nicht zwingend jeder einzelne Punkt von allen Punktwolken abgespeichert werden.
Das würde auch einen immensen Speicherverbrauch als weiteres Problem hinzufügen.
Durch das 3D Gitter können die Koordinaten der Punkte, die sich im selben Bereich
befinden, als Median aggregiert abgespeichert werden, was den Speicherverbrauch dras-
tisch reduziert. Neben diesem Thema werden auch zwei Algorithmen zur Generation von
Meshes verglichen, wobei es sich hierbei um den Marching Cubes Algorithmus und eine
Adaption davon handelt, die speziell auf Octrees angewendet werden kann. Das Ziel der
Arbeit ist zu bestimmen, wie sich die Einberechnung von vorheriger/älterer Tiefenbilder
auf die Qualität der 3D Rekonstruktion der Oberfläche auswirkt. Ebenso werden die
Unterschiede zwischen dem normalen und den für Octrees adaptierten Marching Cubes
Algorithmus analysiert. Die Resultate haben ergeben, dass die Miteinberechnung der
aggregierten Informationen vorheriger/älterer Tiefenbilder als Mediane im Vergleich zum
gewöhnlichen Kinect Fusion Algorithmus einen positiven Einfluss hinsichtlich der Was-
serdichtheit der 3D rekonstruierten Oberfläche hat. In kleineren Bereichen sind weniger
Löcher auf der Oberfläche vorhanden. Ebenfalls erscheinen feinere Objekte weicher und
weniger kantig rekonstruiert, was aber auch manchmal zu etwas verwascheneren Stellen
im Mesh führt. Auch der adaptierte Marching Cubes Algorithmus für Octrees weist
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eine starke Verbesserung bezüglich der Wasserdichtheit des Meshes auf. Es sind deutlich
weniger Löcher bei den Meshes vorhanden, besonders an Kanten von Objekten. Die oben
genannten Änderungen im Kinect Fusion Algorithmus sowie der adaptierte Marching
Cubes Algorithmus haben keine sichtbaren Verschlechterungen oder Fehlbildungen am
Mesh verursacht.



Abstract

3D reconstruction using depth images is established in many areas of computer graphics
such as virtual and augmented reality. That makes it even more important that 3D
reconstruction works precisely and reliably in order to use it properly in other applications.
In this thesis, the procedure for 3D reconstruction from the Kinect Fusion algorithm is
dealt with in particular. This enables the 3D surface to be reconstructed in real time from
depth images. It is one of the fastest and most reliable methods for 3D reconstruction to
date, but there are still possibilities for improvement. A depth image is back projected in
3D space a point cloud in which each 3D point is assigned to a pixel in the depth image.
If several scans or recordings of depth images are reconstructed as a 3D model, the
main problem of Kinect Fusion is that it no longer includes the information of the point
clouds of previous/older reconstructed scans for new scans. That has the consequence
that information and accuracy of the surface get lost. To improve this, the point clouds
of previous/older depth images are saved and included in the calculation of the 3D
surface. Since the 3D space or surface is divided into areas of equally sized cubes like
a grid, it is not necessary to save each individual point from all point clouds. That
would also add an immense memory consumption as another problem. Thanks to the
3D grid, the coordinates of the points located in the same area can be stored together
as a median vector, which drastically reduces memory consumption. In addition to
this, two algorithms for the generation of meshes are compared, which are the Marching
Cubes algorithm and an adaptation of it, which can be specifically applied to octrees.
The aim of the work is to determine how the inclusion of the aggregated point cloud
information of previous / older depth images as median vectors affects the quality of the
3D reconstructed surface. The differences between the normal Marching Cubes algorithm
and the adapted one for octrees are also analyzed. The results have shown that the
inclusion of the aggregated point cloud information from previous / older depth images
as median vectors has a positive influence on the watertightness of the 3D reconstructed
surface compared to the usual Kinect Fusion algorithm. In smaller areas, there are fewer
holes on the surface. Finer objects also appear softer and reconstructed less edgy, but this
sometimes leads to blurred areas in the mesh. The adapted Marching Cubes algorithm
for octrees also shows a strong improvement in terms of the watertightness of the mesh.
There are significantly fewer holes in the meshes, especially on the edges of objects. The
above-mentioned changes in the Kinect Fusion algorithm and the adapted Marching
Cubes algorithm have not caused any visible deterioration or malformations on the mesh.
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CHAPTER 1
Introduction

1.1 Overview

The reconstruction of 3D models in the real world plays an important role for various
applications in numerous fields like computer graphics, computer vision, medical imaging,
virtual reality etc. One example for that is augmented reality, which is heavily dependent
on a precise and consistent 3D reconstruction of world objects. Knowledge of position,
form, and scale of real world objects is necessary, in order to place new virtual objects
in an environment[YCH+13]. Another highly correlated topic to augmented reality is
visual SLAM (Simultaneous Localization And Mapping). Visual SLAM technologies
enable autonomous sensors to localize their own position by scanning and mapping their
environment simultaneously. This can be very useful for the development of autonomous
vehicles or robots[YL18]. Another application is visualizing medical data. It is mostly
disadvantageous to provide 2D data for a surgery or medical procedure. Medical-purpose
2D image data is often obtained by MRI (Magnetic Resonance Imaging), X-Ray (roentgen
radiation) etc. However there are already techniques which can transform those images
to 3D objects which gives medical practitioners a significant advantage in terms of
observation, precision etc.[CSVV11]. 3D reconstruction also has a big impact on civil
engineering. It is concerned with the design, development, construction and maintenance
of different infrastructures like city roads, buildings or canals. For those tasks it can be
very helpful to reconstruct the environment like the city buildings and its surroundings.
Afterwards new structural elements like a new building or road can be virtually placed
into the 3D reconstruction in order to simulate the outcome[ML17]. There are also
applications for 3D reconstruction which operate on a smaller scale than civil engineering.
Sometimes it can be advantageous to reconstruct the interior structure and elements of
smaller facilities like a room. New elements like a table or chair can be placed into a 3D
reconstructed room for testing its look, appearance and fit. A good reference for that is
the application "Modsy Interior Design" provided by "IOS", which makes it possible to
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1. Introduction

scan a room with an iPhone and place new furniture into it.

Obviously there are a lot more applications for 3D reconstruction than mentioned above,
but mostly they all have in common that they need data with 3D information. Depth
maps or images are most commonly used for providing 3D data compromised as 2D
images. Pixels in those images does not have the purpose to save the color but the depth
of an object in a scene[ZLD15]. Depth cameras like the "Kinect v2 camera" are capable
of scanning the depth of objects with an infrared sensor. It computes depth by emitting
infrared light to the objects and measuring the time of flight until the emitted reflected
light comes back to the sensor. This method is also called LIDAR (Light amplification
by Stimulated Emission of Radiation detection and ranging)[Bi20]. Another method is
called Stereo Depth, e.g. used by the depth camera "Intel RealSense Depth Camera".
Here two sensors are obtaining two normal RGB images at the same time from different
positions (simulating the eye vision of the human). Finally, the depth image can be
calculated with the two images and the distance between the sensors[ABR12].

Reconstructing the depth images to a 3D model mainly consists of two areas, camera
tracking and surface generation. Concerning camera tracking it is necessary to know
where the camera in space is in order to properly align the depth images to a correct
3D model. Surface generation means the creation or definition of the 3D surface (e.g.
as a geometrical function or a mesh) using the depth images. Camera tracking and
surface generation can be handled in a Frame-to-Frame (Camera tracking and/or surface
generation of one depth image is dependent of the previous depth image), Frame-to-Model
(Camera tracking and/or surface generation of one depth image is dependent of the
current 3D model generated from previous depth images) or global fashion (Camera
tracking and/or surface generation is done with all depth images at once)[NIH+11].

1.2 Motivation

In this work the focus is laid on the Frame-To-Model approach, since all our experiments
and evaluation are based on the Kinect Fusion Algorithm[NIH+11]. Kinect Fusion
generates a dense 3D model obtaining depth images from a depth sensor (e.g Kinect v2
camera) in real time. It is proven to be one of the fastest and most efficient algorithms
for 3D reconstruction using depth images. However, it still leaves some headroom for
improvement considering accuracy of the surface generation. In 3D space a depth image
is a point cloud in which each 3D point is assigned to a pixel in the depth image. If
multiple scans or recordings of depth images are reconstructed as a 3D model, the main
problem with Kinect Fusion is that it does not include the information of the point clouds
of previous/older reconstructed scans in new scans. In theory this has the consequence
that information and accuracy of the surface get lost. An approach for a solution is to
simply save and use the point cloud information for the surface generation. Because
simply saving all points of every depth image in the 3D model would cause dynamic and
massive storage requirements, the coordinate information of multiple points in the same
area (the 3D space is divided into multiple equally sized areas/cubes) can be saved as a
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1.2. Motivation

median vector. That solution is also the foundation for a currently developed method,
which uses the median (and also the statistical variance) of the points in order to create a
3D surface. In the following chapters the 3D reconstruction process as well as the required
changes and improvements of Kinect Fusion will be explained. Next to the changes of
the Kinect Fusion Algorithm it will also be discussed the differences between two mesh
generation algorithms, which are the Marching Cubes Algorithm and an adaptation of
Marching Cubes for octrees.
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CHAPTER 2
Theory

2.1 Kinect Fusion to reconstruct 3D Models

Kinect Fusion basically processes the depth information of depth images frame after
frame to obtain a dense 3D model. To get a better understanding of what actually
is happening in the Kinect Fusion Algorithm, we take a closer look at the pipeline.
Kinect Fusion consists of four steps: Surface Measurement, Surface Reconstruction
Update, Surface Prediction and Surface Pose Estimation, which will be explained in the
following[NIH+11].

2.1.1 Kinect Fusion Algorithm Pipeline

1. Surface Measurement

In this step a point cloud consisting of a vertex map V and a normal map N is calculated
with the scanned depth image. In order to obtain the vertices for the vertex map V ,
each of the pixels in the depth image with its corresponding values (u, v) (the image
coordinates) and z(the depth measurement) is converted into the 3D world. That is
done by first applying the inverse intrinsic matrix of the camera and multiplying it then
with z[NIH+11]. In Figure 2.1 is also the conversion of a depth image into a point cloud
illustrated.

P = z ∗K−1 ∗

uv
1


P :=

xy
z


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2. Theory

Figure 2.1: Converting a depth image to a point cloud. On the right side is an RGB
image and its depth image. On the left side is the converted depth image as a point
cloud[Dep].

K :=

fx 0 cx
0 fy cy
0 0 1


fx ... focal length of the camera to the image plane in x direction
fy ... focal length of the camera to the image plane in y direction
cx ... position of the camera on the image plane in x direction
cy ... position of the camera on the image plane in y direction

It should also be mentioned that Kinect Fusion applies a bilateral filter to the raw
depth image before computing V . The purpose of that is to reduce noise of the depth
images[NIH+11].

Computing the normal map N means to calculate the normal of each vertex in V . This
can be done by simply taking one vertex v and two other vertices a and b, which are
neighbours of v in the depth image. Then the cross product of v to a and v to b is the
normal vector of v[NIH+11].

Computing the vertex and normal map is essential for being able to estimate the sensor
or camera pose later[NIH+11].

2. Surface Reconstruction Update

For extracting a surface of the depth image we need a function to represent it. Therefore
we use the TSDF (Truncated Signed Distance Function). Before we explain the TSDF ,
we first take a look at the normal SDF (Signed Distance Function). Simply explained
the SDF is a function, which takes as input a 3 dimensional point p = (x, y, z) and
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2.1. Kinect Fusion to reconstruct 3D Models

outputs the shortest signed distance of p to a surface within a defined metric (e.g. the
point (1,3,7) is 5(cm) away from the surface or SDF ((1, 3, 7)) = 5)[OF03]. The sign
of the distance is determined whether p lies beyond (positive sign), behind (negative
sign) or exactly on the surface (then distance is 0) respectively to the camera position.
So the distance is positive, if camera and p are on the same side of the surface, and
negative or 0 otherwise. In Kinect Fusion the calculation of the SDF is simplified by
only determining the signed distance between the camera position and p only along the
z-direction in camera space[NIH+11]. TSDF is actually the same concept except of
taking only points in a defined range or truncation band µ into account. The distance
inside the truncation band µ needs to be normalized dividing it by µ. If a point’s distance
from the surface is bigger than µ, it is set to either 1 (far beyond the surface) or -1 (far
behind the surface)[NIH+11]. The surface can also be defined as an implicit function
TSDF (p) = 0, p ∈ R3.

Since it is not possible to compute the TSDF continuously, we have to sample it along
a 3 dimensional grid with a specific resolution. The grid consists of multiple voxels
(imagine a 3D pixel or cube with 8 vertices) and for each of them the signed distance is
computed[NIH+11]. In Figure 2.2 is also a 2D example for a TSDF .

When calculating the signed distance for a voxel, we first need to project the position
of a voxel back to the depth image plane, so the corresponding depth measurement
can be obtained. Which position of the voxel is taken for the projection and which
for saving the distance depends on the implementation. For our implementation the
middle of a voxel is used for projection and the minimum vertex of a voxel (the vertex
which has the smallest x,y and z coordinates amongst the 8 vertices of a voxel) is used
for saving the distance. The projection from world to camera space of a voxel is done
by first multiplying its middle position with a matrix defining the estimated camera
rotation/translation. After that the position is in camera space and is multiplied by a
second matrix defining the camera intrinsics (already mentioned in "Surface Measurement"
as K. It is used to transform 3D points from camera space onto the depth image plane).
Because there can not be an estimated camera pose for the very first depth image, in
the first iteration an initial guess is used (e.g. (0, 0, 0) as the camera’s position in world
space or a matrix for the estimated camera pose without any rotation or translation at
all). When converting the middle position of a voxel to a point c in camera space by
multiplying it with the matrix for the estimated camera pose, Kinect Fusion gets the
distance by calculating the difference between the z coordinate of c and the corresponding
depth measurement[NIH+11].

The reason for using TSDF is the easy way of fusing it. Because for every depth image,
which comes as input for Kinect Fusion, a single TSDF is computed. All TSDFs
can be fused to a single TSDF by taking the average of each voxel’s computed signed
distances. The detailed mathematics will be explained in our "Method" chapter, since
this processing stage is the vital part to understand our new method of integrating the
depth measurements into the 3D model[NIH+11].
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2. Theory

Figure 2.2: 2D TSDF of a 2D surface marked as a red line. For each voxel, here simplified
as a 2D square, the shortest signed distance from the square to the red marked surface is
computed. In this example the signed distance is depicted inside of each square[Kin].
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2.1. Kinect Fusion to reconstruct 3D Models

3. Surface Prediction

In this processing stage the TSDF is raycasted from the depth image along the estimated
camera pose in order to create another point cloud consisting of a vertex and normal map.
Imagine for every pixel in the depth image, a ray is sent starting from the estimated
camera pose, going through the pixel into the 3D grid representing the TSDF . Actually
the ray does not start from the camera position, but from the pixel’s depth, since any
smaller depth lies beyond the surface and the TSDF will be 1. While the ray marches
through the 3D grid with a step size of the voxel length, it stops when a zero crossing in
the grid is found (when the TSDF changes from negative to positive or vice versa). The
position for the zero crossing is then saved in the vertex map. The corresponding normal
can be calculated by the gradient on the zero crossing, which is computed by the value
change of nearby voxels’ TSDF values.[NIH+11].

These steps finally generates a vertex and normal map of all fused TSDFs representing
the global 3D surface. That vertex and normal map can be used to compare it with the
vertex and normal map computed with the raw depth image of the first step "Surface
Measurement" to finally estimate the camera position[NIH+11].

4. Sensor Pose Estimation

For estimating the position of the camera to be able to update the TSDF , the ICP
(Iterative Closest Point) Algorithm is used. ICP takes two point clouds A and B, in
our case B is the vertex and normal map of the "Surface Measurement" and A is the
vertex and normal map of the "Surface Prediction". In Figure 2.3 the concept of ICP is
explained by an example. ICP consists of two parts, first the data association and second
the transformation[Low04].

In data association we need to find for every point in B an associated point in A. That
is done by an algorithm called Projective Point Plane Data Association. The algorithm
searches for every point in B the closest point in A, after projecting them into camera
space of the current estimated camera pose[PB13].

In the transformation step after finding all associated point pairs of A and B, ICP searches
for a matrix M representing the camera rotation and translation, which minimizes a
defined error metric between A and B when applyingM to B. Since A is not only seen as
a raw point cloud but the predicted global surface, the point-to-plane error metric is used.
Therefore the sum of the least squared distances between all point pairs is calculated,
while the distance is defined as the smallest distance from point b in B (b is transformed
by applying matrix M to B) to the tangent plane of point a in A. In short we have to
find a matrix M which minimizes the error distance of this equation.[Low04]

A = {(v, n)|v ∈ R3, n ∈ R3}
B = {(v, n)|v ∈ R3, n ∈ R3}
v ... vertex
n ... normal

9



2. Theory

Figure 2.3: Example for the ICP Algorithm. Two different point clouds a) and b) of the
same object (a hand) are aligned with ICP. On c) the hands are misaligned, on d) the
hands are correctly aligned by ICP[MMPGGMG16].

argminM
∑

(vA,nA)∈A,(vB ,nB)∈B((M ∗ vB − vA) ∗ nA)2

Solving the equation and finding the matrix M of the camera rotation and translation
is mathematical a bit more difficult and can be examined for further explanation here
[Low04]. To put it simply the matrix M is approximated over several iterations. In the
first iteration an initial solution M is set and refined in the next iterations using an
output B′ created by applying M to B. For B′ the data association is done again with
A and according to that another M ′ is heuristically found, which updates or refines M
by M = M ′ ∗M . This procedure iterates until M converges and the decrease of the
point-to-plane error between B′ and A gets negligible.

10



2.2. Data Structures for the Voxel Grid

2.1.2 Procedure

When applying the above mentioned processing steps on depth images, there is a specific
order using them. To the very first depth image step 1 "Surface Measurement" and step
2 "Surface Reconstruction Update" will be applied. Step 3 "Surface Prediction" and 4
"Sensor Pose Estimation" are not necessary, since only one depth image was obtained.
After obtaining a new depth image, first step 1 and then step 3 and 4 will be applied
before step 2. That is because before updating the surface with step 2 it is necessary to
estimate the camera pose of the new depth image with step 3 and 4 according to the
current reconstructed surface (the reconstructed surface from previous depth images, e.g.
from the first depth image)[Kin].

2.2 Data Structures for the Voxel Grid

Now that we know how Kinect Fusion works, we take a look into some data structures
we use to compute the sampled TSDF as a voxel grid. Because for larger scenes the grid
becomes very large, we need to use data structures which reduce the voxels to an amount
which actually has to be computed. Therefore we are going to look at two solutions,
which speed up the computation time.

2.2.1 Grid as Hash Table

The first solution is called Voxel Hashing[MNS13]. Here we use a hash table to store each
of the voxels. In a hash table, data is stored in an associated manner, which means every
data element has its own unique index or key in an array. That makes insertion, retrieval
and searching of data elements very fast (constant time complexity or O(1)), since we
just need to compute the key for a data element. For computing the key a hash function
is used, which takes as input a data value and outputs the corresponding key[Kar20].

In our case we have to imagine a uniform infinite 3D grid consisting of so called voxel
blocks. A voxel block is basically a cube consisting of 8 x 8 x 8 or 512 voxels and has
a hash key, which can be computed with its position. The position of a voxel block is
indexed with integers in (x, y, z) direction, e.g (0, 0, 0) would be the voxel block located
on the origin and (1,0,0) would be its neighbouring voxel block in x direction. The hash
function takes the indexed position and calculates the sum of its components (x,y,z),
while every component is multiplied with large prime numbers. The sum is cut down
by an array size n with the modulo operator, to ensure the hash key is smaller than
n[MNS13].

p1, p2, p3 ∈ N3...largeprimenumbers x, y, z ∈ Z H(x, y, z) = (x∗p1 +y∗p2 +z ∗p3)modn

Allocation

Since only a small proportion of voxel blocks is likely to be interfering with the measured
surface, we take advantage of the TSDF , mentioned in "Surface Reconstruction Update".
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2. Theory

Because TSDF only takes points into account which lies within a truncation band µ, we
only need to allocate voxel blocks, which lies fully or maybe partially in this truncation
band. This can be simply done by backprojecting for every pixel of the depth image a
line from d−µ to d+µ in world pace, while d is the depth measurement for a pixel. That
line intersects a specific number of voxel blocks, which will be allocated to corresponding
hash keys[MNS13].

Because hash collision is possible, which happens if two or more voxel blocks have the
same hash key, we need to use hash buckets. When using hash buckets, it is basically
a combination of the hash table and a linked list. Every hash key or entry in the hash
table is a header to a linked list or also called bucket with a specific size. When a voxel
block a is already allocated at the header with a hash key k and another voxel block b
has also k, b is allocated at the next free entry in the bucket. In case the bucket will
overflow, the last entry of the bucket is reserved as a pointer to another bucket’s free
entry. So when reaching the last entry of a bucket, another free entry of another bucket
is searched in the entire hash table, in which the voxel block is allocated. The pointer to
that allocated voxel block is saved in the last entry of the bucket[MNS13]. In Figure 2.4
the whole concept of Voxel Hashing is illustrated as a 2D example.

During allocation we keep track of the allocated voxel blocks in two lists. The first list
saves all allocated voxel blocks. The second list only saves the allocated voxel blocks,
which are currently visible (which means only the allocated voxel blocks which are in
the current camera frustum). When new depth images are scanned and the camera was
rotated or translated, both lists will be updated. In the first list, new allocated voxel
blocks are added to the previous ones, since the camera now scans a new area. In the
second list, already allocated voxel blocks of previous depth images, which moved out of
the camera frustum, are removed. New or allocated voxel blocks, which moved inside the
camera frustum, are then added to the second list[MNS13].

Integration

When integrating a depth image or updating the TSDF, we only need to iterate over the
list of visible allocated voxel blocks, because only the voxels of those can be backprojected
onto the depth image plane. So the number of voxel blocks is reduced to those, which
are inside the camera frustum and interfere with the truncation band µ. Integrating a
voxel block is simply done by iterating over its 512 voxels and calculate for each voxel
the signed distance like already explained in "Surface Reconstruction Update"[MNS13].

Grid as Octree

Another possibility to structure the data of the voxels is an octree. An octree is a tree,
in which every node has eight children nodes. In 3D space, the root node is a cube
with a defined edge length. That cube can be divided into eight equally sized children
cubes/nodes recursively. So every children cube/node can be divided again into eight
equally sized children cubes/nodes. In our case every node represents a voxel[SVB99].
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Figure 2.4: Illustration of Voxel Hashing. On top the world is depicted simplified as a 2D
infinite grid. The green symbol represents the camera. The blue and red marked squares
are allocated voxel blocks, for which a hash key has been computed. In the middle the
hash table with buckets containing the entries of the voxel blocks is depicted. On the
bottom the pointer from the hash entries to the voxel blocks is depicted[MNS13].

For allocation we only need to build a sparse octree by only using the voxels interfering
with the truncation band µ similar to the hash table. However there is a difference
compared to the hash table when allocating or inserting voxels into the octree. Before
inserting voxels, we first need to find the boundaries or the size of the octree. For every
depth image this is simply done by keeping track of the minimum and maximum position
amongst all allocated voxels. The octree size or its edge length is the maximum difference
between the minimum and maximum position in x, y or z direction. Inserting the voxels
is done by looking up recursively in which octree node the voxel lies in space. Visible
voxels (inside the current camera frustum) and not visible voxels (outside of the current
camera frustum) can be tracked in two separate lists like for the hash table.

For integration we simply iterate over the allocated visible voxels and calculate the signed
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distance like explained in "Surface Reconstruction Update".

When comparing the computation time with the hash table, the octree needs significantly
more time. Allocating n voxels in the hash table has a time complexity of O(n), since
inserting one voxel has only O(1). When allocating n voxels in the octree, we first
need to find the voxels with the minimum and maximum position, which already has a
time complexity of O(n). For inserting one voxel into the octree, the time complexity
is O(log(m)) while m is the depth of the octree. The octree’s depth m is defined by
the longest path to a leaf node (a node without any children nodes[SVB99]). Therefore
inserting n voxels has a time complexity of O(n ∗ log(m)). Computing the octree size
and the allocation of n voxels in the octree have a time complexity of O(n+ n ∗ log(m)).
Integrating n voxels has a time complexity of O(n ∗ log(m)), since searching one voxel in
the octree takes O(log(m)).

Because of the worse computation time, we rather use the hash table for allocation and
insertion. However an octree offers some advantages when generating the mesh of the
voxel grid, which will be further explained in the next chapters and especially more in
detail in the "Method" chapter.

2.2.2 Meshing of Voxel Grid

To obtain a visual surface we generate a mesh of the voxel grid by using the Marching
Cubes Algorithm. Here we iterate over all allocated voxels and generate polygons for
each of them. Each voxel has eight vertices while each of them has a signed distance
marking them as inside (negative distance) or outside (positive distance) of the surface.
When processing one voxel, the goal is to separate the inside vertices from the outside
vertices with the generated polygons, since that represents the actual surface. That
means, that all zero crossings of the voxel edges (an edge has a zero crossing, if on one
end the vertex has a negative distance and on the other end the vertex has a positive
distance) are connected to polygons so that inside vertices are separated from the outside
vertices. All in all there are 28 possibilities, in which the eight vertices can be marked
as inside or outside. For every possiblity it is already saved, how the zero crossings
have to be connected to generate the polygons. All possibilities can be broken down to
rotational invariant base cases, which are also illustrated in Figure 2.5. The position
of a zero crossing on an edge is found by calculating the linear interpolated position of
the two vertices on the edge considering their signed distances to the surface. If the
signed distance of one vertex is closer to zero (closer to the surface), than the position of
the zero crossing is closer to that vertex and vice versa[LC87]. In Figure 2.6 the whole
concept of the Marching Cubes Algorithm is illustrated on a 2D example.

When taking Voxel Hashing into account, we only iterate over all allocated voxels
and generate the polygons like mentioned above. However when using an octree, we
cannot use the normal Marching Cubes Algorithm. That is because we also iterate over
coarser nodes/voxels, which do not necessarily have the same resolution of neighbouring
nodes/voxels. For example the edge of a voxel can be neighboured to a smaller or longer

14
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Figure 2.5: Marching Cubes Cases for a voxel. For each voxel considering the surface the
inside vertices are marked with a red dot and the outside vertices without one. For each
combination of inside and outside vertices a constellation of polygons separating them
is generated. Although there are 28 possibilities of inside and outside vertices for one
voxel, a lot of combinations are rotational invariant and can be broken down into these
15 cases[LHG17].

edge of a voxel, which is not on the same level or depth in the octree. If we would just
generate the polygons for every node/voxel in the octree independently, there could
appear cracks along such edges, since the zero crossing of a bigger edge must not match
with the zero crossings of possibly neighboured smaller edges. Therefore, we have to use a
Marching Cubes Algorithm of this paper [MKH07], which is adapted to octrees. Shortly
explained, for edges of coarser voxels which are neighboured to smaller edges of finer
voxels, the zero crossings of the bigger edges are replaced with those of the neighboured
smaller edges. This should eliminate possible cracks. The problem and avoidance of
possible cracks is also illustrated in Figure 2.7. Because the Marching Cubes Algorithm
adapted to octrees can also mesh coarser leaf nodes, this offers an advantage when it
comes to missing measurements or noise in the TSDF of the voxel grid[MKH07]. Further
explanation to that will follow more in detail in the "Method" chapter.

15



2. Theory

Figure 2.6: Marching Cubes on a 2D grid. A 2D grid with the voxel’s vertices (simplified
as 2D squares) marked as inside (red) and outside (blue) of the surface. The not
interpolated zero crossings are connected to each other and marked as a violet line. The
interpolated zero crossings and the surface area are marked with a light blue color[2DM].
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Figure 2.7: Problem with applying normal Marching Cubes to Octrees. On top you
can see a coarser voxel node and to its right finer voxel nodes, on each of them normal
Marching Cubes is applied independently. It is very clear that the edge of the face f does
not match with the faces f1, f2, f3 and f4, which will cause a crack in the surface. When
applying the Marching Cubes adapted to Octrees, the coarser edge of f gets replaced by
the finer edges of f1, f2, f3 and f4 in order to avoid cracks, which is also depicted on the
bottom[MKH07].
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CHAPTER 3
Method

To improve the integration of the depth information into the global 3D model, we are
going to change the processing step "Surface Reconstruction Update" of "Kinect Fusion".
When taking a closer look at it, there are several issues to discuss. Firstly Kinect Fusion
does not compute for the TSDF the real distance from a voxel to its corresponding
depth measurement. It simplifies by transforming the voxel’s position into camera space
and calculates the signed difference of its z-coordinate to the depth measurement. Since
this is an inaccuracy, we transform the corresponding depth measurement to a 3D point
in world space and calculate the shortest distance to one of the voxel’s eight vertices.
Secondly Kinect Fusion only considers the current depth image when computing the local
TSDF (local TSDF means the TSDF of one depth image, the global TSDF is the fused
TSDF of all depth images) and ignores nearby depth measurments of previous/older
scans. When backprojecting a depth measurement to a 3D point in the voxel grid, it falls
inside one voxel. However inside this voxel there could also be other depth measurements
of previous/older depth images. In order to take also the other depth measurements into
account, we save the coordinate information of all depth measurements inside a voxel
as a median vector. For computing the TSDF of one voxel, we calculate the shortest
distance from its eight vertices to the corresponding median vector. The corresponding
median vector can be inside the voxel itself or in another voxel. Saving the median vector
for every voxel is also the foundation for a new surface operator currently researched and
developed. The surface operator marks vertices as inside or outside of the surface using
the median (and also statistical variance) vector of all backprojected depth measurements
inside one voxel.

3.1 Preliminaries

In order to explain the above mentioned improvements, some definitions has to be made.
The voxel grid is defined as
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G = {(p,m, d, nm, w, s)|p ∈ Z3,m ∈ R3, d ∈ R, nm ∈ N, w ∈ N, s ∈ R}

consisting of tupels representing each voxel with p (indexed position of the voxel),
m (median vector of all backprojected depth measurements inside the voxel), d (global
TSDF of the voxel), nm (number of all backprojected depth measurements inside the
voxel), w (number of update cycles of the voxel) and s (size or edge length of the voxel).
The kth depth image is defined as

Ik = N2

depth : Ik− > R
depth((u, v)) = t
(u, v) ∈ N2

t ∈ R

u and v are the pixel coordinates and t is the depth measurement. To be able to
project the voxels from world space onto the depth image plane and the depth measure-
ments back into world space, a matrix K for the camera intrinsics is defined as already
explained in the Kinect Fusion pipeline. For the camera extrinsics a 4x4 matrix CEST is
defined representing the estimated rotation and translation of the camera.

3.2 Old Integration
As already mentioned Kinect Fusion only computes the TSDF for a voxel by calculat-
ing the difference between the depth measurement and the z-coordinate of the voxel’s
position in camera space. Therefore we first need to project the position p = (x, y, z)
of a voxel g ∈ G back onto the depth image plane to get the corresponding depth
measurement[NIH+11].

(1)


x′

y′

z′

1

 = CEST ∗


x
y
z
1


(2)

uv
1

 = 1/z′ ∗K ∗

x′y′
z′


(3) depth((buc, bvc)) = t

In the first step we transform the homogenized position p = (x, y, z, 1) of g into the
camera space with CEST . Next we project the transformed position p′ = (x′, y′, z′) of g
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from camera space onto the depth image plane by multiplying it with K and 1/z′. In the
last step we take the depth measurement t at the pixel coordinates (u, v) (u and v are of
course rounded down to integers), which we obtained in the previous step[NIH+11].

Now that we have the depth measurement t and z′, we can calculate the local TSDF
dlocal of the voxel g[NIH+11].

dlocal =


1, if t− z′ > µ

−1, if t− z′ < −µ
t−z′

µ , otherwise

After that we only need to fuse dlocal with the TSDF s of previous depth images to
the global TSDF d, which means calculating the average of all TSDF s of that voxel.
Calculating the average can be done incrementally with the w property of the voxel g,
which tracks the number of updates or computed TSDF s. d, which is initially zero, can
be calculated like that[NIH+11]:

d = d∗w+dlocal
w+1

Since we now added the local TSDF dlocal to the global TSDF d, we only need to
increment w by one for the next depth image or update cycle[NIH+11].

w = w + 1

3.3 New Integration

For the new integration of a depth image, we first update the median vectors of all voxels
with the corresponding depth measurements. To do that, we first iterate over all pixels of
the depth image and backproject them to 3D points in world space of the voxel grid. For
a 3D point we calculate its indexed position in the voxel grid by dividing every coordinate
with the voxel size in order to find out in which voxel the 3D point lies. After that the
median vector of the voxel will be incrementally updated with the 3D point (See also
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3. Method

Algorithm 3.1).

Algorithm 3.1: Updating median of voxels
// Hashfunction returns a voxel according to an indexed

position

1 Hash : Z3− > G

2 Hash(pos) = g

3 pos ∈ Z3

4 g ∈ G

// Updating all median vectors

5 for ∀(u, v) ∈ Ik do
// 3D position in camera space of (u, v)

6 pcam = depth(u, v) ∗K−1 ∗

uv
1


// transformed pcam into world space

7 pworld = C−1
EST ∗


pcam.x
pcam.y
pcam.z

1


// indexed voxel position

8 pos = b pworld
voxelsizec

// corresponding voxel v for indexed pos

9 v = Hash(pos)

// Updating median vector v.m and the counter v.n of v

10 v.m = (pos+v.n∗v.m)
(v.n+1)

11 v.n = v.n+ 1

12 end

After updating the medians the TSDF of the voxels can be calculated. Therefore
we iterate over all currently visible voxels (voxels which are inside the frustum of the
estimated camera pose), which we define as Gvis ⊆ G. Every voxel will be matched with
its corresponding depth measurement by backprojecting its middle position onto the depth
image plane. When obtaining a depth measurement for a voxel v, it is backprojected
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3.3. New Integration

into the 3D voxel grid in order to find out in which voxel v2 it lies. The local TSDF of
v can be calculated with the median vector of v2. Later the global TSDF of the voxel
v can be updated with the local TSDF like already explained in the "Old Integration"
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(See also Algorithm 3.2).

Algorithm 3.2: Updating TSDF of voxels with median
1 for ∀v ∈ Gvis do

// transform v.p of v from world space into camera space

2 p = CEST ∗


v.p.x
v.p.y
v.p.z

1


// transform p from camera space onto the depth image

plane

3

uv
1

 = 1
z ∗K ∗

p.xp.y
p.z


// depth measurement t of (u, v)

4 t = depth(buc, bvc)

// transform depth measurement t back to camera space

5 pcam2 = t ∗K−1 ∗

bucbvc
1


// transform pcam2 into world space

6 pworld2 = C−1
EST ∗


pcam2 .x
pcam2 .y
pcam2 .z

1



7 p2 =

pWORLD
2 .x
pWORLD

2 .y
pWORLD

2 .z


// indexed voxel position pos of backprojected depth

measurement

8 pos = b p2
voxelsizec

// voxel v2, in which depth measurement lies

9 v2 = Hash(pos)

// calculate local TSDF with median vector of v2

10 TSDFlocal = calculateTSDF (v, v2.m, t)

// update global TSDF and the counter v.w

11 v.d = TSDFlocal+v.w∗v.d
v.w+1

12 v.w = v.w + 1

13 end
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3.3. New Integration

To calculate the local TSDF of a voxel v we compute its shortest distance among its
eight vertices to its corresponding median vector m of v2. Because we lose the indication
whether v lies behind or in front of the surface when calculating only the shortest distance,
we simply apply the sign of the difference between the depth measurement t and the
z coordinate of v.p in camera space: t− p.z (p is the transformed point v.p in camera
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space, see also Algorithm 3.3).

Algorithm 3.3: Calculating TSDF of voxel with median vector
1 Function calculateTSDF(voxel ∈ G, median ∈ R3, depth ∈ R):

// transform the position voxel.p of the voxel from world
space into camera space

2 p = CEST ∗


voxel.p.x
voxel.p.y
voxel.p.z

1


// calculate the difference of p.z and the depth

measurement in camera space to indicate whether the
voxel lies in front, behind or on the surface.
Signum function takes the sign of the difference (1
or -1. 0 if there is no difference)

3 sign = signum(depth− p.z)

// calculate and save distances from all vertices of the
voxel to the median vector

4 n = 0

5 distances[8]

6 for i = 0; i ≤ 1; i = i+ 1 do
7 for j = 0; j ≤ 1; j = j + 1 do
8 for k = 0; k ≤ 1; k = k + 1 do

9 distances[n] = length(median−

voxel.p.x+ i ∗ voxelsize
voxel.p.y + j ∗ voxelsize
voxel.p.z + z ∗ voxelsize

)

10 n = n+ 1

11 end

12 end

13 end

// take the minimum distance of all calculated distances

14 distancemin = min(distances)

// apply the sign to the minimum distance

15 distancemin = distancemin ∗ sign

// return local TSDF of the voxel, calculated with the
minimum distance

16 return TSDF =


1, if distancemin > µ

−1, if distancemin < −µ
distancemin

µ , otherwise
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Figure 3.1: Example of noise in 2D grid with voxels simplified as 2D squares. On the
grid the vertices are marked as green (distance to surface could be computed) and red
dots(distance to surface could not be computed, since it is outside of the camera frustum).
The camera is depicted with a black angle and the camera frustum with red lines.

3.3.1 Marching Cubes vs. Adapted Marching Cubes to Octree

We earlier mentioned that we do not want to use only the normal Marching Cubes
Algorithm but also the adapted Marching Cubes Algorithm for Octrees [MKH07]. The
Marching Cubes for Octrees provides a fairly significant advantage considering noise in
the voxel grid. Speaking about noise in the voxel grid means that not every voxel, which
was allocated and updated, necessarily have a TSDF at all of its eight vertices. Some
vertices might not have any TSDF value due to noise caused by camera movement or
general noisy depth images. The following Figures 3.1 and 3.2 should make the problem
more clear.

Because the normal Marching Cubes Algorithm can only generate polygons for each voxel
independently, it has to ignore those which do not have at every vertex a TSDF . However
for the Octree, the adapted Marching Cubes Algorithm can also generate polygons for
coarser nodes/voxels. Even if the finer voxels of the Octree lack in TSDF information,
the coarser voxels containing them might have enough information to generate fairly
accurate polygons although it does not has the 100% accuracy of meshing every single
voxel independently. That could probably lead to a more watertight, dense and better
reconstruction of the surface. The following Figures 3.3 and 3.4 shows the advantage of
the Marching Cubes for Octrees more clearly.
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Figure 3.2: Example of noise in 2D grid with voxels simplified as 2D squares. When the
camera rotates or translates in the next depth image, it is possible that for some vertices
it could still not be computed a distance to the surface because of being outside of the
camera frustum or no existing depth measurement at all. This can be caused by camera
movement or noisy/grainy depth images.

3.3.2 Conversion - Hashtable to Octree

Since we are updating the TSDF for the voxel grid via the hash table, we need to convert
the hash table to an octree to be able to use the adapted Marching Cubes Algorithm.
For explaining the conversion the hash table is defined as:

Hashtable = {(vb, p)|vb ⊆ G ∧ |vb| = 512, p ∈ Z3}

It consists of tuples representing the voxel blocks containing a subset vb of G (with 512
voxels) and a voxel coordinate p (which is the indexed position of the voxel block). The
octree is defined as

Octree = {(p0...p7, d0...d7, children)|p0...p7 ∈ [0, 1]3, d0...d7 ∈ CV s, children ⊆ Octree ∧
|children| <= 8}

It consists of tupels representing the octree nodes. Each octree node contains the
positions of its eight vertices p0...p7 with coordinates ranging from 0 to 1, eight TSDF
values d0...d7 which are separately saved in CV s = {d|d ∈ R} ("CVs" stands for corner
values) and children nodes children which are a subset of the Octree itself.
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Figure 3.3: Normal Marching Cubes applied to a 2D grid. Same 2D grid as in Figure
3.2. For each voxel, simplified as a 2D square, the Marching Cubes Algorithm is applied
independently. However for 4 2D squares a distance for one vertex is missing which makes
it not possible to apply Marching Cubes on them. The 2D squares, on which Marching
Cubes is appliable, are marked with a check. The 2D squares, on which Marching Cubes
is not appliable, are marked with a cross.

Figure 3.4: Advantage of Marching Cubes for Octrees shown on a quadtree (which is
basically an octree in 2D. Every node can have 4 children nodes instead of 8). It is the
same 2D grid as in Figure 3.2. For each voxel, the Marching Cubes Algorithm is applied.
However the voxels with the vertex without a computed distance can be summarized in
the coarser voxel, on which Marching Cubes can be applied. That makes it possible to
also mesh areas, in which some vertices might not have any computed distance due to
noise.
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First we need to find the boundaries or the size of the octree. To do that, we iterate over
all voxel blocks of the Hashtable and search for the minimum and maximum position.
The indexed positions of the voxel blocks always have to be transformed to coordinates
indexing the voxels by multiplying them with 8, since one voxel block is 8 voxels wide (e.g.
the voxel block at index (1, 0, 0) starts at the indexed voxel coordinate (8, 0, 0)). After
that we calculate the difference between the minimum and maximum position and take
the biggest difference in the x, y or z direction as the width of the octree. It always have
to be added 8 to the width since the maximum position is not the real maximum and
includes 8 further voxels of the voxel block’s width. Since we do not count the number of
voxels but the corners of the voxels as the width, the last corner of the last voxel has to
be counted as well to the width. Therefore it also needs to be added 1 to the maximum
width(See also Algorithm 3.4).

For now the octreesize is not necessarily a number equals to 8i, i ∈ N, therefore we first
calculate the octreedepth with the octreesize by taking the logarithm of octreesize3 to
the base 8 and rounding the number up.

octreedepth = dlog8(octreesize3)e

Then the correct octreesize can be calculated with the octreedepth by taking the cube
root of the number of voxels (the number of voxels is 8octreedepth)
3√

8octreedepth = 2octreeDepth

After computing the octreedepth and octreesize we finally convert the hash table by
inserting the TSDF values with their position from the voxel grid into the octree.
The cardinality of CV s or the total number of corner values can be set to octreesize3.
Conversion is done for every voxel block vb by iterating over its 512 voxels with (x, y, z) ∈
{0, 1, ..., 8}3. The position for every voxel is calculated by vb.p ∗ 8 + (x, y, z), which we
need to retrieve the voxel data of the hash table. When obtaining the TSDF value for
vb.p ∗ 8 + (x, y, z), we still need to convert the voxel position into an octree position, since
the corner positions of octree nodes range from 0 to 1. Thus we have to shift the voxel
data’s position to the origin (0, 0, 0) with (minx,miny,minz) and divide the position
by the octreesize. For inserting the TSDF value at the octree position, we define a
recursive function called "insertPointIntoOctree" which takes as input an octree node
(which will be the root node of the octree), the octree position of the TSDF , the TSDF
value and the octreeDepth(See also Algorithm 3.5).

For insertion we recursively traverse through the octree starting from the node currentNode
(which is the root node at the beginning) and search for a node which has a corner
with the octree position octreePos of the TSDF value. If the current depth level depth
(we start at 0) is smaller than octreeDepth, we continue to search for a node with the
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Algorithm 3.4: Compute boundaries of the hashtable for the octree
// minimum and maximum value along x,y and z direction is

set to −∞ and ∞
1 minx,miny,minz = −∞
2 maxx,maxy,maxz =∞
// search for the minimum and maximum position amongst all

vb in Hashtable
3 for ∀vb ∈ Hashtable do

// indexed position of the voxel block vb converted to
indexed voxel coordinate pos

4 pos = vb.p ∗ 8
5 if pos.x < minx then
6 minx = pos.x
7 end
8
9 if pos.y < miny then

10 miny = pos.y
11 end
12
13 if pos.z < minz then
14 minz = pos.z
15 end
16
17 if pos.x > maxx then
18 maxx = pos.x
19 end
20 ;
21 if pos.y > maxy then
22 maxy = pos.y
23 end
24 ;
25 if pos.z > maxz then
26 maxz = pos.z
27 end
28 ;
29 end

// select the maximum difference in x,y or z direction as
the width or size of the octree

30 widthx = maxx −minx
31 widthy = maxy −miny
32 widthz = maxz −minz
33 octreesize = max(max(widthx, widthy), widthz) + 8 + 1
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Algorithm 3.5: Insert all points from hashtable into the octree
// root node of the octree

1 rootNode ∈ Octree
// insert all points of all voxel blocks into the octree

2 for ∀vb ∈ Hashtable do
// indexed position of the voxel block converted to

indexed voxel coordinate pos
3 pos = vb.p ∗ 8

// iterate over all voxels in vb
4 for x = 0; x ≤ 8; x+ + do
5 for y = 0; y ≤ 8; y + + do
6 for z = 0; z ≤ 8; z + + do

// indexed position of a voxel in vb

7 voxelpos = pos+

xy
z


// voxel v ∈ G

8 v = Hash(voxelpos)
// TSDF value of v

9 TSDF = v.d
// converting the indexed voxel position to an

octree position

10 octreePos =

voxelpos−

minxminy
minz


octreesize

// insert TSDF value with the octree position
into the octree

11 insertPointIntoOctree(rootNode, octreePos, TSDF, 0)
12 end
13 end
14 end
15 end

32



3.3. New Integration

octreePos. If the octreePos is inside or along an edge of the currentNode, we know
that the octreePos has to be in one of the children nodes of the currentNode. Therefore
we pass the octreePos into one of the children nodes, which contains the octreePos.
That is done by recursively calling "insertPointIntoOctree" with the according children
node of currentNode.children, the octreePos, the TSDF value and an increased depth
level of depth+ 1. If the octreePos is on a corner of the currentNode, we search for the
corner which has the same position as octreePos. The TSDF value is inserted for that
corner of the currentNode. If the octreePos is outside of the currentNode, we can stop
searching(See also Algorithm 3.6).

Algorithm 3.6: Insert one point into the octree
1 Function insertPointIntoOctree(octreeNode ∈ Octree,

position ∈ [0, 1]3, TSDF ∈ R, currentDepth ∈ N):
2 if depth > octreeDepth− 1 then
3 return
4 end
5 if position inside or along an edge of octreeNode then
6 for i = 0; i < 8; i+ + do

// pass parameters to the children node which
contains octreePos

7 if position not outside of children octreeNode.children[i] then
8 initialize octreeNode.children[i]
9 insertPointIntoOctree(octreeNode.children[i], position, TSDF, depth+

1)
10 break
11 end
12 end
13 end
14 else if position on a corner of octreeNode then

// assign TSDF value to the correct corner of
currentNode

15 for i = 0; i < 8; i+ + do
16 if octreeNode.pi == position then
17 octreeNode.di = TSDF
18 break
19 end
20 end
21 end
22 else
23 position outside of octreeNode
24 end
25 return
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CHAPTER 4
Evaluation

The purpose of the evaluation is to ensure the same reconstruction quality with our
new integration method as with the old integration method, so it is reliable for further
development of the surface operator using the median and variance vectors for marking
vertices as inside or outside. Therefore we want to show the difference between the
old and new integration methods as well as the normal and Octree Marching Cubes
Algorithm. The setup for the comparison are three different scenes, in which we scan
a room with the Kinect v2 sensor. In the first scene the room has only easy geometric
shapes, e.g. a couch (See also Figure 4.1). In the second scene, we add more complex
geometric shapes, e.g. a table (See also Figure 4.2). In the third scene more complex
and geometrically finer shapes are added, which are also harder to reconstruct (See also
Figure 4.3).

Considering that we generate the models with different combinations of integration/meshing
methods and want to compare all of them with the basic model (the mesh generated
with the old integration and normal Marching Cubes Algorithm), we have 3 comparisons
for each scene:

1. Mesh with old integration / normal Marching Cubes vs. Mesh with new inte-
gration / normal Marching Cubes

2. Mesh with old integration / normal Marching Cubes vs. Mesh with new inte-
gration / Marching Cubes for Octrees

3. Mesh with old integration / normal Marching Cubes vs. Mesh with old integra-
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4. Evaluation

Figure 4.1: RGB Image Scene 1. Only a couch in the scene.

Figure 4.2: RGB Image Scene 2. A twisted table to add complexity to the scene.
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Figure 4.3: RGB Image Scene 3. Finer objects are now placed on the table to add more
complexity

tion / Marching Cubes for Octrees

4.0.1 Hausdorff Distance

When comparing two meshes, a value is required to be able to measure the difference
between them. For that reason we use the directed Hausdorff Distance[Ruc96]. It is a
simple algorithm which measures the distance between a target point set A and a source
point set B. That means the difference from B to A will be computed. To put it simply
the directed Hausdorff Distance is very small if a lot of points in B have a small distance
to a point in A. Referring that to meshes the point sets are represented by the vertices of
the polygons.

For calculation a help function

D(x,K) = min{d(x, k)|k ∈ K}

is used which calculates the minimum distance from a point x to a point set K ∈ R3

with a defined metric

d(a, b) = sqrt((a.x− b.x)2 + (a.y − b.y)2 + (a.z − b.z)2), a, b ∈ R3
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4. Evaluation

The directed Hausdorff Distance from B to A can be calculated with,

hausdorffmax(A,B) = max{D(b, A)|b ∈ B}

which is the maximum value of the point’s minimum distances from B to A[Ruc96].

Because taking the maximum distance is heavily affected by outlier points and probably
distorts the real difference between A and B, we rely more on other values like the mean
or RMS (Root Mean Square)[Bir19]. For the mean the average of the point’s minimum
distances is calculated instead of the maximum value.

hausdorffmean(A,B) = avg{D(b, A)|b ∈ B}

The RMS uses a slightly different metric,

d(a, b) = (a.x− b.x)2 + (a.y − b.y)2 + (a.z − b.z), a, b ∈ R3

, which is the squared distance between a and b. Then the average over the squared
minimum distances of the points from B to A is computed. The final Hausdorff Distance
as RMS is the square root of the average.

hausdorffRMS(A,B) =
√
avg{D(b, A)|b ∈ B}

In Figure 4.21 are all directed Hausdorff Distances as RMS depicted (the target point set
is always the original mesh and the source point sets are all new meshes generated with
the new integration and/or Marching Cubes for Octrees).

4.0.2 Meshing - only with Marching Cubes

The results for the comparisons between the old and new integration while meshes are
only generated with the normal Marching Cubes Algorithm are shown below in Figure
4.4 to 4.7 (First comparison case for every scene, which was previously mentioned in
"Evaluation"):

4.0.3 Meshing - with Marching Cubes and Adapted Marching Cubes
to Octree

The results for the comparisons of the old and new integration while the original model
is meshed with normal Marching Cubes and the other ones are meshed with Marching
Cubes for Octrees are shown below in Figure 4.8 to 4.20 (second and third case for every
scene, which were previously mentioned in "Evaluation"):
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(a) Mesh with old integration / normal Marching
Cubes

(b) Mesh with new integration / normal Marching
Cubes

Figure 4.4: Scene 1 - Mesh with old integration / normal Marching Cubes vs. Mesh with
new integration / normal Marching Cubes. Almost no visible difference between the
old and new integration while both meshes are generated with normal Marching Cubes.
Minor dissimilarities can be spotted on the left bottom of the image in the red marked
area. The RMS of the directed Hausdorff Distance is 5.8 mm.
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4. Evaluation

(a) Mesh with old integration / normal Marching
Cubes

(b) Mesh with new integration / normal Marching
Cubes

Figure 4.5: Scene 2 - Mesh with old integration / normal Marching Cubes vs. Mesh with
new integration / normal Marching Cubes. No visible difference between the old and
new integration, although the RMS of the directed Hausdorff Distance with 6.02 mm
points to small dissimilarities. Differences are probably located in much smaller areas
and more scattered around the whole scene compared to Scene 1.
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(a) Mesh with old integration / normal Marching
Cubes

(b) Mesh with new integration / normal Marching
Cubes

Figure 4.6: Scene 3 - Mesh with old integration / normal Marching Cubes vs. Mesh with
new integration / normal Marching Cubes. Clear visible differences between the old and
new integration considering the finer objects on the table (fascia roll on the left, car in
the left middle, bottle on the right middle and a can on the right. It is slightly noticeable
that the surface of those objects for the new integration are less edgy, fuller and more
watertight. Especially the engine cover of the car seems to be more close to the real
car than with the old integration. However the wheels appears to be more washed-out.
In this scene the bigger differences are also represented in the RMS of the Hausdorff
Distance with 6.57 mm.)
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4. Evaluation

(a) Mesh with old integration / normal Marching
Cubes

(b) Mesh with new integration / normal Marching
Cubes

(c) Mesh with new integration / normal Marching
Cubes

Figure 4.7: Scene 3 - Mesh with old integration / normal Marching Cubes vs. Mesh
with new integration / normal Marching Cubes. A Close-Up of Figure 4.6 to compare
the objects on the table. Especially the reconstruction of the car body and engine cover
seems to be more similar to the real world object in the new integration. Also note
the bottle in the right middle and the can on the right, which have a more watertight
reconstruction in the new integration.
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(a) Mesh with old integration / normal Marching
Cubes

(b) Mesh with old integration / Marching Cubes
for Octrees

Figure 4.8: Scene 1 - Mesh with old integration / normal Marching Cubes vs. Mesh with
old integration / Marching Cubes for Octrees. The advantage of the Marching Cubes
for Octrees is already well perceptible. The smaller and bigger holes in the red marked
areas close up and make the mesh more watertight. The RMS of the directed Hausdorff
Distance is 42.16 mm.
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4. Evaluation

(a) Mesh with old integration / normal Marching
Cubes

(b) Mesh with old integration / Marching Cubes
for Octrees

Figure 4.9: Scene 1 - Mesh with old integration / normal Marching Cubes vs. Mesh with
old integration / Marching Cubes for Octrees. Looking from another perspective there
is also a significant improvement on the left side of the couch in the red marked area.
There are significantly less holes with Marching Cubes for Octrees. The RMS of the
directed Hausdorff Distance with 42.16 mm represents those differences as well.
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(a) Mesh with old integration / normal Marching
Cubes

(b) Mesh with new integration / Marching Cubes
for Octrees

Figure 4.10: Scene 1 - Mesh with old integration / normal Marching Cubes vs. Mesh
with new integration / Marching Cubes for Octrees. When not only using Marching
Cubes for Octrees but also the new integration, there are even less holes visible on the
couch in the red marked area. Compared to the last case in which both meshes have the
old integration, the RMS of the directed Hausdorff Distance is now slightly higher with
42.67 mm.
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4. Evaluation

(a) Mesh with old integration / normal Marching
Cubes

(b) Mesh with new integration / Marching Cubes
for Octrees

Figure 4.11: Scene 1 - Mesh with old integration / normal Marching Cubes vs. Mesh
with new integration / Marching Cubes for Octrees. The same mentioned before applies
from this perspective. There are also less holes along the edge of the couch in the red
marked area. The RMS of the directed Hausdorff Distance is 42.67 mm.
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(a) Mesh with old integration / normal Marching
Cubes

(b) Mesh with old integration / Marching Cubes
for Octrees

Figure 4.12: Scene 2 - Mesh with old integration / normal Marching Cubes vs. Mesh
with old integration / Marching Cubes for Octrees. Only applying Marching Cubes for
Octrees already provides an obviously less holey mesh especially along the edges of the
table and on multiple areas of the couch in the background. The RMS of the directed
Hausdorff Distance is 19.31 mm.
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4. Evaluation

(a) Mesh with old integration / normal Marching
Cubes

(b) Mesh with old integration / Marching Cubes
for Octrees

Figure 4.13: Scene 2 - Mesh with old integration / normal Marching Cubes vs. Mesh
with old integration / Marching Cubes for Octrees. From a closer perspective It is very
clear to see that the legs of the table and also the couch in the background have a more
watertight and full reconstruction. However compared to Scene 1 the RMS of the directed
Hausdorff Distance is lower with 19.31 mm.
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(a) Mesh with old integration / normal Marching
Cubes

(b) Mesh with new integration / Marching Cubes
for Octrees

Figure 4.14: Scene 2 - Mesh with old integration / normal Marching Cubes vs. Mesh
with new integration / Marching Cubes for Octrees. Using also the new integration
the table does not change much in quality compared to only using Marching Cubes for
Octrees. The RMS of the directed Hausdorff Distance is 19.76 mm.
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4. Evaluation

(a) Mesh with old integration / normal Marching
Cubes

(b) Mesh with new integration / Marching Cubes
for Octrees

Figure 4.15: Scene 2 - Mesh with old integration / normal Marching Cubes vs. Mesh
with new integration / Marching Cubes for Octrees. Changing the perspective also shows
that the original mesh has big holes along the edges of the table and on multiple areas
of the couch contrary to the mesh with the new integration and Marching Cubes for
Octrees. The RMS of the directed Hausdorff Distance is 19.76 mm.
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(a) Mesh with old integration / normal Marching
Cubes

(b) Mesh with old integration / Marching Cubes
for Octrees

(c) Mesh with old integration / Marching Cubes
for Octrees

Figure 4.16: Scene 3 - Mesh with old integration / normal Marching Cubes vs. Mesh
with old integration / Marching Cubes for Octrees. The table as well as the car and the
fascia roll have a more watertight surface only using Marching Cubes for Octrees. The
RMS of the directed Hausdorff Distance is 35.63 mm.
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4. Evaluation

(a) Mesh with old integration / normal Marching
Cubes

(b) Mesh with old integration / Marching Cubes
for Octrees

Figure 4.17: Scene 3 - Mesh with old integration / normal Marching Cubes vs. Mesh
with old integration / Marching Cubes for Octrees. Showing the whole scene with four
small objects standing on a table (fascia roll on the left, car in the left middle, bottle in
the right middle and a can on the right), Marching Cubes for Octrees generates a mesh
with significant less holes around especially around the edges of objects. The RMS of the
directed Hausdorff Distance is 35.63 mm.
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(a) Mesh with old integration / normal Marching
Cubes

(b) Mesh with new integration / Marching Cubes
for Octrees

Figure 4.18: Scene 3 - Mesh with old integration / normal Marching Cubes vs. Mesh
with new integration / Marching Cubes for Octrees. Using also the new integration along
with Marching Cubes for Octrees provides even less holes in the mesh compared to using
the old integration. The RMS of the directed Hausdorff Distance has not changed much
with 34.51 mm.
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4. Evaluation

(a) Mesh with old integration / normal Marching
Cubes

(b) Mesh with new integration / Marching Cubes
for Octrees

(c) Mesh with old integration / Marching Cubes
for Octrees

Figure 4.19: Scene 3 - Mesh with old integration / normal Marching Cubes vs. Mesh with
new integration / Marching Cubes for Octrees. A closer perspective to the fascia roll and
the car. The fascia roll on the left and the car on the right have a much more watertight
reconstruction with the new integration and Marching Cubes for Octrees. However there
are also more washed out areas like the wheels on the car with the new integration and
Marching Cubes for Octrees. The RMS of the directed Hausdorff Distance is 34.51 mm.
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(a) Mesh with old integration / normal
Marching Cubes

(b) Mesh with new integration / March-
ing Cubes for Octrees

(c) RGB image

Figure 4.20: Scene 3 - Mesh with old integration / normal Marching Cubes vs. Mesh with
new integration / Marching Cubes for Octrees. A direct comparison between the original
mesh of the bottle and the mesh generated with new integration and Marching Cubes for
Octrees. The bottle generated with the new integration and Marching Cubes for Octrees
has a much better reconstruction in terms of watertightness and detail (especially on the
top part of the bottle)
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4. Evaluation
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4.1. Comparison of Time and Memory Consumption

4.1 Comparison of Time and Memory Consumption

4.1.1 Time Consumption

The differences of time consumption between the old and new integration as well as the
Marching Cubes Algorithm and the adapted Marching Cubes Algorithm are listed and
described below in Table 4.1 and 4.2:

Scene Integration Normal Marching Cubes Marching Cubes for Octrees

1 old 1.29s 54.78s
new 1.13s 54.86s

2 old 0.56s 19.28s
new 0.65s 19.52s

3 old 0.53s 12.67s
new 0.53s 12.71s

Table 4.1: Time in seconds to generate a mesh with the new/old integration and normal
Marching Cubes/Marching Cubes for Octrees. Marching Cubes for Octrees takes much
longer than normal Marching Cubes to generate a mesh. There is little to no difference
between the old and new integration.

Old Integration New Integration
350ms 470ms

Table 4.2: Average time in milliseconds to finish one update cycle with the old/new
integration for computing the surface. Please note that the computation time for
integration is heavily dependent on what scenery is scanned by the camera and all
numbers are specifically evaluated with our scenes.

4.1.2 Memory Consumption

The differences of memory consumption between the old and new integration as well as
the Marching Cubes Algorithm and the adapted Marching Cubes Algorithm are listed
and described below in Table 4.3. The memory consumption is evaluated by the amount
of vertices and faces, which needs to be saved for a mesh. There is only a slight difference
between the old and new integration in memory consumption considering the voxel grid.
For the new integration a voxel has an additional median vector (which are three floating
numbers - 3 ∗ 4 bytes) and a counter (e.g. as an integer - 4 bytes) which tracks the
number of inside lying depth measurements. That makes a difference of 16 bytes for
every single voxel.
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4. Evaluation

Scene Integration Normal Marching Cubes Marching Cubes for Octrees

1 old vertices: 726.348 vertices: 1.487.126
faces: 1.322.134 faces: 2.865.562

new vertices: 778.160 vertices: 1.503.044
faces: 1.370.599 faces: 2.893.052

2 old vertices: 315.520 vertices: 751.040
faces: 566.688 faces: 1.457.352

new vertices: 356.354 vertices: 764.716
faces: 605.301 faces: 1.482.932

3 old vertices: 172.389 vertices: 451.248
faces: 305.205 faces: 875.688

new vertices: 200.346 vertices: 464.940
faces: 334.104 faces: 901.137

Table 4.3: Memory consumption evaluated by the amount of vertices and faces generated
for the old/new integration and normal Marching Cubes/Marching Cubes for Octrees.
Marching Cubes for Octrees creates significantly more vertices and faces than the normal
Marching Cubes Algorithm. The new integration only generates slightly more vertices
and faces than the old integration.
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CHAPTER 5
Conclusion

All in all the results of the evaluation are promising considering the quality outcome
and the future work for the new surface operator mentioned in previous chapters. The
comparison of the meshes shows that the new integration method has no bad influence in
terms of quality compared to the old integration. It rather highlights some improvements
considering watertightness and smoothness of the meshes. When generating meshes with
the new integration there are slightly less holes in some areas of the surface. Furthermore
finer objects (like the engine cover of the car in Scene 3) appear to be a little bit smoother
and more similar to the real world objects. To the contrary, the new integration also
makes some details more washed out (like the wheels of the car in Scene 3). The results
for the directed Hausdorff Distance as RMS also reflects with its low values (only a few
millimeters) that there is only a slight difference between the old and new integration.
Comparing the normal Marching Cubes with the advanced Marching Cubes for Octrees,
the differences between the meshes become noticeably larger, which is also represented by
the higher RMS of the directed Hausdorff Distance lying between 10 to 50 mm. Marching
Cubes for Octrees provides the best improvement considering the watertightness of the
mesh. Combining Marching Cubes for Octrees with the new integration even amplifies
that effect. Taking all these aspects into account, the new integration as well as the
combination with the adapted Marching Cubes for Octrees has no quality deterioration
at all and provides a promising foundation for the new surface operator.
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