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Abstract—Light-field cameras are becoming more popular in
the consumer market. Their data redundancy allows, in theory,
to accurately refocus images after acquisition and to predict the
depth of each point visible from the camera. Combined, these
two features allow for the generation of full-focus images, which
is impossible in traditional cameras.

Multiple methods for depth prediction from light fields (or
stereo) have been proposed over the years. A large subset of
these methods relies on cost-volume estimates – 3D objects where
each layer represents a heuristic of whether each point in the
image is at a certain distance from the camera. Generally, this
volume is used to regress a depth map, which is then refined
for better results. In this paper, we argue that refining the cost
volumes is superior to refining the depth maps in order to further
increase the accuracy of depth predictions. We propose a set of
cost-volume refinement algorithms and show their effectiveness.

Index Terms—Depth Reconstruction, Light-Fields, Stereo, Op-
timization, Cost-Volumes

I. INTRODUCTION

Light field cameras, also called plenoptic cameras, are
cameras that capture both the light direction and intensity
emanating from a scene simultaneously. Typically, this is
implemented as an array of micro-lenses placed in front of a
conventional image sensor [3], [4]. They first became popular
among professional photographers, due to their ability to
precisely refocus images after acquisition [5], [6].

The data redundancy from the multiple micro-lenses also
allows, in theory, to predict the depth of the scene from the
camera. Yet, while image refocusing in plenoptic cameras
is widely understood, depth reconstruction is still an active
field of research, with multiple competing methods. When
compared to multi-camera systems, the major limitation of
light field cameras for depth reconstruction is that all their
lenses are extremely close together. This results in very
narrow baselines [7], [8]. Thus, typical multi-camera depth-
reconstruction techniques are not appropriate to use with light-
field imagery. On the other hand, light-field cameras are gen-
erally cheaper than multi-camera setups, more portable, and
need no synchronization between different cameras. This has
sparked an interest in depth-reconstruction methods specific
for light fields.

In this work, we focus on a class of methods that rely
on cost-volume estimates. We now explain the basic concepts
surrounding cost volumes and how they are generally used. Let
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Fig. 1: Comparison of our results (bottom) with the ones
obtained using Jeon et al.’s [1] proposed pipeline (centre) on
two different light-field images from the dataset by Rebarek
and Ebrahimi [2]. Notice that our proposed refinements are
less prone to artifacts, and better preserve details of far away
objects (the grass and metallic cylinders on the top, the street
on the bottom).

C(u, z) be some cost volume, a three-dimensional function
parameterized by the image coordinates u and depth z that,
when minimized along the depth axis, should result in an
accurate prediction DC of ground-truth depth D:
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D(u) ' DC(u) = argmin
z
C(u, z) (1)

The pipelines used by cost-volume based depth prediction
methods can be generalized to 5 stages: first, a cost volume is
estimated from some cue(s) in the light field. Second, the cost
volume might be refined to improve further predictions. Third,
a depth map is estimated from the cost volume. Equation 1
is the simplest possible depth estimation method, but more
complex methods have been proposed. Fourth, the depth
method might be refined using refinement methods for range
images. Finally, camera properties and calibration are taken
into account to compute a depth map from the depth. We
illustrate all stages in Figure 2 and how some existing work
fits into them.

To the best of our knowledge, the majority of existing
work focuses on cost estimation and depth estimation from
the cost, which are arguably the most important steps. To
compensate for limitations of methods used in those two
stages, authors also often makes use of existing range-image
refinement techniques. However, we believe this is a sub-
optimal approach, as during this stage most of the cost-volume
information (and thus, light-field redundancy) is no longer
available. Instead, we propose focusing refinement efforts in
the cost-refinement stage. Our main contributions are:

1) A modular framework for cost-volume refinement,
which can be applied for depth reconstruction on light-
fields, regular and multi-view stereo imagery.

2) A floating-point method for artifact removal on cost vol-
umes based on classification methods robust to smooth
surfaces and object complexity.

3) A fast local smoothing method for noise and disconti-
nuity reduction on cost volumes robust to sharp depth
changes.

4) A method for combining cost-volume based depth pre-
diction with other prediction methods before regression.

5) Extensive testing of the importance of cost-volume re-
finement and of the efficacy of our methods on multiple
previously proposed cost cues.

II. RELATED WORK

Depth estimation from light fields has been an active
research topic over the past few years. We focus primarily
on methods that rely on cost volumes to regress depth, for
which a large body of recent research already exists. However,
it is important to point out that recent deep learning based
methods have also shown promise. For example, Shin et al. [9]
proposed a fully convolutional network capable of estimating
depth from epipolar images. Zhou et al. [10] proposed three
unsupervised loss functions, which remove the need for large
amounts of ground truth data for training.

The most commonly used cues for cost volume estimation
are defocus, correspondence and epipolar plane analysis. De-
focus measures the optimal local sharpness for a given focus
distance, which can be estimated after refocusing the image
at different depths [11]. Tao et al.2015 [12] proposed adaptive

defocus response, an extended cue more robust to occlusion.
Williem et al.2018 [13] took the method one step further and
proposed constrained adaptive defocus, a cue invariant to noise
and occlusion.

Correspondence refers to the process of finding matching
points on different sub-aperture images that represent the same
point in the scene. However, light-field images generally have
very narrow baselines, which cause stereo correspondence
matching to obtain sub-par results due to sub-pixel shift [14].
Thus, correspondence generally refers to angular patch-based
estimation methods, even though standard multi-view stereo
data cost, calculated from the sum of absolute differences, is
also used [12]. Jeon et al. [1] used the phase-shift theorem to
estimate sub-pixel shift in the image frequency domain. Tao
et al.2013 [11] estimated correspondence as the variance in
the angular patch of refocused images. As they did for the
defocus cue, Williem et al.2018 [13] proposed constrained
angular entropy, a cue invariant to noise and occlusion.

Related to the concept of angular estimation is epipolar
plane image analysis. It refers to slicing the light field along
the epipolar planes, and taking advantage of properties of
the resulting images to estimate properties [15]. In particular,
epipolar images tend to form diagonal lines whose angles are
linearly related to depth [16]. However, these lines only allow
for sparse estimations, making them sub-optimal for dense cost
volume generation.

Yet our focus is not how the cost volumes are generated, but
how they are processed and how depth is regressed from them.
Depth estimations from previous work often exhibit sharp
discontinuities, which are particularly problematic in flat and
smooth surfaces. This occurs due to a strict trade-off between
computational efficiency and cost precision, as both are tied to
the number of layers of the volume. For example, classification
methods can solve ambiguities in the cost volume, in particular
in out-of-focus background regions, and thus remove unwanted
artifacts. However, they can also further exacerbate disconti-
nuity artifacts by reducing the number of possible depths to
a limited set of classes, or create new artifacts of their own
due to mislabeling. Both Jeon et al. [1], [17] and Williem
et al. [13] suffer from this issue, as they perform multi-label
optimization, using graph cuts [18], to propagate SIFT [19]
feature matches.

To compensate limitations of the regression methods, previ-
ous work often performs refinement operations on the disparity
or depth maps obtained from regression. After their multi-
label regression, both Jeon et al. [1], [17] and Williem et al.
[13] perform median weight transfer, followed by an iterative
spatial-depth super-resolution method first proposed by Yang
et al.2007 [20].

Different cues can also be integrated. For example, Jeon et
al. [17] uses four different cues, which are used to generate
a total of 16 cost volumes, to compensate for each other’s
shortcomings. Defocus and correspondence are the most often
combined [21]–[23]: Tao et al. [11] first combined these two
cues using Markov random field propagation with the Peak
Ratio, introduced by Hirschmüller et al. [24], as the confidence
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measure. Later, Tao et al. [12] improved it by also using a
shading constraint as the regularization term.

However, depth refinement methods are unable to take full
advantage of the light-field properties, as they are reduced
to work in 2D color and depth space. Due to the lack of
information, we found they are prone to creating artifacts or
misreading the shape of the scene.

III. MINIMAL PIPELINE

To test our proposed cost-volume refinements, we present
a simplified pipeline, which abstains from complex depth
regression and depth refinement techniques. This is done for
two reasons: first, one of the advantages of cost refinement
is the reduced necessity of such techniques, which we want
to show. Second, some existing regression methods, such as
graph cuts label propagation [1] [13], cause a great loss of
detail and a portion of our improvements could be lost.

All of our results are computed using this minimal pipeline.
For comparison, results of previous work are always computed
using their respective original pipelines, shown in Figure 2.

As explained in Section I and shown in Figure 2, all of
these pipelines can be generalized to 5 stages, and ours is no
exception. First, for cost-volume generation, we use cues from
existing work. Then, for each volume, our refinement methods
are applied in succession: obvious artifacts are removed using
our classification-based global artifact removal, described in
Section IV-B. Noise and unwanted sharp discontinuities are
vastly reduced using our iterative local smoothness refinement,
described in Section IV-C. Optionally, depth predictions from
non cost-volume based methods can also be combined in this
stage, as described in Section IV-A.

After our proposed refinements have been applied, we make
use of a classical solution to estimate depth from the cost. The
theoretical depth regression, described in Equation 1, assumes
that cost is a continuous function. However, cost volumes are
computed and stored in discrete steps. Reducing this step ξ
increases depth precision but at the cost of computational
performance, and precision is required to effectively use cost
refinement. Thus, we use parabolic interpolation [25] [26],
which takes into account information from the immediate
neighbors of the minimum step DC(u):

D(u) ' DC(u) = DC(u)−
(
1 + 2·

C(u, DC(u)− ξ)− C(u, DC(u))

C(u, DC(u) + ξ)− C(u, DC(u)− ξ)

)−1 (2)

This simple solution highly increases depth precision with-
out increasing computational costs.

IV. REFINEMENT ALGORITHMS

Let k ∈ [0, nr[ be the number of cost-volume refinements
that have been performed by a pipeline, where nr is the total
number of refinement algorithms being used. We generalize
modular refinement as a function Rk that takes as input the
current cost volume Ck and outputs a refined volume Ck+1:

Ck+1(u, z) = Rk(Ck, u, z, λk) (3)

In this work, we present three different modular refinement
algorithms, all of which follow the definition of Equation 3
and can be used interchangeably in any order. The strength of
refinement Rk can be controlled with hyper-parameter λk ∈ R.

A. Independent Predictor Combination

We first describe our simplest refinement. Our goal is to
define a generic method that can make use of any independent
depth prediction to inform our own. Independent predictions
can be obtained from non cost-based light-field methods, from
existing methods for monocular or stereo imagery, or from any
domain specific knowledge.

To do so, we increase the original cost according to the
difference between depth and the independent method’s pre-
diction. There should be no increase when in agreement,
but cost should increase as the two diverge. Additionally,
the increased cost should have a known maximum ∈ R, so
that the refinement impact can be controlled. Given these
properties, we define the increased cost G(t) ∈ [0, 1] as
normalized inverted Gaussian distributions centered around the
independent predictions:

G(t) = 1− e−
t2

2σ2 (4)

where σ is a chosen deviation. For each image point u
for which the independent method has a prediction Pu, the
refinement operation becomes:

Ck+1(u, z) = Ck(u, z) + λkG(Pu − z) (5)

As an example, we explore the case of facial reconstruction.
We make use of the trained neural network presented by Sela
et al.2017 [27] for facial reconstruction from color images as
our domain-specific prior knowledge. We estimate prior depth
P from the neural network depth prediction and, for each pixel
that we have a prior Pu for, we apply the refinement. The result
can be seen in Figure 3.

B. Classification Artifact Removal

We propose a variation of the previous refinement for
the purposes of artifact removal. In particular, as described
in Section II, we found that some multi-label classification
methods (where discrete steps in depth correspond to labels)
are robust to artifacts, but tend to reduce accuracy due to lack
of precision or miss-assignment between close labels. To take
advantage of the artifact detection while maintaining accuracy,
we define a increased cost different from Section IV-A.

As before, we increase cost according to the difference
between depth and the multi-label classification. However,
it should not be bound to a known maximum and should
instead quickly rise with divergence. As such, we define the
increased cost as a polynomial of degree m, where m is
an even number. Additionally, artifacts are more likely the
higher the difference between predicted parabolic depth D and
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Fig. 2: An overview comparison of our minimal pipeline with Tao et al. [11], Jeon et al. [1] and Williem et al. [13]. Images
are only illustrative. Note that, due to its specificity, the combination of external predictions or domain-specific knowledge,
described in Section IV-A, is not used to generate the majority of the results in this paper nor when comparing accuracy in
Section V.

multi-label classification L is. Thus, we scale the increased
cost according to the difference between these two predictions
computed from the current cost volume Ck.

Our refinement thus becomes:

Ck+1(u, z) = Ck(u, z)+λk|Lu−D(C,u)| · (Lu− z)m (6)

As an example, we use the graph-cuts implementation of
Jeon et al. [1] for propagation of SIFT feature matches to
estimate each label Lu at pixel u with m = 2. A direct
comparison of our refinement to the original algorithm can
be seen in Figure 4.

C. Iterative Local Smoothness
Two common issues with depth predictions from cost vol-

umes are noise and local artifacts. We vastly reduce these by
looking at the neighborhood Iu of each image point u. For
each neighbor v ∈ Iu, we create an added cost based on
the difference between the depth predictions at v and u. To
weight the importance of each neighbor, we estimate point
confidence using the peak ratio coefficient W (as proposed by
Hirschmüller et al. [24]), which produces lower values when
multiple local minima are similar:

WC(u) =
C(u, DC(u))

C(u, argminz 6=DC(u) C(u, z))
(7)

Just as for the refinement in Sections IV-A, we want agree-
ing predictions to have no additional cost, but to increase cost

as local differences raise up to a chosen maximum. As such,
we use the same normalized inverted Gaussian distribution G.
However, we want to define the increased cost as a function of
depth prediction at the neighbors, which is in turn dependent
on the cost increase. To deal with the conundrum, we solve
the problem by estimating new cost volumes iteratively. Let
j ∈ [0, ni[ be the current iteration number. We define new
temporary volumes S as:


S0 = Ck

Sj+1(u, z) =Ck(u, z)+

λk
∑
v∈Iu

G(DSj (v)− z) ·WSj (v)
(8)

where DSj is the parabolic depth prediction and WSj the
Peak Ratio coefficient computed from temporary cost volume
Sj , according to Equations 2 and 7 respectively. ni is the total
number of iterations to be performed, which can be either
statically or dynamically controlled by the pipeline. We make
use of the Peak Ratio because different neighbors might have
more or less reliable cost predictions than others, and thus
should be weighted differently.

Having the last iteration been performed, we define our
refinement as:

Ck+1(u, z) = Sni(u, z) (9)
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(a) Not Refined

(b) Refined

Fig. 3: Depth reconstruction from a light-field portrait picture
with and without refinement from Section IV-A. We used
our refinement to combine information from the facial neural
network proposed by Sela et al.2017 [27].

In our implementation, we set a static maximum number of
iterations, but we also monitor the ratio of change between
depth maps DSj and DSj+1 . Once the ratio is below a
predefined threshold, we stop iterating. We found that our
implementation never requires more than 2 iterations before
converging.

V. RESULTS

To test the effectiveness of our refinement algorithms,
we look at three very different cost-volume generation cues
proposed by three different authors: Tao et al. [11] lenslet
variance (LV), Jeon et al. [1], [17] sum of absolute differences
computed using sub-pixel phase-shift (SAD) and Williem et
al. [13] constrained angular entropy (CAE). We compare the
depth maps regressed from these volumes with our minimal
pipeline (as described in Section III), which includes cost

(a) No Refinement (b) Graph Cuts [1] [13]

(c) Artifact Removal (ours) (d) Ground Truth

Fig. 4: Reconstructions of a bust on an intentionally poorly
estimated cost volume, which overestimates depth and is
unable to predict depth of far away objects, resulting in
multiple visible artifacts. Graph cuts prediction (b) removes
the background artifacts, but at the cost of depth accuracy of
the bust itself. The artifact removal refinement (c) from Section
IV-B outperforms previous methods, being able to both remove
artifacts and reduce depth overestimation without decreasing
accuracy.

volume refinement, to the ones regressed using the pipelines
publicly provided by their authors (see Figure 2).

To do the comparisons, we use the synthetic dataset by
Honauer [28], which contains 30 pairs of light-field im-
ages and corresponding ground-truth depth maps of different
scenes. We also present a visual comparison using the dataset
by Rebarek and Ebrahimi [2], as shown in Figures 1 and 6. For
each scene, we generate cost volumes according to the three
mentioned cues. Then, for each volume, we regress depth maps
using our minimal pipeline and the originally corresponding
one. This results in a total of 6 different depth maps per scene.

Note that both Tao et al. [11] and Jeon et al. [1], [17]
combine multiple cues using weighted sums of different cost
volumes in their works. However, we are not proposing an end-
to-end depth prediction method, but a set of operations that,
given an arbitrary cost volume, are able to generate a better and
more consistent volume. Thus, we analyze the performance of
refinement on different cues individually.

Additionally, the absolute error between predictions and
ground truth of a specific example are not relevant, as they
are largely constrained by the quality of the input cost volume.
Instead, we look at how this error changes with the introduc-
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Pipeline MSE SSI

LV (Tao et al. [11]) 2.1672% 9.6871
Refined Lenslet Variance 1.5297% 10.8989

SAD (Jeon et al. [1]) 1.2829% 11.3914
Refined Sum of Absolute Differences 0.7165% 11.6619

CAE (Williem et al. [13]) 3.2723% 8.6063
Refined Constrained Angular Entropy 2.1083% 9.9078

TABLE I: Average of mean squared error (MSE) and structural
similarity index (SSI) for each tested pipeline when predicting
on the synthetic dataset by Honauer [28]. Lower MSE and
higher SSI are better [28].

tion of refinements. Thus, Figures 5 and 7 display the change
of error when our refinements (with our minimal pipeline) are
used, color coded in green for reduced and red for increased
error. Color is normalized to the highest change.

We do not tweak the configurable variables λk and σ from
Equations 3 and 4 for each scene and use the same for all
tests. We also do not perform any additional operations, such
as vignetting and distortion estimation and correction, as these
should affect all 6 cases equally, and operations before cost-
volume generation are out of scope of this work.

a) Statistical Analysis: We calculate the mean squared
error and the structural similarity index between the ground-
truth maps and the regressed ones. Table I shows the average
of these metrics for each of the 6 combinations. Our minimal
pipeline outperforms the original ones in all cases, presenting
a lower average error and higher similarity, even though it is
not performing complex depth regression or depth refinement.
We also found that our refinements are the more effective
the worse the cost prediction is. For example, the differences
are more visible in real photographs than synthetic (perfect)
images, or in intentionally poor reconstructions. As such, the
real error and similarity differences might be higher than
suggested by our synthetic dataset.

b) Detail Preservation: As displayed in Figure 6, alter-
native proposed methods often oversimplify depth predictions.

Fig. 5: Comparison of the absolute per pixel error computed
between ground truth Figure 4.d and predictions 4.b and 4.c.
Green represents a lower error from our method, red an higher,
with color being normalized to highest change. Section V
elaborates on the reasoning behind the metric.

(a) Jeon et al. [1] (b) No Refinement

(c) Artifact Removal (ours) (d) Iterative Smoothing (ours)

Fig. 6: Depth regression before any image-based refinement
is applied on a real-life light-field image from a dataset
[2]. Previous work often forfeits detail and accuracy (a) to
reduce artifacts and noise. Our use of cost volume refinement
methods (c,d) from Sections IV-B and IV-C solve these issues
while preserving detail. Depth was predicted using parabolic
interpolation (b,c,d).

Most detail can be lost and only regained through depth-map
refinement, which does not take advantage of the light-field
properties over traditional images. Our algorithm is able to
vastly reduce unwanted artifacts and noise, while preserving
the details present in the scene by performing operations at a
cost volume level. As such, the shape of objects in the final
results more closely resembles the ground truth than previous
methods, as shown in Figure 7.

c) Limitations: While functional, our smoothing refine-
ment is still not able to remove all noise without removing
details. As shown in Figure 6, the refined result still exhibits
some noise. We also do not have a solution for optical effects
such as flares, which can mislead predictions locally, as also
shown in Figure 6. However, we are not aware of any existing
depth refinement method to deal with this issue, and previous
work frequently suffers from the same issue.

VI. CONCLUSION

We presented a novel approach for cost volume optimization
for depth prediction, which relies less on image refinement
methods and takes more advantage of light-field redundancy
instead. We have shown the efficacy of our proposed re-
finements on three very different cost cues and thoroughly
analyzed it on a publicly available robust dataset.
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Fig. 7: Analysis of refinement performance in two scenes from synthetic dataset [28]. Top rows show depth predictions using
three existing cost volume estimation methods, each processed exactly as in their original work (see Figure 2). Middle rows
show predictions of the same cost volumes, but processed with our pipeline instead (which includes refinements described in
Sections IV-B and IV-C). Finally, we compare the per pixel ground truth reconstruction errors between each top and middle
row pair, as explained in Section V. Green means a lower error, red a higher.
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Future work could improve on noise and optical effect
refinement. For example, our smoothing method, when com-
pared to image-based refinement methods used by previous
work (such as weighted median transfer or iterative super
resolution refinement) does not take advantage of color infor-
mation, which could be a factor of improvement in the future.
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