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Abstract

Visualization has always been a powerful tool to effectively convey knowledge and
information. It has also gained attention in the context of search, in particular for newer
visualization techniques like “Multifaceted Search” and “Exploratory Search”. There are
currently many tools and websites that still rely on an explicit search function or an
alphabetically ordered glossary of terms to allow users to filter and browse resources.
This results in many useful resources not being discovered by users because of a lack of
proper search tools. Exploratory Search is more open-ended, allowing users to search
even if they do not exactly know what they are looking for.

This thesis proposes an adaptable, modular, web-based prototype of an exploratory
search interface. The goal of the prototype is to serve as a basis for the evaluation of
exploratory search interfaces for a wide variety of use cases. In contrast to many existing
Exploratory Search tools, this prototype does not require rich meta-data to be present
in a dataset. By utilizing an optional preprocessing step to extract named entities via
Natural Language Processing, the prototype is compatible with most text-based datasets.
The search interface consists of a word cloud created by a force-directed layout algorithm
that places related entities close to each other. This interface also serves as the main
filtering option, which keeps the users’ focus on the word cloud. After selecting interesting
entities, matching documents can be browsed in a list view.
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Kurzfassung

Visualisierungen sind seit jeher ein leistungsfähiges Instrument zur effektiven Vermittlung
von Wissen und Informationen. Sie haben auch im Zusammenhang mit Suchanfragen
an Aufmerksamkeit gewonnen, insbesondere für neuere Visualisierungstechniken wie
“Multifaceted Search” und “Exploratory Search”. Derzeit gibt es viele Tools und Websites,
die immer noch auf eine explizite Suchfunktion oder ein alphabetisch geordnetes Glossar
von Begriffen angewiesen sind, um den Benutzern das Filtern und Durchsuchen von
Ressourcen zu ermöglichen. Dies führt dazu, dass viele nützliche Ressourcen von Benutzern
nicht entdeckt werden, weil es an geeigneten Suchwerkzeugen fehlt. Die explorative Suche
ist offener und ermöglicht es den Benutzern auch dann zu suchen, wenn sie die benötigten
Suchbegriffe nicht kennen.

In dieser Arbeit wird ein flexibler, modularer, webbasierter Prototyp für eine explora-
tive Suchschnittstelle entwickelt. Das Ziel des Prototyps ist es, als Grundlage für die
Evaluierung von explorativen Suchschnittstellen für eine Vielzahl von Anwendungsfällen
zu dienen. Im Gegensatz zu vielen bestehenden Exploratory Search Tools setzt dieser
Prototyp keine umfangreichen Metadaten in einem Datensatz voraus. Durch die Ver-
wendung eines optionalen Vorverarbeitungsschritts zur Extraktion von Entitäten mittels
natürlicher Sprachverarbeitung ist der Prototyp mit den meisten textbasierten Daten-
sätzen kompatibel. Die Suchoberfläche besteht aus einer Wordcloud, die durch einen
force-directed Layout-Algorithmus erstellt wird, der verwandte Begriffe nahe beieinander
platziert. Diese Schnittstelle dient auch als wichtigste Filteroption, die den Fokus des
Nutzers auf die Wordcloud lenkt. Nach der Auswahl interessanter Entitäten können
übereinstimmende Dokumente in einer Listenansicht durchsucht werden.
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CHAPTER 1
Introduction

Over the last years, the information that is publicly available on the internet has increased
drastically. However, most of it still consists of unstructured textual data, which is difficult
for humans to process effectively. The most widespread and commonly known tool for
querying such data is the search bar. The classical search bar has been used to browse
the web since 1990 and, while becoming increasingly more intelligent over the years, it
has not changed much from a user interface perspective. This is partly because it did not
have to change all that much when only considering the primary reason for its invention:
Querying a dataset by a term the user knows. For this particular task, a search bar is
probably the most concise, useful and simple interface possible, although studies have
shown that the majority of users still have problems understanding how search bars work
[Hea09].

The issues with search bars start to appear when users do not know what they are
looking for - either because they lack knowledge of the proper search terms or because
they simply want to browse and explore a dataset without a specific goal in mind. In
both cases, the users’ goals cannot be accomplished with traditional search bars. For
this reason, the concepts of exploratory search and faceted search have gained increasing
attention over the last years. Different approaches like VisGets [DCCW08] combine
spatial, temporal and topical information to allow users to explore a dataset. More
examples can be found in the work by White et al. [WMM08], who point out that, while
there are multiple approaches that work well, evaluating exploratory search interfaces
can be difficult because most of them are context-dependent. This hinders finding an
appropriate sample size for a user study. In addition to this, most exploratory search
interfaces require some kind of metadata, like geographical, topical or spatial information,
which limits the number of datasets these tools can be evaluated against.

This thesis presents a fully functional prototype of a word cloud based exploratory search
interface, which works on any text-based dataset and is ready for real-world use cases and
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1. Introduction

evaluation. To develop this prototype, the research challenges described in the following
sections have been identified and tackled.

1.1 Entity Extraction
As mentioned above, the prerequisite of having some sort of structure or metadata
available seems to be the biggest bottleneck for exploratory search interfaces in terms of
them being usable, and therefore evaluable, against a real-world dataset. The prototype
we propose also requires specific metadata about the dataset. However, we provide
the means to extract this information in a preprocessing step using Natural Language
Processing (NLP). This is the key feature that enables this prototype to be used with
any dataset that consists of unstructured textual data.

1.2 Interactive Interface for Exploratory Search
The main part of the search interface consists of a semantic word cloud. This is strongly
inspired and based on the work by Xu et al. [XTL16] and further described in Section 3.
The basic idea is to construct a graph from the data extracted in the preprocessing step,
where the vertices represent the extracted entities and the edges and their respective
weights are calculated from the co-occurrence of two entities across all documents. The
graph is then rendered as a word cloud using a force-directed layout further described
in Section 3.3.3. The word cloud can then be iteratively filtered by selecting entities
and different categories. At any time during the filtering process, a list of documents
matching the selected entities can be viewed.

Most of the time, datasets consist of many entries, which need to be browsable. This
means that the UI needs to be able to handle large amounts of data while still staying
fluid and responsive in a web-based environment. The solution for creating an interface
that meets those requirements proved to be a major obstacle to overcome and is described
further in Section 3.2.

1.3 Adaptable Implementation
To make the prototype as useful as possible, it has to be adaptable (e.g. adding a
timeline as shown by VisGets if temporal metadata is available) and modular (meaning
that certain pieces like preprocessing or graph construction should be replaceable by the
users’ own implementations). More details can be found in Section 4.
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CHAPTER 2
Related Work

While this thesis focuses on producing a usable and evaluable prototype, large parts of
the underlying theory regarding exploratory search, semantic word clouds, force-directed
layouts, entity extraction and NLP have already been compiled and presented. This
section provides a quick overview of some particularly interesting pieces of research in
those fields.

First and foremost, White et al. [WMM08] criticize that current research focuses too
much on creating new exploratory search interfaces and too little on evaluating them.
They also speculate that this is because exploratory search interfaces are hard to evaluate.
After all, their usefulness is very context and user-dependent. This further reinforced the
design goals that our prototype has to be applicable to a wide range of contexts to make
it as easily evaluable as possible.

Since the prototype focuses on exploring text-based information, using word clouds for
the visualization was a natural choice. Word clouds have proven their usefulness to
summarize textual data many times, as shown, for example, by Heimerl et al. [HLLE14]
and Seifert et al. [SKK+08]. They also have been utilized for exploratory search interfaces
as demonstrated in Imagesieve by Lin et al. [LAB+10].

Studies as conducted by Hearst et al. [HPP+20] indicate that grouped word clouds with
sufficient white space are a viable method to summarize textual data. They also explore
different layout options. While they explicitly state that they only evaluated semantic
groupings that are distinct, we theorize that some of their findings might also apply
to overlapping categories, i.e. words that appear in multiple documents, if a sufficient
amount of white space is left to separate the categories.

In their work, Dörk et al. [DCCW08] combine multiple information vizualization widgets
(= VisGets) to allow for data exploration across multiple data dimensions. This approach
inspired us to strive for a high amount of adaptability and modularity in our prototype
to make it composable with other exploratory search interfaces in the future.
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2. Related Work

Finally, the research conducted and the Semantic Word Cloud approach developed by
Xu et al. [XTL16] serves as an important implementation reference and guideline for this
prototype. While our prototype is a lot less sophisticated from an algorithmic point of
view, its adaptability and modularity compensate for that. Furthermore, there are no
mentions of whether their approach is web-based and, therefore, as widely applicable as
our prototype.

The presented technique relies heavily on Natural Language Processing (NLP), a well
established means for text information retrieval for many years, which Liddy defines as
follows:

“Natural Language Processing is a theoretically motivated range of computational tech-
niques for analyzing and representing naturally occurring texts at one or more levels
of linguistic analysis for the purpose of achieving human-like language processing for a
range of tasks or applications.”[Lid01, p. 1]

The main subcategory of NLP used for this prototype is called Named Entity Extraction.
This technique scans a given text and extracts all important entities from a text, e.g.
locations, named events, famous people or geographical regions.

To classify and rank documents based on the users’ query, a slight variation of the
Term Frequency * Inverse Document Frequency (tf*idf) score is utilized. The tf*idf
score describes how important a term is to a document in relation to a collection of
documents. The frequency of a term within a document increases the score, and thereby
the importance, of the term for the document, whereas the frequency of the same term
across multiple documents decreases the score. Since there are multiple variations of the
tf*idf score, the one used in this thesis is further described in Algorithm 3.3.
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CHAPTER 3
Concept & User Interface Design

This section outlines the design rationales and ideas behind the exploratory search
interface. It aims to give an overview of the applied algorithms as well as the general
structure of the prototype. Implementation details are covered in Chapter 4.

Figure 3.1 provides a general overview of the structure of the prototype. Every part of
this figure will be thoroughly covered in Section 3.3.

Figure 3.1: Overview of the general structure of the prototype.

3.1 Dataset
As can be seen in Figure 3.1, the .csv file containing the dataset is the main entry
point into the prototype. Following the design goals of the prototype, the requirements
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3. Concept & User Interface Design

regarding the dataset should be as simple as possible. The minimum requirements for
each row of the dataset are as follows:

• ID - A unique identifier. This identifier will be returned when relevant documents
for tag queries are being calculated.

• Content - The text content that will be used to extract named entities in the
preprocessing step. If a document consists of multiple parts (e.g. a title, an abstract
and sections) that should be considered, they can be concatenated into a single
column in the .csv file.

This design allows the database created by the prototype to be completely separated from
any other persistency layers already present. This allows metadata of any complexity to be
fetched purely based on the unique identifier given. At the same time, the preprocessing
step can be adapted to include metadata on a per-document basis if one wishes to not
use any other persistency layer.

The dataset used to develop, test, and evaluate the interface consists of over 100,000
news articles by major U.S. publishers [Kag18]. The entries in the dataset consist of title,
publication, author, date, year, month, URL, and content. However, only the title and
the actual content of each article were used. Furthermore, for most of the development
process, only a small subset of 1,000 articles was used. All screenshots in this thesis were
made using this small dataset unless stated otherwise.

For the remainder of the thesis, the word “tag” will be used to describe a word or a
phrase that is characteristic for a document.

3.2 User Interface Design
The goal of the user interface is to provide an overview of the most important content
available in the dataset as well as to provide means to further filter the data according to
the user’s interest. The following pieces of information are encoded in the size, location,
and color of every tag:

1. Size indicates the importance of a tag to the entire corpus. Tags that appear more
often will be drawn bigger. This is a common and effective visual encoding that is
often used in word-clouds like the one created by Cui et al. [CWL+10].

2. Color indicates the relation of a tag to a category. Categories help to distinguish
the tags into groups and improve the filtering of tags as shown by Hearst et al.
[HPP+20].

3. Location indicates the relatedness between tags. Tags that appear together more
often will be closer together. This helps to direct and expand the search direction
and was also used by Xu et al. [XTL16].
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3.3. Concept

The initial state of the search interface can be seen in Figure 3.2. The entire word cloud
can be panned and zoomed, and the filter can be hidden to create more space for the
word cloud. To avoid overcrowding, the amount of initially displayed tags is limited (see
Section 3.3.2).

Figure 3.2: The full search interface.

Upon selecting one or more interesting tags and clicking the filter button, the word cloud
rearranges itself. Only tags that are related to the selected ones will be displayed and
arranged according to the criteria defined above. This allows tags that would usually not
be displayed because they are not important to the corpus as a whole to show up. These
new tags act as input for the user to further expand their search if desired. The user can
then iterate through this process as often as they like to refine the search query.

After the user is done picking tags, they can display a list of documents that match their
query, as can be seen in Figure 3.3.

A detailed walkthrough of a possible exploration sequence can be seen in Figure 3.4.

3.3 Concept

The prototype can be broken down into the following distinct parts:

• Preprocessing. This part is only required once per dataset and has to be computed
offline. In this step, all required named entities and their occurrences across all
documents are extracted using NLP.

7



3. Concept & User Interface Design

Figure 3.3: List of documents that match the query “Shapiro” and “Jan Böhmermann”.

• Graph data calculation & filtering. This part calculates the subset of named
entities that should be displayed depending on the filter set by the user.

• Word cloud rendering. Based on the selected tags, a word cloud is rendered.
The layout is based on the importance of tags as well as the relationship between
tags.

• Document score calculation. This part compiles a set of relevant documents
based on the user’s selected tags. For every document, a matching score between
0% and 100% is calculated. Afterwards, a list of document surrogates can be viewed.
For each document, the calculated matching score is displayed. Furthermore, the
selected tags are highlighted in the document text.

These parts will be discussed in more detail in the following sections.

3.3.1 Preprocessing

This first and optional step aims to solve a problem many huge datasets, including the
one chosen for this thesis, have in common: The entries in the dataset are not tagged or
categorized in any way. The preprocessing step prepares the given dataset for further
use and only has to be executed once. The dataset has to be provided in the widespread
comma-separated values format (.csv). It will go through an NLP pipeline, during which
all named entities, as well as important metadata, are being extracted and stored in a
relational database. The following data and metadata is extracted:

• Name of the entity. This string will be displayed as a tag in the word cloud.

8



3.3. Concept

Figure 3.4: Walkthrough of a possible exploration sequence: (A) Initial exploration of the
word cloud. (B) Finding and selecting an interesting tag (in this case “Jan Böhmermann”).
(C) Applying the filter and exploring the results. (D) Filter results by category (in this
case “People, including fictional”). (E) Selecting a second interesting entry (in this case
“Shapiro”). (F) Clicking the document icon shows the results ordered by matching rate.
Selected tags are highlighted in the text.

• Type of the entity. The following types of entities will be distinguished1:

– People (including fictional)
– Nationalities or religious or political groups
– Buildings, airports, highways, bridges, etc.
– Companies, agencies, institutions, etc.
– Countries, cities, states
– Non-GPE locations, mountain ranges, bodies of water
– Objects, vehicles, foods, etc. (Not services)

1Categories are defined by the spacy library used for named entity recognition, further described in
Chapter 4.2.
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3. Concept & User Interface Design

– Named hurricanes, battles, wars, sports events, etc.
– Named documents made into laws

• Total amount of times the entity occurs across the entire dataset. This value could
be computed at runtime but is stored for performance reasons.

• Amount of times the entity occurs in every document.

All of this information is required for the graph data and document score calculation.
The preprocessing step is further illustrated in Algorithm 3.1.

Algorithm 3.1: Preprocessing
Input: A dataset where every entry is a document. A function nlp which

extracts all named entities, including entity type.
Output: A relational database containing all information required for graph

data and document score calculation.
1 for document in dataset do
2 entities = nlp(document)
3 for entity in entities do
4 if entity does not exist in database then
5 add database entry for entity with occurrence count = 1
6 end
7 increment total occurrence counter for entity in database
8 add relation between document and entity (including amount of

occurrences)
9 end

10 end

The result of the preprocessing step is a multivariate graph where the vertices represent
named entities along with their metadata and the edges represent the co-occurrence of
two entities in a document with the weight indicating how often the two entities co-occur.

3.3.2 Graph Data Calculation & Filtering

Since this section strongly relies on graph theory, named entities will be referred to as
nodes, and links between nodes will be referred to as edges. Two nodes are linked if they
co-occur in at least one document.

This step is responsible for calculating the graph data that will later be displayed as
a word cloud. If no filter is set, the n heaviest vertices (i.e. the n tags that occur the
most across all documents) and their corresponding edges will be fetched, where n is an
arbitrary number that limits the amount of rendered vertices to reduce visual clutter.
The default value for n is 200 because it yields good rendering times while still providing
enough tags to explore without causing too much clutter.

10



3.3. Concept

If a filter is set, only the selected vertices plus their directly related edges are fetched. A
vertex is considered related to a selected vertex if the two are adjacent, meaning they
co-occur in at least one document. This filtering sometimes causes vertices to end up with
a degree of 0, meaning they are not co-occurring with any other selected vertex. This
causes the vertex to float away in the final layout. To counteract this and to help the user
discover more connections between the selected terms, vertices without neighbors are
treated differently. For every vertex without neighbors, all “indirect neighbors”, meaning
vertices with a geodesic distance of 2, are also considered as related. However, in addition
to averaging the weight of the two edges between the two vertices, the average weight
is also halved to indicate that the connection is only indirect. An example of this is
showcased in Figure 3.5. The exact process of calculating these substituted edges is
described in Algorithm 3.2.

Figure 3.5: Example for indirect link calculation: Node B is removed through filtering,
leaving nodes A and C without neighbors. Therefore an indirect link with half the
average weight of the two nodes is created.

Algorithm 3.2: Edge Substitution
Input: Graph G = (V, E). Selected vertices S ⊂ V . Selected Categories C.
Output: A subgraph that is ready for rendering.

1 relatedV ertices = v ∈ V | ∃s ∈ S ∧ (s, v) ∈ E
2 verticesToRender = r ∈ relatedV ertices | category(r) ∈ C
3 verticesWithoutEdges = v ∈ verticesToRender | deg(v) = 0
4 indirectLinks = []
5 for v in verticesWithoutEdges do
6 indirectV ertices = r ∈ relatedV ertices | d(r, v) = 2
7 for i in indirectVertices do
8 indirectLink = E(v, i)
9 // divide by two to get average and then by two again to cut weight in half

10 weight(indirectLink) = w(v,i)
4

11 indirectLinks+ = indirectLink

12 end
13 end
14 edgesToRender = indirectLinks ∪ E|s ∈ S, v ∈ verticesToRender ∧ d(s, v) = 1
15 return verticesToRender, edgesToRender

11



3. Concept & User Interface Design

The result of this calculation process is a subgraph that contains only entities that are
directly or indirectly related to the ones selected by the user. This graph can then be
rendered, as described in the next step.

3.3.3 Word cloud rendering

This step is responsible for rendering the graph structure described in Section 3.3.1.
The graph is a multivariate undirected graph where every vertex has name, weight, and
category attributes, and every edge has a weight attribute.

The main goal of the word cloud visualization is twofold. Firstly, related entities, meaning
entities that co-occur in one or more documents, should be placed closer to each other.
This should enable users to find relations they did not know about by scanning the
proximity of an entity they are interested in. Secondly, important entities, meaning
entities that occur more often in the dataset than others, should be increased in size to
demonstrate them being more important to the dataset as a whole. Finally, overlaps
between tags should be avoided while keeping the layout compact, which are two common
challenges when creating word clouds.

To achieve this, a force-directed layout with multiple forces was applied to the graph.
The following forces were applied:

• Charge/Repulsion. A weak repulsion is applied statically to all nodes to naturally
separate them from each other. This is done to prevent nodes from being close by
without actually being related. While this causes the graph to be less dense, which
is often considered detrimental, it helps to visually distinguish clusters of entities.

• Link. A linking force is applied to all entities that are linked, meaning they co-occur
in one or more document. The higher the edge weight, the stronger the linking
force is, resulting in the two entities being closer together.

• Collision. A collision force is applied to all nodes in order to prevent overlaps
caused by any other force. The bounding box of the text is used as a base for
collision detection.

A basic example of how a finished layout could look like can be seen in Figure 3.6 for
Tables 3.1 and 3.2.

The resulting layout can then be further filtered as described in Section 3.2. After
selecting one or more entities from the word cloud, a list of matching documents can be
viewed.

3.3.4 Document Score Calculation

While the previous sections were focusing mainly on processing and presenting data to
enable the user to browse a dataset, this section deals with deriving actual results based

12



3.3. Concept

Table 3.1: Nodes and their respective
weights used for the force directed layout
example in Figure 3.6.

Vertex Weight
A 20
B 15
C 15
D 10
E 5
F 10

Table 3.2: Links present between nodes
and their respective weights used for the
force directed layout example in Figure 3.6.
Nodes with a high weight are being drawn
bigger, and links with heavier weights pull
their connected nodes closer together.

Source Target Weight
A B 5
A C 2
B C 1
D E 2
E F 1

Figure 3.6: Example of a force directed layout created based on the values in Tables 3.1
and 3.2.

on the user’s search query. The result consists of a set of documents that match the
user’s search query, where every document also gets assigned a percentual matching score
depending on how well it fits the search query. In the prototype, this score is displayed
as a blue bar below the document title.

This is described in more detail in Algorithms 3.3 and 3.4.

13



3. Concept & User Interface Design

Algorithm 3.3: Term Frequency * Inverse Document Frequency Score Calcula-
tion
Input: Term t and document d for which the tf*idf score should be calculated
Output: tf*idf score for a given term t and document d

1 countTInD = count of term t in document d
2 countAllT InD = count of all terms in document d
3 // Term Frequency
4 tf = countT InD

countAllT InD
5 // Inverse Document Frequency
6 countDocs = total document count (= size of corpus)
7 docsWithT = count of documents where t occurs at least once
8 idf = log( countDocs

docsW ithT )
9 return tf * idf

Algorithm 3.4: Document Score Calculation
Input: Selected entities S. Corpus of documents D.
Output: A set of matching documents d ⊂ D with scores between 0.0 and 1.0

determining how well they match S.
1 matchingDocuments = d ∈ D | S ∩ entities(d)
2 for m in matchingDocuments do
3 score(m) =

∑
s∈S tfidf(s, m)

4 end
5 maxScore = highest score in matchingDocuments
6 for m in matchingDocuments do
7 score(m) = score(m)

maxScore
8 end
9 return matchingDocuments
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CHAPTER 4
Implementation

The main goal of this thesis is to provide a prototypical implementation of an exploratory
search interface that works with as many text-based datasets as possible while still being
easy to extend and adapt. Furthermore, it should be modular enough to let developers
choose which parts of the implementation they want to use and which ones they want to
replace with their own implementation.

To keep the implementation as widely applicable as possible, it is entirely web-based.
It also follows the common client/server architecture where the back end is responsible
for the more complex calculations. The front end is responsible for user interaction and
graph rendering. The preprocessing step is separated from the client/server architecture
since it only needs to be run once. The three distinct parts (back end, front end, and
preprocessing) can be described as follows:

• Preprocessing. This step uses Python and a PostgreSQL database to parse the
initial data given as a .csv file into a database for later use.

• Back end. The back end consists of a NodeJS server based on express.js and is
written in Typescript. It has the following responsibilities:

– Providing the initial graph structure (Fetching vertices and edges from the
database).

– Filtering the initial graph structure depending on the users’ query.

– Calculating matching documents for a given search query.

• Front end. The front end consists of a React app with multiple reusable compo-
nents which are written in Typescript. The d3.js library is used for graph rendering.
The front end has the following responsibilities:
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4. Implementation

– Rendering the initial graph as well as subsequent subgraphs depending on the
set filter.

– Providing a UI to filter the graph by selected entities as well as categories.
– Providing a UI to view the resulting documents based on selected entities.

This structure can also be seen in Figure 4.1. The following sections will elaborate on
each layer and responsibility, pointing out configuration/customization options as well as
implementation details if necessary.

Figure 4.1: Overview of the software architecture of the prototype, including responsibili-
ties.

Moreover, Figure 4.2 showcases the most important modules. These will be further
described in the following sections.

4.1 Technology Stack

• Preprocessing

– Python as a scripting language.
∗ Pandas to read and parse .csv files.
∗ Spacy to perform NLP on the documents.

– PostgreSQL as a database solution.

• Back end

– Typescript as a Javascript extension for type-safety and ease of use.
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Figure 4.2: Overview of the most important modules and their interfaces.

– Node.js as a Javascript runtime.

∗ Express as a basic webserver.

• Front end

– Typescript as a Javascript extension for type-safety and ease of use.

– React as a web-framework for reusable components.

– d3.js for force-directed layouts and SVG manipulation.

4.2 Preprocessing

The preprocessing step is what enables this prototype to work without any meta-
information being present on the initial dataset. The only input required is a .csv
file containing two columns: a unique ID for each document and the text of the document
itself. The .csv file is then read using the popular Pandas library available in Python.
For each document, the NLP library Spacy is then used to extract named entities (see
Section 3.3.1) which are then stored in a PostgeSQL database. If required, the extraction
process can be modified in preprocess_data.py.

Running the create_db.py script creates the required database structure, which can
be seen in Figure 4.3. Again, this structure can be extended if necessary.

4.2.1 Omitting the preprocessing step

If the dataset that should be visualized already contains all required meta-information,
the preprocessing step can be omitted. See Section 4.3.2 for details.
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Figure 4.3: ER-diagram of the relational database containing all required meta-
information about the dataset.

4.3 Back end
The back end is responsible for the more complex and CPU-heavy calculations of the
prototype, like graph calculation and document score calculation. The following sections
discuss these calculations, which were also outlined in Figure 4.2.

4.3.1 Network Repository

The NetworkRepository has two main responsibilities:

• Graph data structure calculation. Calculates the initial and filtered graph
data structure following the algorithms outlined in Section 3.3.2. The graph data
structure can be retrieved through the calculateNetworkData function, which
accepts an optional filter argument of type NetworkFilter, which allows to
filter by related entities as well as entity types. To improve performance and reduce
visual clutter, entities and links can be limited by the constants ENTITY_LIMIT
and LINK_LIMIT. Using those limits only returns the n heaviest entities or links
respectively.

• Document score calculation. Calculates matching documents based on a set
of entities following the algorithms outlined in Section 3.3.4. The matching doc-
ument identifiers and matching rates (in percent) can be retrieved through the
calculateDocumentsForEntities function, which accepts an array of entities
for which the matching documents should be calculated. The amount of returned
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documents can be limited using the DOCUMENT_LIMIT constant. If a limit is set,
only the n best-matching documents will be returned. Note that this does not
increase the calculation performance since all scores have to be calculated anyway.

4.3.2 Database Adapter

The NetworkRepository utilizes the Adapter Pattern to increase compatibility with
various database implementations. In order to be compatible with the
NetworkRepository, the INetworkDatabaseAdapter interface needs to be imple-
mented (see Listing 4.1).

1 interface INetworkDatabaseAdapter {
2 getEntityById(id: number): Promise<Entity | null>;
3 getAllEntities(): Promise<Entity[]>;
4 getRelatedEntities(id: number): Promise<Entity[]>;
5 getLinksForEntity(entityId: number): Promise<EntityLink[]>
6 getEntityCountsInDocument(documentId: number): Promise<EntityOccurrence

[]>
7 getDocumentCount(): Promise<number>
8 getAllEntityCounts(): Promise<EntityOccurrence[]>
9 getDocumentsForEntityId(entityId: number): Promise<number[]>

10 }
11
12 type Entity = {
13 id: number,
14 name: string,
15 weight: number
16 type: EntityType
17 }
18
19 type EntityType = "PERSON" | "NORP" | "FAC" | "ORG" | "GPE" | "LOC" |

"PRODUCT" | "EVENT" | "LAW"
20
21 type EntityLink = {
22 source_entity: number,
23 target_entity: number,
24 weight: number
25 }
26
27 type EntityOccurrence = {
28 entityId: number,
29 count: number
30 }

Listing 4.1: INetworkDatabaseAdapter interface definition, including types.

4.3.3 Rest API interface

The Rest API interface is a basic express server located in the server.ts file. It exposes
two endpoints:
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• POST /network-data. Forwards the data returned from
NetworkRepository.calculateNetworkData. The optional filter can be
passed as a POST parameter.

• POST /documents. Forwards the data returned from
NetworkRepository.calculateDocumentsForEntities. The entities re-
quired for the calculation have to be passed as a POST parameter.

The API interface does not hold any important logic and can be easily replaced by any
other Javascript-based server solution.

4.4 Front end
The main responsibility of the front end is rendering and calculating the word cloud
layout. Furthermore, it provides a graphical user interface for filtering the word cloud
and displaying document results. It is split into multiple components with clearly defined
interfaces, which allows them to easily be extended and adapted. The following sections
discuss these topics, which were also outlined in Figure 4.2, in more detail.

4.4.1 NetworkComponent

The NetworkComponent holds all the logic required to render the word cloud layout.
The implementation of the force-directed layout makes use of the d3-force module.
However, to make the layout work, the solution deviates slightly from the concept
presented in Section 3.3.3. We found that staggering the simulation into multiple sub-
simulations that run sequentially yields significant performance improvements compared
to applying all forces simultaneously. The best layout quality was achieved by using the
following simulation sequence:

1. Spreading. The only purpose of the first part of the simulation is to spread the
tags out to prevent as many initial overlaps as possible. The main goal is to prevent
tags from being stuck inside each other since that causes issues when applying
other forces, like collision detection or linking. The results of this step can be seen
in Figure 4.4.

2. Linking & Collision Detection. After spreading the tags, a linking force is
applied to bring related tags closer together. Simultaneously, collision detection is
applied to prevent tags from overlapping due to being pulled too close together.
For collision detection, the bounding box of the SVG is used. The results of this
step can be seen in Figure 4.5.

3. Collision Detection. Since there are still many overlaps remaining after the
previous step, the last part of the simulation only applies collision detection for a
short amount of steps to smoothen the final layout. The results of this step can be
seen in Figure 4.6.

20



4.4. Front end

Figure 4.4: In the first simulation step, all tags are spread out to prevent initial overlaps,
which can cause calculation problems in later steps.

The NetworkComponent then makes use of d3 transitions to create a smooth transition
from one state of the word cloud to another (e.g. when applying a filter). This aims to
reduce visual strain and make the layout changes more perceivable and coherent for the
end-user.

4.4.2 Filter

The filter consists of the Filter class and the FilterComponent. The Filter class
utilizes the Singleton Pattern to manage one filter state across the entire application.
This class can be used to either apply the filter set by the NetworkComponent to other
components or vice-versa.

The FilterComponent displays a basic filter interface and showcases proper use of the
Filter class. It can easily be replaced by a more sophisticated filter interface if desired.
For categories the d3.schemeCategory10 color scheme has been used.
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Figure 4.5: In the second simulation step, a linking force is applied to bring related tags
closer together. Furthermore, a collision detection force is applied, to prevent tags from
overlapping. As can be seen in (A), there are still some overlaps left after running the
second simulation step.

4.4.3 Document List

The document list is an example implementation of a component that displays the
resulting documents and their matching rate. It is tailored to the dataset described in
Section 3.1 and includes metadata specific to the dataset like publishing date and author.
To increase scannability, selected tags are highlighted.
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Figure 4.6: The final simulation step applies only collision detection for a short amount
of simulation steps to get rid of most of the remaining overlaps, resulting in the final
layout being created.
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CHAPTER 5
Results

This chapter aims to give an overview of the performance of the prototype in a real-world
scenario as well as showcase how the prototype works with a second dataset.

5.1 Benchmarking Environment

All benchmarks were performed on a Dell XPS 15 Laptop with the following specs:

• CPU - Intel Core i7-8750H @ 2,20 GHz

• RAM - 16GB

For all benchmarks the front end, as well as the back end, were served directly from the
laptop, meaning all calculations were also performed on the laptop. Performance in a
real-world scenario can be assumed a bit better than what the benchmarks show.

To perform the benchmarks, a subset of 10,000 articles from the dataset described in
Section 3.1 was used. After entity extraction, the database consisted of 116,908 unique
entities and 13,317,120 links.

5.2 Performance

The following sections detail the performance of various parts of the prototype. Since
performance is highly dependent on the characteristics of the dataset used, the values
presented in the following sections are only intended to serve as rough guidelines.
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5.2.1 Entity Extraction

The entity extraction process is the slowest and least optimized part of the prototype.
This is mostly due to the fact that it only has to be run once per dataset and requires
no user interaction, meaning that performance is negligible. For the 10,000 articles
used, extracting all 116,908 unique entities and 13,317,120 links took about 100
minutes, meaning that entity extraction runs at ≈ 1.6̇ documents per second.

5.2.2 Graph Calculation

This benchmark showcases the performance of the calculation of the initial graph layout
with any combination of 0 to 5000 links and 0 to 500 entities. As explained in Section
4.3.1, these parameters only take the n heaviest links or entities into account. Calculation
times range from 133ms to 19,067ms depending on how many entities and links are
considered. As can be seen in Figure 5.1, entities have by far the biggest impact on
calculation time, with anything above 300 entities making the user interface feel very
sluggish. However, rendering that many entities in the initial layout also causes a lot
of visual clutter, which is why the default limit for entities is set to 200, where the
performance of the graph calculation is also still below 1 second.

Figure 5.1: Benchmarks for graph layout calculation with 0 to 5000 links and 0 to 500
entities.

Calculations of subsequent layouts based on filters only render small subgraphs compared
to the initial layout and consistently yielded results around 200ms to 500ms. These
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calculations always consider the entire dataset and therefore no parametrization was
necessary.

5.2.3 Document Retrieval

The performance of the document retrieval process is mainly dependent on the number
of entities selected. Calculation times ranged from 144ms to 324ms depending on how
many entities were selected. However, even under extreme conditions, like 500 selected
entities, which is highly unlikely in a regular scenario, document retrieval still only took
324ms.

Figure 5.2: Benchmarks for document retrieval with 0 to 500 entities and 50 samples per
parameter.

5.2.4 Initial Rendering

The last and probably most important benchmark is the time it takes from when a
user accesses the page to when the word cloud is actually displayed in the browser. As
mentioned in Section 5.2.2, subsequent rendering of subgraphs after filtering are really
fast and render in under 500ms total. Therefore, only the initial render is considered in
this section. As can be seen in Table 5.1 and Figure 5.3, the total rendering time ranges
from 1,886ms to 20,691ms. The performance scales badly with an increasing amount of
entities, which is mainly due to the issues mentioned in Section 5.2.2. While this can
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Entities Client (ms) Server (ms) Total (ms)
100 1,300 600 1,900
200 1,300 1,700 3,000
300 1,400 4,000 5,500
400 1,300 8,600 9,900
500 1,600 19,000 20,600

Table 5.1: Benchmarks for requesting, calculating, sending, and rendering the initial
word cloud with 100 to 500 entities. The “Total” column represents the time it takes
from when the user accesses the page until the word cloud is displayed.

possibly be optimized, the recommended amount of 200 entities renders in roughly three
seconds.

Figure 5.3: Line chart visualizing the data shown in Table 5.1.

5.3 Evaluation of another Dataset

To evaluate the versatility of the prototype, a second dataset was processed. The chosen
dataset was the Visualization Publication Dataset [IHK+17] from which the title and
the abstract were used for entity recognition. The results of the initial word cloud can
be seen in Figure 5.4. This figure also showcases the prototype’s debug mode, which
displays links as lines in the word cloud.

Utilizing this debug mode one can quickly see, that the dataset does not seem to be very
connected, making it not very suitable for exploratory search. This is proven further
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Figure 5.4: Zoomed in view of the Visualization Publication Dataset [IHK+17]. This
view also showcases the use of the prototype’s debug mode, which displays links as lines
with varying opacity.

after analyzing the results of the preprocessing step, which reveals that almost a third of
the 3394 processed abstracts do not contain a single named entity, and the rest of the
abstracts contain only two named entities on average. This could either mean that the
used NLP library is not suited to extract named entities from scientific texts or due to
the abstracts being rather short.

This example showcases that the prototype is very useful to determine if a dataset is
suitable for exploratory search. The combination of having a visual representation of
the data on one hand, and the means to query the dataset for statistical information
using SQL on the other hand, allowed for a quick evaluation, which is exactly what the
prototype was designed for.

29





CHAPTER 6
Discussion, Conclusion & Future

Work

This chapter discusses the results of the thesis as well as possible improvements to the
prototype and future work.

6.1 Discussion & Conclusion
This section discusses the prototype resulting from this thesis, focusing on the following
points:

• Implementation - Is the prototype working as intended?

• Modularity - Can the prototype be adapted to suit different user needs?

6.1.1 Implementation

To ensure the prototype is working as intended, the following steps were taken:

• Preprocessing. Manual tests with small datasets have been conducted to ensure
that the extracted entities and their relations to the documents are being stored
properly.

• Back end. Automated tests using Jest have been written to ensure that all
algorithms are working as intended.

• Front end. Manual tests with small datasets have been conducted to ensure that
the word cloud is being rendered properly. In addition, a debug flag has been
added to the NetworkComponent. If set, this flag shows links as lines varying in
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thickness and opacity depending on their strength. This can be used to verify that
the word cloud has been drawn correctly. However, this proved to be the hardest
part of the application to test, making it the most likely part to contain bugs and
errors.

6.1.2 Modularity

Making the prototype adaptable and modular was one of the main goals of this thesis.
This goal was achieved in the following areas of the prototype:

• Preprocessing. This step is entirely optional if the required data has already
been extracted by other means. If required, this step works with a basic .csv file,
arguably making it very easy to use.

• Database Access. Database access is completely separated from the entire
application, making the entire back end compatible with almost any database
through the Adapter Pattern. This resulted in a potential performance cost since
query optimization is not possible. Furthermore, query languages like GraphQL
that might be better suited for graph calculations cannot be fully leveraged because
of this abstraction layer. Considering that the performance of the prototype is still
decent and that its main purpose is to serve as an evaluation tool, this tradeoff is
worth it in our opinion.

• Rest API. The existing web framework (express.js) can be easily replaced by any
other javascript-based web framework.

• Front end. The component-based architecture of React makes it easy to use
the components in any React app. Outside of React, this becomes a bit more
complicated but can still be done by utilizing WebComponents or adding React to
your project.

6.2 Future Work

While the prototype is definitely suitable for a general evaluation of exploratory search
interfaces and can be adapted to individual needs, there are still many improvements
that could be made which would benefit almost every use case of the prototype:

• Entity Grouping. Currently, extracted entities that are of similar origin are still
treated as distinct entities (e.g. “Trump”, “Donald Trump” and “Donald J. Trump”,
all refer to a president of the USA, so they should be combined into one entity).
However, this is not a trivial task, since other entities like “New York”, “New York
Times” and “New York Yankees” should not be grouped, despite their names being
similar.
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• Database Setup. The current setup of the prototype requires the user to either
set up their own database and connect it via the INetworkDatabaseAdapter
interface (see Section 4.3.2) or to use a blank PostgreSQL database. Setting up
PostgreSQL can be a cumbersome process for some users and could be streamlined
in some way, maybe through using a Docker image or another container solution.

• Graph Layout Calculation. Currently, the force-directed layout is calculated
on the client. While this works quite well, doing the calculations on the back end
should yield better performance. Moving the layout calculation to the back end
would also allow for further optimizations, like caching the initial layout for a faster
initial loading time and better user experience.

• Evaluation. The most important future work that should be conducted is a user
study to evaluate the usability of this exploratory search interface. One of the
main goals of this thesis was to provide a prototype that can be adapted to a wide
variety of datasets to make an evaluation as easy as possible.

• Front End Components. For better encapsulation, the React components could
be provided as an npm-package.
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