
Space Partitioning for Distributed Surface Reconstruction
Project in Visual Computing

—
E193 – Institute of Visual Computing and Human-Centered Technology

Lukas Brunner*

TU Wien
Univ.Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer

(Advisor)
TU Wien

Projektass.in Diana Marin, BSc MEng.
(Assistance)

TU Wien
Projektass.(FWF) Dr. Stefan Ohrhallinger, B.A.

(Assistance)
TU Wien

Abstract

Delaunay triangulation, as one of the fundamental prob-
lems in computational geometry, has been vastly explored
in scientific research as it often constitutes the bottleneck
in composite algorithms if no acceleration structures are
used. In recent years however, data sets grew successively
larger due to technological advancements such as in pho-
togrammetry, 3D laser scanning or scientific simulation
methods. Thus, distributed algorithms gained increasing
attention as the main method to deal with data quantities
in the terra- or petabyte range in a reasonable amount of
time.

This work investigates prospects of speeding up a state-
of-the-art surface reconstruction algorithm (not yet pub-
lished) by splitting up the underlying required Delaunay
tetrahedralization using efficient uniform space partition-
ing. In a distributed execution environment, the constraints
that a valid Delaunay graph must satisfy typically lead to
the expensive exchange of points among the distributed
compute nodes. By exploiting traits of the surface recon-
struction algorithm, the implementation can relax the con-
straints for the distributed Delaunay tetrahedralization to
gain performance and trade formal correctness with a mi-
nor and visually acceptable error bound. Moreover, the
implementation deals with the technical challenges of in-
corporating the complete storage hierarchy to support data
sets that exceed main memory capacities, as well as be-
ing usable in both local and distributed execution environ-
ments.

The evaluation focuses on an analysis of the runtime
performance of the space partitioned implementation for
large planetary surface reconstruction with respect to la-

*Visual Computing (UE 066932) – Matr. Nr.: 11909464 – Email:
lukas.brunner@student.tuwien.ac.at

tency, storage efficiency and summed processing time.

Keywords: Surface Reconstruction, Delaunay Trianglu-
lation, Space Partitioning

1 Introduction

When executing algorithms on large datasets, problems
commonly arise because of super-linear space and/or time
complexities. Many optimal algorithms suitable for prac-
tical applications on large datasets belong to the O(n logn)
category due to relying on efficient sorting algorithms for
sovling the most complex parts. However in practice,
large constant factors can outweigh the asymptotic com-
plexity for practical applications. Especially below O(n2)
other factors, such as I/O latency or data distribution and
lock contention can significantly alter the real runtime be-
haviour.

This work focuses on the surface reconstruction algo-
rithm BALLFILTER, a version of BALLMERGE, both de-
veloped by Stefan Ohrhallinger [2022] and also worked
on in [Komon 2022]. It relies on the computation of the
full Delaunay tetrahedralization as a first step. The ap-
plication uses the asymptotically optimal CGAL imple-
mentation which runs theoretically in O(n logn) [Devillers
et al. 2022]. Although already using shared memory par-
allel programming1, this step constitutes the major part of
surface reconstruction time, as Section 5 will show (see
Fig. 8). With an overall O(n logn) complexity, for fur-
ther speedups we focused mainly focused on improving
latency instead of overall execution time by adapting the
solution to distributed parallel execution. Space partition-

1When building CGAL with TBB (https://www.intel.com/
content/www/us/en/developer/tools/oneapi/onetbb.
htm)

1

https://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.htm
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.htm
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.htm

ing is an effective and convenient way to achieve this, as
it also naturally accommodates large datasets that exceed
the main memory of a single compute node.

1.1 Problem

Dividing a large dataset into smaller spatially coherent
subsets (we use rectangular tiles) and processing them by
the same surface reconstruction algorithm theoretically in-
creases efficiency due to the super-linear time complex-
ity. Yet, this quantity turns out to be negligible in practice,
because distributed processing incurs some non-negligible
overhead for work distribution and merging of results. Es-
pecially in the case of the distributed computation of the
Delaunay tetrahedralization, each node may need informa-
tion from a possibly extended neighborhood of surround-
ing tiles [Peterka et al. 2015]. If all tiles can be processed
in parallel at the same time, this kind of communication
can be quickly realized with libraries such as MPI. How-
ever, these dependencies pose an architectural challenge
once the dataset is large enough to exceed the working
memory of a cluster. Resorting to complex scheduling of
individual tiles or out-of-core algorithms incurs a signif-
icant performance hit [Caraffa et al. 2021]. Due to these
factors, a distributed Delaunay tetrahedralization may de-
crease latency while in practice actually increasing the
overall processing time. As will be shown in this re-
port, the presented implementation is an extreme example
where for large data less subdivision is ultimately more ef-
ficient because latency only decreases slowly or almost not
at all, depending on the problem size.

1.2 Idea

In light of the above it is fortunate that one property of
BALLFILTER allows to circumvent the exchange of points
among the tiles, making the processing of tiles completely
independent from each other. By including all points
within a certain area around each tile, a visually acceptable
or even indistinguishable result can be obtained. Komon
[2022] states the size of this margin based on a padding
that is calculated as:

padding(l,δ) =
2l√

4δ −δ 2

where l was chosen based on the length of the bounding
box diagonal and δ is a parameter of BALLFILTER. Sec-
tion 5.2 starts with a short discussion of this value.

At the time of subdividing a dataset into tiles, we can
already include those points that are potentially necessary
for the correctness of the critical parts of the Delaunay
graph. This is done by including with the data of each
tile all points that fall within a certain margin around the
tile before processing them independently with BALLFIL-
TER. According to Komon, the margin is calculated for

each side of the tile as follows:

margin(s, l,δ) =

{
padding(l,δ)+ l, if s > 0
padding(l,δ) , if s < 0

where s is positive for the margin in positive direction
along any dimension and negative for the margin in
negative direction. Note that the margin is the same across
all dimensions, always larger in direction of the respective
basis vector and independent of the size of the tile.

In summary, the subdivision scheme has two main
benefits:

• Independent distributed processing: It allows serial
and parallel processing of parts of the data in any or-
der.

• Under the assumption of a sufficiently uniform sam-
ple density, it allows to choose the subdivision param-
eters such that the data of a tile is guaranteed to fit into
main memory. This simplifies the implementation of
algorithms and opens more potential for program op-
timization.

For all that, one pays the time for running the splitting
step, described in Sections 3 and 4, and duplicate points
being processed multiple times during reconstruction, as
discussed by [Komon 2022]. Smaller tiles exhibit decreas-
ing storage efficiency and causes overhead during surface
reconstruction due to more duplicated points. Komon as-
sumes the number of duplicate points to be asymptotically
negligible which works in practice for a low number of
subdivisions. But since margin is constant across increas-
ing values for the split parameter and assuming a uniform
distribution of points, the number of points in the margin
is proportional to the summed border length of all tiles:

Nmargin ∝ split ∗2d ∗ad (*)

for a subdivision of a (d+1)-dimensional hypercube with
a units of d-dimensional border into split parts along each
axis. Fig. 2 illustrates this.

This means that the number of points in the margins
proportionally increases not only with the sample density,
but also with the split value (see Fig. 1). The number
of points added per additional subdivision in x- and y-
direction amounts to 1.00e6 Points for the Birmingham
example and 3.78e6 Points for the Cambridge example, in-
troduced in Section 5.1. For 60 subdivisions on two axes
this accounts already for roughly 10% of all data in the
Cambridge example (see Fig. 11). These considerations
underline the importance of this overhead when choosing
parameters in a practical deployment of such subdivision
schemes.

1.3 Definitions

”Latency” will refer to the wall elapsed real time when
processing tiles in parallel with a theoretically infinite

2

(a) Birmingham (b) Cambridge

Figure 1: The total number of duplicated points in the margins increases linearly with the split parameter.

Figure 2: Schematic illustration of adding one subdivision
to a 2D tile in both dimensions. Let the side length of a
square-shaped dataset be a units. Left: the single tile has
4a units of border; Right: The borders of the four smaller
tiles sum up to 4a+4a units. Any further subdivision with
another horizontal and vertical split adds another 4a units.

number of nodes (full parallelization). The ”total time”
or ”overall time” will refer to the sum of the processing
time spent on these hypothetical nodes. Since experiments
presented in Section 5 ran sequentially on a single PC, this
quantity is roughly equal to the actual duration of the ex-
periments. ”Individual time” (e. g. ”individual reconstruc-
tion times”) will refer to the time needed to process one
individual tile.

2 Previous Work

Komon [2022] evaluated a distributed version of BALL-
FILTER on an HPC cluster, using the implementation for
the subdivision explained in Sections 3 and 4. The re-
sults presented in Section 5 add a new contribution on top
of those in [Komon 2022], because on the one hand the
size of datasets and the core count per node differ, and on
the other hand the referenced paper focuses on evaluating
mainly latency, including the overhead of distributed pro-
cessing. This report takes a different approach and disag-
gregates the empirical runtimes into their algorithmic sub-
components, unveiling different overall scaling behaviour

for below roughly 2M Points versus above. Next to data
size, latency – as investigated in [Komon 2022] – is a ma-
jor motivation for moving computation into a distributed
parallel environment. Time cannot be altered, but com-
putational resources can. Nonetheless, for large data un-
der hard financial constraints, time may become the more
flexible variable because the additional overall computa-
tional resources spent on the overhead of a distributed so-
lution translates into hardware and especially energy costs.
Hence, this report extends previous work to show the ac-
tual necessary effort for achieving improved latencies.

3 Concept

As already indicated, the implementation features two se-
quential steps:

1. The splitting step: The program responsible for this
step is called Splitter and the algorithm it executes
will be called SPLIT. Its input is the whole point
cloud dataset. Its output is a set of files (Tile files),
where each file contains the data of a rectangular sub-
region of the input dataset plus additional data from
the surrounding neighborhood as indicated in Section
1.2.

2. The reconstruction step: The is step executes BALL-
FILTER independently on every individual Tile file. It
maps every input Tile file to one output PLY file with
the reconstructed surface.

As the central practical contribution, this section of the re-
port will focus on the Splitter. Both conceptually as well as
the implementation can be decomposed into two substeps:

Scatter: This step contains several subparts: file input, sort
points (GPU), cache to disk.

Resolve: This step contains two subparts: resolve tile, dis-
tribute margin points.

3

3.1 Scatter

The Splitter processes the input dataset by reading the
dataset file in chunks. The chunks can be read in any
order, which theoretically allows any arbitrary input data
stream to work just as well. Every chunk consists of a
number of points that will be sorted into the cells of a reg-
ular grid where each cell represents one tile. Within each
cell, points are additionally sorted into 3d subregions as
shown in Fig. 3. Note that the larger margins are towards
the negative direction of each dimension. It owes to the
fact that these regions contain the points that will be added
to the opposite side of the neighboring tiles in the Resolve
step. The overall indexing scheme used for sorting and re-

Figure 3: Subregions within a cell for d = 2.

trieving the respective data again in the Resolve step is the
linearized cell index times 3d plus the linearized subregion
index. The sorted data is appended to one intermediate file
per tile, leaving out tiles that do not contain any points.
These files carry the extension .data and contain, after
the Scatter step, one slice of data (potentially of zero size)
per each chunk from the input dataset. There will also be
one .bins file per .data file containing 3d offsets for
each slice of input data to identify neighborhoods of mar-
gin areas during the Resolve step.

3.2 Resolve

The Resolve step is sequenced after the Scatter step and
begins with resolving the slices from each the .data file
into the the first part of the final Tile file (with .tile
extension) as shown in Fig. 4. The .tile file will contain
the data per each subregion in a contiguous data section
and add the according information in the Tile file header.

The second Resolve step distributes the margin points
among the tiles. It simply iterates over the neighboring
tiles for each tile and copies the relevant subregions to the
neighbors.

4 Implementation

The implementation assumes an upper limit on the sam-
ple density of the source dataset, and that a split value ex-
ists such that each tile resulting from SPLIT is guaranteed
to fit into main memory. This means in practice that the
maximum data per tile should be a constant fraction of the
available main memory as SPLITTER needs to maintain

Figure 4: Schematic depiction of the Resolve step. The
arrows indicate the order in which data occurs in the file.
Left: The .data file contains consecutive slices. Each
slice contains 3d (possibly empty) parts of the points for
the respective subregions; Right: The .tile file contains
(after the header section) 3d (possibly empty) regions with
all data aggregated for the respective subregion.

additional information per tile as well as potential copies
of the data. The additional information per tile, e. g. the
structure of intermediate results necessary for the Scatter
step, may take up a small fraction of memory in practice,
but it will scale in O(n

splitd
) in the worst case – only one

sample ending up in each tile for every slice of the input
dataset.

Since SPLIT is sequenced before BALLFILTER, its exe-
cution time linearly increases both the overall processing
time as well as the latency of a parallelized processing of
a monolithic input dataset. Naturally, the relative impact
is expected to be larger on the theoretically shorter latency
than on the longer overall execution time, despite the prac-
tical results in Section 5.2. Thus, Splitter tries to exploit
as much parallelism as possible, while keeping the imple-
mentation efforts reasonable for a proof of concept. See
Section 6 for further improvements.

4.1 Multithreading

The Intel Thread Building Blocks library(TBB) was used
to manage most of the algorithmic complexity arising from
processing a large dataset that exceeds the working mem-
ory in a parallel shared memory environment. The limited
main memory requires scheduling and managing depen-
dencies among partial results. TBB Flow Graph allows the
specification of such dependencies and gives control over
concurrency limits for parts of the data flow graph through
which a maximum total main memory consumption can be
established.

TBB is non-preemptive in the sense that its scheduler
may only cancel pending tasks or wait for a task to fin-
ish before assigning a new task for execution on one of its
threads. Therefore, blocking waits (e. g. file IO using the
C++ Standard Library or waiting for the result of a CUDA
kernel call) within TBB threads can significantly waste
CPU cycles that could be spent on other tasks. On the one
hand, the OS scheduler is yet free to preempt TBB tasks
running on the underlying OS threads and a large TBB
thread pool (exceeding the number of hardware threads)

4

can thus serve as a hasty performance optimization, espe-
cially when scheduled tasks wait on synchronization prim-
itives (usually for accessing a non-threadsafe resource) or
explicitly yield their thread (typically also as part of wait-
ing on a synchronization primitive). On the other hand
however, this behaviour cannot be well controlled and
oversubscribing will lead to frequent context switches that
significantly deteriorate performance in situations where
blocking waits are not an issue and threads would nor-
mally spend most of their time on their actual task. The
solution to this problem is to introduce the asynchronous
notion of the problematic processes explicitly using TBB
concepts. The async node decouples the API for process-
ing input data from the API for providing an output. In the
example of executing a CUDA kernel, it passes control
back to the TBB runtime after asynchronously submitting
a kernel call and remembering a so-called gateway object.
This proxy object can then be used from a CUDA call-
back (cudaLaunchHostFunc) enqueued directly after
kernel call submission to notify TBB of the result. By a
restriction of how CUDA host callbacks work, the call-
back itself may not directly retrieve the result. It may only
pass back to the TBB runtime the necessary information
for retrieving the data in a downstream node.

In the other identified bottleneck, file I/O, the
async node cannot solve the problem, for it needs an asyn-
chronous API that could be integrated with the TBB. The
C++ Standard Library does not expose such API. Even
though the implementation uses thread-local instances of
std::ifstream, at least with the Microsoft STL, read-
ing from those streams in parallel still synchronizes – and
thus serializes – the calls under the hood. The integra-
tion of a library that provides asynchronous file I/O is kept
for future work due to additional implied implementation
costs (see Section 6).

Assuming that the input file might be stored in a con-
tiguous physical location, the implementation chose to
read continuous regions for each thread, spread equally
along the file. The rationale was to potentially spread in-
tensive reads over multiple NAND flash memory chips.
Due to the aforementioned serialization of reads, the ef-
fectivity of this approach could not be determined. Future
research might be able to evaluate the performance dif-
ference between asynchronous ”pseudo-sequential” reads
(every thread asynchronously requesting the globally next
slice, where every thread might have to seek) and spread
out sequential reads (every thread reading continuous data
without seeking).

4.2 GPU sorting

The actual sorting is implemented in CUDA as it paral-
lelizes well on the GPU. The sorting step can be sped up
by several orders of magnitude using COUNTINGSORT as
initially introduced by Hoetzlein [2014]. While not im-
plemented, this approach opens the door to easily apply
additional point-wise transformations (e. g. affine transfor-

mations to relocate the frame of reference) in parallel on
the fly while sorting the data.

4.3 Caching of Intermediate Results

Eventually, intermediate results must be buffered outside
the main memory. Values reported in Section 5 are based
on caching to a local SSD. Nevertheless, network drives
or fast cloud storage guaranteed to reside within the same
high-speed network would just work as well – with a re-
spective impact on the runtime performance. In either
case, the critical factor will be the random write perfor-
mance as it typically provides the worst throughput and
results on e. g. HDDs have shown prohibitively bad per-
formance during the Scatter step of the Splitter.

While the Scatter step is conceptually easy to paral-
lelize, as all chunks are independent, the Resolve step in-
volves multiple sequential parts: Resolving .data and
.bins files into Tile files as shown in Fig. 4 can be par-
allelized across tiles. This step and the next step, which
distributes the margin points among the tiles, are inher-
ently serial. Distributing the margin points involves a
nested loop. The outer loop enumerates the 3d − 1 po-
tential neighbors that each tile has. The inner loop iterates
over all Tile files and can be parallelized. For each Tile
file it appends the required margin points from the current
source Tile file to the Tile file of the neighboring cell (the
target File) and updates the necessary information in the
target file header. It is possible to parallelize over all Tiles
because:

• Point data copied from the source file by the source
thread is appended to the target file and does not af-
fect the data read by the target thread from the target
file.

• The file header in the target file is written by only one
source thread at a time because the mapping of cells
to neighboring cells in a given direction is a bijection.
Furthermore, all read-write pairs of any source thread
from and to the target file header do not overlap with
one another. The changes which any source thread
applies to the header of a target tile file do not affect
the parts of the header which the target thread may
read and use.

The code for addressing cells, subregions, neighbors
and identifying neighborhoods (both on the GPU and
CPU) is written for the variable n-dimensional case. It
uses compile-time evaluation of constexpr functions to
precompute arrays of indices, offsets and respective array
lengths to efficiently address and iterate regions within an
n-D grid during runtime. One more complex case uses
static initialization to compute an array of indices, to enu-
merate discontinuous ranges of n-D subregions touching
the lower-dimensional hyperrectangles in the border of an
n-D-tile, e. g. for a 3D tile: neighboring subregions coin-
ciding with a face, along an edge or touching one of the

5

corner vertices. The practical usage of this code is limited
by an O(Cd) complexity for the resulting executable size
as well as compilation/initialization time. The discussion
of the individual constructs and the underlying geometry
is beyond the scope of this report.

5 Results

Experiments were run locally on a Windows 11 machine
with the following configuration:

• AMD Ryzen 7 3700X 8-Core Processor (16 Threads)
@ 3.59GHz (locked), Caches: 512KB L1, 4MB L2,
32MB L3

• 32 GB RAM @ 2666MHZ (4x Corsair
CMK16GX4M2Z3600C18 DDR4)

• 1TB Samsung SSD 970 EVO Plus

• NVIDIA GeForce GTX 1080 Ti

Overclocking features were turned off, to avoid unpre-
dictable effects due to dynamic behaviour or non-spec
utilization of hardware. Additionally before running the
Splitter and between the Splitter and the reconstruction
stage, data potentially cached by the OS was flushed to re-
move ”magic speedups” through the Windows SuperFetch
cache.

The evaluation does not run a fully distributed ver-
sion of BALLFILTER, like DISTRIBUTEDBALLFILTER in
[Komon 2022], but executes the same core BALLFILTER
implementation used within DISTRIBUTEDBALLFILTER
sequentially on the individual tiles resulting from a call to
SPLIT without the additional scheduling, MPI communi-
cation and final merging step in [Komon 2022]. An ap-
proximation to latency in a theoretical parallel execution
is subsequently reconstructed from the logged time mea-
surements and does not take the runtime overhead of the
a real distributed execution (e. g. final merging step etc.)
into account.

5.1 Dataset

This report uses the SensatUrban dataset of [Hu et al.
2022] for the evaluation. It comes in multiple PLY files
split across a training and a test set. For the purpose of
this work they were combined into two monolithic PLY
files, one for each geographic location, and used as input
to SPLIT:

• Birmingham: 8.5 GB, 570M Points, 1273.69 m ×
1306.75 m×72.64 m, approx. 456 Points

m2

• Cambridge: 31.8 GB, 2.139B Points, 2152.94 m ×
2136.91 m×105.81 m, approx. 657 Points

m2

These two point clouds feature a realistic2 point distri-
bution and are suitable for this evaluation due to the fol-
lowing reasons:

• During development, it can be used in parts, while not
introducing major changes in the point distributions.

• It is representative for a real world use-case of sur-
face reconstruction: TIN meshes of planetary sur-
faces reconstructed from point clouds are used in
products like Google Maps, Microsoft Flight Sim-
ulator or many professional geographic information
systems.

• It is large enough to be represent data exceeding the
working memory for both CPU and GPU, requiring
streaming upon ingestion. It is small enough to still
run tests sequentially on a single machine with con-
sumer hardware.

• Other datasets using terrestrial LiDAR scanning, cap-
ture the scene from discrete points of view, like e.g.
the Semantic3D dataset [Hackel et al. 2017]. They
have unfavorable data distributions as most samples
are concentrated in a small region around the captur-
ing device with a linear falloff in world-space sam-
pling frequency, heavily suffering from occlusion due
to the perspective and frequently static capturing lo-
cations.

However in return, SensatUrban is not suitable for 3D
subdivision as most data is spread across the xy-plane.
While the implementation works for 3D tiles just fine, this
evaluation focuses on the application in planetary surface
reconstruction and thus poses a 2.5D scenario, where sub-
division happens along 2 axes while the dataset occupies
the third dimension as well. The two example input files
have an approximate sample density ratio of 1.443, which
good to keep in mind as it is a fundamental reason for the
following performance figures to differ between the Birm-
ingham and the Cambridge example.

5.2 Measurements

Fig. 5 shows the total running time for each split value.
Ideally the total running time would stay constant. De-
spite some overhead for processing more files would be
expected, the runtime increase in Fig. 5 is exceptionally
large. In light of this visualization and as already men-
tioned in Section 1, less subdivision seems to result in a
vastly more efficient use of electrical energy. Section 5.2.2
goes into detail to show where this unexpected behaviour
is coming from.

2As opposed to synthetic, since it had been produced through pho-
togrammetry from aerial image data, see [Hu et al. 2022] for details.

3The sample density for both example input files (see beginning of
Section 5.1) was calculated as the number of points devided by the
summed area of all tiles which contained samples on the respective high-
est tested subdivision.

6

(a) Birmingham (b) Cambridge

Figure 5: The number of Tile files (blue/left axis) plotted against the total reconstruction time for each split value (yel-
low/right axis).

5.2.1 Splitting

SPLIT was always run with equal values for the number of
tiles in x- and y-direction and a constant 1 in z-direction.
The parameter varying the subdivison in x- and y-direction
is called split. The number of tiles resulting form SPLIT
increases in O(split2) (see Fig. 5). In comparison to the
total running time, the Splitter takes up only a minor frac-
tion (see Fig. 6). Nevertheless, it can account for roughly
40 to 70 precent of overall latency (see Fig. 7 and 8). This
sequential structure is what makes performance optimisa-
tions within the Splitter significant. The most important
steps of the Splitter are unsurprisingly the Scatter and Re-
solve steps. Since I/O speed is known to be the bottle-
neck in the Splitter, the graphs in Fig. 7 coincide with the
amount of I/O required in each step. The Scatter duration
stays rather constant with a ratio between the Birmingham
and the Cambridge example according to their file size.
The Scatter duration dominates consistently with larger
amounts of smaller tiles.

5.2.2 Reconstruction

An essential parameter of BALLFILTER is the quantity l
mentioned in 1.2. The original implementation establishes
this value based on the length of the bounding box diag-
onal as l = diagonal

c , c being a constant. Komon chooses
c = 2000. The following experiments use c = 5000. In
fact, this value depends on the sampling frequency and
thus using the diagonal of the bounding box is just a
heuristic. Finding a value for c systematically, could start
by computing the empirical cumulative distribution func-
tion of edge lengths FX(x) (X the random variable de-
scribing the length of edges) and the average vertex de-
gree degmean(G) in the full Delaunay graph G. Then one
could choose the value c s.t. FX(c) = 6

degmean(G) , assuming
that the average number of neighbors in a planar Delau-
nay graph asymptotically approaches 6 [Tanemura 2003].
A fully probabilistic model might even improve the value

but is beyond the scope of this report. Also calculating a
perfect value for c involves iterating or sampling the full
Delaunay graph which can add significant processing time.
A more efficient way is just estimating c with previous
knowledge about the sampling rate based on the respec-
tive capturing process.

Regarding the odd scaling behaviour shown in Fig. 5 we
start with a simple overview, since it emerges from multi-
ple factors:

If the individual reconstruction times do not decrease
with increasing subdivision, then there is no advantage of
distributing work, other than subdividing data size enough
to fit tiles into main memory. This would be the case if
Fig. 5 would show quadratic behaviour for the total recon-
struction time, because any constant factor C, which the
total reconstruction time might grow less than the num-
ber of tiles, becomes negligible in practice when spread
across the quadratically increasing number of tiles. How-
ever, Fig. 5 adumbrates linear (5b) or slightly super-linear
(5a) behaviour for the total running time. This means that
eventually one gets a return on the increased efforts for
parallelization in the form of decreased latency, albeit pos-
sibly little and in this example more for 5b than 5a as can
be seen in Fig. 8.

Despite decreasing latency has been shown above, Fig.
5 and 8 do not show a scaling behaviour that might naı̈vely
be expected from an O(n logn) algorithm. Going more
into the detailed measurements, multiple components con-
tribute to the emerge:

1. Increasing lock contention on smaller tiles prevents
the Delaunay tetrahedralization to show O(n logn)
scaling in practice. Fig. 9 rather shows an Ω(

√
n)

shape in the lower range which grows significantly
faster than O(n logn) with very low problem sizes.
the average tetrahedralization time reaches a peak just
below 200M Points for both the Birmingham and the
larger Cambridge example.

7

(a) Birmingham (b) Cambridge

Figure 6: Timings for the total duration of the Splitter and the reconstruction step. The scale factor between the blue axis
(timing for the Splitter) and the yellow axis (time spent for reconstruction all Tile files) is 50 for both figures.

(a) Birmingham (b) Cambridge

(c) Birmingham (d) Cambridge

Figure 7: Timings for the Splitter per each split value. Top: individual algorithmic components; Bottom: Stacked compo-
nents.

8

(a) Birmingham (b) Cambridge
Individual algorithmic components: The quadratic decreasing components are easily visible.

(c) Birmingham (d) Cambridge
Stacked components: The mean reconstruction time per split value shows only moderate overall improvements due to the

dominant tetrahedralization execution time.

Figure 8: Timings for the surface reconstruction averaged over all files per split value.

2. The ratio of inner points to margin points is decreas-
ing with smaller tiles, see Fig. 10. When plotting the
storage efficiency as:

storage efficiency=
n points in tile Points∗16 Bytes

Point
tile file size Bytes

then we also see the expected decreasing values in
Fig. 11.

3. Other components of the reconstruction algorithms
(I/O, Delaunay filtering, index buffer calculation)
perfectly adhere to θ(n). They quadratically decrease
with increasing split values (see Fig. 8) because the
number of tiles subdividing the same volume is a
quadratic function of the split value and thus the num-
ber of points per tile decreases in the shape of C

split2
.

Factors1 and 2 deteriorate the efficiency of the dis-
tributed surface reconstruction for increasing split values
and thus decreasing tile sizes. Factor 3 decreases in the
naturally expected way for decreasing file sizes. The joint
effect of these different trends can be seen in Fig. 8: the

average reconstruction time decreases modestly since the
Delaunay tetrahedralization looses efficiency with smaller
tiles. The peak of the inefficiency of the CGAL tetrahe-
dralization seems to be located around 500M Points where
it diverges most from a hypothetical n logn scaling. This
leads to the overall unfavorably increasing reconstruction
time in Fig. 12. Fig. 13 shows the practically relevant la-
tency which could be achieved on the two datasets. For a
100% reconstruction the latency even worsens with more
subdivisions. If outliers are disregarded and incomplete
results are tolerated, only then better latencies could be
achieved – however just for a (large) subset of the data, as
in the nature of the tradeoff.

An in-depth analysis by running BALLFILTER on a
small set of Tile files of different sizes under Intel’s VTune
Profiler showed a tendency of decreasing spinning and
overhead CPU time for larger Tile files. But also larger
files showed a still increased overhead towards the end
of building the Delaunay graph. Due to inserting points
into the Delaunay tetrahedralization in the same order as
they appear in the Tile file, this coincides with the inser-
tion of the margin points. Because this manual profiling

9

(a) Birmingham (b) Cambridge

Figure 9: Durations for the tetrahedralization in BALLFILTER of all tiles depending on the number of points per file. A
Gaussian Process regression reveals the general trend. The predictions become noisy higher up the x-axis due to the non-
uniform distribution of samples. But the empirical suboptimal behaviour of the CGAL tetrahedralization with a spatial
lock grid of 503 cells for low numbers of points is clearly visible.

(a) Birmingham (b) Cambridge

Figure 10: Decreasing ration of number of points in the tile to point in the margin for each split value.

(a) Birmingham (b) Cambridge

Figure 11: Storage efficiency for each split value.

10

(a) Birmingham (b) Cambridge

(c) Birmingham (d) Cambridge

Figure 12: Timings for the surface reconstruction summed over all files per split value. Top: individual algorithmic
components; Bottom: Stacked components showing the overall reconstruction time for all files per split value.

(a) Birmingham (b) Cambridge

Figure 13: Theoretical latencies for the reconstruction stage assuming full parallelization for each split value. The graphs
show the minimum latencies with which a given percentage of tiles (solid lines) or percentage of overall data quantity
(dashed lines) could be processed.

11

is time-consuming and only few Tile files could be inves-
tigated, no statement about an actual correlation can be
made. Yet, it might be interesting to study the influence
of the Tile files structure, for it is partially sorted, on the
multithreaded CGAL Delaunay triangulation. Randomiz-
ing the input might yield improved runtime performance.

6 Conclusion and Future Work

This report reinforced the results of Komon [2022], show-
ing an overall improvement when parallelizing the execu-
tion of BALLFILTER. Additionally, the practical scaling
behaviour of the CGAL implementation suggests best real
cost and electrical power efficiency for low split values
that maximize Tile file size while still guaranteeing a dis-
tributed version of BALLFILTER as well as SPLIT to not
run out of memory. Overly high subdivisions for which
the average number of points per Tile file approaches the
200M Points mark, lose efficiency in the CGAL imple-
mentation for computing the Delaunay complex. Further
work might be able to show a significant speedup in prac-
tice by

• either running as many single-threaded versions of
BALLFILTER as hardware threads are available per
node in parallel for multiple small tiles,

• or implementing a more efficient Delaunay tetra-
hedralization algorithm, following a divide-and-
conquer paradigm which will not suffer from lock
contention and may be implemented on the GPU,
such as e. g. [Fuetterling et al. 2014].

Additional bottlenecks of the Splitter should be addressed,
such as the unconditional serialization of multi-threaded
read request on the same input file. As asynchronous IO is
not covered by the C++ Standard Library, a cross-platform
library, such as asio 4, may be used. However, directly
switching to DirectStorage might be promising as it is as
well a natural extension to using CUDA in the first pro-
cessing step.

Lastly, there is an unexplained peak for split = 50 in the
reconstruction time for the Cambridge example, see Fig.
5b. This was the one parameter instance of the parameter
sweep that had to be repeated due to a timeout error caused
by one tile crossing the 500s mark in the reconstruction
stage, see Fig. 14.

4The implementation for the Splitter already includes asio as part of
Boost.

Figure 14: Reconstruction times for the Cambridge exam-
ple per each split value.

It was rerun without a timeout on the reconstruction
stage and subsequently resulted in this peak. Further in-
vestigation might be required to explain this anomaly and
may lead to further research, investigating the effect of ac-
tual sample distributions occurring in the reconstruction of
planetary surfaces.

References

CARAFFA, L., MARCHAND, Y., BREDIF, M., AND VAL-
LET, B. 2021. Efficiently Distributed Watertight Sur-
face Reconstruction. International Conference on 3D
Vision, 1432–1441.

DEVILLERS, O., HORNUS, S., AND JAMIN, C. 2022.
dD triangulations. In CGAL User and Reference
Manual, 5.5.1 ed. CGAL Editorial Board. https:
//doc.cgal.org/5.5.1/Triangulation/
index.html#TriangulationSecPerf.

FUETTERLING, V., LOJEWSKI, C., AND PFREUNDT,
F. J. 2014. High-Performance Delaunay Triangulation
for Many-Core Computers. High-Performance Graph-
ics, January, 97–104.

HACKEL, T., SAVINOV, N., LADICKY, L., WEGNER,
J. D., SCHINDLER, K., AND POLLEFEYS, M. 2017.
Semantic3d.net: A new large-scale point cloud clas-
sification benchmark. In ISPRS Annals of the Pho-
togrammetry, Remote Sensing and Spatial Information
Sciences, vol. IV-1-W1, 91–98.

HOETZLEIN, R. 2014. Fast Fixed-Radius Nearest Neigh-
bors: Interactive Million-Particle Fluids. GPU Technol-
ogy Conference.

HU, Q., YANG, B., KHALID, S., XIAO, W., TRIGONI,
N., AND MARKHAM, A. 2022. Sensaturban: Learn-
ing semantics from urban-scale photogrammetric point
clouds. International Journal of Computer Vision 130,
2, 316–343.

12

https://doc.cgal.org/5.5.1/Triangulation/index.html#TriangulationSecPerf
https://doc.cgal.org/5.5.1/Triangulation/index.html#TriangulationSecPerf
https://doc.cgal.org/5.5.1/Triangulation/index.html#TriangulationSecPerf

KOMON, P. M. 2022. Distributed Surface Reconstruction.
Bachelor’s thesis, TU Wien.

OHRHALLINGER, S., 2022. Personal communication. TU
Wien.

PETERKA, T., MOROZOV, D., AND PHILLIPS, C.
2015. High-Performance Computation of Distributed-
Memory Parallel 3D Voronoi and Delaunay Tessella-
tion. International Conference for High Performance
Computing, Networking, Storage and Analysis, January,
997–1007.

TANEMURA, M. 2003. Statistical distributions of Poisson
Voronoi cells in two and three dimensions. Forma 18,
221–247.

13

	Introduction
	Problem
	Idea
	Definitions

	Previous Work
	Concept
	Scatter
	Resolve

	Implementation
	Multithreading
	GPU sorting
	Caching of Intermediate Results

	Results
	Dataset
	Measurements
	Splitting
	Reconstruction

	Conclusion and Future Work

