
Untangling Circular Drawings: Algorithms and1

Complexity2

Sujoy Bhore !3

Indian Institute of Science Education and Research, Bhopal, India.4

Guangping Li !5

Algorithms and Complexity Group, TU Wien, Vienna, Austria6

Martin Nöllenburg !7

Algorithms and Complexity Group, TU Wien, Vienna, Austria8

Ignaz Rutter !9

University of Passau, Passau, Germany10

Hsiang-Yun Wu !11

Research Unit of Computer Graphics, TU Wien, Vienna, Austria12

Abstract13

We consider the problem of untangling a given (non-planar) straight-line circular drawing δG of an14

outerplanar graph G = (V,E) into a planar straight-line circular drawing by shifting a minimum15

number of vertices to a new position on the circle. For an outerplanar graph G, it is clear that such16

a crossing-free circular drawing always exists and we define the circular shifting number shift◦(δG)17

as the minimum number of vertices that need to be shifted to resolve all crossings of δG. We show18

that the problem Circular Untangling, asking whether shift◦(δG) ≤ K for a given integer K,19

is NP-complete. Based on this result we study Circular Untangling for almost-planar circular20

drawings, in which a single edge is involved in all the crossings. In this case we provide a tight upper21

bound shift◦(δG) ≤ bn
2 c − 1, where n is the number of vertices in G, and present a polynomial-time22

algorithm to compute the circular shifting number of almost-planar drawings.23
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1 Introduction32

The family of outerplanar graphs, i.e., the graphs that admit a planar drawing where all33

vertices are incident to the outer face, is an important subclass of planar graphs and exhibits34

interesting properties in algorithm design, e.g., they have treewidth at most 2. Being35

defined by the existence of a certain type of drawing, outerplanar graphs are a fundamental36

topic in the field of graph drawing and information visualization; they are relevant to37

circular graph drawing [27] and book embedding [3,5]. Several aspects of outerplanar graphs38

have been studied over the years, e.g., characterization [8, 13, 28], recognition [1, 30], and39

drawing [14, 20, 26]. Moreover, outerplanar graphs and their drawings have been applied40

to various scientific fields, e.g., network routing [15], VLSI design [9], and biological data41

modeling and visualization [19,31].42
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71:2 Untangling Circular Drawings: Algorithms and Complexity

In this paper we study the untangling problem for non-planar circular drawings of43

outerplanar graphs, i.e., we are interested in restoring the planarity property of a straight-line44

circular drawing with a minimum number of vertex shifts. Similar untangling concepts45

have been used previously for eliminating edge crossings in non-planar drawings of planar46

graphs [17]. More precisely, let G = (V,E) be an n-vertex outerplanar graph and let δG47

be an outerplanar drawing of G, which can be described combinatorially as the (cyclic)48

order σ = (v1, v2, . . . , vn) of V when traversing vertices on the boundary of the outer face49

counterclockwise. This order σ corresponds to a circular drawing by mapping each vertex50

vi ∈ V to the point pi on the unit circle O with polar coordinate pi = (1, 2πi/n) and drawing51

each edge (vi, vj) ∈ E as the straight-line segment between its endpoints pi and pj . Two52

edges e, e′ cross in δG if and only if their endpoints alternate in the order σ. We note that it53

is sufficient to consider circular drawings since any outerplanar drawing can be transformed54

into an equivalent circular drawing by morphing the boundary of the outer face to O.55

Our untangling problem is motivated by the problem of maintaining an outerplanar56

drawing of a dynamic outerplanar graph, which is subject to edge or vertex insertions and57

deletions, while maximizing the visual stability of the drawing [21,22], i.e., the number of58

vertices that can remain in their current position. Such problems of maintaining drawings59

with specific properties for dynamic graphs have been studied before [2, 4, 11, 12], but not for60

the outerplanarity property.61

The notion of untangling is often used in the literature for a crossing elimination procedure62

that makes a non-planar drawing of a planar graph crossing-free; see [10, 18, 24, 25]. Given a63

straight-line drawing δG of a planar graph G, the problem to decide if one can untangle δG64

by moving at most k vertices, is proved to be NP-hard [17,29]. Lower bounds on the number65

of vertices that can remain fixed in an untangling process have also been studied [6,7,17].66

Bose et al. [6] proved that Ω(n1/4) vertices can remain fixed when untangling a drawing.67

Cano et al. [7] on the other hand provide a family of drawings, where at most O(n0.4948)68

vertices can remain fixed during untangling. Goaoc et al. [17] proposed an algorithm, which69

allows at least
√

(logn)− 1)/ log log n vertices to be fixed when untangling a drawing. If70

the graph is outerplanar, the algorithm proposed by Goaoc et al. could eliminate all edge71

crossings while keeping at least
√
n/2 vertices fixed. Notice that the drawing obtained by72

this algorithm is planar but not necessarily outerplanar. In this paper, we study untangling73

procedures to obtain an outerplanar drawing from a non-outerplanar drawing. To the best74

of our knowledge, there are no previous studies about untangling circular drawings.75

Preliminaries and Problem Definition. Given a graph G = (V,E), we say two vertices are76

2-connected if they are connected by two internally vertex-disjoint paths. A 2-connected77

component of G is a maximal set of pairwise 2-connected vertices. Two subsets A,B ⊆ V are78

adjacent if there is an edge ab ∈ E with a ∈ A and b ∈ B. A bridge (resp. cut-vertex) of G is79

an edge (resp. vertex) whose deletion increases the number of connected components of G.80

A drawing of a graph is planar if it has no crossings, it is almost-planar if there is a single81

edge that is involved in all crossings, and it is outerplanar if it is planar and all vertices are82

incident to the outer face. A graph G = (V,E) is outerplanar if it admits an outerplanar83

drawing. In addition, a drawing where the vertices lie on a circle and the edges are drawn84

as straight-line segments is called a circular drawing. Every outerplanar graph G admits a85

planar circular drawing, as one can start with an arbitrary outerplanar drawing δG of G86

and transform the outer face of δG to a circle [27]. In this paper, we exclusively work with87

circular drawings of outerplanar graphs; we thus simply refer to them as drawings.88

Given a non-planar circular drawing δG of an n-vertex outerplanar graph G where vertices89
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lie on the unit circle O, we can transform the drawing δG to an outerplanar drawing by90

moving the vertices on the circle O. We call a sequence of moving operations that results in91

an outerplanar drawing an untangling of δG. Formally, given a circular drawing δG, a vertex92

move operation (or shift) changes the position of one vertex in δG to another position on the93

circle O [17]. We define the circular shifting number shift◦(δG) of an outerplanar drawing94

δG to be the minimum number of vertices that are required to shift in order to untangle95

δG. We say an untangling is optimal if the number of vertex moves of this untangling is the96

minimum over all valid untanglings of δG. We study the following problems.97

I Problem 1.1 (Minimum Circular Untangling (MinCU)). Given a circular drawing98

δG of an outerplanar graph G, find a sequence of shift◦(δG) vertex moves that untangles δG.99

I Problem 1.2 (Circular Untangling (CU)). Given a circular drawing δG of an outer-100

planar graph G and an integer K, decide if shift◦(δG) ≤ K.101

Contributions. In Section 2, we show that the problem Circular Untangling is NP-102

complete. We then consider almost-planar drawings. In this case, we provide a tight upper103

bound on the circular shifting number in Section 3 and design a quadratic algorithm to104

compute a circular untangling with the minimum number of vertex moves in Section 4.105

Details of the omitted/sketched proofs (marked with ?) will be included in the forthcoming106

full version of the paper.107

2 Complexity of Circular Untangling108

The goal of this section is to prove the following theorem.109

I Theorem 2.1. Circular Untangling is NP-complete.110

Ultimately, the NP-completeness follows by a reduction from the well-known NP-complete111

problem 3-Partition. However, we do not give a direct reduction but rather work via an112

intermediate problem, called Distinct Increasing Chunk Ordering with Reversals113

that concerns increasing subsequences. A chunk is a sequence S = (si)i=1,...,n of positive114

integers. For a chunk C, we denote C−1 as its reversal. In the following, we introduce two115

longest increasing subsequence problems.116

I Problem 2.2 (Increasing Chunk Ordering (ICO)). Given ` chunks C1, . . . , C` and117

a positive number M , the question is if there exists a permutation π of {1, . . . , `} such that118

the concatenation Cπ(1)Cπ(2) · · ·Cπ(`) contains a strictly increasing subsequence (SISS) of119

length M .120

I Problem 2.3 (Increasing Chunk Ordering with Reversals (ICORev)). Given `121

chunks C1, . . . , C` and a positive integer M , the question is to determine whether a permu-122

tation π of {1, . . . , `} and a function ε : {1, . . . , `} → {−1, 1} exist such that the concatena-123

tion Cε(1)
π(1)C

ε(2)
π(2), . . . , C

ε(n)
π(`) contains a SISS of length M .124

These two problems also come in distinct variants, denoted by Distinct-ICO and125

Distinct-ICORev, respectively, where all numbers in all input chunks need to be distinct.126

In the following, for two problem A and B, we write A ≤p B if there is a polynomial-time127

reduction from A to B. It is readily seen that Circular Untangling lies in NP. Therefore,128

Theorem 2.1 follows immediately from the following two reduction lemmas, whose proofs are129

given in the next two subsections.130

I Lemma 2.4. Distinct-ICORev ≤p Circular Untangling131

I Lemma 2.5. (?) 3-Partition ≤p Distinct-ICORev132

ISAAC 2021
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Figure 1 The reduction from Distinct-ICORev to Circular Untangling. (a) The
circular drawing δG constructed from a Distinct-ICORev instance with chunk set C =
{C1 = (1, 8, 4), C2 = (2, 5), C3 = (6, 7, 9, 3)}. (b) An example drawing obtained by applying an
optimum untangling on δG. Fixed vertices are marked in .

2.1 Proof of Lemma 2.4133

Let I = (C,M) be an instance of Distinct-ICORev with chunks C1, . . . , C`. By replacing134

each number with its rank among all occuring numbers, we may assume without loss of135

generality, that the numbers in the sequence are 1, . . . ,
∑`
i=1 |Ci| =: L.136

We construct an instance I ′ = (δG,K) of Circular Untangling as follows; see137

Figure 1a. We create vertices v1, . . . , vL and an additional vertex v0. For each chunk Ci,138

we create a cycle Ki that starts at v0, visits the vertices that correspond to the elements139

of Ci in the given order, and then returns to v0. That is, G consists of ` cycles that are140

joined by the cut-vertex v0. The drawing δG is obtained by placing the vertices in the141

order σG = v0, v1, v2, . . . , vL clockwise. Finally, we set K := L −M . Clearly, I ′ can be142

constructed from I in polynomial time. It remains to prove the following.143

I Lemma 2.6. I is a yes-instance of Distinct-ICORev if and only if I ′ is a yes-instance144

of Circular Untangling.145

Proof. Observe that, since in δG the vertices are ordered clockwise according to their146

numbering, the problem of untangling with at most L −M vertex moves is equivalent to147

finding a planar circular drawing of G whose clockwise ordering contains an increasing148

subsequence of at least M vertices, which can then be kept fixed; see Figure 1b.149

The key observation is that, in every planar circular drawing of G, the vertices of each150

cycle Ki are consecutive, and the order of its vertices is the order along Ki, i.e., it is fixed151

up to reversal. Hence the choice of a circular drawing whose clockwise ordering contains152

an increasing subsequence of at least M vertices directly corresponds to a permutation and153

reversal of the chunks Ci. J154

2.2 Proof of Lemma 2.5155

Let I = (A,K) be an instance of 3-Partition. The input to the 3-Partition problem156

consists of a multiset A = {a1, . . . , a3m} of 3m positive integers and a positive integer K157

such that K
4 < ai <

K
2 , for i = 1, . . . , 3m. The question is whether A can be partitioned into158

m disjoint triplets T1, . . . , Tm such that
∑
a∈Tj

a = K, for all j = 1, . . . ,m. It is well-known159
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that 3-Partition is strongly NP-complete, i.e., the problem is NP-complete even if the160

integers in A and K are polynomially bounded in m; see [16]. We show the following simpler161

lemma and then extend its proof to a proof of Lemma 2.5.162

I Lemma 2.7. 3-Partition ≤p Increasing Chunk Ordering.163

Proof. Let I = (A,K) with A = {a1, . . . , a3m} be an instance of 3-Partition. We create164

for each element ai a corresponding chunk Ci as follows. For two integers a < l, we denote165

the consecutive integer sequence (a, a+ 1, . . . , a+ l− 1) as the incremental sequence of length166

l starting at a.167

We say that an incremental sequence crosses a multiple of K if it contains cK+ 1 and cK168

for some integer c. We take all the incremental sequences of length ai that start at a value169

in {1, . . . ,mK} except for those that cross a multiple of K. The chunk Ci is formed by170

concatenating these sequences in decreasing order of their first number. For example, for171

ai = 3,m = 2,K = 6, Ci is the concatenation of sequences (10, 11, 12), (9, 10, 11), (8, 9, 10),172

(7, 8, 9),(4, 5, 6), (3, 4, 5), (2, 3, 4), (1, 2, 3).173

We obtain an instance I ′ = (C,M) of Increasing Chunk Ordering by setting C =174

{C1, . . . , C3m} and M := mK. We claim that I is a yes-instance of 3-Partition if and175

only if I ′ is a yes-instance of Increasing Chunk Ordering. For the proof, we rely on the176

following observations:177

(i) every strictly increasing subsequence in Ci has length at most ai.178

(ii) every strictly increasing subsequence in Ci of length ai is consecutive and does not179

cross a multiple of K.180

(iii) every incremental sequence of {1, . . . ,mK} that has length ai and does not cross a181

multiple of K is a subsequence of Ci.182

Assume there is a partition of the elements of A into m triples, each of which sums183

to K. We arbitrarily order these triples, and within each triplet, we order the elements184

according to their index. This defines a total ordering on the elements, and therefore on185

the chunks. Let Ti = {ax, ay, az} with x < y < z be the ith triplet and let Cx, Cy, Cz186

be the corresponding chunks. By observation (iii) Cx, Cy, and Cz contain respectively187

three incremental subsequences of length ax, ay, and az starting at iK + 1, iK + ax + 1,188

and iK+ax+ay+1. Concatenating the subsequences for all chunks hence gives the increasing189

subsequence 1, . . . ,mK.190

Conversely, assume that there is a chunk ordering so that we obtain the incremental191

subsequence 1, . . . ,mK. By observation (i), each chunk Ci can contribute a subsequence of192

at most ai elements; therefore each chunk Ci must contribute an increasing subsequence Si of193

length ai. By observation (ii), the subsequence Si does not cross a multiple of K. Therefore,194

partitioning the sequence 1, . . . ,mK into k incremental sequences ((c− 1)K + 1, . . . , cK) for195

c ∈ {1, . . . ,m}, each of which corresponds to a triplet of A with the sum K. Together, these196

triplets define a solution of the instance I of 3-Partition. J197

The proof of the stronger claim of Lemma 2.5 follows the same ideas but requires several198

additional ingredients. First of all, to achieve distinctness of the elements, we use strings199

of numbers, called words, which we order lexicographically. Then the main information is200

encoded in the first elements of the sequence, whereas the later entries are used to make the201

words pairwise distinct. At the end of the construction, each word can be replaced by its202

rank in a lexicographic ordering of all words that occur in the instance.203

A second complication stems from the fact that chunks can be reversed. The chunks we204

construct in the proof of Lemma 2.7 contain a significantly longer increasing subsequence205

ISAAC 2021
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after reversal, as it may include one element from each incremental subsequence of the chunk,206

of which there may be mK many. To alleviate this, we add a sufficiently long tailing sequence207

of length X to each increasing subsequence so that one cannot benefit from a reversal. Then208

chunk Ci can provide an increasing subsequence of length ai +X, and all chunks together209

shall provide an increasing subsequence of mK + 3mX. Implementing this naively by simply210

adding X to each element in the 3-Partition instance does not work, as the possible starting211

positions for the increasing subsequences provided by a chunk then grows to mK + 3mX,212

thus providing an incremental sequence of length mK + 3mX after reversal. We can however213

observe that the only reasonable starting points for the increasing subsequence provided by214

a chunk Ci are the original mK, each of which can be shifted by cX, where c is the number215

of chunks placed before Ci. This makes for a total of only 3m2K possible starting values.216

By choosing X > 3m2K, it is then ensured that reversing a chunk only provides a shorter217

increasing subsequence than ai +X.218

3 A Tight Upper Bound for Almost-Planar Drawings219

Let G = (V,E) be an outerplanar graph, let δG be an almost-planar circular drawing of G.220

In this section, we present an untangling procedure for such almost-planar circular drawings221

that provides a tight upper bound of bn2 c − 1 on shift◦(δG).222

I Theorem 3.1. Given an almost-planar drawing δG of an n-vertex outerplanar graph G223

the circular shifting number shift◦(δG) ≤ bn2 c − 1, and this bound is tight.224

To see that the bound is tight, let n ≥ 4 be an even number and let G be the cycle225

on vertices v1, . . . , vn, v1 (in this order) and let δG be a drawing with the clockwise order226

v2, . . . , v2i . . . , vn, vn−1, . . . , v2i+1, . . . , v1; see Figure 2.227

v6

vn−4

v1
v2

v3
v4

v5

vn
vn−1

vn−2

vn−5

vn−3

Figure 2 An almost-planar drawing δG with shift◦(δG) = n
2 − 1.

We claim that shift◦(δG) ≥ n
2 − 1. Clearly, the clockwise circular ordering of its vertices228

in a crossing-free circle drawing is either v1, v2, . . . , vn or its reversal. Assume that we turn it229

to the clockwise ordering v1, v2, . . . , vn; the other case is symmetric. In δG, the n
2 odd-index230

vertices v1, . . . , v2i+1 . . . , vn−1 and vn are ordered counterclockwise. To reach a clockwise231

ordering, we need to move all but two of these vertices. Thus, at least n
2 − 1 vertices in total232

are required to move.233

The remainder of this section is devoted to proving the upper bound. Let e = uv be the234

edge of δG that contains all the crossings, and let G′ = G− e and δG′ be the circular drawing235
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(a) Case 1 (b) Case 2.2 (non-connecting component)

v

u

shift

C ∩ L
v′

C ′v

u

C

w

x

flip

y

y′

Figure 3 Moving a left component, keeping/reversing the clockwise ordering of its vertices.

of G′ by removing the edge e from δG. The edge uv partitions the vertices in V \ {u, v} into236

the sets L and R that lie on the left and right side of the edge uv (directed from u to v).237

I Theorem 3.2. Let δG be an almost-planar drawing of an outerplanar graph G. An238

outerplanar drawing of G can be obtained by moving only vertices of L or only vertices of239

R to the other side in δG and fixing all the remaining vertices. The untangling moves only240

min{|L|, |R|} vertices and can be computed in linear time.241

This immediately implies the upper bound from Theorem 3.1, since |L ∪ R| = n − 2,242

and therefore min{|L|, |R|} ≤ bn2 c − 1. To prove Theorem 3.2, we distinguish different cases243

based on the connectivity of u and v in G′.244

Case 1: u, v are not connected in G′. Consider a connected component C of G′ that245

contains vertices from L and from R.246

I Proposition 3.3. Suppose u, v are not connected in G′. Let C be a connected component247

of G′ that contains vertices from L and from R. It is possible to obtain a new almost-planar248

drawing δ′G of G from δG by moving only the vertices of C ∩L (resp. C ∩R) such that C lies249

entirely on the right (resp. left) side of uv.250

Proof. Since u, v are not connected in G′, C contains at most one of u, v. Without loss of251

generality, we assume that v /∈ C; see Figure 3a. Let v′ be the first clockwise vertex after252

v that lies in C. Let δ′G be the drawing obtained from δG by moving the vertices of C ∩ L253

clockwise just before v′ without changing their clockwise ordering. Observe that this removes254

all crossings of e with C. The choice of v′ ensures that no edge of C alternates with an255

edge whose endpoints lie in V \ C. Finally, the vertices of C maintain their clockwise order.256

This shows that no new crossings are introduced, and the crossings between e and C are257

removed. J258

By applying Proposition 3.3 for each connected component of G′ that contains vertices from259

L and from R, we obtain an outerplanar drawing of G.260

Case 2: u, v are connected in G′. Let C be the connected component in G′ that contains261

both vertices u and v. Note that if C ′ is another connected component of G′, then it must262

lie entirely to the left or entirely to the right of edge e. Here, we ignore such components as263

they never need to be moved. We may hence assume that G′ is connected.264

Case 2.1: u, v are 2-connected in G′. We claim that in this case δG is already planar.265

ISAAC 2021
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I Proposition 3.4. If u and v are 2-connected in G′, then δG is planar.266

Proof. If vertices u, v ∈ V are 2-connected in G′, then G′ contains a cycle C that includes267

both u and v. In δG′ , this cycle is drawn as a closed curve. Any edge that intersects the268

interior region of this closed curve therefore has both endpoints on C. If there exists an edge269

e′ = xy that intersects e = uv, then contracting the four subpaths of C connecting each270

of {x, y} to each of {u, v} yields a K4-minor in G, which contradicts the outerplanarity of271

G. J272

Case 2.2: u, v are connected but not 2-connected in G′. In this case G′ contains273

at least one cut-vertex that separates u and v. Notice that each path from u to v visits274

all such cut-vertices between u and v in the same order. Let f and l be the first and the275

last cut-vertex on any uv-path. Additionally, add u to the set of L,R that contains f and276

likewise add v to the set of L,R that contains l. Let X denote the set of edges of G′ that277

have one endpoint in L and the other in R. Each connected component of G′ −X is either a278

subset of L or a subset of R, which are called left and right components, respectively. We279

call a component of G′ −X connecting if it contains either u or v, or removing it from G′280

disconnects u and v. For a left component CL and a right component CR, we denote by281

E(CL, CR) the set of edges of G′ that connect a vertex from CL to a vertex in CR. We can282

observe that since G′ is connected, for any edge that connects a left and a right component,283

at least one of the components must be connecting. We use the following observation.284

I Observation 3.5. If P is an xy-path in a left (right) component C, then it contains all285

vertices of C that are adjacent to a vertex of a right (left) component and lie between x and286

y on the left (right) side.287

(a) (b)

C ′
C

u

v

P y

t

w

s

x

C

u

C ′

dc

a

v

b

t

s

e1

e2

P

PL PR

Figure 4 The K2,3-minors we use in the proofs of (a) Lemma 3.6 and (b) Lemma 3.8.

I Lemma 3.6. Every non-connecting component C of G′ − X is adjacent to exactly one288

component C ′ of G′ −X. Moreover, C ′ is connecting, there are at most two vertices in C ′289

that are incident to edges in E(C,C ′), and if there are two such vertices w, x ∈ C ′, then they290

are adjacent and removing wx disconnects C ′.291

Proof. Without loss of generality, we assume that C is a left component. Since C is non-292

connecting, any component adjacent to it must be connecting. Moreover, if there are two293

distinct such components, they lie on the right side of the edge uv. Then either there is294

a path on the right side that connects them (but then they are not distinct), or removing295

C disconnects these components, and therefore uv, contradicting the assumption that C is296
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a non-connecting component. Therefore C is adjacent to exactly one other component C ′,297

which must be a right connecting component. Let w and x be the first and the last vertex298

in C ′ that are adjacent to vertices in C when sweeping the vertices of G clockwise in δG299

starting at v; see Figure 4a. The lemma holds trivially if w = x. Suppose w 6= x. Next we300

show that wx ∈ E and that wx is a bridge of C. Let P be an arbitrary path from w to x in301

C. If P contains an internal vertex y, then the path P together with a path from w to x302

whose internal vertices lie in C forms a cycle, where x and w are not consecutive. Note that303

at least one of u, v, say u, is not identical to w, x, otherwise, u, v are 2-connected. This cycle,304

together with disjoint paths from w to v and x to u and the edge uv yields a K2,3-minor305

in G; see Figure 4a. Such paths exist, by the outerplanarity of δG′ and the fact that C ′ is306

connecting, but C is not. Since G is outerplanar, and therefore cannot contain a K2,3-minor,307

this immediately implies that P consists of the single edge wx, which must be a bridge of C ′308

as otherwise there would be a wx-path with an internal vertex. Observation 3.5 implies that309

w and x are the only vertices of C that are adjacent to vertices in C ′. J310

I Proposition 3.7. Let C be a left (right) non-connecting component of G′−X. It is always311

possible to obtain a new almost-planar drawing δ′G of G from δG by moving only the vertices312

of C \ {u, v} to the right (left) side.313

Proof. Without loss of generality, we assume that C is a left component. Since C is non-314

connecting, then by Lemma 3.6, it is adjacent to at most two vertices on the right side.315

If there are two such vertices, denote them by w and x such that w occurs before x on316

a clockwise traversal from v to u. Note that wx is a bridge of a right component C ′ by317

Lemma 3.6; see Figure 3b. Consider the two components of C ′ − wx and let y be the last318

vertex that lies in the same component as w when traversing vertices clockwise from w to x.319

If C is connected to only one vertex, then we denote this by y. In both cases, let y′ be the320

vertex of L that immediately succeeds y in clockwise direction (If y = u, let y′ be the vertex321

that immediately precedes y.).322

We obtain δ′G by moving all vertices of C \ {u, v} between y and y′, reversing their323

clockwise ordering. Observe that the choice of y and y′ guarantees that δ′G is almost-planar324

and all crossings lie on uv. J325

It remains to deal with connecting components.326

I Lemma 3.8. The connecting component of G′ −X containing u or v is adjacent to at327

most one connecting component. Every other connecting component is adjacent to exactly328

two connecting components. Moreover, if C and C ′ are two adjacent connecting components,329

then there is a vertex w that is incident to all edges in E(C,C ′).330

Proof. The claims concerning the adjacencies of the connecting components follows from331

the fact that every uv-path visits all connecting components in the same order. It remains332

to prove that all edges between two connecting components share a single vertex. If u and v333

are in one component, then this component is the only connecting component and there is334

nothing to show.335

Now let C and C ′ be adjacent connecting components and assume that C or C ′ may336

contain one of u or v but not both. Furthermore, we assume without loss of generality, that337

C is a left and C ′ is a right component. For the sake of contradiction, assume there exist338

two edges e1, e2 ∈ E(C,C ′) that do not share an endpoint. Let e1 = ab and e2 = cd where339

a, c ∈ C and b, d ∈ C ′ such that their clockwise order is a, b, d, c; see Figure 4b. Note that340

one of u, v is not in the set {a, b, c, d}. Otherwise, u and v are 2-connected, which contradicts341
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our case assumption. In the following, we assume without loss of generality that a, b, c, d, v342

are five distinct vertices in G′. Let P be a path from u to v in G′. Since C and C ′ are both343

connecting, P contains vertices from both components. When traversing P from u to v, let344

s and t denote the first and the last vertex of C ∪ C ′ that is encountered, respectively. Here,345

we assume without loss of generality that s ∈ C and t ∈ C ′. Let PL be a path in C that346

connects s to a and let PR be a path in C ′ that connects d to t. By Observation 3.5, PL347

contains c and PR contains b. We then obtain a K2,3-minor of G by contracting each of the348

paths PL[c, a], PR[d, b], vuP [u, s]PL[s, c], and PR[b, t]P [t, v] into a single edge. J349

By Lemma 3.6 and Lemma 3.8, all vertices of a connecting component of G′ −X can be350

moved to the other side, similarly as in Proposition 3.7.351

I Proposition 3.9. (?) Let C be a left (right) connecting component of G′−X. It is possible352

to obtain a new almost-planar drawing δ′G of G from δG by moving only the vertices of353

C \ {u, v} to the right (left) side.354

Proposition 3.7 and Proposition 3.9 together imply Theorem 3.2.355

4 Untangling Almost-Planar Drawings356

In this section, we consider how to untangle an almost-planar circular drawing δG of an357

n-vertex outerplanar graph G = (V,E) with the minimum number of vertex moves. Firstly,358

we study this problem in several restricted settings (Sections 4.1–4.3), which leads us to the359

design of an O(n2)-time algorithm to compute shift◦(δG) in Section 4.4. Let e = uv be the360

edge of δG that contains all the crossings, and let G′ = G− e and δG′ be the straight-line361

circular drawing of G′ by removing the edge e from δG. The edge uv partitions the vertices362

in V \ {u, v} into the sets L and R that lie on the left and right side of the edge uv (directed363

from u to v). Let Cu and Cv be the connected components of G′ that contain u and v,364

respectively. Note that Cu = Cv if u, v are connected.365

4.1 Fixed Edge Untangling366

Here we consider untangling under the restriction that the positions of u and v are fixed. We367

denote such untangling as fixed edge untangling. From very similar arguments as in Section 3,368

we derive the following statements.369

I Lemma 4.1. (?) Let C be a connected component of G′. It is always possible to obtain370

an almost-planar drawing δ′G of G from δG by moving all vertices in L ∩ C (resp. R ∩ C) to371

the right (resp. left) side.372

I Theorem 4.2. (?) Given an almost-planar drawing δG of an outerplanar graph G, a fixed373

edge untangling of δG with the minimum number of vertex moves can be computed in linear374

time.375

4.2 Single Component Untangling376

Next, we study an untangling variant, called Single Component Untangling, which moves377

vertices of one particular connected component of G′ that contains the vertices u or v, while378

the other components remain fixed. We claim that δG can always be untangled in this way.379
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I Theorem 4.3. It is always possible to untangle δG by moving only the vertices of Cu or380

only the vertices of Cv and such a single component untangling procedure can be found in381

linear time.382

Proof. If Cu = Cv the claim is trivially true. So let’s consider the case that u and v are not383

connected in G′ and assume that |Cu| ≤ |Cv|. We move the vertices of Cu as follows. Let σu384

be the clockwise order of Cu in δG′ , starting with u. We insert the vertices of Cu in the order385

σu clockwise right after v to obtain a new drawing δ′G′ of G′. Since Cu was crossing-free386

before and is placed consecutively on the circle, it remains crossing-free. No other edges387

have been moved. Furthermore, u and v are now neighbors on the circle, so we can insert388

the edge uv without crossings and have untangled δG with min{|Cu|, |Cv|} moves. J389

4.3 Component-Fixed Untangling390

An untangling under the restriction that both of Cu and Cv must contain fixed vertices, is391

denoted as Component-Fixed Untangling.392

We introduce some notions and provide basic observations. Let G be a connected393

outerplanar graph. Let B be a 2-connected component of G and E(B) the set of edges in394

B. Since G is connected and B is 2-connected, each connected component of G − E(B)395

contains exactly one vertex in B. Given a vertex b in B, let Cb be the connected component396

of G−E(B) that contains b. We denote Cb as the attachment of the 2-connected component397

B at the vertex b.398

Let H(B) be the cyclic vertex ordering of B in the order of its Hamiltonian cycle1. We399

get Observation 4.4; see Figure 5.400

I Observation 4.4. Let δG be an outerplanar drawing of an outerplanar graph G and B401

be a 2-connected component of G. Then, the clockwise cyclic vertex ordering of B in δG402

is either H(B) or its reverse. Furthermore, for each attachment of B, its vertices appear403

consecutively on the circle in δG.404

B

Figure 5 A 2-connected component B (in blue) and its attachments (gray boxes) in an outerplanar
drawing.

Given a connected outerplanar graph G, a 2-connected component B of G and a circular405

drawing δG, we say a sequence S of vertex moves of G is canonical, associated with B,406

if in the drawing obtained by applying S to δG, the clockwise cyclic vertex ordering of407

each attachment of B remains unchanged. Now we are ready to show that an optimal408

component-fixed untangling with the restriction that fixed vertices exist in both of Cu and409

Cv can be found in O(n2) time; see Theorem 4.5.410

I Theorem 4.5. A component-fixed untangling procedure U with the minimum number of411

vertex moves can be found in O(n2) time.412

1 In every outerplanar biconnected graph, there is a unique Hamiltonian cycle that visits each node
exactly once [28].
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The reminder of this section is devoted to describing the procedure U . We distinguish413

between the following two cases based on the connectivity of u, v in G′. In each case,414

we present a procedure that runs in O(n2) time and reports an optimal component-fixed415

untangling procedure.416

Case 1: u and v are connected in G′. Let C be a connected component of G′ that does417

not contain u, v. We claim now that C must lie entirely on one side of uv in δG. Otherwise,418

let P be a path of δG′ that connects u and v. Then there would exist crossings between419

edges of P and edges of C in δG′ which contradicts the fact that δG′ has no crossings. Thus,420

we can ignore such components as they do not need to be involved in an untangling. Hence,421

we may assume G′ is a connected graph. If u and v are 2-connected in G′, then δG is already422

outerplanar; see Proposition 3.4. Now we consider the case that u and v are connected,423

but not 2-connected in G′. Note that u, v are 2-connected in G. Let B be the 2-connected424

component of G that contains u, v. We prove that each component-fixed untangling U can be425

transformed into a canonical untangling with smaller or the same number of vertex moves; see426

Lemma 4.6. Thus, we restrict our attention to canonical untanglings. Let H(B) = b1, . . . bk427

be the cyclic vertex ordering of the Hamiltonian cycle of B. Let Ai be the attachment of B at428

the vertex bi and let σ(Ai) be the clockwise vertex ordering of Ai in δG for i ∈ {1, . . . , k}. We429

consider an optimal canonical component-fixed untangling Uo which orders B clockwise as430

H(B). Let δ′′

G be the outerplanar drawing obtained by applying Uo. Then the clockwise vertex431

ordering of δ′′

G is exactly the concatenation of σ(A1), σ(A2), . . . , σ(Ak). Given δ′′

G, an optimal432

untangling transforming δG to δ′′

G can be computed in O(n2) time; see [23]. Analogously,433

we obtain an optimal component-fixed untangling Ur which orders B counterclockwise as434

H(B). From the two untanglings Uo and Ur, we report the one which moves less vertices as435

the optimal component-fixed untangling.436

I Lemma 4.6. Let B be the 2-connected component of G that contains u, v. Each component-437

fixed untangling U of δG can be transformed into a canonical vertex move sequence Uc438

(associated with B) that untangles δG. Furthermore, the number of vertex moves in Uc is not439

greater than the number of vertex moves in U .440

Proof. Given a component-fixed untangling U of δG, let δUG be the drawing obtained after441

applying U on δG. In δUG , the cyclic vertex ordering of B (clockwise or counterclockwise)442

must correspond to its Hamiltonian cycle ordering H(B). Furthermore, the vertices of each443

attachment of B appear consecutively in δUG , including one vertex of B; see Observation 4.4.444

Let A1, . . . , Ak be the attachments of B in G (indexed in clockwise order as in δUG) and let445

σ(Ai) be the clockwise vertex ordering of Ai in δG for i ∈ {1 . . . k}. Now consider the vertex446

ordering σ′G =(σ(A1), · · · , σ(Ak)) and let δ′G be an arbitrary circular drawing where the447

vertices are ordered as σ′G. Note that the vertex ordering of each attachment is σ(Ai) in δ′G448

as in the almost-planar drawing δG, thus each attachment in δ′G is crossing-free. Moreover, in449

δ′G the vertices of B are ordered as in the planar drawing δUG , thus there is no crossing inside450

B. Overall, δ′G is a planar circular drawing. Let Uc be the untangling of δG with minimum451

number of vertex moves such that the clockwise vertex ordering of the resulting drawing is452

σ′G.453

To see that Uc does not move more vertices than U , let σG and σUG be the clockwise454

vertex orderings of δG and δUG , respectively. We can observe that any common subsequence455

of σG, σUG is a subsequence of σ′G. J456

Case 2: u and v are not connected in G′. Note that a connected component of G′457

that lies entirely on one side of uv in δG can be ignored, since there is no need to move458
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any vertices in such components. After ignoring such components, we can assume that a459

connected component C of G′ either contains u, v or C contains vertices from L and also460

vertices from R.461

I Observation 4.7. In δG′ , vertices of Cu (resp. Cv) lie consecutively on the cycle.462

The first step of our untangling procedure U deals with the connected components of463

G′ that neither contain u nor v. Let Ufix be an arbitrary component-fixed untangling of δG,464

and let δfix
G be the outerplanar drawing of G obtained from δG by applying Ufix.465

I Lemma 4.8. Let C be a connected component of G′ that does not contain vertices u or v.466

Let fu, fv be two vertices in Cu and Cv, respectively, which are fixed in δfix
G . Then, C must467

lie entirely on one side of fufv2 in δfix
G .468

Proof. In the graph G, due to the definition of fu and fv, there exists a path P1 in Cu469

connecting fu to u, and a path P2 in Cv connecting v to fv; see Figure 6. Then, the path470

P = P1uvP2 in G connects fu to fv. In δfix
G , suppose that the connected component C is471

not entirely on one side of fufv, it implies that at least one edge xy in C has endpoints472

x, y alternate with fu, fv in clockwise ordering of δfix
G and then has crossings with P . It473

contradicts the outerplanarity of the drawing δfix
G . J474

v

u

fv

fu

C

P2

P1

Cv

Cu

δfix
G

x
y

Figure 6 An example illustration for the proof of Lemma 4.8.

Now let C be a connected component that does not contain u.v. Vertices fu and fv475

partition the vertices of C in drawing δG into two sets LC and RC that are encountered476

clockwise and counter-clockwise from fu to fv in δG, respectively. Observe that, LC = L∩C477

and RC = R ∩ C; see Observation 4.7. Let m(C) = min{|L ∩ C|, |R ∩ C|}. By Lemma 4.8,478

m(C) is a lower bound of the moved vertices in C in a component-fixed untangling. By479

Lemma 4.1, there is a procedure moving m(C) vertices of C such that C lies entirely on480

one side of uv. In the first step of our untangling procedure U , we repeat this step for each481

component not containing u or v. After that, an almost-planar drawing of G remains that482

has already each component not containing u, v placed entirely on one side of uv. We can483

ignore such components from now on since they never need to be moved again.484

Now we assume that G′ has exactly two connected components, namely Cu and Cv.485

Consider an arbitrary outerplanar drawing δ′G of G. Let σ(δ′G) be the circular ordering of486

2 Given a circular drawing of G = (V,E), two vertices a, b partitions the vertices in V \ {a, b} into two
sets that lie on the left side and right side of the ray −→ab.
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Bv Bu

v u

Figure 7 In any clockwise vertex ordering of an outerplanar drawing, u, v must be the extreme
vertices in the 2-connected components Bv and Bu, respectively

vertices in δ′G encountered clockwise. Observe that, in σ(δ′G), the vertices of Cu (resp. Cv)487

are in a consecutive subsequence σ(Cu) (resp. σ(Cv)). Otherwise, alternating vertices of two488

connected components would introduce crossings.489

Given an edge e′ in Cv, we say e′ covers v if the endpoints of e alternate with u and v in490

δG′ . Note that there is no edge covering v in σ(Cv). Otherwise, such an edge would cross491

with edge uv. Therefore, in a valid untangling of δG, it is necessary to move vertices of Cv492

in δG such that no crossing is introduced in Cv and v is not covered by any edges in Cv.493

Similarly, the same claim holds also for Cu. We call such vertex moves vertex unwrapping.494

In the following, we consider how to find a valid unwrapping of v with the minimum number495

of vertex moves. The same operation will be also applied to Cu. Observe that, once u, v are496

both unwrapped, adding the edge e into the drawing does not introduce any crossings. The497

combination of these two unwrappings makes an optimal untangling. Here, we also consider498

the canonical vertex sequences and get the following Lemma 4.10. The proof is quite similar499

to the proof of Lemma 4.6 which concerns canonical untanglings.500

I Observation 4.9. There exists at least one 2-connected component B of Cv such that B501

contains v and no edge in the attachment of v (associated with B) covers v in δG.502

The reason for this observation is that either no 2-connected component B containing v503

contains an edge covering v, in which case v is already unwrapped and the statement is true504

for any such B. Or some 2-connected component B does contain a covering edge, but then505

the attachment of v in B cannot cover v due to planarity of δG′ .506

I Lemma 4.10. Let B be a 2-connected component of Cv that contains v such that the507

attachment of v contains no edge covering v. Each unwrapping U of v can be transformed508

into a canonical unwrapping Uc (associated with B). Furthermore, the number of vertex509

moves in Uc is not greater than the number of vertex moves in the original unwrapping U .510

Proof. Given a unwrapping procedure U of v, let δUG be the drawing obtained after applying U511

on δG. In δUG , the cyclic vertex ordering of B (clockwise or counterclockwise) must correspond512

to its Hamiltonian cycle ordering H(B). Furthermore, the vertices of each attachment of513

B appear consecutively in δUG , including one vertex of B; see Observation 4.4. Let A1, ...Ak514

be the attachments of B in Cv (in this clockwise order in δUG), let σ(Ai) be the clockwise515

vertex ordering of Ai in δG for i ∈ {1 . . . k}. Consider the clockwise vertex ordering σ′G516

where the vertices of B ∪ Cu are ordered as in δUG . Furthermore, for each attachment Ai the517

vertices of Ai appear consecutively in the clockwise ordering σ(Ai). Let δ′G be an arbitrary518

circular drawing where the vertices are ordered as σ′G. Note that the vertex ordering of each519

attachment of B is σ(Ai) in δ′G as in the almost-planar drawing δG, thus each attachment in520

δ′G is crossing-free. Moreover, in δ′G the vertices of B are ordered as in the planar drawing521

δUG , thus there is no crossing inside B. Overall, the vertex v is unwrapped in δ′G. It remains522

to prove that the untangling U ′, which transforms δG to δ′G, moves less than or equally many523

vertices as U . By construction each common subsequence of δG and δUG is also a subsequence524

of δ′G, which implies this fact. J525
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By Lemma 4.10, we restrict our attention to canonical unwrappings. Fixing a 2-connected526

component Bv of Cv containing v such that no edge in the attachment (associated with Bv)527

of v covers v, we consider the two possible canonical unwrappings of v, which respectively528

order vertices of B clockwise along H(B) or its reversal, and compute the corresponding529

resulting clockwise vertex ordering σv and σrevv of Cv. With the same idea, we get the530

clockwise vertex orderings σu and σrevu of Cu by the canonical unwrappings of u. We then get531

the four optimal unwrappings, each of them transforming δG to one of the vertex orderings532

(σvσu), (σrevv σu), (σvσrevu ) and (σrevv σrevu ). Such optimal unwrappings can be computed in533

O(n2) time; see [23]. We report the one that moves the minimum number of vertices as an534

optimal component-fixed untangling.535

4.4 Circular Untangling536

Given an almost-planar drawing δG, we claim that it is always possible to compute an optimal537

untangling procedure for δG in O(n2) time, where n is the number of vertices of G. In our538

approach, we use procedures described in Sections 4.1–4.3 as subroutines.539

The Approach. Step 1 : we compute an optimal component-fixed untangling U by applying540

the approach described in Section 4.3. An optimal component-fixed untangling U can be541

reported in O(n2) time (see Theorem 4.5).Step 2 : let m(U) be the number of vertex moves542

in U . we compare m(U) with min{|Cu|, |Cv|}. If m(U) ≤ min{|Cu|, |Cv|}, then we report U .543

Otherwise, if m(U) > min{|Cu|, |Cv|}, we know U is not an optimal untangling procedure.544

Because there exists a specific untangling procedure U ′ which moves exactly min{|Cu|, |Cv|}545

vertices; see its description in the proof of Theorem 4.3. In this case, we compute and report546

this procedure U ′. The second step takes linear time. In total, the whole procedure needs547

O(n2) time.548

Correctness. Let Ua be the untangling reported by our approach. Now, we show that Ua549

is indeed an optimal untangling of δG by contradiction. Note that Ua has size bounded by550

min{|Cu|, |Cv|} (Step 2 ). Suppose there exists an untangling Ua′ which moves less vertices551

than Ua. Then Ua′ moves less vertices than min{|Cu|, |Cv|}. If so, there are vertices in552

both of |Cu|, |Cv| that remain fixed in Ua′ . Thus, Ua′ is a component-fixed untangling. It553

leads to a contradiction to the fact that Ua has its size bounded by the size of optimal554

component-fixed untangling (Step 1 ). Therefore, Ua is indeed an untangling of δG with the555

minimum number of vertex moves.556

I Theorem 4.11. Given an almost-planar drawing δG of an outerplanar graph G, an557

untangling of δG with the minimum number of vertex moves can be computed in O(n2) time,558

where n denotes the number of vertices in G.559

5 Conclusions and Discussions560

We introduced and investigated the problem of untangling non-planar circular drawings. First561

from the computational side, we demonstrated the NP-hardness of the problem Circular562

Untangling. Second, we studied the almost-planar circular drawings, where all crossings563

involve a single edge. We gave a tight upper bound of bn2 c − 1 on the shift number and564

an O(n2)-time algorithm to compute it. Open problems for future work include: (i) The565

parameterized complexity of computing the circular shifting, e.g., with respect to the number566

of crossings or the number of connected components. (ii) Generalization of our results for567

almost-planar drawings. (iii) Investigation of minimum untangling by other elementary568

moves such as swapping vertex pairs or moving larger chunks of vertices.569
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