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Kurzfassung

Forscherinnen, Forscher, Technikerinnen und Techniker aus verschiedenen Bereichen arbei-
ten mit Strömungssimulation und -visualisierung. Diese Werkzeuge helfen beim Verstehen
von physikalischen Phänomenen wie Wirbeln, welche als Wetterphänomene sowohl in
Meeresströmungen als auch in der Aerodynamik vorkommen. Die Visualisierung von
Strömungsfeldern profitiert von fortgeschrittenen Konzepten wie der Betrachterrelativität
(Observer Relativity). Bereits bestehende interaktive Programme für betrachterzentrierte
Visualisierung benötigen Vorberechnungen der Strömungsfelder, um sinnvolle Bezugsrah-
men (reference frames) zu erhalten. Diese Vorberechnung ist ressourcenaufwendig und
potenziell zeitintensiv für große Datensätze. Diese Arbeit stellt eine Methode ohne Vorbe-
rechnung vor. Die benutzende Person wählt eine Startposition, welche Ausgangspunkt für
einen iterativen Vorgang ist. Abwechselnd wird das Beobachterfeld (Observer-Field) in
einem Teil des Datensatzes optimiert und die Beobachterbewegung integriert (Observer-
Worldline). Der Endpunkt der Integration dient als Startpunkt für die nächste Iteration.
Die Visualisierung der Strömungslinien, bezogen auf den Beobachter, ist mit der genannten
Berechnung verschachtelt. Die Kombination von schrittweiser Erstellung und systemna-
hen Optimierungstechniken wie Caching, Abschätzung und Parallelisierung, resultiert
in einem Algorithmus, welcher eine beobachterzentrierte Visualisierung ohne Vorberech-
nung bereitstellt. Da diese Technik ohne Vorberechnung auskommt, kann sie für In-Situ
Szenarien und für die Erkundung des Parameterbereiches der Optimierungstechniken
angewendet werden. Dies ist für die Berechnung von Beobachtern notwendig.

xi





Abstract

Scientists and engineers from many domains work with fluid simulation and visualization.
These tools help to understand physical phenomena like vortices that occur as weather
phenomena, in ocean currents and in aerodynamics. The visualization of flow fields
profits from advanced concepts like observer relativity. Existing interactive frameworks
for observer-relative visualization need to pre-process the flow data to obtain meaningful
reference frames. This pre-processing task is computationally expensive and potentially
time consuming for large data sets. In this thesis a method without pre-processing is
proposed. Starting at a user specified location we iterate the optimization of the observer
field in a small subset of the data, and the integration of the observer worldline to find
the next start location. The visualization of the observed pathlines is interleaved with
the observer-calculation. The combination of progressive buildup, as well as low-level
optimization techniques like caching, prediction, and parallelization, provides an algorithm
that visualizes observer-relative flow interactively without the need of pre-processing.
The avoidance of pre-processing makes this technique suitable for in-situ scenarios, and
for the exploration of the parameter space of optimization techniques that are needed to
compute reference-frame candidates.
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CHAPTER 1
Introduction

The simulation and visualization of fluids are common tools in many fields of science and
engineering. Analyzing flow phenomena such as vortex structures (e.g. hurricanes and
ocean eddies) are especially important.
Some of the data characteristics are hidden and need additional computation and human
intervention to be discovered and analyzed. This work focuses on an explorative human
in-the-loop approach. The user searches for interesting phenomena in the data and is
guided and supported by the visualization and computations that run in the background.
This is combined with interaction to give the user the ability to freely explore the data
and the parameter space of the employed visualization and optimization techniques.

1.1 Motivation

There is no widely accepted consensus about the definition of a vortex in flow data. Typi-
cally, a vortex is described as a swirling motion that is coherent over time. Since velocities
are always given relative to some frame of reference, motions might appear different to
different observers. In this sense vortex structures might sometimes be hidden inside the
flow data. To better see them, current research [GGT17, HMTR18, RMB+20, ZHTR21]
uses an observer-relative approach. Co-moving observers measure different relative veloc-
ities and hence vortex structures become more visible in certain reference frames than in
others. Figure 1.1 shows an example of an unsteady 2D flow field visualized relative to two
different observers. We visualize the instantaneous velocities of the first time step using
Line Integral Convolution (LIC). A pathline was seeded close to a vortex in the data set.
The vertical axis is time. The start point of the observer is at the center of the green ring.
In Figure 1.1a the pathline (purple-white-green) is visualized relative to the default (lab-
frame) observer. In Figure 1.1b it is visualized relative to a computed observer that follows
the vortex over time. This observer is visualized as an orange-yellow line, the observer
worldline. The observed pathline is shown with a color gradient from blue to black to light
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1. Introduction

red in Figure 1.1. The color encodes time. Figure 1.1 shows how two different observers
lead to drastically different visualizations. The goal of observer-relative visualization
is to make it easy and intuitive to switch between meaningful explicitly specified observers.

(a) (b)

Figure 1.1: This figure shows the same data set visualized relative to two different
observers. The origin of all pathlines is the center of the green ring. (a) visualizes a
pathline relative to the default observer. (b) visualizes it relative to a picked observer. The
pathline (purple-white-green) is transformed by the observer worldline (yellow-orange) to
form the observed pathline (blue-black-light red).

Figure 1.2 shows a comparison of the pre-computation (top) and on-demand computation
(bottom) pipeline. Both pipelines transform input data (Fig. 1.2 a) by selecting an
observer (Fig. 1.2 d) into an observer-relative visualization (Fig. 1.2 e). Current visual-
ization research [ZHTR21] computes new reference frames that optimally show vortex
structures in an expensive pre-computation step (Fig.1.2 b1). This approach is influenced
by the research of vortex detection, which computes locations of vortices (without the
help of humans). The pre-computed data offers the opportunity to interactively work
with the data set and change the visualization in real-time. The pre-computation outputs
a large number of observers where the user chooses one of them at a time (Fig. 1.2 c1).
The visualization is then shown relative to this observer (Fig. 1.2 e). As pre-computation
is a rather time-consuming process, this thesis takes an alternative approach of computing
observers on-demand. The pipeline is changed, such that the point of interest is picked
first (Fig. 1.2 b2) and then the reference frame optimization is computed only locally (Fig.
1.2 c2). This results in a big advantage, as the computation is now independent from the
(spacial) size of the data set. This modification of the pipeline offers the opportunity to
explore the large parameter space of the observer optimization methods, as well as to
use the method in in-situ scenarios.

2



1.2. Goal of the Thesis

The computation time of the new approach still depends on the data set size in the
time dimension. To provide a responsive user-experience we progressively update the
visualization, meaning that a small section of the visualization is shown at the beginning
and this section is extended over time. If the user remains at the picked position, the
computation and visualization will continue to update till it reaches the full time range
of the data set. The user has the possibility to interrupt the progressive computation by
changing the position. This is useful if the current position does not seem to be promising
to contain a flow structure of interest.

1.2 Goal of the Thesis
The goal of this thesis is to modify an existing explorative pipeline, which uses pre-
computation of the optimal reference frames on the whole data set [ZHTR21]. This
adaption and extension can be split up in the following parts:

1. Reduce the size of computation from the whole data set to a (local) neighborhood
that is interactively chosen

2. Cache the calculated results for better performance

3. Progressively visualize the results as the computation progresses over the time
dimension

4. Interactively visualize the observer relative flow data

5. Evaluate the overall performance of the tool

1.3 Structure of the Work
The thesis starts with the description of previous research, where vortex detection,
reference frame optimization and physically-based observers are covered in detail in
Chapter 2. Then the pipeline is described in depth in Chapter 3, followed by optimizations
in Chapter 4. The results and an evaluation of the performance of the pipeline is shown
in Chapter 5. The thesis concludes with a summary and improvements that can be made
and possible future work in Chapter 6.

3



1. Introduction

Figure 1.2: Pre-computation vs on-demand computation pipeline. The input data (a) is
shown as a single pathline (green). The pre-computed pipeline calculates the observer
field (light green box) on the whole data set (b1). Then a point of interest (orange dot)
is picked and the observer worldline (orange) is integrated (c1). The new on-demand
approach switches the steps (b) and (c). The point of interest is picked first (b2) and the
observer field can be calculated only where it is needed. Then the observer worldline is
integrated until it reaches the boundary of the computed region. This leads to the next
needed region. This iterative process builds up the observer worldline, where intermediate
results are visualized (c2). Both pipelines calculate the transformation from the observer
worldline, which is the observer motion over time (d). The transformation visualizes the
pathlines relative to the observer motion as observed pathlines (blue) in (e).
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CHAPTER 2
Related work

Flow visualization is used in various different domains and helps people to understand the
underlying phenomena more easily. Different techniques exist for instance for steady (time-
independent) flow fields, e.g. Line Integral Convolution (LIC) [CL93] and for unsteady
(time-dependent) flow fields, e.g. Lagrangian-Eulerian Advection (LEA) [JEH02]. Steady
flow fields do not change over time. Unsteady ones are changing over time, as it is common
in fluid and air flows. Streamlines [JL97] and Streak Lines [WT10] are techniques that
are also often used. In the upcoming sections important terms and their related work
will be discussed.

2.1 Vortex Definition and Detection

Vortices are structures of interest especially in weather simulation, climate simulation,
aerodynamics simulation, etc. There have been many attempts to define a vortex, however,
a precise definition does not exist [Hal05][GT18]. A vortex can be roughly described as "a
swirling motion around a (curved) axis". Traditional measurements to extract vortex core
lines (like λ2, vorticity, and Sujudi-Haimes) are useful for steady fields, but for unsteady
flow fields, detecting vortices with these methods is unreliable. Therefore the concept of
objectivity and reference frame optimization has been introduced.

2.2 Reference Frame Invariance

Existing vortex detection criteria have been made objective by defining an optimal
reference frame [GGT17]. Several measures have been defined to be insensitive to
different kind of transformations:

• Galilean invariant vortex detection is invariant to translations [SWH05].
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2. Related work

• Rotational invariant vortex detection is invariant to rotations around a fixed point
[GST15].

• Objective vortex detection is invariant to time-dependent translations and rotations
[Hal05].

2.3 Objectively Computed Optimal Reference Frames
Flow fields are velocity vector fields and must be given relative to a reference frame,
or an observer. The flow field is captured (or simulated) relative to the default or
lab-frame observer. An optimal reference frame can be found with objectively computed
observer fields, so observer fields that are invariant to time-dependent translations and
rotations. The optimal reference frame can be used to make other measures objective
[GGT17, HMTR18, RMB+20, THR+21].

An objective global optimization method can also be used to calculate an observer field
that minimizes the changes of the observed flow field over time. A local optimization
efficiently finds an observer for every point in a given area. We use the method of Günther
et al. [GGT17] to calculate the observer field in a neighborhood around a picked point.

2.4 Software Framework
This thesis is based on an existing framework for observer-relative flow visualization.
The work is based on an interactive exploration tool [ZHTR21] that makes use of several
optimization methods [GGT17, HMTR18]. As mentioned in Chapter 1, the method of
Zhang et al. [ZHTR21] precomputes the optimization for the whole data set. Then a
real-time interactive exploration is possible to examine and find structures of interest in
the data. Pre-computation times depend on the data set size and the chosen optimization
method. In contrast, we compute optimal observers in a small neighborhood on-demand
reducing the computation times drastically. As the flow visualization can only be
transformed relative to one observer at a time, we only calculate one (or a small set
of observers). This enables us to reduce the computation time as the optimization is
evaluated in a small area (neighborhood). Furthermore the performance of our local
optimization is independent of the overall size of the data set.
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CHAPTER 3
On-demand Observer-Relative

Flow Visualization

The main novelty of the described pipeline is to quickly alternate between four algorithms
to keep the observer-relative flow visualization interactive. In Section 3.1 the algorithm
to compute the optimal observer field in a local neighborhood is described. In Section 3.2
the iterative method of computing the observer worldline is explained. Based on the
observer worldline and the immediate neighborhood we compute the transformations
that are applied to the pathlines. The computation of transformations is described
in detail in Section 3.3. The last algorithm is the observer-relative visualization of
the pathlines, described in Section 3.4. After each iteration the intermediate result is
visualized. Figure 3.1 shows three intermediate results of our progressive visualization
method.

3.1 Interactive Observer Worldline Computation
The input data are time-dependent 2D flow fields (one flow field in consecutive time
steps). Each flow field is given as velocity vectors on a regular grid. This field is denoted
as v. In v a point is picked, denoted as start point s (Fig. 3.2 a). s has a physical
position in space and time. As the upcoming optimization is done on a grid, s is mapped
to (the closest lower integer) indices (x, y, t). Around s a neighborhood is constructed
with a minimum integer size of 4x4x2 voxels (x− 1, x+ 3, y − 1, y + 3, t, t+ 1). The local
optimization calculates the observer motion on these 4x4x2=32 grid points (Fig. 3.2 b).
The calculated vectors are then stored in an observer field. The observer field u has
the same size as the input field v. For better performance caching is introduced to the
pipeline. u is initialized with a special value (representing empty) and progressively filled
with values from the optimization. The optimization is calculated according [GGT17].
Before every optimization step the cache is queried, if the values are already computed
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3. On-demand Observer-Relative Flow Visualization

for the needed neighborhood. If not, a new optimization is started for that neighborhood.
Furthermore, inside the optimization the cache is again consulted for existing values on a
per-voxel level.

3.2 Integration

The integration of the observer worldline is done using physical positions/values, which
are denoted with phys. (The physical x- and y-coordinate are denoted as xphys, yphys,
respectively. The x- and y-velocity of the observer uy(x), uy(x) are physical values by
default.)
Starting from s we integrate the observer worldline, which represents the observer motion
in space and time (Fig. 3.2 c). Conceptually, we follow the observer motion u(s) for one
step (of size stepSize). At this new position (xphys + ux(s) ∗ stepSize, yphys + uy(s) ∗
stepSize, tphys + stepSize) we need to interpolate the velocity of the observer. This
procedure is repeated saving all points in memory. The integration continues until the
boundary of the region is reached (Fig. 3.2 d). This point is the new start point for a
local optimization (Fig. 3.2 e) and ongoing integration (Fig. 3.2 f), where (Fig. 3.2 g)
shows again the point where the integration leaves the region. This iterative approach
continues till the new start point is outside the borders of the data set (Fig. 3.2 h).
At this point the process is finished. The described procedure works for integrating
forward in time. If a start point is picked with t > minimumTime, the integration will
be computed forward and backward. For integrating backward the stepSize is multiplied
with negative one.

3.3 Transformation

To calculate the transformation the worldline is traversed in time (this is simple as the
points are already ordered by time, constantly increasing by stepSize). At each point of
the worldline a translation and rotation are calculated from the observer field u. The
transformation is a time-dependent isometry t 7→ Φt. Explicitly described as

Φt(x) = w(t) + Q(t)(x− w(t0)), (3.1)

where w(t) describes the translation and Q(t) the rotation. We work with Cartesian
coordinates, so

Q(t) =
[
cosΘ(t) −sinΘ(t)
sinΘ(t) cosΘ(t)

]
. (3.2)

The observer worldline w(t) and Θ(t) are calculated with

d

dt
w(t) = u(w(t), t), d

dt
Θ(t) = c(t), (3.3)

8



3.4. Observer-Relative Pathlines

where c(t) describes the curvature. These ordinary differential equations can be solved
with

w(t) = w(t0) +
∫ t

t0
u(w(τ), τ) dτ, Θ(t) =

∫ t

t0
c(τ) dτ. (3.4)

To compute u and c at any point p we calculate u on a discrete grid at a 4x4 area
around p. With x and y, the nearest x- and y-indices to point p, the area is defined as
(x− 1, x+ 2, y − 1, y + 2). Then the values for position p are interpolated. Therefore the
minimal spacial size of the neighborhood for the optimizations is 4x4. Combining the
transformations at all time steps Φt1,...,tn forms the overall transformation Φt (shown in
Fig. 3.3).

3.4 Observer-Relative Pathlines
We compute a set of pathlines for the input field. The transformation Φt is applied to
each pathline (at the top of Fig. 3.3). For better visibility the transformation is shown for
one pathline only. The transformation is calculated from the observer worldline (orange)
and is applied to the pathline (green). This results in the observed pathline (blue). A
detailed view of this transformation is shown at the bottom of Fig. 3.3, where each point
of a pathline (black outline) is transformed individually by its time-dependent Φt1,...,tn to
its observed relative (white outline).

9



3. On-demand Observer-Relative Flow Visualization

(a)

(b)

(c)

Figure 3.1: The algorithm builds up the visualization over time (only one pathline is
visualized). At the beginning only the pathline (purple-white-green) and its shadow
(black) is shown. (a) shows the result a little after the start. In (b) half of the result is
visualized. In (c) the algorithm is finished and the full result, containing the observer
worldline (orange-yellow) and the observed pathline (blue-black-light red) is shown.10



3.4. Observer-Relative Pathlines

Figure 3.2: The computation of the observer worldline is started when the user picks
a point of interest (a). Around that point the observer field is calculated using an
optimization method in a local neighborhood (green) (b). The integration of the observer
worldline (c) is started at the point of interest and continues till it leaves the region
where the observer transformation is computable (pink) (d). This point is the new start
point for a local optimization (e) and ongoing integration (f), where (g) shows again the
point where the integration leaves the region. This iterative approach continues till the
new start point is outside the boarders of the data set (h). At this point the process is
finished.

11



3. On-demand Observer-Relative Flow Visualization

Figure 3.3: For better visibility the transformation is shown for one pathline only. Each
pathline (green) is transformed with Φt, which was calculated from the observer worldline
(orange). This results in the observed pathline (blue). In the detailed view it can be seen,
that each point of the pathline (black outline) is transformed by the time-dependent
transformation Φt1,...,tn to its observed relative point (white outline).

12



CHAPTER 4
Performance Optimizations

In this chapter three low-level performance optimizations of the novel on-demand pipeline
are discussed.

4.1 Parallelization

In each iteration-step of the pipeline we are concerned with three different local areas that
are defined for local optimization, integration, and transformation (shown in Fig. 4.1).
The integration is restricted by the region, the smallest area (pink). The calculation of
the transformation needs the neighborhood (green), which is the region enlarged by one in
the spacial dimensions. The optimization neighborhood (blue) provides the necessary data
for the local optimization and it is the neighborhood enlarged by an adjustable value (10
was used in our experiments) in the spacial dimensions. The extent in the time domain
is the same for all three areas (minimal two, but six was used in our experiments).

The local optimization can be split up in the calculation of the derivatives, the construction
of the matrices containing this data, and the solving of the system. These three parts are
parallelized with synchronization points in between. The calculation of the derivatives
and the construction of the matrices are parallelized over each voxel of the optimization
neighborhood. The system is solved in parallel for every voxel of the neighborhood.

4.2 Neighborhood Prediction

The performance of the algorithm is influenced by the number of iterations and the
neighborhood size for the local optimization. Based on the characteristics of the data set,
the neighborhood size can be changed to influence the number of iterations. Data sets
with little movement benefit of larger neighborhood sizes in time. Data sets with much
movement benefit of larger neighborhood sizes in space. Reasonably increasing the size

13



4. Performance Optimizations

Figure 4.1: In each iteration-step of the pipeline three different areas are needed for the
calculations. The pink area (region) restricts the integration of the observer worldline. To
calculate the transformation the region is enlarged by one in each spacial dimension. This
forms the neighborhood (green) where the optimization method [GGT17] is computed. In
order to calculate the observer field in the neighborhood, we calculate partial derivatives
in the space of the input data in the optimization neighborhood (blue). All three areas
have the same extent in the time-domain.

of the neighborhood lowers the number of iterations while increasing the runtime of the
local optimization. (For our experiments we increased the size from 4x4x2 to 5x5x6.)
This increases the overall performance of the algorithm, because the local optimization
can reuse values (e.g. derivatives) and use other optimizations (summed area tables,
parallelization). A generally bigger, not reasonably picked, neighborhood size reduces
the responsiveness of the algorithm due to the longer runtime of the local optimization
(a neighborhood size of e.g. 15x15x20 is not recommended). The best performance
is achieved if all computed values of the local optimization are used. Data sets with
varying movement of vortex structures may benefit from a continuous adaption of the
neighborhood size and shape. One way to continuously adapt to the (local) characteristics
of the data set is to enlarge the neighborhood in the direction where the integration left
the region. This procedure is repeated until the region is left in another direction and
the neighborhood size is reset. This is shown in Figure 4.2, where the turquoise boxes
indicate the fixed sized neighborhoods and the white boxes represent the enlargement of
the neighborhood.
Too big neighborhood sizes reduce responsiveness and may result in visualizations that
are perceived to be slow, which degrades the user experience.

14



4.3. Caching

Figure 4.2: This figure shows the comparison of the fixed and predicted neighborhood
size. The white boxes mark the enlargement done by the prediction algorithm. The
turquoise boxes mark the fixed sized neighborhoods.

4.3 Caching

Our algorithm caches the observer field u at voxel level. The cache is initialized with a
flag value (marking empty). Before the local optimization is started, the cache is queried.
If all values of the neighborhood exist, the local optimization is skipped (all values can
be fetched from the cache). Inside the local optimization the cache is consulted on a
per-voxel level. Depending where the integration leaves the region 25% to 75% of the
neighborhood values can be gathered from the cache in the next iteration. In Figure 4.3
the data saved in the cache is visualized by connecting two existing, neighboring values
with a turquoise edge. This results in boxes as the neighborhood has always a cuboid
shape. In Figure 4.3a the user clicked once, a 4x4x2 neighborhood was chosen and the
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4. Performance Optimizations

algorithm stopped at maximum time. In Figure 4.3b the user continued the exploration
at the corners of the data set. From the flat optimized areas it can be concluded, that
these integrations reached the spacial boundaries.

(a)

(b)

Figure 4.3: This figure shows which areas of the cache are filled with values. This is
visualized by connecting two existing, neighboring values with a turquoise edge. (a) shows
the cache after a single user input with a neighborhood size of 4x4x2. After exploration
of the edges of the data set, the cache is filled with values in these regions (b).
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CHAPTER 5
Visual Results and Performance

Analysis

In this chapter the results of the novel on-demand pipeline are shown with three data sets:
"Four Rotating Centers" [GGT17], "Heated Cylinder with Boussinesq Approximation"
[GGT17, Pop04] and "Cylinder Flow Around Corners" [Pop04, RG19]. The visual results
are presented first which are followed by a performance analysis.

5.1 Visual Results

In the visualizations the following color maps are used for the different lines: Original
pathlines (purple-white-green), observer worldline (orange-yellow), observed pathlines
(blue-black-light red).

5.1.1 Four Rotating Centers

The "Four Rotating Centers" data set is used with dimensions 32x32x32 (X x Y x T)
instead of 128x128x512 to test the pipeline on a small data set. In Figure 5.1 four vortices
are visualized in the "Four Rotating Centers" data set [GGT17]. For better visibility
Figure 5.1b shows only the observer worldline and the observed pathlines. The form of
the worldline reveals the uniform rotation of the four centers.

5.1.2 Heated Cylinder with Boussinesq Approximation

The "Heated Cylinder with Boussinesq Approximation" data set [GGT17, Pop04] has a
grid resolution of 150x450x2001. In Figure 5.2 three different vortices are identified. The
search was done from timeslice 500 to 1200. For each vortex a different set of original
pathlines was chosen and different start points for the observers were picked.
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5. Visual Results and Performance Analysis

A data set is loaded with a selected timespan. If an observer start time bigger than
the minimum is selected the pipeline starts a forward and a backward integration. This
simultaneous operation is shown in Figure 5.3. The start point is picked in the middle of
the timespan (Fig. 5.3a). Figure 5.3b shows the visualization in an intermediate state.
Figure 5.3c shows the final state of the visualization. Two LICs are shown per state,
one at the minimum of the timespan and one at the selected time. For this figure the
timespan from timeslice 1000 to 1500 is used.

The progress of the visualization is shown with an indicator in the form of an annulus
(ring). The indicator is positioned at the selected start point. When the start point is
selected, the indicator is gray. It will turn green clockwise according to the percentage of
the progress.

progress =
{

1, if backward and forward integration finished
finishedT imeSlices

totalNumberOfT imeSlices , otherwise

Figure 5.3 shows the progress indicator with different progress values.

The capability to select observers at different times provides an intuitive search as the
start point can be directly selected on the LIC of the selected timeslice. This is shown in
Figure 5.4 where two vortices are identified by picking the observer on the LIC of the
selected timeslice. This can be seen by the vertical position of the progress indicator
(green ring). For a better orientation the LIC of timeslice 500 (at the bottom of selected
timespan) is shown additionally to the LIC of the selected time slice. It can be seen that
these vortices are also visualized in Figure 5.2, but the spacial position is shifted due the
different starting times.

Producing meaningful visualizations requires that the observer worldline is placed in a
way, that the original pathline swirls around the observer worldline. This is shown in
Figure 5.5. For better visibility only one pathline is visualized. Two LIC images give
orientation how the whole field changes over time. For this figure the data set is used
from timeslice 1000 to 1500.

5.1.3 Cylinder Flow Around Corners

The "Cylinder Flow Around Corners" data set [Pop04, RG19] has a grid resolution of
450x150x1501. In Figure 5.6 one vortex is identified. The data set was loaded from
timeslice 500 to 1200.

5.2 Performance Analysis
The performance of the pipeline was measured on three different data sets with varying
dimensions (X x Y x T):

• "Four Rotating Centers" [GGT17], 32 x 32 x 32
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5.2. Performance Analysis

• "Cylinder Flow Around Corners" [Pop04, RG19], 450 x 150 x 1501

• "Heated Cylinder with Boussinesq Approximation" [GGT17, Pop04], 150 x 450 x
2001

The following performance indicators were identified and measured:

• FPS idle: Default average frames per second of the framework

• FPS operation: Average frames per second during operation

• OptimizedPoints/s: Number of grid points computed by the optimization per
second

• IterationTime (ms): Average duration of one iteration (optimization, integration,
transformation, and visualization) in milliseconds

• TotalDuration (ms): Duration from setting of the start point to reaching the borders
of the data set in the time domain

• DurationGlobal (ms): Duration of the global optimization used by Zhang et al.
[ZHTR21] in milliseconds

Table 5.1 shows the performance on a dual Intel Xeon 2687W v4 (24 cores) and an
NVIDIA GeForce RTX 3090 (Windows 10 64-bit, 256GB RAM). For the test data
sets or data sets of comparable size, the pre-computed pipeline takes on the order of
tens of seconds to compute a global solution. This might seem appropriate since the
cost of pre-computation is feasible when only computed once. However, an interactive
manipulation of the optimization parameters is not feasible with the pre-computed
pipeline, since it requires a complete re-computation of the global solution every time
a parameter is changed. Furthermore, for large data sets and more compute intensive
optimization methods, the decoupling of the size of the data set from the response time
of the framework should proof a significant improvement in usability in the future.
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5. Visual Results and Performance Analysis

Indicator\Data Set Four Centers Cylinder Corners Cylinder Boussinesq
FPS idle 24.3 19.5 15.2
FPS operation 8.1 5.2 3.8
OptimizedPoints/s 646.32 1.03 0.55
IterationTime (ms) 64.10 101.47 159.10
TotalDuration (ms) 4341.74 31407.20 95178.98
DurationGlobal (ms) 82.73 60955.73 77344.02

Table 5.1: The performance was tested with three data sets: "Four Rotating Centers"
[GGT17], "Cylinder Flow Around Corners" [Pop04, RG19] and "Heated Cylinder with
Boussinesq Approximation" [GGT17, Pop04]. The table is split into three sections. The
first section compares the frames per second when the framework is idle or in operation.
The second section shows measurements of the novel pipeline: Number of optimized
points (u-field positions) per second and time needed for one iteration (optimization,
integration, transformation and visualization). The third section compares the runtime
of one full run of the novel pipeline (from setting the start point to the global time
boundaries of the data set) and the runtime of a global optimization done by Zhang et
al. [ZHTR21].
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5.2. Performance Analysis

(a)

(b)

Figure 5.1: Four vortices are visualized in the "Four Rotating Centers" data set [GGT17].
For better visibility (b) shows only the worldline and the observed pathlines. The form
of the worldline reveals the uniform rotation of the four centers.
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(a)

(b)

(c)

Figure 5.2: Three different vortices in the "Heated Cylinder with Boussinesq Approxi-
mation" data set [GGT17, Pop04] from timeslice 500 to 1200. All three vortices use a
different set of original pathlines and a different observer.
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5.2. Performance Analysis

(a)

(b)

(c)

Figure 5.3: This figure shows the simultaneous forward and backward operation of the
algorithm. The start point is picked in the middle of the timespan (a). (b) shows the
visualization in an intermediate state. (c) shows the final state of the visualization. Two
LICs are shown per state, one at the beginning of the timespan and one at the selected
time. For this figure the "Heated Cylinder with Boussinesq Approximation" data set
[GGT17, Pop04] is used from timeslice 1000 to 1500.
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5. Visual Results and Performance Analysis

(a)

(b)

Figure 5.4: Two vortices in the "Heated Cylinder with Boussinesq Approximation" data
set [GGT17, Pop04] from timeslice 500 to 1200. The observer is picked in the middle of
the selected timespan. This can be seen by the vertical position of the progress indicator
(green ring). For better orientation LICs are shown at timeslice 500 (at the bottom of
the selected timespan) and the selected time slice. It can be seen that these vortices are
also visualized in Figure 5.2, but the spacial position is shifted due the different starting
times.

24



5.2. Performance Analysis

Figure 5.5: The observer worldline is in the middle of the original pathline (the pathline
swirls around the worldline). This results in a meaningful visualization of the observed
pathlines. For better visibility only one pathline is visualized. Two LIC images give
orientation how the whole field changes over time. The data is from the "Heated Cylinder
with Boussinesq Approximation" data set [GGT17, Pop04] from timeslice 1000 to 1500.
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Figure 5.6: One vortex in the "Cylinder Flow Around Corners" data set [Pop04, RG19]
from timeslice 500 to 1200.
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CHAPTER 6
Conclusion

This thesis introduces an algorithm for interactive observer-relative flow visualization
without pre-processing. This was achieved by restructuring and optimizing an exist-
ing algorithm that used pre-processing. We took advantage of reducing the area of
optimization of the observer movement from the full size to a small subset of the data.
The algorithm loops trough observer movement local optimization, observer worldline
integration, observer pathline transformation, and visualization. After each iteration the
result is directly delivered to the user. This progressive buildup provides a reactive and
interactive user experience. This allows for rapid exploration of the data set as well as
the parameter space of the available optimization algorithms.

6.1 Limitations
The current implementation of the pipeline is subject to different limitations. Firstly, it
is only implemented for planar geometry. Enabling the algorithm to operate on other
geometric objects would extend the applicability. The second limitation is the natural
connection of running time and size of the data set in the time domain. A large timespan
of the data set results in a long total runtime. Lastly, the proposed pipeline only addresses
the responsiveness of the system, but does not enable novel exploration techniques that
would make it easier to find good reference frames.

6.2 Future Work
The search for vortices is currently a tedious process that could be supported by automatic
parallel search and evaluation. Around the start point additional seeds could be introduced
and at all seed points the optimization and integration would be computed in parallel.
After each (or several) iteration(s) the most promising observer worldline could be
evaluated with a quality metric such as the time derivative. As the optimal observer may
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6. Conclusion

change throughout the process, animation between the transformations could be used to
provide a more pleasant interface to the user.
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