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Kurzfassung

Neueste hochauflösende elektronenmikroskopische Aufnahmen ermöglichen Neurowissen-
schaftlern, nicht nur Zellen, sondern auch einzelne Zellstrukturen aus Mäusegehirnen
zu rekonstruieren. Auf Basis dieser Daten erhoffen sie sich, ein besseres Verständnis der
Gehirnfunktion und -entwicklung zu gewinnen, indem sie lokale Nachbarschaften von
Zellstrukturen detailliert analysieren. Genaue Analysen erfordern jedoch einen effizienten
und skalierbaren Vergleich unterschiedlicher Zellstrukturen, die von zwei bis zu Hunder-
ten von lokalen Nachbarschaften reichen. Wissenschaftler müssen in der Lage sein, die
3D-Morphologie der Zellstrukturen, ihre räumlichen Verteilungen und Abstände sowie
deren Korrelationen zu analysieren.

Die zentrale Prämisse dieser Arbeit ist, die Schwierigkeit eine einheitliche Lösung für die
vergleichende Visualisierung bereitzustellen, um die gegebene breite Palette von Aufgaben
zu unterstützen.

Deshalb haben wir NeuroKit als leicht konfigurierbaren Werkzeugkasten entwickelt, der es
Wissenschaftlern ermöglicht, den Arbeitsablauf, die Visualisierungen und die unterstützten
Benutzerinteraktionen an ihre spezifischen Aufgaben und Fragestellungen anzupassen.
Darüber hinaus bietet NeuroKit einen skalierbaren, vergleichenden Visualisierungsansatz
für die räumliche Nachbarschaftsanalyse von Gehirnstrukturen.

NeuroKit unterstützt interaktive 3D-Renderings sowie abstrakte quantitative Visualisie-
rungen und ordnet diese automatisch in der Benutzeroberfläche an. Um neue domänen-
spezifische Analysen zu unterstützen, erlauben wir die Definition von individualisierten
Visualisierungen und deren Parametern. Diese Konfigurierbarkeit ist mit einem neuartigen
skalierbaren visuellen Vergleichsansatz verknüpft, der die Visualisierungen automatisch
an die Anzahl der zu vergleichenden Strukturen anpasst.

Wir demonstrieren einen detaillierten Anwendungsfall für die Analyse von Mitochon-
drien und analysieren die Nützlichkeit von NeuroKit in einer qualitativen Studie mit
Neurowissenschaftlern.
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Abstract

Recent high-resolution electron microscopy imaging allows neuroscientists to reconstruct
not just entire cells but individual cell substructures (i.e., cell organelles) as well. Based
on these data, scientists hope to get a better understanding of brain function and
development through detailed analysis of local organelle neighborhoods. However, in-
depth analyses require efficient and scalable comparison of a varying number of cell
organelles, ranging from two to hundreds of local spatial neighborhoods. Scientists need
to be able to analyze the 3D morphologies of organelles, their spatial distributions and
distances, and their spatial correlations. This thesis’s central premise is that it is hard to
provide a one-size-fits-all comparative visualization solution to support the given broad
range of tasks and scales.

To address this challenge, we have designed NeuroKit as an easily configurable toolkit
that allows scientists to customize the tool’s workflow, visualizations, and supported
user interactions to their specific tasks and domain questions. Furthermore, NeuroKit
provides a scalable comparative visualization approach for spatial neighborhood analysis
of nanoscale brain structures.

NeuroKit supports small multiples of spatial 3D renderings as well as abstract quantitative
visualizations, and arranges them in linked and juxtaposed views. To adapt to new
domain-specific analysis scenarios, we allow the definition of individualized visualizations
and their parameters for each analysis session. This configurability is tied in with a novel
scalable visual comparison approach that automatically adjusts visualizations based on
the number of structures that are being compared. We demonstrate an in-depth use case
for mitochondria analysis in neuronal tissue and analyze the usefulness of NeuroKit in a
qualitative user study with neuroscientists.
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CHAPTER 1
Introduction

1.1 Motivation & Problem Statement
Neurobiologists are acquiring ever-increasing amounts of high-resolution image data of
the mammalian brain, aiming to tackle questions regarding brain physiology, the onset
of diseases, and the emergence of conciousness. Connectomics, in particular, approaches
these questions by looking at the detailed connectivity between neurons at a nanoscale
resolution to extract the brain’s wiring diagram [LD11]. However, mammalian brains
are staggeringly complex, with tens of millions of interconnected neurons, dozens of cell
substructures (i.e., cell organelles) per neuron, and billions of synapses. Furthermore,
scientists are not just interested in a purely structural wiring diagram of neurons. They
also want to analyze and compare local spatial neighborhoods around structures of interest
and cell organelles. For example, to evaluate how differences in spatial arrangement
might influence brain development and neuronal connectivity, scientists need to compare
different biological structures, analyze distances and spatial correlations, and look at how
certain features are spatially distributed. However, the specific details of this analysis
(e.g., goals, target structures, measurements) vary for each scientist. Therefore, scientists
need tools that support their general workflow and scale to their data sizes, and, at the
same time, are flexible enough to allow for custom modifications to suit a scientist’s
individual workflow.

Most visualization tools for connectomics provide either 3D views for exploring large,
segmented electron microscopy (EM) volumes [BAAK+13, BHAA+13, HBJP12], or focus
on the analysis of synaptic connectivity [AABS+14, SBS+13]. While there is some work
on analyzing the spatial distribution of glycogen granules in astrocytes [MAAB+18], little
work has focused on the scalable visual comparative analysis of neuronal structures in
high-resolution EM data. Furthermore, no integrated system can adapt to scientists’
different, specific needs and domain goals. In fact, the particular workflow and analysis
goals of neuroscientists often differ even between members of the same research group.
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1. Introduction

Figure 1.1: Customized scalable comparison of spatial neighborhoods. NeuroKit
supports user-defined analysis scenarios (a,b) and automatically updates and adjusts
visualizations and view parameters, to guide users in their specific analyses. Quantitative
analysis views (c, d) enable scalable comparisons at different cardinality levels. Detailed
3D neighborhood views (e, f) depict the surroundings of structures of interest. Synapse
domain task: (a) Synapse analysis scenario. (c) Scatterplot of hundreds of synapses from
two different specimen. (e) Selected synapse (purple) and its neighborhood. Mitochondria
domain task: (b) Mitochondria analysis scenario. (d) Distance-based abstraction of
dendritic spines and their relation to mitochondria. (f) Mitochondria color-coded with
their distance to the neurite membrane.

However, visualization tools designed to be general enough to support several types of
analyses often result in overwhelming user interfaces and unintuitive workflows. On the
other hand, tools designed for a specific analysis task typically do not generalize well to
other tasks.

2



1.2. Aim of the Work

1.2 Aim of the Work

In this work, we present NeuroKit, a novel tool for the interactive analysis of spatial
neighborhoods in high-resolution 3D electron microscopy (3DEM) data, with the goal
of providing scientists with a highly configurable visualization toolkit suitable to their
domain goals.

First, NeuroKit is a general framework that is expressive and powerful, but can be
customized to support individualized workflows. By allowing scientists to customize their
analysis workflow to best suit their needs, we minimize visual complexity, streamline
the user interface, and simplify user interaction (see Fig. 1.1). We have designed the
NeuroKit framework in such a way that it is easily extensible. Scientists can specify
new, individualized analysis scenarios and appropriate visualizations that support their
analysis tasks. Second, we support the domain goals of our collaborating neuroscientists
for analyzing and comparing spatial neighborhoods. We have designed a novel scalable
comparison approach that automatically adjusts visualizations based on the number
of structures that are being compared, and we support spatial and analytic reasoning
by combining spatial 3D views with abstract quantitative views. Fig. 1.2 depicts the
NeuroKit system design.

1.3 Contributions

The main contributions of this work are the following:

• First, a customizable framework for spatial neighborhood analysis of 3DEM data,
facilitating the analysis of spatial distributions, distances, and 3D morphology. Our
framework supports the typical 3DEM analysis workflow, but also allows scientists
to specify custom analysis tasks and visualizations.

• Second, a scalable visual comparison framework for spatial structures that allows
the comparison of a wide range of element cardinalities, e.g., ranging from two to
hundreds of structures within a single comparison.

• Third, a custom analysis scenario implemented in NeuroKit to study mitochondria
in neuronal tissue. We have identified this scenario with our neuroscience collabora-
tors, and describe the design of novel visual encodings and their use in NeuroKit to
analyze mitochondria, their locations within a cell, and their relation to synapses.

We validate and demonstrate the usefulness of NeuroKit in a user study with domain
experts and a detailed expert use case.

3



1. Introduction

1.4 Structure of the Thesis
In Chapter 2, we compare this work to previous and related work, including visualization
for connectomics, comparative visualization, and visualization specification and generation
frameworks. This helps to categorize our project and puts it into a bigger context.
Chapter 3 introduces the reader to the biological background. We give a brief introduction
to the relevant terminology and familiarize the reader with each step of the connectomics
workflow.

Chapter 4 conducts a detailed goal & task analysis of NeuroKit. We first explain the
design study methodology used during this project and then present the findings in
the form of domain goals, tasks, and requirements. In Chapter 5, we illustrate how we
translated the results of Chapter 4 into a usable toolkit. Chapter 6 explains our scalable
visual neighborhood analysis approach and how we facilitate visual comparison between a
varying number of spatial neighborhood instances. We also explain interaction techniques
supporting these goals.

In Chapter 7 we present the techniques used for implementation, such as an order-
independent transparency algorithm, all necessary data preprocessing steps, and the
design space of the analysis definition files used for the customization of NeuroKit.

Chapter 8 describes a detailed usage scenario of NeuroKit investigating spatial neigh-
borhoods of mitochondria. We showcase NeuroKit by presenting custom visualizations
and discuss the expert interviews held while designing this scenario. Additionally, we
demonstrate its usefulness and effectiveness in a qualitative user study in Chapter 9.

Chapter 10 concludes this thesis by discussing and summarizing our work and presenting
an outline of future work.
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CHAPTER 2
Related Work

In the following sections, we present related work to put this thesis into a bigger context.
First, we offer recent work in visualization for neuroscience. Second, we analyze existing
approaches in comparative visualization and delimit them from our work. Categorizing
our approaches within spatial neighborhood analysis and visualization specification and
generation frameworks is also essential to view our works’ context.

2.1 Visualization for Neuroscience
Pfister et al. [PKB+12] categorize methods and challenges for the visualization of brain
connectivity in macro-, meso-, and micro-scale analysis approaches (see Fig. 2.1). Here,

Figure 2.1: Different scales of visualizing brain connectivity. NeuroKit focuses
on a micro-scale analysis (c). Source: (a) Macro [GHK+08], (b) Meso [Seu12], (c)
Micro [PKB+12]
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2. Related Work

we describe related work of each of the three approaches in detail.

2.1.1 Macroscale Analysis

Macroscale analysis maps connectivity between larger brain regions such as the different
brain lobes. This can help researchers to understand how brain regions interact and
influence each other. This section will focus on visualization methods based on diffusion
tensor imaging. DTI derives a second order diffusion tensor for each voxel describing
water diffusion directions at this position in the brain. Vilanova et al. [VZKL06] classify
DTI visualization approaches based on how the diffusion tensor field is reduced and
whether the visualization shows local or global information. Thus, they derive five
visualization categories. In this section, we describe each of these categories in detail.
The following descriptions of the categorizations are based on Preim and Botha [PB13]
and Vilanova et al. [VZKL06].

(a) Mean diffusivity (b) Fractional anisotropy

Figure 2.2: Scalar visualization of DTI data using mean diffusivity and fractional
anisotropy. Source: [VZKL06].

8



2.1. Visualization for Neuroscience

Scalar Reduction

Here, each 6D diffusion tensor is reduced to a scalar value (1D). Several methods have
been proposed to map the 6D tensor to meaningful scalars. An example is the mean
diffusivity 〈D〉 (see Fig. 2.2a)

〈D〉 = λ1 + λ2 + λ3
3

whereby λi are the eigenvalues of the eigendecomposition of D. 〈D〉 quantifies the overall
diffusion rate by computing the average of the eigenvalues of the diffusion tensor D.
Another scalar index is the fractional anisotropy 〈FA〉 (see Fig. 2.2b)

〈FA〉 =
√

3
2
‖D − 〈D〉I‖
‖D‖

with I as the identity matrix and ‖D‖ =
√
D : D being the tensor norm of the mean

diffusivity. FA also uses the eigenvalues of D. However, FA is relatively prone to noise.
Since both measures are scalar values, they do not take the direction of the diffusion into
account. Both, mean diffusivity and fractional anisotropy are invariant against rotations
of the data set.

Volume Rendering

The previously presented visualizations of scalar fields were slice-based. Slice-based
illustrations visualize 3D data by scrolling through the third dimension. Another method
to visualize 3D scalar fields is direct volume rendering. By defining a transfer function
assigning color and opacity to a scalar value, and tracing viewing rays through the volume,
a 2D image is generated from a 3D data set. Kindlmann et al. [KWH00] propose specific
transfer functions and shading techniques for volume renderings of DTI data sets. For
instance, anisotropy shading is combined with standard Phong shading to illuminate the
rendering.

Tensor Glyphs

Using tensor glyphs, no information of the diffusion tensor is discarded. Tensor glyphs
are geometric objects with six degrees of freedom, such that they can fully represent a
diffusion tensor. For instance, ellipsoids, superquadrics, or boxes are used as tensor glyphs.
Figure 2.3a shows an illustration how diffusion tensors are visualized with superquadrics.
Note that a glyph-based visualization does not encode correlations between diffusion
tensors. Instead, these correlations are perceived by looking at multiple spatially close
glyphs. Different methods have been proposed to arrange glyphs effectively in 3D space
to optimize the perception of diffusion data. Laidlaw et al. [LAK+98] normalize the
tensor glyphs to pack them more densely into 3D space. Additionally, they present a

9



2. Related Work

(a) Superquadrics (b) Streamlines

Figure 2.3: DTI based connectivity visualizations. Superquadrics visualizing the
diffusion tensor per voxel. By tracing streamlines through the field of principal eigenvectors
a full-brain tractography is derived. Source: [Kin04, BBP+05].

technique to color the glyphs by using brush strokes inspired by oil painters such that
connectivity patterns become visible. In addition, they arrange glyphs in layers to create
better depth perception. The biggest limitation of using tensor glyphs is that they are
not clearly distinguishable in image space. For instance, the length of a superquadric
glyph is not visible once it is oriented along the viewing direction.

Vector Field Visualization

By reducing each diffusion tensor to its principal eigenvector, standard vector field
visualization techniques become applicable to the visualization of DTI data. Fiber-
tracking [MvZ02] or tractography [BPP+00] traces streamlines through this vector field.
Streamlines are computed by solving the following equation

p(t) =
∫ t

0
v(p(s))ds

with p(t) being the streamline whereby p(0) is its starting point. v referes to the vector
field. In practice, this equation is numerically approximated and solved by using either
Euler [Eul45] or Runge Kutta [Run95] integration. The streamlines are color-coded by
mapping the direction of the vectors to a color. Figure 2.1 and Figure 2.3b show examples
of streamlines traced through a field of principal eigenvectors.

Beyond Vector Field Visualization

By using more information than the principal eigenvector, researchers aim to reduce
information loss when visualizing tensor fields. For instance, Zhang et al. [SDL03] use

10



2.1. Visualization for Neuroscience

stream surfaces to represent planar diffusion areas that can not be represented precisely
with tubes or lines. Another approach by Hesselink et al. [HLL97] extracts topological
skeletons from the field of diffusion tensors.

2.1.2 Mesoscale Analysis

Mesoscale analysis leverages light microscopy to image nerve cells and their substructures
such as axons or dendrites. However, the resolution of light microscopy is not high
enough to visualize synapses between nerve cells. Three main imaging techniques use
light microscopy to visualize neuronal curcuits [PKB+12]. First, single-cell staining by
dye impregnation uses the so-called Golgi stain to mark specific nerve cells within a
dense block of nerve tissue. Second, scientists use diffusion staining [GGW+00] to trace
nerve trajectories through brain regions. They inject a stain in vivo into a nerve cell
which then diffuses along the path of the cell and therefore colors it. Third, the brainbow
technique [LLS08] produces densely labeled images of brain tissue (see Fig. 2.1b) by
breeding genetically modified mice, such that their brain tissue produces photophysical
proteins. These proteins emit colored light under the microscope, and therefore nerve
cells can be identified in the brain tissue.

2.1.3 Microscale Analysis

As the wavelength of light limits conventional microscopy, microscale analysis uses
electron microscopy (EM) to image brain tissue at an even higher resolution. EM allows
neuroscientists to visualize neuronal structures at a nanometer resolution and is, therefore,
the only imaging method allowing the identification of individual synapses. Imaging a
cubic millimeter of brain tissue using serial EM would produce data sets up to 800 TB of
size [PKB+12]. These enormous amounts of data result in new computational challenges
to extract connectivity information. Therefore, scientists usually work with much smaller
volumes of brain tissue.

After densely labeling the EM image stack, 3D models of neuronal structures are recon-
structed (see Fig. 2.1c, Sec. 3.2.3). These models are then used as the basis for a further
detailed analysis.

This work focuses on micro-scale tissue visualization since we use EM data sets to resolve
individual synapses to reconstruct 3D models of nerve cells. In the following, we use the
term connectomics synonym to micro-scale brain tissue analysis even if our work does
not specifically focus on brain connectivity.

Visualization approaches have been applied to the entire connectomics data aquisition and
analysis pipeline [HHM+17], ranging from visual segmentation tools [BSL18, GG90] and
visual tools for proofreading of segmentations [AABH+16, HKT+18] to data exploration
and analysis approaches [BAAK+13, AABS+14, MAAB+18, CBB+16].

Data exploration typically focuses either on the original large-scale microscopy data and
its segmentation, or on higher-level connectivity information [PKB+12].
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(a) Two neurons rendered in 3D

(b) Neuron abstraction using a subway metaphor

Figure 2.4: Micro-scale brain connectivity visualization with Neuro-
lines [AABS+14]. 3D rendering of two neurons forming a synapse. Skeletons of these
two neurons abstracted using a subway metaphor. Links between the skeletons illustrate
synapses.

Methods for structural connectivity analysis of neuronal cells often use abstract visual
metaphors such as subway maps [AABS+14] or circuit diagrams [SBS+13] that highlight
synaptic connections. Neurolines [AABS+14] allows viewing the connectivity between
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neurons in an abstracted way. They reduce the three-dimensional nerve cells’ complexity
by abstracting them to two-dimensional straightened skeletons (see Fig. 2.4). They
support visualizing skeletons at different scales to allow a simultaneous analysis of
thousand of nerve cells. Sorger et al. [SBS+13] propose neuroMap to visualize nerve cell
connectivities in the fruit fly brain as an interactive two-dimensional graph. In contrast,
our work does not aim to highlight brain connectivity, but instead focuses on providing
an insight into the spatial neighborhoods of neuronal structures and cell organelles.

On the other hand, methods for exploring the general morphology of the data typi-
cally focus on scalable visualization of the original or segmented electron microscopy
data [HBJP12, BHAA+13]. For instance, ConnectomeExplorer [BAAK+13] supports
the exploration of high-resolution EM data by integrating a domain-specific query lan-
guage into a scalable volume visualization framework. Neurolucida [GG90], on the other
hand, focuses on the segmentation of high-resolution EM data. Additionally, it allows
neurobiologists to perform a quantitative analysis of single segmented structures, such
as extracting neuron features like length, volume, or surface area. Similarly, Berger et
al. [BSL18] present an interactive segmentation and annotation tool for high-resolution
EM data, which can also be used for data inspection in 2D and 3D. While NeuroKit
allows overlaying a 3D reconstruction with the original EM data, it is based on surface
rendering techniques rather than direct volume visualization.

Other approaches focus more on the analysis of structures related to the brain’s en-
ergy metabolism. Agus et al. [ACA+19] enable domain experts to investigate energy
consumption in relation to brain morphology with a specific focus on glycogen gran-
ules. Mohammed et al. [MAAB+18] propose a visual tool to study interactions between
neurites and glial cells. Thereby, they introduce a 2D visual abstraction panel to allow
continuous user-specified transitions between abstraction levels. However, none of these
approaches analyzes neighborhoods of selected neuronal structures and also does not
support comparative visualizations of them.

2.2 Comparative Visualization
Comparative visualization approaches allow the direct comparison and assessment of
similarities and differences between multiple data points or data sets. Pagendarm and
Post [PP95] classify comparative visualization into image-level and data-level comparisons.
Image-level comparison processes the data sources with different visualization pipelines
and then compares the resulting images, while data-level comparison uses the same
visualization pipeline to prepare the data for visual comparison. Our approach classifies
as a data-level comparison method.

Gleicher et al. [GAW+11] identify three approaches to compare objects visually: juxta-
position, superposition, and explicitly encoding differences or similarities. Additionally,
Kim et al. [KCK17] add interchangeability as a comparison method. Figure 2.5 shows
an illustration of four different comparative visualization techniques. Juxtaposition
displays entities side by side, while superimposition overlays them to facilitate their
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Figure 2.5: Four different visual comparison approaches. Each column shows a
specific visual comparison approach (from left to right: Juxtaposition, Superimposition,
Interchangeable, and Explicit Encoding). The top row indicates the comparison of two
entities while the bottom row shows how the respective approach applies to comparing
N entities. Source: [KCK17]

comparison. Both methods work well when comparing a low number of entities. However,
both can result in cluttered visualizations as soon as the number of entities increases.
Interchangeability relies on animations to visualize similarities or differences in objects.
This method scales well, but a time-dependent visualization is often not suitable (e.g.,
can not be used in a book). Finally, explicit encoding processes multiple entities to
display one composite of the different data sets. For instance, computing the intersection
or difference between two 3D shapes is an example of explicit encoding.

Our approach uses a combination of juxtaposition and superimposition to compare neu-
ronal structures and spatial neighborhoods. Comparing many structures simultaneously
requires scalable visualization methods, such as small multiples for large-scale genome
interaction matrices [LBK+18] or guaranteed visibility for tree comparisons [MGT+03].
Schmidt et al. [SPA+14] assess surface meshes by comparing each mesh against a reference
mesh. For our data, reference meshes do not exist since the overall shapes and branching
patterns of neurites vary significantly.

Most mesh comparison methods focus on meshes that are either (1) processed with
different algorithms, (2) the output of multiple runs of the same algorithm with different
parameters, or (3) results of numerical simulations with different parameter configurations.
According to Kehrer et al. [KH13], category (1) falls into multi-model data, and (2) and
(3) lie in the field of multi-run data. Our work lies in neither of those categories because
the meshes of neuronal structures differ naturally and are not influenced by variations of
computational models.

We identified five main classifications for the comparison of meshes. First, the number
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of meshes that can be compared is different. In general, approaches can be subdivided
into pairwise mesh comparison and multi mesh comparison methods. Second, the type
of data source differs. Some approaches use measured data like meshes derived from
point clouds or CT volume data. Another data source is simulation data/ensemble data.
Third, some methods use information visualization techniques like parallel coordinates
plots (PCP), scatter plots, or box plots, while other methods exclusively focus on the
use of three-dimensional renderings. Fourth, most methods try to quantify the meshes
using shape descriptors or similar methods. However, some methods only rely on visual
comparison without computing deviation values or other numeric values. The fifth
category concerns the ability of the visualization method to handle time-varying data.

For comparing scalar and flow fields, contour trees and graph matching have been
used [HSKK01, SWC+08]. Hilaga et al. [HSKK01] describe a method for topology
matching of 3D shapes using multiresolution Reeb graphs and use them as a search key
to identify similarities in a database of 3D shapes. NeuroKit incorporates a tree-based
comparison view, but focuses more on distances between structures in the tree rather than
on the raw topology. Graph comparison techniques have also been proposed for analyzing
brain connectivity [ABHR+13]. These techniques compare weighted graphs using node-
link diagrams and augmented adjacency matrices. They further show the effectiveness of
both visualizations in an evaluation with domain experts and conclude that matrix-based
visualizations are better suited for brain connectivity analysis. Furthermore, Maries et
al. [MMH+13] use visual comparison for spatial and non-spatial features of geriatric data
sets. By combining medical imaging, mathematics, and interactive visualization methods,
they can visualize and compare high-dimensional and multimodal data. Also, they use
sparse partial least squares and Tikhonov regularization algorithms to quantify potential
neurological diseases.

2.3 Spatial Neighborhood Analysis

Identifying and searching for patterns in biological tissue and cell neighborhoods is an ac-
tive area of research. For highly multiplex imaging data, tools such as CytoMap [SFG+20]
and Facetto [KBJ+20] have been proposed, which support the search for visual patterns
in cell neighborhoods and hierarchial clustering of cell types for phenotype analysis,
respectively.

Pettit et al. [Pet15] propose a method based on Hidden Markov random fields to cluster
cells depending on their gene expression data. Although their approach was also evaluated
on brain data, our primary goal is not to cluster cells but to visually analyze their
surrounding area. Nhu et al. [NDBB17] present a novel tool to analyze several cells’
interactions in three-dimensional data sets. Their solution is also capable of classifying
cell types. While analyzing interactions between cells is closely related to our work,
their method works on different data. They test it on Langerhans cells, which are
dendritic cells in the epidermis and, therefore, not part of the central nervous system.
Fernandez-Gonzalez et al. [FGBHOdS05] introduce a function to assess whether there
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are patterns in a cell population. They solely focus on cellular relationships, while we
also investigate the relationships between cells and cell organelles.

All of these approaches use multiplex imaging or microscopy data at a much lower
resolution than EM data. Subsequently, the above approaches focus on larger cell
neighborhoods (e.g., entire tissues or brain regions). NeuroKit, on the other hand, focuses
on localized spatial neighborhoods around cell organelles. Jorstad et al. [JNC+15] use
Blender and Neuromorph to allow users to manually extract quantitative measures from
reconstructed meshes of cell organelles in high-resolution EM data. However, they focus
on manual user interaction and simple measurements rather than neighborhood analysis
and visual comparisons between organelles.

2.4 Visualization Specification and Generation
Frameworks

Frameworks for the specification and generation of visualizations can be classified into
low level [BOH11, BH09] and high level [SWH14, SH14, SRHH16, SMWH17] approaches,
based on the level of abstraction they provide in their interface. Many techniques use
declarative methods (i.e., defining what not how) to specify data visualizations. Low-level
visualization specifications like D3 [BOH11] require users to compose a visualization
programmatically by specifying its components, while high-level approaches may support
interactive data binding and visualization specification using drag and drop [SH14].

Vega-Lite [SMWH17], on the other hand, uses a grammar based on the JSON file format
to specify charts. Figure 2.6 shows two visualization examples generated using Vega-
Lite and their related JSON specifications. Methods like Lyra [SH14] allow complete
interactive data binding and visualization specification using drag and drop. Furthermore,
Satayanarayan et al. [SWH14] propose purely declarative methods to specify interactions
with data visualizations. NeuroKit is inspired by these approaches, but offers an interface
for domain-specific visualization specification. We allow users to define domain-specific
analysis scenarios and domain tasks and map different visualizations to them. Our system
parses this input and automatically creates customized visualizations.
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Figure 2.6: Examples of visualizations generated with Vega-Lite. (a) JSON
specification of a line chart and the resulting visualization. (b) JSON specifiction of a
scatter plot and the resulting visualization. Source: [SMWH17]
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CHAPTER 3
Biological Background

Now, we explain the relevant concepts of neuroscience by giving a short introduction
into the terminology, followed by an overview of the connectomics workflow. In the last
section of this chapter, we present the data sets used for this work.

3.1 Terminology

The human brain consists of billions of interconnected nerve cells, or neurons. Neurons
receive input on tree-like structures called dendrites and transmit signals via long
tubular structures called axons (see Fig. 3.1). Axons and dendrites (collectively called
neurites) connect via synapses to neighboring cells [Stu08]. The human brain consists
of approximately tens of billions of neurons [ACG+09] that are interconnected through
one hundred trillion synapses. The scientific field of connectomics aims to reconstruct
this neural wiring diagram of the brain [8] to better understand the relation between the
structure of the nervous system and its function [9]. Considering these vast number of
structures and connections in the human brain, connectomics faces interesting challenges
on both the biological and the computational side. In addition to synaptic connectivity,
subcellular structures of neurons, so-called cell organelles, are also of high interest to
neuroscientists. Mitochondria, for example, are cell organelles responsible for providing
energy to the cell and its synapses [SW06]. Mitochondria can vary significantly in shape
and are found in the cell body and axons, and dendrites. Other cell organelles, for
example, are ribosomes or endoplasmic reticula. While ribosomes synthesize proteins,
endoplasmatic reticula are responsible for various tasks such as hormone synthesis or
storage of carbohydrates and calcium. Since cell organelles play an important role
for metabolism and cell development, neuroscientists want to understand how they are
distributed within neuronal structures and how they influence their spatial neighborhoods.
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Figure 3.1: Structure of neurons and cell organelles. Nerve signals are transmitted
from axons to dendrites via synapses. Neurons contain several different cell organelles,
such as mitochondria or ribosomes. Mitochondria are responsible for providing energy to
the neuron while ribosomes synthesize proteins. Source: Johanna Beyer

3.2 Connectomics Workflow

Connectomics aims to reconstruct the neural wiring diagram of the brain to understand
how the its morphology relates to its function [Seu12]. Before analyzing the connectomics
workflow, we highlight some challenges that must be addressed when working with high-
resolution data of brain tissue. Lichtman and Denk [LD11] summarize these challenges
that researchers currently face. First, the brain tissue consists of a multitude of different
cell types. Neuronal structures are highly complex in their morphology and 3D shape.
This makes it hard to classify them and to map their shape to its function. Second,
brain function is not solely determined by the wiring diagram of its nerve cells but
also by chemical and electrical activity. Observing chemical and electrical activity for
many different cells is difficult, which adds another level of complexity. Third, branches
of nerve cells span large volumes. For instance, dendrites of pyramidal cells extend
through volumes of one cubic millimeter. Since connectomics requires data resolutions of
several nanometers, a single and complete cell requires enormous amounts of data storage.
Traditional light microscopes are not suited to achieve a such high resolution. Therefore,
scientists use electron microscopes (EM) to image brain tissue at a nanometer resolution.
However, EM imaging requires additional and time-consuming probe preparations. Finally,
all structures in EM imaged volumes of brain tissue must be densely labeled. This means
that the cell type must be known for each voxel in the imaged brain tissue. Manually
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Figure 3.2: Steps of the connectomics workflow. Source: [Moh17]

labeling such large volumes is almost impossible. Therefore, scientists use machine
learning-based segmentation algorithms to densley label the data.

Now, we describe each step of the connectomics workflow in detail. Figure 3.2 illustrates
the connectomics workflow.

3.2.1 Data Acquisition

Our collaborators start data acquisition by dissecting solid blocks of brain tissue specifi-
cally stained for electron microscopy. Next, they image individual slices with an electron
microscope at a pixel resolution of 5× 5 nanometers [KMWL08], with a slice thickness
of 15 nanometers. This resolution requires around 450 imaged slices of brain tissue to
image a volume of 5 cubic microns. Conventional EM imaging of volumes of brain tissue
requires the cumbersome manual work of skilled experts. Newer methods, however, have
automated the slicing process and, therefore, allow to image larger volumes of brain
tissue. An example of an imaged slice of brain tissue is shown in Fig. 3.3. Contours of
individual nerve cells are visible. Darker image regions within nerve cells correspond to
mitochondria.

3.2.2 Image Registration

Image registration describes the process of transforming different images into the same
coordinate space. To align all slices with each other, various registration methods can
be used. Thereby registration approaches are categorized into three groups based on
the applied image transformations [Rai19]. Rigid transformation use image translation
and rotation to align image pairs with each other. Affine transformations extend
rigid transformations by allowing rescaling images to match them with other images.
Deformable/Curved transformations also allow image distortions. Independent of the
applied transformations, robust image registration requires a similarity measure to
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Figure 3.3: Slice of brain tissue imaged with electron microscopy at a resolution
of 5× 5 microns. Data provided by Graham Knott [KMWL08].

evaluate the quality of image alignments. Several similarity methods have been proposed,
including image-intensity and geometry-based methods [Rai19]. Additionally, non-rigid
image transformations need to use interpolation between pixels to fill the new space.

3.2.3 Segmentation & Reconstruction

Image segmentation is an active area of research. Here, the goal is to assign a semantic
label to each pixel of an image. For example, we want to know for each pixel in an EM
slice image, which neuronal structure it represents (see Fig. 3.4). The scientists’ goal
is to densely label the data, meaning that they segment every cellular structure in the
given tissue block. Dense labeling is essential for spatial neighborhood analysis because it
allows us to look at all structures and cellular substructures within a local neighborhood.
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Figure 3.4: Segmentation masks of EM connectomics data. Each color relates to
a neuronal structure. Source: Brian Matejek [MHL+17]

Conventional methods for image segmentation include the semi-automatic region-growing
approach or the automated watershed image segmentation. However, most methods
used for instance segmentation in EM connectomics data, are based on deep learning
models. For instance, Gonda et al. [GWP21] use consistent recurrent neural networks
to create binary segmentation masks for EM images with spatiotemporal consistency.
Lin et al. [LW19] provide PyTorch Connectomics, a toolbox for instance segmentation
of EM connectomics data. They integrate automatic and semi-automatic approaches
as well as segmentation techniques for cell organelles such as mitochondria [WLFB+20].
Furthermore, scientists use a wide range of other tools to detect and segment neurites
and synapses using semi-automatic approaches like Ilastik [SSKH11], TrackEM [CSS+12],
or VAST [BSL18]. After the segmentation process is completed, 3D surface meshes are
extracted from the segmentation stacks. We use these mesh representations to render
neuronal structures in NeuroKit.

3.2.4 Visualization

In the last step, scientists want to create informative visualizations giving them detailed
insights into the data. Here, the goal is to transform the data into actual knowledge
that helps scientists to understand how the brain functions. For instance, NeuroKit
uses surface meshes to quantify distances between neuronal structures. These distances
are then visualized using custom charts and diagrams. This information helps our
collaborators to characterize brain tissue more precisely and form new hypotheses on
how neuronal structures interact with each other. The biggest challenge in visualization
for connectomics is to handle the vast amounts of data efficiently that the previous steps
of the pipeline produce. First, we face computational challenges like loading large data
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sets of high-resolution brain tissue into memory. This requires sophisticated rendering
techniques like virtual memory approaches [HBJP12] or efficient empty space skipping in
volume rendering [HAAB+17]. On the other hand, visualization must avoid a cognitive
overload of the user when analyzing complex data sets. Therefore, suitable complexity
reduction methods, such as data abstractions [AABS+14, Moh17], must be invented. In
addition to extracting domain knowledge from the data, visualization approaches are also
used to guide the proofreading process of the previous Segmentation & Reconstruction
step. Deep learning-based models often produce errors when segmenting instances of
neuronal structures. Here, visualization approaches help to identify and correct errors
quickly [AABH+16, GWB+21].

3.3 Data
In NeuroKit, we display the reconstructed structures as surface meshes and also visu-
alize the original EM-image volume. Our collaborators have currently collected and
reconstructed six focused ion beam scanning electron microscope (FIB-SEM) data sets,
which are all five cubic microns in size [KMWL08]. Three data sets show brain tissue of
four-month-old mice, while the other three show tissue of 24-month-old mice [CWB+18].
For all six data sets, dendrites, axons, synapses, mitochondria, boutons, and spines have
been reconstructed. All six data sets are taken from layer one of the somatosensory
cortex. Figure 3.5 gives an overview of all six data sets. The left column shows a 3D
rendering of the respective data set and connectivity information as a node-link diagram.
Having data from specimen of different age groups available is helpful to understand how
the mammalian brain develops and changes during the aging process.
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Figure 3.5: Six different data sets acquired by our collaborators [KMWL08].
The first column shows a 3D rendering of the respective data set and the connectivity
of nerve cells as a node-link diagram. The data has a cubic geometry since it shows
a small subvolume of the mouse brain. The second column shows information data of
the data set and the third column holds information about the segmented structures.
Source: [ACA+19]
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CHAPTER 4
Goal & Task Analysis

Following a problem-driven design study approach by Sedlmair et al. [SMM12], we have
identified domain goals, associated analysis tasks, and general system requirements in
semi-structured interviews with four experienced neuroscientists at the University of
Turin and the Harvard Center of Brain Science. All scientists work with 3DEM data and
have more than ten years of experience in the field. Over several months, we regularly met
with our main neuroscience collaborator to demonstrate design prototypes and collect
feedback.

4.1 Design Study Methodology

Before describing the results of our design study in detail, we provide an overview of the
design study approach [SMM12] we have followed. Figure 4.1 illustrates the different
steps of the approach. The approach is divided into the three phases precondition, core,
and analysis. Each of these phases is again split into several subparts.

The precondition phase aims to plan the research project by learning about the state of
the art in the scientific field. This helps to make informed decisions on the goals in the
design study. Also, potential collaboration with domain experts should be assessed in
this phase. Here, it is crucial to check whether the domain-specific problem is suitable
for a visualization design study. Visualization researchers should evaluate if the problem
of the potential collaborators requires research or just engineering efforts to solve. Other
aspects include the availability of data and time constraints. After these considerations,
roles in the team of researchers must be distributed. Roles range from the front-line
analyst, who will use the resulting visualization approaches, to gatekeepers, responsible
for approving or declining feature requests and other leadership tasks.

In the core phase, visualization researchers and domain experts must formulate a detailed
problem statement. After that, the visualization design, data abstractions, and visual

27



4. Goal & Task Analysis

Figure 4.1: Overview of the design study methodology approach by Sedlmair et
al. [SMM12]

encodings are specified. In the next step, the implementation of software prototypes
takes place. Here, it is crucial to follow a rapid prototyping approach delivering fast
results. Spending too much time on software development by aiming to create perfect
solutions is a common pitfall in this phase. Once the implementation phase is over, the
project and the code should be open-sourced, and the effectiveness of the approach must
be evaluated by collecting feedback.

Finally, in the analysis phase, the focus is on reflecting on the process and then writing
down the design study results. Evaluating the team performance as well as the results of
the study are part of the reflection. Paper writing requires a sufficient amount of time
and must be planned accordingly. Often, the writing phase requires reconsiderations of
the data abstraction to articulate them accordingly.

Figure 4.1 sketches the design study approach as a linear process. However, phases
overlap, and the backward arrows indicate iterations between the single phases. Now, we
report on the results of our discussions with domain experts by outlining domain goals,
analysis tasks, and requirements.

4.2 Domain Goals

Our collaborators’ main objective is the detailed analysis of local neighborhoods in
their neuronal 3DEM data sets. In particular, they want to analyze, compare, and
correlate morphological features of interest in selected cells, such as spines, boutons,
or mitochondria, to discover previously unknown biological patterns. The particular
domain-specific goals of the neuroscientists are:
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G1 - Proximity Analysis for Subcellular Structures

The collaborators are concerned with the spatial aspects of how cellular substructures
relate to each other. On the one hand, they are interested in analyzing distances
between a varying number of structures (e.g., What are the distances of the closest
three synapses to a mitochondrion, and what is their average size?). On the other
hand, they are interested in distributions (e.g., What percentage of a mitochondrion is
closer than 1 nm to the cell boundary?). Our collaborators want to investigate whether
patterns indicate connectivity strength based on the underlying spatial arrangement of
cell substructures.

G2 - Comparative Analysis of Neuronal Structures

In addition to looking at a single spatial neighborhood, our collaborators need to compare
neighborhoods and structures of interest. Their goal is to perform comparisons with
different biological targets, to compare between: a) different data sets (e.g., specimen
from different developmental stages), b) different instances of a structure of interest
(e.g., dendrites), or c) different attributes of a single structure of interest (e.g., synapse
distances to a single mitochondrion). Additionally, they need to be able to perform
comparisons of different cardinalities, ranging from a detailed comparison of two
structures with each other to comparing hundreds of structures at the same time. This
feature allows them to test whether local findings also apply to a larger data set and,
conversely, allow them to drill down from a larger perspective to highly detailed local
instances.

G3 - Intuitive Analysis of User-Specific Hypotheses

Our scientists want to be able to fine-tune their visual analysis to their current scientific
objective. In addition to general comparisons and proximity analysis in their data,
they want to customize analyses steps and define which visualizations to use for the
domain-specific tasks. For example, one of our collaborators is currently focusing on the
analysis of mitochondria in dendrites. We describe the specific tasks for this analysis
scenario in detail in Chapter 8.

4.3 Analysis Tasks

Based on the above goals, we have derived a set of five analysis tasks that need to be
supported in NeuroKit to aid scientists in the analysis of spatial neighborhoods in their
data. Note that we distinguish between connectivity analysis and spatial neighborhood
analysis. Figure 4.2 illustrates the difference between the two analysis tasks. In the
following paragraphs, we explain these analysis tasks and also link them to the NeuroKit
domain goals:
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(a) Connectivity analysis (b) Neighborhood analysis

Figure 4.2: Connectivity vs. neighborhood analysis. Connectivity analysis of
neuronal structures (a) compared to spatial neighborhood analysis (b). Our collaborators
are specifically interested in the latter.

T1 - Explore original EM image data and segmented structures

Before diving into a detailed analysis, scientists first need to get an overview and verify
the correctness of the segmentation (G1, G3). Verifying data segmentation is essential
to ensure a solid analysis phase and check whether any mistakes have been overlooked in
the proofreading phase.

T2 - Explore the spatial neighborhood of a single structure

Once a structure of interest has been identified, domain scientists explore spatial fea-
tures and morphology in more detail (G1, G3). Thereby, the spatial features of the
neighborhood and the structure’s 3D shape are of specific interest. Spatial features and
morphologies vary highly between structures of interest.

T3 - Quantify distances and distributions in a spatial neighborhood

Domain experts are interested in quantifying the proximity and spatial arrangement of
structures in a spatial neighborhood (G1, G3). Quantifying the neighborhoods facilitates
a more detailed analysis of neighborhood features and, therefore, allows more accurate
observations.

T4 - Compare the spatial neighborhoods of several structures

Analyzing the variance of certain features in different local spatial neighborhoods is
essential for discovering trends and patterns when studying biological features (G2, G3).

30



4.4. Requirements

This analysis task is closely linked to analysis task T3. Quantifying neighborhood features
leads to improved comparison possibilities.

T5 - Compare neighborhoods of different data sets

Scientists want to compare different specimens to analyze the stability of certain neighbor-
hood features and differences between them (G2, G3). For instance, our collaborators
are interested in comparing brain tissue of young and old mice to analyze how the aging
process affects the development of neuronal structures.

4.4 Requirements
To support the goals and tasks not just for one specific expert user but also for many
different users and their individual domain questions, we have extracted some design
requirements that NeuroKit must fulfill.

R1 - Flexibility and Expandability

While all of our collaborators want to analyze spatial neighborhoods and compare
structures of interest, the specific details vary for each scientist. For example, one of
the collaborators is mainly interested in mitochondria, while another scientist focuses
on endoplasmic reticula. To support both (and other) usage scenarios in NeuroKit, the
system has to be customizable and expandable to allow scientists or technicians to adjust
the provided visualization capabilities for specific domain questions (G3).

R2 - Scalable Comparison

To support the visual comparison of different biological targets and at different cardi-
nalities, our system needs to provide comparisons at different scales and allow users to
switch between them easily (G2). This is necessary to identify trends in larger sets of
neighborhoods but also allows a detailed investigation of small multiples.

R3 - Ease of Use

In addition to being flexible and expandable, the system must also support neuroscientists
with little or no programming experience. Biological data, and especially neuronal data,
is inherently complex. Therefore, we need to limit the cognitive load for the user by
employing methods that automatically guide and support them in the exploration and
analysis process. Hence, NeuroKit should provide a human-readable interface and file
format for customization and automatically guide the user in their specific analysis tasks
(G1-3).
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CHAPTER 5
NeuroKit Toolkit Design

We have designed NeuroKit with two main considerations in mind. First, during dis-
cussions with our collaborators, we realized that they want to shift their analysis from
being centered on brain connectivity to a more detailed analysis of spatial neighborhoods.
These neighborhoods in EM data can be extremely complex and can include dozens of
cellular structures and substructures. Second, we want to create a highly flexible and
customizable toolkit that can support a broad range of specific domain tasks and guides
users in their analysis steps by automatically suggesting appropriate visualizations, view
parameters, and interaction modes. Neuroscientists often have particular analysis goals
that differ even between scientists in the same research group. Visualization tools that
are designed to be general enough to support different types of analyses often result in
overwhelming user interfaces and unintuitive workflows. Alternatively, tools designed for
a specific analysis task typically do not generalize well to other tasks. NeuroKit aims to
combine the best of these two worlds by providing a general framework that is expressive
and powerful but can be customized to support individualized workflows. By allowing
scientists to customize their analysis workflow to best suit their needs, we minimize visual
complexity, streamline the user interface, and simplify user interaction.

In this chapter, we focus on designing the configurable toolkit and framework aspects of
NeuroKit. The visual neighborhood analysis and comparison approach is then described
in Chapter 6. Fig. 1.2 shows the overall design of NeuroKit. Based on the custom user-
defined analysis scenario, NeuroKit guides users in their analysis by suggesting fitting
visualizations, adjusting view parameters, and offering different comparison modes.

5.1 Custom Analysis Scenarios

NeuroKit allows users to define custom analysis scenarios that fine-tune the general
neighborhood analysis capabilities of our framework to a highly customized workflow (R1).

33



5. NeuroKit Toolkit Design

5.1.1 Scenario Specification

Conceptually, a domain-specific analysis scenario defines the analysis a neuroscientist
wants to perform and breaks it down into individual and concrete domain tasks and
elements. These domain tasks are defined in terms of data mappings, default visualizations,
comparison modes, and supported user interactions. We will refer to the tasks in a
user-defined analysis scenario as domain tasks to distinguish them from the general
analysis tasks identified in our goal and task analysis in Chapter 4. Below, we describe
the concrete elements comprising a scenario.

Scenario:

An analysis scenario represents a higher-level question a domain scientist might have,
such as “How are mitochondria arranged in dendrites?”, “How do synapses cluster around
mitochondria”, or “How do mitochondria cluster around synapses?”.

Domain tasks:

Each analysis scenario comprises one or several domain tasks, which are specific analysis
steps a user needs to perform to answer the higher-level scenario question. For exam-
ple, domain tasks in the mitochondria scenario above would be analyzing the synaptic
neighborhood of a single mitochondrion, or analyzing the distance from a mitochondrion
to the cell boundary, or analyzing the placement of mitochondria within a nerve cell. To
support these steps, each domain task can define visualizations, comparison modes, and
interaction parameters that help the user in the analysis.

Target structure:

Each scenario can define a target structure (TS), which is the main biological structure
under investigation. Target structures can be cell organelles like mitochondria or other
cellular structures such as dendrites or synapses. Specifying a target structure ensures
that visualizations and user interface elements defined in specific domain tasks focus
on those structures (e.g., center their view on them, or show a list of all instances of
that structure in the data set). Note that we distinguish between the general biological
structure (i.e., target structure) and specific instances of that structure a user selects
during their analysis (i.e., structures of interest).

Visualizations and data mappings:

Each domain task contains a set of customized visualizations to show those data elements
that are best suited to complete the specific task. For example, to see the distance
between a mitochondrion and the cell boundary, we can define a visualization that color
codes the distance onto the mitochondrion’s surface in a 3D rendering or show a violin
plot that encodes how the closest distance varies over the surface of a mitochondrion.
NeuroKit supports a set of standard information visualization views, such as bar charts,
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5.2. Automatic User Guidance

scatterplots, violin plots, or cumulative histograms, as well as several custom views for
neuroscience tasks (see Chapter 8). Each view can be customized by changing the specific
data mapping, such as which attributes to show on the axes of a scatterplot. Furthermore,
NeuroKit is extensible and allows to implement and plug in additional views that are
not part of the original framework (see Chapter 7). Finally, we can define comparative
views for different cardinalities. This means that we can specify a high-detailed view for
low-cardinality comparisons and overview visualizations for high-cardinality comparisons
(R2).

Interaction parameters:

In addition to specifying visualizations and tasks, a scenario can also define interaction
parameters, such as user-adjustable sliders, to filter data before visualization. For instance,
NeuroKit can be configured such that the number of bins in a cumulative histogram or
specific threshold distances are adjustable by a slider.

5.1.2 Analysis Definition File

Custom analysis scenarios are defined by users in the form of analysis definition files
(ADFs). ADFs are written in a human-readable JSON format and do not require any
programming skills (R3). Fig. 1.2 (a) shows the structure of an ADF and Listing 7.10 and
7.13 give concrete examples. NeuroKit reads the ADF upon startup and configures the
user interface accordingly. We provide sample ADFs that the users can further fine-tune.
The NeuroKit documentation [Tro21] includes detailed information about supported
visualizations and their parameters.

5.2 Automatic User Guidance

Based on the active analysis scenario, NeuroKit automatically adjusts the user interface,
views, and interactions and helps guide users through the analysis (R3).

5.2.1 User Workflow

The user workflow starts by loading a custom analysis scenario and data (see Fig. 5.1a).
First, users perform an initial exploration in 3D and select structures of interest for
further investigation. Next, users can perform the custom domain tasks of their loaded
scenario, such as comparing the selected structures in detail to extract distances, detect
distribution patterns or test hypotheses. In all these steps, users are supported and
guided by NeuroKit to streamline the analysis process and minimize the mental load
(see Fig. 5.1e). Fig. 5.1 shows the user workflow and which parts of the framework are
adjusted automatically. After completing the analysis of one domain task, users can
switch to another domain task, refine the data selection, and adjust the scale of the
comparison method iteratively.
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5. NeuroKit Toolkit Design

Figure 5.1: NeuroKit workflow and automatic user guidance. NeuroKit guides
and supports users throughout the analysis workflow to minimize mental load and support
specific analysis tasks. We show user actions in purple, and automatic guidance actions
in gray. A user can customize the visual analysis by specifying a user-defined analysis
scenario. Based on the analysis scenario, we automatically adjust the visual user interface
and propose the most appropriate visualization and comparison parameters.

5.2.2 Guidance and Automatic Adjustments.

NeuroKit includes automatic guidance features in each step of a scenario analysis session.

Initial Exploration

(Fig. 5.1b): Whenever a scenario defines biological target structures (e.g., mitochondria),
we automatically highlight those structures throughout the system. We create a list view
of all instances of that structure (e.g., all mitochondria in the data set) and blend out
other structures in the list view. The target structure also constitutes the center of a
spatial neighborhood. Any spatial neighborhood analysis will be centered around that
structure.

Domain Task Selection

(Fig. 5.1c): During the exploration step, depending on the user-defined scenario and
selected domain task, NeuroKit automatically updates the list of available visualizations
and adjusts view parameters. For example, depending on the selected domain task and
its settings, we adjust which cell organelles are visible by default in the 3D view of a
region of interest.
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5.2. Automatic User Guidance

Data Selection

(Fig. 5.1d): For each domain task, NeuroKit can automatically adjust the level of detail
in our scalable comparison framework (see Chapter 6), depending on the number of
structures selected for comparison. This allows us to adjust the level of detail in a
comparative visualization based on data cardinality.
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CHAPTER 6
Visual Neighborhood Analysis

Analyzing and comparing spatial neighborhoods is challenging, especially in biological
tissue that is highly variable and exhibits a complex three-dimensional structure. Look-
ing at not just one but multiple neighborhoods solely in 3D easily leads to cognitive
overload and does not allow quantitative comparisons. Therefore, NeuroKit offers two
complementary visualization methods. First, we can show juxtaposed high-detail 3D
renderings of the selected local neighborhoods. This allows neuroscientists to explore the
original 3D data and get an intuition about the morphology and spatial arrangement of
structures of interest. In addition, we show linked analysis views that support a more
quantitative analysis and comparison of neighborhoods. Fig. 6.1 shows the entire user
interface of NeuroKit.

6.1 Scalable Comparison Framework

Conceptually, NeuroKit supports two different levels of comparison, which are orthogonal
to each other. On the one hand, we support different biological targets of comparisons,
where targets relate to biological specimens, structures, or cellular substructures. On the
other hand, we support comparisons of different cardinalities (i.e., a varying number of
objects in a comparison). Both approaches allow comparisons to range from overview
to detail in both biological and visualization terms (R2). The scalable comparisons
are fully integrated into the custom analysis scenarios framework, allowing NeuroKit to
automatically suggest and adjust comparative views based on the current domain task
and the number of selected structures.

Comparison Targets

NeuroKit supports three different comparison targets. First and foremost, it supports
comparing different instances of the same biological target structure (e.g., comparing
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6. Visual Neighborhood Analysis

two dendrites). Second, it supports the comparison of cellular substructures of the same
structure of interest (e.g., synapses of the same dendrite). Third, NeuroKit supports
the comparison of different data sets (e.g., data sets of neuronal tissue in different
developmental stages). Users can define comparison targets in the ADF by setting
the target structure and specifying the data mapping for comparisons. NeuroKit then
automatically adjusts the user-interface (UI) and views based on the specified comparison
target.

Cardinality of Comparisons

In their analysis, scientists often move from a single interesting structure to many to
verify whether identified features correspond to larger trends or patterns. Alternatively,
they usually start with an overview of many structures and then drill down to see more
details. Therefore, we designed a scalable comparison framework to support comparisons
of sets with different cardinalities. In particular, NeuroKit provides comparisons at three
different scales (Fig. 1.2). The low-cardinality comparison mode is designed to compare
a handful of objects (two to five) and offers high-detail juxtaposed views on the objects
being compared, typically arranged as small multiples. A highly detailed view takes
up much screen space and therefore only supports a low number of objects that can be
compared. The medium-cardinality comparison mode supports up to a dozen structures,
while the high-cardinality comparison view scales up to hundreds of objects. The latter
view is the most compact visualization and makes larger trends, patterns, and outliers
visible.

NeuroKit can either automatically switch between comparison modes, depending on the
number of selected objects, or let users choose their desired comparison mode. The actual
visualization for each comparison mode is based on the domain tasks specified in the
analysis definition file. Figures 8.2, 8.4, and 8.6 show the different cardinality views for
domain tasks in the “Mitochondria Analysis” usage scenario (Chapter 8).

6.2 Visual Elements
In this Section, we describe the different visual elements of our application (see Fig. 6.1)
and how they support visual neighborhood analysis. In addition, we outline how our
design choices and interaction techniques amplify the understanding of our data.

Scenario Specific User Interface

NeuroKit automatically parses the ADF and creates UI elements specified for a user-
defined analysis scenario. For example, for analyzing mitochondria, scientists might want
a slider to interactively change the distance threshold of what they consider a “close”
synapse.

Furthermore, we automatically show icons for quick previews of the three different
comparison levels for each domain task in the scenario (see Fig. 6.1e). The icons allow
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6. Visual Neighborhood Analysis

users to choose their current domain task quickly and to switch the comparison mode
manually, and it gives a preview of the individual comparative visualizations.

3D Neighborhood View

The neighborhood view (see Fig. 6.2) allows the detailed examination of the local spatial
neighborhood of a user-selected structure of interest (T2). This helps neuroscientists to
analyze the morphology and three-dimensional anatomy of the selected structure while
at the same time seeing nearby cellular substructures. For example, in the neighborhood
view, we can show a selected mitochondrion, its respective axon or dendrite, as well as
nearby synapses. We display the selected structure of interest and the surrounding region
in a high-resolution 3D surface rendering. In addition, we may also display a slice view
of the original EM data that can be moved through the neighborhood view (T1). This
feature is essential for neuroscientists for two reasons. First, it allows them to proofread
and check segmentation results on-the-fly. Therefore, the 3D renderings can also be
disabled to avoid occlusions when verifying the segmentations. Additionally, it allows
them to discover and analyze features in the EM data that have not been segmented and
reconstructed yet, such as individual glycogen granules and their distribution.

We have implemented the neighborhood view as small multiples (see Fig. 6.1d). We
juxtapose views of multiple local neighborhoods next to each other (T4, T5). Small
multiples can be linked to each other for synchronized navigation (i.e., zooming, rotation,
EM slice view placement) between all views.

Analysis View

While the 3D neighborhood views are great for getting a spatial understanding of a
neighborhood, it is still hard to compare multiple neighborhoods more quantitatively.
Therefore, NeuroKit offers analysis views (see Fig. 6.1c) that abstract certain neighbor-
hood characteristics and support direct comparisons between neighborhoods (T3, T4,
T5).

The actual visualization shown in the analysis view is based on the number of selected
structures (i.e., the cardinality of the current comparison) and the specific analysis
scenario (i.e., the settings in the analysis definition file). Analysis views are connected to
the 3D neighborhood views by brushing and linking to allow users to easily connect the
content of the analysis views to the neighborhood views. After spotting an interesting
neighborhood feature in the analysis view, the user can study this feature in greater
detail in the 3D representation of the neighborhood.

Spatial Context View

To provide an initial overview of the entire data set and all its segmented structures,
NeuroKit provides a spatial context view (see Fig. 6.1b). With this view, scientists see
the spatial location of selected structures in the context of the entire volume. They can
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6.2. Visual Elements

Figure 6.2: Detailed three-dimensional neighborhood view. The dendrite (green)
developed spines that form synapses (purple), and an enclosed mitochondrion (surface
color-coded structure). Orange/reddish color on the surface indicates close proximity
between the mitochondrion and the dendrite’s cell membrane, while blue denotes a greater
distance. The 3D rendering is overlayed with a 2D slice of the original EM data.

examine how different local neighborhoods are related to each other (T1). For instance,
it is interesting to our collaborators whether specific neighborhoods overlap and share
synapses. Furthermore, it is possible to detect clusters in the spatial overview. For
example, mitochondria clusters could indicate a region of high metabolic activity. We
link the spatial overview to the individual neighborhood views. When hovering over a
structure in the neighborhood view, we highlight the respective structure in the spatial
context view and vice versa.

Selecting Structures of Interest

To easily select structures of interest, we provide a list view of all segmented objects
in the data set (see Fig. 6.1a). Suppose a biological target structure has been defined
in the analysis definition file. In this case, we can automatically filter out all other
structures and only show segmented objects of the target type (e.g., dendrites). This
facilitates a fast selection of structures of interest without time-consuming search through
all segmented structures.
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6. Visual Neighborhood Analysis

6.3 Interaction
We have chosen specific interaction techniques to facilitate fast and convenient visual
analyses of our data. Navigating view settings in multiple neighborhood views can be
cumbersome. That is why users can optionally link zooming for all neighborhood views.
Having both linked and individual zoom allows users to quickly view all neighborhoods
from the same distance while still enabling a detailed and easy examination of unique
neighborhoods. Furthermore, we support brushing and linking between analysis views,
neighborhood views, and spatial context views. Hovering over a specific region in the
analysis view highlights the entire neighborhood view it corresponds to. This is especially
helpful when comparing many structures to easily spot the corresponding neighborhood
view. We also highlight individual structures like synapses or dendritic spines in the 3D
views once selected in the analysis view. Thus, users can easily connect the insight they
gained from the analysis view to the detailed 3D representation.

We support two different interaction modes, depending on the cardinality of the current
comparison. For low-scale comparisons, users start by choosing specific structures from the
list view, which are then shown as small multiple neighborhood views, and subsequently
abstracted and quantified in the analysis view. For high-scale comparisons, on the other
hand, we automatically display all instances of the biological target structure in the
analysis view. In the next step, the user can select individual structures of interest in the
analysis view, which are then shown in the detailed neighborhood views.
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CHAPTER 7
Techniques

In this chapter, we describe the NeuroKit architecture, all required data preprocessing
steps, techniques used for application development, and a detailed explanation of the
structure of ADFs.

7.1 NeuroKit Architecture

We have implemented NeuroKit as a modular application to split up NeuroKit-core from
the user interface and the visualization stack. The visualization stack provides a general
API for all visualizations in our system. Whenever a new analysis scenario is loaded,
the core module re-initializes and updates the user interface and initializes the different
views of the visualization stack specified in the analysis definition file (ADF). In case a
usage scenario requires a visualization that has not been implemented in NeuroKit yet,
the visualization stack is extensible. Additional D3-based data visualization modules
have to implement our visualization interface and can then be further customized via the
analysis definition file. Since NeuroKit already supports standard visualizations (e.g.,
scatterplots, bar charts, etc.), this feature is primarily meant to support novel custom
visualizations specific to a particular usage scenario.

7.2 Data Preprocessing

In NeuroKit, we display surface meshes of the reconstructed structures and the original
EM image volume. We extract the mesh data from segmentation stacks using Neuro-
morph [JNC+15] and compute the closest distances between all structures of interest
using the CGAL library [FGK+00]. Our collaborators provided other mesh attributes
such as spine lengths, spine volume, or surface area. We have defined a standardized file
format to read arbitrary data sets into NeuroKit. Mesh data must be specified in the
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Figure 7.1: Volume boundary handling for distance computations. Neurites
(orange, green) and cell organelles such as mitochondria (red) are often cut off by
the volumes cutting plane (outer box). To prevent a distance distribution from being
incorrectly calculated, we introduce a margin (space between boxes) that is not considered
for distance distributions.

wavefront data format, and we use a standardized naming convention for all objects to
make data loading easier.

7.2.1 Distance Computation

We use a tree data structure to perform distance computations [ATW20] between 3D
objects. We construct a hierarchy of axis-aligned bounding boxes (AABB-tree) from a
set of triangles. The distance between a point and the object can then be computed by
determining which bounding box contains the point. In NeuroKit, we perform two types
of distance computations. First, distances between objects are calculated to determine
the proximity between different structures. Second, we compute distance distributions of
cell organelle surfaces to their respective cell membrane to investigate the placement of
cell organelles.

We often only view fractions of neurites and cell organelles since they are truncated by
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the volumes’ boundary. At the intersections of the neuronal structures with the volume
boundary, new surfaces are added to make all meshes water-tight, which is a requirement
for volume computations. These newly introduced surfaces are shown in Figure 7.1
as colored line segments parallel to the cutting plane (outer box). Therefore, when
computing distance distributions, the closest point of a cell membrane to a mitochondrion
is often a boundary surface. This distorts the distance distributions and limits their
interpretability. That is why we add a margin region to the cutting plane of the volume
by adding an offset to it. In this margin region, distance distributions are not calculated.
Figure 7.1 illustrates the margin region as the space between the outer and the inner box.

7.2.2 Input Data Specification

Neuroscientists often acquire their own data sets, which they might want to analyze using
NeuroKit. For this, we specified a standardized data format and naming conventions
to support loading arbitrary data sets into NeuroKit. This makes NeuroKit accessible
to numerous experts and not only to our collaborators. The surface meshes must be
specified in the wavefront data format. The mesh objects must follow a strict naming
convention.

For instance, axons and dendrites are specified by respective names first followed by a
three digit identification number:

Dendrite145
Axon033

The naming convention of mitochondria first specifies a mitochondria identifier followed
by the respective neurite (axon or dendrite) and an identification number:

Mito_D145_01
Mito_A033_03

The above names show the convention for mitochondrion 1 of dendrite 145 and mito-
chondrion 3 of axon 33. Similarly the identifiers for boutons and spines are defined:

Spine_D145_02
Bouton_A033_03

The naming convention for synapses is composed by the synapse identifier followed by
the identifier of the respective dendrite, spine, axon, and bouton:

Syn_D145s02A033b03
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Figure 7.2: Volume computation without transforming the meshes into a vol-
umetric data representation. Instead, the mesh volume can be calculated by the
volume of the tetrahedron each triangle forms with the origin of the coordinate space.
Source: [ZC01]

Here we see the name for a synapse between dendrite 145, spine 2, axon 33, and bouton
3. Additionally, the surface must be triangulated. We use this standardized naming
convention to derive relationships between the neuronal structures, which is important
to identify their neighborhoods. Additionally, EM image volumes are specified in the
.raw data format with known data types and dimensions. More information about the
NeuroKit data format can be found on GitHub [Tro21].

7.2.3 Volume Computation

Another mesh attribute that is of interest for the neurobiologists is the volume of
mitochondria. We use an algorithm that computes the volume of the space enclosed by
meshes without transforming them into a volumetric data representation [ZC01]. This
decreases computation time and saves memory space. Figure 7.2 shows a mesh from
which we want to calculate the volume. We assume that the mesh is triangulated. The
volume computation is done in three steps. First, we compute the outward-facing normal
for each triangle. The normal N of the triangle ABC is defined as the cross-product
N = (C −A)× (B −A). Whether the normal is facing inside the mesh or outside the
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mesh is determined by the triangle winding order. Second, we compute the volume of
the tetrahedron that each triangle forms with the origin O. For example, the volume of
the tetrahedron OACB is computed like

|VOACB| = |
1
6(−x3y2z1 + x2y3z1 + x3y1z2 − x1y3z2 − x2y1z3 + x1y2z3)| , (7.1)

where A = (x1, y1, z1), B = (x2, y2, z2), and C = (x3, y3, z3). Third, the sign of the
tetrahedron OACB is then computed as sgn( ~OA ·NACB). Triangle normals pointing
away from the origin will get a positive sign wheres triangle normals pointing in the
direction of the origin will have a negative sign. The volume Vtotal of the mesh can be
easily computed by the sum of tetrahedra volumes Vi like

Vtotal =
∑

i

Vi (7.2)

Summing up the signed volumes ensures that all parts of Vi that are not inside the mesh
cancel out.

7.3 Implementation

NeuroKit is implemented in C++ 17 using Qt5 for the user interface and OpenGL 4.3 for
real-time 3D rendering. The analysis views use d3.js [BOH11] and phylotree.js [SWKP18].
We have implemented a state-of-the-art real-time transparency rendering algorithm using
per-pixel linked lists [Wol11] for the rendering of semi-transparent surfaces. We use Qt’s
WebChannel class to send data objects from C++ to the JavaScript frontend of our
application and vice versa. The user study and all tests were performed on a Windows 10
machine, using an AMD Ryzen 9 3900X CPU, an NVIDIA GeForce RTX 2080 Super GPU,
and 128 GB RAM. NeuroKit requires a GPU for interactive 3D rendering. NeuroKit is
open-source and available on Github [Tro21].

7.3.1 Realtime 3D Rendering

NeuroKit uses detailed real-time 3D renderings to visualize neighborhoods of neuronal
structures. We render the surfaces of nerve cells, cell organelles, and synapses recon-
structed from dense segmentations of EM volumes of brain tissue.
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Figure 7.3: The real-time rendering pipeline. Source: [Wim20].

The Rendering Pipeline

The rendering pipeline [Wim20] describes all necessary steps to transform three-dimensional
surface data to rasterized two-dimensional images on the screen. Figure 7.3 shows a
simplified version of the rendering pipeline. The application controls issuing commands
to the graphics card (GPU). Therefore, modern graphics cards offer interfaces such as
OpenGL, DirectX, or Vulkan. In the geometry processing stage, geometry is modified
in various sub-steps, and primitives are assembled. For instance, geometry primitives
are points, lines, triangles, or patches. The respective primitives assemble the rendered
geometry. In the rasterization stage, the primitives, defined in continuous space, are
discretized to a finite set of pixels. This process is called sampling. Also, vertex attributes
such as color values or normals are interpolated. In the final pixel-processing step,
per-fragment operations are performed. Fragments are pixel candidates. For instance, the
color of a pixel is determined by multiple fragments of different objects if the scene con-
tains transparent objects. This process is called blending. Other per-fragment operations
include fragment shading, stencil testing, or dithering.

Order Independent Transparency

Correct transparency renderings are essential to observe how cell organelles are positioned
within neurons. Since simple blending techniques require complex triangle depth sorting
to display transparency correctly, we implemented a state-of-the-art order-independent
transparency algorithm. Rendering objects translucently means that multiple objects
may compose the color of each pixel. This approach stores all color, alpha, and depth
values of each fragment candidates in a linked list for each pixel. In the next step, each
pixel list is sorted by the fragments’ depth such that the fragment closest to the viewing
plane is the first element, and the furthest fragment is the last element in the list. After
this step, all fragments are blended, which results in the final pixel value. Figure 7.4
shows the results of this algorithm with our data.

7.3.2 Analysis Definition Files

In the following section, we explain the functionality of the analysis definition files (ADFs)
in more detail. ADFs are used to customize visualizations and to allow the user to specify
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Figure 7.4: 3D rendering using per-pixel linked lists for order independent transparency
(OIT).

domain-specific usage scenarios. ADFs are specified in the human-readable JSON data
format. First, we give an overview of the general structure and the implemented design
space and then give two concrete examples of ADFs.
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Design Space Overview

The JSON snippet in Listing 7.1 illustratesillustrates the general structure of an ADF.
Each ADF specifies a usage scenario. Each usage scenario can consist of multiple
subtasks/domain tasks, whereby each domain task specifies up to three visualization
methods at different cardinalities (low-cardinality visualizations, medium-cardinality
visualizations, high-cardinality visualizations). Each visualization method is best suited
to visualize and compare a certain number of spatial neighborhoods.

{
"name " : " usage s c ena r i o name " ,
" subtasks " : [

{
"name " : " domain task name " ,
" l ow_card ina l i ty_vi s " : { . . . } ,
" medium_cardinal ity_vis " : { . . . } ,
" h igh_card ina l i ty_v i s " : { . . . }

} ,
{ . . . }

]
}

Listing 7.1: General structure of an ADF file
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In Listing 7.2, we explain how the individual visualization methods are specified. First,
the scatter-plot visualization, is specified by the scatter-plot keyword. Based on the
selected target structure, data points in the scatter-plot represent either synapses or
mitochondria. We plan to allow more target structures in future versions of NeuroKit.
The specification also allows us to map different data attributes to the axes of the
scatter-plot. Detailed explanations of the data attributes are available in the NeuroKit
wiki on Github [Tro21].

{
" id " : 0 ,
"name " : " s c a t t e r−p lo t " ,
" target−s t r u c tu r e " : [ " mitochondria " , " synapses " ] ,
" x−ax i s " : {

" l a b e l " : " here goes the x−ax i s l a b e l " ,
" a t t r i b u t e " : [ " mito−min−di s tance−to−c e l l " ,

// minimal d i s t ance o f mitochondrion
// to the c e l l membrane
"mito−volume " ,
// mitochondrion volume
"mito−spine−coverage " ,
// number o f sp i n e s covered
// by the mitochondrion
"mito−su r face−c l o s e r−than−th r e sho ld " ,
// percentage o f the mitochondrion su r f a c e
// c l o s e r to the c e l l membrane
// than a user de f ined th re sho ld
" syn−sur f−area " ,
// su r f a c e area o f a synapse
" syn−c l o s e−mitos "
// number o f synapses that are cons ide r ed
// c l o s e to a mitochondrion
// by a user−de f ined thr e sho ld ]

} ,
" y−ax i s " : {

" l a b e l " : " here goes the y−ax i s l a b e l " ,
" a t t r i b u t e " : [ " mito−min−di s tance−to−c e l l " , " mito−volume " ,

"mito−spine−coverage " ,
" mito−su r face−c l o s e r−than−th r e sho ld " ,
" syn−sur f−area " , " syn−c l o s e−mitos " ]

}
}

Listing 7.2: ADF structure of a scatterplot visualization
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The distance-tree visualization is defined by the distance-tree keyword (see Listing 7.3).
It supports both mitochondria and synapses as target structures. A couple of the
parameters are used to fine-tune data mappings.

{
" id " : 1 ,
"name " : " d i s tance−t r e e " ,
" target−s t r u c tu r e " : [ " mitochondria " , " synapses " ] ,
" params " : [ " r e l a t ed−synapses " , " surrounding−synapses " ,
" surrounding−mitochondria " ]

}
Listing 7.3: ADF structure of a distance-tree visualization

The ADF defines grouped bar charts as illustrated below (see Listing 7.4).

{
" id " : 2 ,
"name " : " grouped−bar−chart " ,
" target−s t r u c tu r e " : [ " mitochondria " , " synapses " ] ,
" params " : [ " surrounding−synapses " , " r e l a t ed−synapses " ,
" surrounding−mitochondria " ]

}
Listing 7.4: ADF structure of a grouped bar chart visualization

The distance-matrix visualization is defined like (see Listing 7.5)

{
" id " : 3 ,
"name " : " d i s tance−matrix " ,
" target−s t r u c tu r e " : [ " mitochondria " ] ,
" params " : [ " r e l a t ed−synapses " , " surrounding−synapses " ]

}
Listing 7.5: ADF structure of a distance-matrix visualization
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The cummulative-histogram (see Listing 7.6) allows mapping data attributes to the
bins and makes the number of bins adjustable by the adjustable parameter.

{
" id " : 4 ,
"name " : " cummulative−histogram " ,
" target−s t r u c tu r e " : [ " mitochondria " ] ,
" b ins " : " d i s tance−to−c e l l−membrane " ,
" params " : [ " f i x e d " , " ad ju s t ab l e " ]

}
Listing 7.6: ADF structure of a cummulative-histogram visualization

Violin-plots can be normalized through the respective parameter in the ADF (see
Listing 7.7). By normalizing a violin plot, its shape gets mapped to an area of one,
allowing comparison of distance distributions of cell organelles with significant size
differences.

{
" id " : 5 ,
" target−s t r u c tu r e " : " mitochondria " ,
"name " : " v i o l i n−p lo t " ,
" b ins " : " d i s tance−to−c e l l−membrane " ,
" normal ized " : t rue

}
Listing 7.7: ADF structure of a violin-plot visualization

The dendrite abstraction level 1 (see Fig. 8.6a, and Listing 7.8) creates a visualization
inspired by Neurolines [AABS+14]. Additionally, we allow to encode synapse properties
onto spine abstractions using the respective parameter value.

{
" id " : 6 ,
" target−s t r u c tu r e " : " mitochondria " ,
"name " : " dendr i te−abs t rac t i on −1" ,
" param " : " encode−spine−sa "

}
Listing 7.8: ADF structure of the dendrite abstraction level 1 visualization

55



7. Techniques

We specify the dendrite abstraction level 2 (see Fig. 8.6b, and Listing 7.9) as
illustrated below. It currently does not allow custom user specifications. However, we
plan to allow normalization of the dendrite abstractions in a future release of NeuroKit.

{
" id " : 7 ,
" target−s t r u c tu r e " : " mitochondria " ,
"name " : " dendr i te−abs t rac t i on −2"

}
Listing 7.9: ADF structure of the dendrite abstraction level 12 visualization

Examples

We present two concrete examples of analysis definition files used and adjusted by domain
experts during the evaluation of NeuroKit (Section 9.1). The listing 7.10, 7.11, 7.12 show
the ADFs of the usage scenario mitochondria analysis (Chapter 8). For this scenario,
we specified three subtasks/domain tasks. They illustrate how each of the domain tasks
defines three visualizations with varying cardinalities. The study participants fine-tuned
the data visualizations by adjusting parameters and data mappings. Listing 7.13 shows
another usage scenario comparing two data sets of mice at a different age. This scenario
only specifies one domain task but defines synapses as a target structure, in contrast to
the ADF shown in the Listings 7.10, 7.11, 7.12. Figure 1.1 shows NeuroKit visualizing
data of this scenario.
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[
{

"name " : " Mitochondria Ana lys i s " ,
" da ta s e t s " : [ " mouse3 " ] ,

" subtasks " : [
{

"name " : "DT 1 : synapt i c neighborhood o f mitochondria " ,
" l ow_card ina l i ty_vi s " : {

" id " : 0 ,
" target−s t r u c tu r e " : " mitochondria " ,
"name " : " d i s tance−t r e e " ,
" params " : " r e l a t ed−synapses "

} ,
" medium_cardinal ity_vis " : {

" id " : 1 ,
" target−s t r u c tu r e " : " mitochondria " ,
"name " : " grouped−bar−chart " ,
" params " : " r e l a t ed−synapses "

} ,
" h igh_card ina l i ty_v i s " : {

" id " : 2 ,
" target−s t r u c tu r e " : " mitochondria " ,
"name " : " d i s tance−matrix " ,
" params " : " r e l a t ed−synapses "

}
} ,
[ . . . ]
]

}
]
Listing 7.10: An example of an analysis definition file (ADF). The usage scenario
Mitochondria Analysis uses mitochondria as the target structure. We describe the usage
scenario Mitochondria Analysis in detail in Chapter 8 of the thesis. It specifies one
domain tasks (DT1: Synaptic neighborhood of mitochondria). he tasks supports visual
comparison at three cardinality levels by defining a specific visualization method for each
level. The visualization methods define a set of parameters and data mappings.

57



7. Techniques

[ { [ . . . ] ,
" subtasks " : [

{
"name " : "DT 2 : mitochondria placement " ,
" l ow_card ina l i ty_vi s " : {

" id " : 3 ,
" target−s t r u c tu r e " : " mitochondria " ,
"name " : " cumulative−histogram " ,
" b ins " : " d i s tance−to−c e l l−membrane " ,
" normal ized " : f a l s e ,
" params " : " ad ju s t ab l e "

} ,
" medium_cardinal ity_vis " : {

" id " : 4 ,
" target−s t r u c tu r e " : " mitochondria " ,
"name " : " v i o l i n−p lo t " ,
" b ins " : " d i s tance−to−c e l l−membrane " ,
" normal ized " : t rue

} ,
" h igh_card ina l i ty_v i s " : {

" id " : 5 ,
" target−s t r u c tu r e " : " mitochondria " ,
"name " : " s c a t t e r−p lo t " ,
" x−ax i s " : {

" l a b e l " : "Minimal Distance to Ce l l Boundary " ,
" a t t r i b u t e " : "min−di s tance−to−c e l l "

} ,
" y−ax i s " : {

" l a b e l " : " mitochondria volume in cubic microns " ,
" a t t r i b u t e " : " mito−volume "

} } } ] } ]
Listing 7.11: An example of an analysis definition file (ADF). It uses mitochondria
as the target structure. It specifies one domain task (DT2: Mitochondria placement).
The subtask supports visual comparison at three cardinality levels by defining a specific
visualization method for each level. The visualization methods define a set of parameters
and data mappings.
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[
{

[ . . . ] ,
" subtasks " : [

{
"name " : "DT 3 : sp ine coverage o f mitochondria " ,
" l ow_card ina l i ty_vi s " : {

" id " : 6 ,
" target−s t r u c tu r e " : " mitochondria " ,
"name " : " dendr i te−abs t rac t i on −1" ,
" param " : " encode−spine−sa "

} ,
" medium_cardinal ity_vis " : {

" id " : 7 ,
" target−s t r u c tu r e " : " mitochondria " ,
"name " : " dendr i te−abs t rac t i on −2"

} ,
" h igh_card ina l i ty_v i s " : {

" id " : 8 ,
" target−s t r u c tu r e " : " mitochondria " ,
"name " : " s c a t t e r−p lo t " ,
" x−ax i s " : {

" l a b e l " : " number o f sp i n e s covered by mitochondrion " ,
" a t t r i b u t e " : " mito−spine−coverage "

} ,
" y−ax i s " : {

" l a b e l " : " mitochondria volume in cubic microns " ,
" a t t r i b u t e " : " mito−volume "

}
}

}
]

}
]
Listing 7.12: An example of an analysis definition file (ADF). It uses mitochon-
dria as the target structure. It specifies one domain task (DT3: Spine coverage of
mitochondria). The subtask supports visual comparison at three cardinality levels by
defining a specific visualization method for each level. The visualization methods define
a set of parameters and data mappings.
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{
"name " : " Re lat ion o f synapses and mitochondria " ,
" da ta s e t s " : [ " mouse2 " , "mouse3 " ] ,
" subtasks " : [

{
"name " : "DT 1 : surrounding mitochondria " ,
" low_scale_vis " :
{

" id " : 9 ,
" target−s t r u c tu r e " : " synapses " ,
"name " : " d i s tance−t r e e " ,
" params " : " surrounding−mitochondria "

} ,
" medium_scale_vis " : {

" id " : 10 ,
" target−s t r u c tu r e " : " synapses " ,
"name " : " grouped−bar−chart " ,
" params " : " surrounding−mitochondria "

} ,
" h igh_sca le_vis " : {

" id " : 11 ,
" target−s t r u c tu r e " : " synapses " ,
"name " : " s c a t t e r−p lo t " ,
" y−ax i s " : {

" l a b e l " : " Synapse su r f a c e area " ,
" a t t r i b u t e " : " syn−sur f−area "

} ,
" x−ax i s " : {

" l a b e l " : " c l o s e s t mito su r f a c e area " ,
" a t t r i b u t e " : " syn−c l o s e−mitos "

}
}

}
]

}
Listing 7.13: An example of an analysis definition file (ADF) with multiple
data sources. The usage scenario Relation of synapses and mitochondria defines one
subtask (DT1: Surrounding mitochondria) and specifies synapses as target structures. In
this task, scientists can compare the synapses of two different data sets, to investigate
neuronal development over time.
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CHAPTER 8
Use Case: Mitochondria Analysis

One of our collaborator’s main research focus are mitochondria, their spatial neighborhood,
and their relation to synapses. We describe the three domain tasks that comprise the
user-defined analysis scenario Mitochondria Analysis (see Fig. 8.2, 8.4, and 8.6) and
the novel visual encodings we designed for it. The corresponding analysis definition
file is shown in Listing 7.10. The user study in Section 9.1 focuses on the analysis
scenario presented here. Prior to NeuroKit, our collaborators had no means to analyze
mitochondria neighborhoods other than looking at the raw 3D data and running Python
scripts.

8.1 Synaptic Neighborhood of Mitochondria

8.1.1 Domain Goal

The goal of the first domain task in the mitochondria analysis scenario is to explore the
spatial relationships between mitochondria and synapses. The synaptic neighborhood
of mitochondria might give a detailed insight into the role mitochondria play during
synaptogenesis or synapse potentiation. There are two aspects to explore. First, our
collaborators want to look at the synaptic densities that correlate spatially with the
selected mitochondrion’s cell. Second, they also want to analyze all synapses within
a certain distance to the mitochondrion, regardless of whether they are connected to
the current neurite or not. This second aspect is part of an initial hypothesis of our
collaborator and has not been evaluated in-depth before. Figure 8.1 illustrates these two
different aspects.
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8. Use Case: Mitochondria Analysis

(a) Surrounding synapses (b) Related synapses

Figure 8.1: Two different synaptic neighborhoods of mitochondria. (a) all
synapses that are within 1 micron from the mitochondrion and (b) synapses connected
to the mitochondrion’s dendrite.

8.1.2 Realization

To support the analysis of this domain task, in collaboration with our domain experts,
we designed the three comparative visualizations shown in Fig 8.2. These views allow
the scientist to explore mitochondria and synapse relationships at different scales (i.e.,
comparing few to many mitochondria) and intuitively navigating between them.

In the low-cardinality comparative visualization we use small multiples to show a
synaptic distance tree (Fig 8.2a) for each mitochondrion under investigation. The
distance tree is an adaption of a phylogenetic tree (Fig 8.2a). For each mitochondrion
under investigation, we create a synaptic distance tree. The root of the tree represents
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the mitochondrion, and the root’s children represent synapses. The horizontal edge
length from the root to a child indicates the distance between the mitochondrion and
the synapse. Additionally, in a third layer of the tree, we encode the distance from
the synapse (Layer 2) to any mitochondria in the connecting cell (Layer 3). This view
allows an in-depth comparison of the number of synapses and their distances to each
selected mitochondrion. The medium-cardinality view shows a sorted bar chart for
each mitochondrion, where each bar represents the distance to an individual synapse
(Fig 8.2b). This view is more compact but still shows distances to synapses and the overall
distance distribution. The high-cardinality view gives scientists a general overview and
supports spotting outliers and see trends quickly. We show a distance matrix to compare
dozens to hundreds of mitochondria (Fig 8.2c). Each row in the matrix corresponds to
one particular mitochondrion, and each column represents a specific synapse. Distances
between mitochondria and synapses are color-coded, darker colors representing closer
distances.
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Figure 8.2: Analysis views for the domain task Synaptic Neighborhood of
Mitochondria. (a) - (c): low-, medium-, high-cardinality comparison. (a) distance tree,
(b) grouped bar chart, (c) distance matrix.
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8.2. Mitochondria Placement

(a) Axonal mitochondrion (b) Dendritic mitochondrion

Figure 8.3: Two mitochondria placed differently in their cells. The axonal
mitochondrion (a) is much closer to the cell membrane, than the dendritic mitochondrion
(b). A red color on the mitochondrions surface indicates close proximity while blue
represents a greater distance.

8.2 Mitochondria Placement

8.2.1 Domain Goal

Our collaborators want to investigate the spatial relationships between mitochondria
and the cell membrane in the second domain task. The scientists want to investigate
how close mitochondria come to the cell membrane and if cell regions with proximity
to the mitochondrion differ from other areas. Since mitochondria provide energy to the
cell, such morphological influences are of high interest. For this task, scientists need to
look at the detailed 3D position of a mitochondrion and want to see the percentage of a
mitochondrion’s surface close to the cell boundary.

8.2.2 Realization

To show mitochondria locations within a cell, we color-code each mitochondrion in the 3D
view to encode the distance from each surface point of the mitochondrion to the closest
point of the cell membrane. Red regions indicate close proximity, while blue areas reveal
regions more distant to the cell membrane (Fig. 6.2, 8.3). In addition to the color-coding in
3D, we have designed three analysis views that support a comparative analysis at different
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cardinality levels (Fig 8.4). In the low-cardinality view, we show small multiples of
cumulative histograms for each mitochondrion. We plot the distances from each surface
point of the mitochondrion to the closest point of the cell membrane (Fig 8.4a). This
gives the overall distribution of distances, indicating whether a mitochondrion follows
closely along the cell membrane or only comes close in a small area. In the medium-
cardinality visualization, we depict a series of violin plots next to each other (Fig 8.4b).
Each shape corresponds to a single mitochondrion and allows the comparison between
different mitochondria. The vertical axis represents the distance between a mitochondria
surface point and the cell membrane. The width of the violin shape represents how much
of the mitochondrion’s surface has a certain distance to the cell membrane. The thicker
the shape is at a specific height, the more of the mitochondrion’s surface is within that
distance to the cell membrane. With this view, scientists can quickly judge the overall
distance distribution for a single mitochondrion and compare the distributions of different
mitochondria. The high-cardinality view shows a scatterplot where each dot represents
a single mitochondrion (Fig 8.4b). The horizontal axis represents the distance from the
mitochondrion’s closest point to the cell membrane. On the vertical axis, we encode the
mitochondrion’s volume.
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Figure 8.4: Analysis views for the domain task Mitochondria Placement. (a)-
(c): low-, medium-, high-cardinality comparison. (a) cumulative histogram, (b) violin
plot, (c) scatter plot.
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Figure 8.5: Spine coverage. All spines (tiny branches) are covered by a mitochondrion.

8.3 Mitochondric Spine Coverage

8.3.1 Domain Goal

In the third part of the mitochondria analysis, our collaborators study the relationship
between dendritic spines and mitochondria. Spine coverage is defined as a mitochondrion
being present in the cell region right below the neck of a spine or dendritic shaft (see
Fig. 8.5). This property is of high biological interest because mitochondria might influence
spine plasticity, which may influence the fission/fusion dynamics of mitochondria.

8.3.2 Realization

The three comparative visualizations for this task can be seen in Fig. 8.6. In the low-
cardinality view (Fig 8.6a), we designed a novel view to highlight dendritic spines in
each selected neighborhood. First, we abstract the dendrite to a straight horizontal line
in 2D, inspired by Neurolines [AABS+14]. Next, we encode the mitochondrion position
(purple shapes) within the dendrite and represent spines and their lengths as green
vertical lines. The disks at the top of the spine represents a synapse, and its radius
encodes the spine’s surface area to volume ratio, which gives an intuition of the spine’s
shape. This view provides a detailed analysis of the morphology of the dendrites (i.e.,
mitochondria positions, spine locations, and synapse sizes). The medium-cardinality
comparative visualization (Fig. 8.6b) represents each dendrite as a vertical rectangle, to
be able to fit more dendrites onto the screen for comparisons (Fig 8.6b). The rectangle’s
height represents the length of the dendrite, and the positions of the mitochondria within
the dendrite are visualized through smaller pink rectangles. Spine positions are indicated
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8.3. Mitochondric Spine Coverage

as black horizontal lines. The high-cardinality comparative visualization shows a
scatterplot (Fig 8.6c). Each data point corresponds to an individual mitochondrion. The
horizontal axis encodes the number of spines covered by this mitochondrion, and the
vertical axis encodes the mitochondrion’s volume. Figure 8.7 and Figure 8.8 show two
screenshots of the user interface of NeuroKit in the usage scenario mitochondria analysis.
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Figure 8.6: Analysis views for the domain task Mitochondric Spine Coverage.
(a) - (c): low-, medium-, high-cardinality comparison. (a) dendrite abstraction level 1,
(b) dendrite abstraction level 2, (c) scatter plot.
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CHAPTER 9
Evaluation

We report on a qualitative user study of the mitochondria analysis scenario with eight
domain experts to assess the effectiveness and usefulness of NeuroKit and present key
findings of our evaluation. We held a exploratory feedback sessions with the study
participants and share the results of a survey. We conducted exploratory sessions based
on our mitochondria analysis scenario, collected think-aloud feedback, and asked study
participants to fill out feedback surveys after each completed domain task.

9.1 User Study: Mitochondria Analysis

Participants

We evaluated our application with eight domain experts, of which one was male, and
seven were female. The participants are affiliated with the Neuroscience Institute at the
University of Turin and the Center for Brain Science at Harvard University. All experts
are experienced in analyzing high-resolution EM data of mice brains and included three
professors, one postdoctoral researcher, two senior Ph.D. students, and two undergraduate
students.

Setup

We met with each participant for a two-hour session remotely over the Zoom video
conferencing platform. After a 30 min introduction to NeuroKit and its user interface, we
started a data exploration session. Due to our remote setup, we followed a collaborative
visual analytics evaluation protocol by Arias-Hernandez et al. [AHKGF11], where the
domain experts guided and steered the analysis while we operated the user interface.
This allowed participants to focus on domain-specific questions rather than issues related
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to the user interface. We collected think-aloud feedback and written survey responses
after each completed domain task.

In the user study, we utilized one of the six data sets provided by the domain experts
showing layer one of the somatosensory cortex of a four-month-old mouse with 1088
segmented structures (167 synapses, 152 spines, 237 boutons, 81 dendrites, 274 axons,
and 177 mitochondria). We asked participants to perform the three domain tasks of
the mitochondria analysis scenario described in Chapter 8. Prior to NeuroKit, our
collaborators used Blender for their visual exploration and had to manually mark and
compute distances between structures of interest. They did not have any support for
visual comparisons other than taking screenshots.

Analyzing Synaptic Neighborhoods of Mitochondria

In this task, participants explored the spatial relationships between mitochondria and
surrounding synapses (see Sec. 8.1 and Fig. 8.2). Analyzing the synaptic neighborhood of
mitochondria is crucial for understanding the mitochondria’s role in support of the high
energy-consuming brain regions like synapses. Therefore, it is interesting to investigate
how synapses are distributed around mitochondria. Participant P2 configured NeuroKit
such that it takes synapses within a certain threshold to the mitochondrions’ surface into
account (see Fig. 8.1b). P2 started the session by analyzing a single dendritic mitochon-
drion in the synaptic distance tree view (low-cardinality visualization). He discovered two
particularly close synapses to this mitochondrion. He selected these two synapses in the
distance tree view and examined them in more detail in the neighborhood view. While
analyzing the 3D view, he discovered the proximity between the selected mitochondrion
and the cell membrane. The combination of analysis views and neighborhood view helped
P2 to form the hypothesis that the two synapses and the mitochondrion’s region close
to the cell membrane might interact. P2 started to select more dendritic and axonal
neighborhoods of mitochondria.

P2 spotted a bouton containing a small mitochondrion with a nearby synapse while
analyzing the distances between multiple mitochondria and their related synapses. Our
collaborators are interested in whether boutons contain synapses or not. The presence of
a mitochondrion means that the bouton is mature and has undergone some potentiation.
P2 could quickly tell from the bar chart analysis view that the bouton and synapse were
related. Next, P2 used the high-cardinality distance-matrix to check his hypothesis that
mitochondria within boutons tend to have synapses close by and spotted a boutonal
mitochondrion with more distant synapses. He enabled the EM slice view for additional
exploration and noted that this observation warrants further analysis.

P2 configured this domain task to take into account only synapses related to the mito-
chondrion’s cell (see Fig. 8.1b). In contrast, P6 and P7 chose to analyze the distribution
of all surrounding synapses of the mitochondria (see Fig. 8.1a). P7 further adjusted
the distance threshold to fine-tune which synapses were still considered part of a neigh-
borhood. P6 and P7 analyzed the synapse distribution around mitochondria in the
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9.1. User Study: Mitochondria Analysis

low- and medium-cardinality views. They stated that these visualizations could help
them understand why mitochondria shapes differ in distinct parts of the nerve cell. For
instance, mitochondria in the nucleus form complex nets, while dendritic mitochondria
are mostly tubular structures. P3 was interested in analyzing both the related synapses
to the mitochondrion and the surrounding synapses.

Analyzing Mitochondria Placement

In the mitochondria placement task, participants explored the proximity between mi-
tochondria and their surrounding neurite membranes (see Sec. 8.2 and Fig. 8.4). First,
P2 changed the dendrites’ opacities to understand how the mitochondria are positioned
in their cell. Next, he compared the distance distribution histograms of three dendritic
mitochondria. He discovered that two mitochondria both have 60% of their surface
closer than 100nm to the cell membrane, while the third mitochondrion lies much more
intracellular. P6 and P7 used the histogram (low-cardinality view) and the violin plot
(medium-cardinality view) to explore the different mitochondria locations in axons and
dendrites. P7 selected four axonal mitochondria and three dendritic mitochondria in
the medium-cardinality visualization. She discovered that axonal mitochondria tend to
get very close to the cell membrane, while dendritic mitochondria tend to have regions
with more space between the mitochondrion and the cell membrane. 3D neighborhood
views of her analysis are shown in Fig. 1.2c. When switching to the high-cardinality
scatterplot visualization, P2, P6, and P7 chose to map the mitochondrion volume onto
the vertical axis and its closest distance to the cell membrane onto the horizontal axis.
Using the high-cardinality visualization, P6 could confirm her hypothesis about the
different mitochondria locations in dendrites and axons. In addition, P2 and P6 used
the scatterplot to study outliers in more detail. P6 and P7 requested more mitochondria
attributes, such as surface area, to map onto the scatterplot’s different axes. P2 also
asked to view the violin plots both normalized and scaled to the mitochondrion’s size,
since mitochondria size is another important aspect in his analysis. We have incorporated
this feedback and added a parameter to the visualization, that can now be specified via
the analysis definition file.

Analyzing Mitochondria Spine Coverage

In this task, participants explored the location and size of spines in relation to mitochon-
dria (see Sec. 8.3 and Fig. 8.6). Spines often develop synapses, which are big energy
consumers. Therefore, knowing more about mitochondria close to spines plays a vital
role in understanding metabolic processes. While studying the dendrites’ morphology
in the low-cardinality view, P1 observed that spines usually develop directly next to
mitochondria. She advised us to select individual spines in the analysis view. These
spines were then highlighted in the 3D neighborhood view, where she could examine them
more closely. P2 selected six mitochondria to compare them in the medium-cardinality
visualization. In a particular case, he observed two mitochondria that overlap in the
dendrite. He speculated that these two mitochondria might have been one mitochondrion
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Figure 9.1: Comparing synapse locations in two different mouse data sets.
Grouped bars show the distances between a mitochondrion and its neighboring synapses.
Hovering over a bar highlights the corresponding synapse in the 3D neighborhood
view. The young mouse (purple, a) exhibits more and closer synapses than the adult
mouse (green, b), indicating synaptic pruning over time.

earlier that divided into two mitochondria. P2 pointed out that he wants to use NeuroKit
in the future to analyze whether regions of overlapping mitochondria develop more spines.
When switching to the scatterplot visualization, P1, P2, P6, and P7 immediately spotted
a linear dependence between the mitochondria volume and the number of spines covered,
which was a new finding for all of them.

Analyzing Synaptic Development over Time

In addition to the three domain tasks described above, one of our collaborators also
wanted to compare the synaptic neighborhood of mitochondria in multiple data sets
simultaneously (see Fig. 9.1). Therefore, after completing the user study and post-study
questionnaire, he continued his exploratory session. He is interested in how brain structure
evolves throughout the aging process and wants to analyze spine dynamics and synaptic
plasticity, a process that allows the dynamic formation, elimination, or modification of
spines based on learning and memory [VCDR+20]. To support this analysis scenario,
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he first specified the use of multiple data sources in the analysis definition file. When
loading multiple data sets simultaneously, NeuroKit automatically adjusts the views to
highlight which data set a data point comes from, using distinct colors for each data
set. Fig. 9.1 shows a comparison between the synaptic neighborhoods of a young adult
(4 months old) and a geriatric (24 months old) mouse. Our collaborator analyzed and
compared four mitochondria neighborhoods with the medium-cardinality visualization.
The different data sets are depicted in purple and green, respectively. Our collaborator
identified that the younger mouse (purple) exhibits more and closer synapses than the
older mouse (green), suggesting synaptic pruning over time. The bar chart helped the
collaborator to decide whether a mitochondrion is responsible for providing energy to a
specific synapse or not, which is important for synapse development.

9.2 Qualitative Feedback

Fig. 9.2 shows user ratings for general real-world applicability, tool effectiveness, and
relevance for each of the three domain tasks. Seven out of eight participants rate
questions Q1-Q4 (effectiveness) positively, with the remaining participant being neutral.
Interestingly, while participants agreed on the effectiveness of the tool, their opinions
diverged more concerning Q5, asking about the relevance of mitochondria analysis for
their personal research (Fig. 9.2b). This further demonstrates the importance of our
customization approach, where neuroscientists can define their own analysis scenarios
within NeuroKit, either focusing on mitochondria or other target structures.

Finally, all participants agreed that our tool improved the analysis of high-resolution
EM data. This is not surprising; other than NeuroKit, none of the study participants
currently have visual tools available to analyze spatial neighborhoods of brain tissue.
Prior to NeuroKit, P2 used Blender for his visual exploration and had to mark and
compute distances between structures of interest manually. He did not have any support
for visual comparisons other than taking screenshots. P6, P7, and P8 previously had to
write small Python programs on their own to analyze brain tissue visually.

9.3 Findings

Now, we describe the findings and lessons learned during the qualitative user study.
These findings are based on the form participants filled out after each session and oral
feedback they gave us during the evaluation.

Domain experts’ interests are highly diverse

Therefore, they appreciate the customization functionalities of NeuroKit. For instance,
some neurobiologists were only interested in the relationship between mitochondria and
surrounding synapses. In contrast, others were solely interested in the synapses related
to the mitochondrion’s nerve cell. Furthermore, domain experts indicated that they want
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9. Evaluation
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Figure 9.2: NeuroKit user ratings. We show negative responses (1, 2) on the left of
each bar as a percentage number in beige. We show positive responses (4, 5) on the right
side of each bar in teal. Results are based on the questionnaires shown in Fig. 9.3, 9.4,
9.5.

to collect new segmentation data to use NeuroKit with other structures of interest such
as ribosomes or endoplasmatic reticula, or neuromuscular junctions.

Combining EM data with reconstructed data is essential

Domain experts highly appreciated overlaying the reconstructed 3D meshes with the
actual EM image data. It allowed them to quickly verify whether segmentations were
correct and enabled them to spot properties of brain tissue that had not been segmented.
However, it was essential for them to toggle the overlay functionality interactively.

Experts use high-cardinality comparisons to spot trends

Most participants wanted to look at the high-cardinality visualization first to gain an
overview of all neighborhoods in the data set and to spot outliers or specific neighborhoods
of interest, which they then examined more closely in the neighborhood view.
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9.3. Findings

Spine coverage of mitochondria is of high interest to all experts.

P6 mentioned that visualizing spine coverage using NeuroKit "is of scientific significance"
and P2 stated "this is awesome". Overall, experts were interested in analyzing spine
coverage.

NeuroKit’s user interface is easy and understandable

After a short introduction, it was generally straightforward for all participants to inter-
pret and analyze all visualizations in NeuroKit. For instance, P3 mentioned that "the
visualizations are all really clear".

NeuroKit improves the state of the art

All participants indicated that NeuroKit is very useful and that the software has a high
potential as a visual analysis tool for neuronal 3DEM data. P1, P2, P3, P6, and P7 plan
to specify additional analysis scenarios for their data sets.

79



9. Evaluation

Figure 9.3: Questionnaire for the domain task Analyzing Synaptic Neighborhoods of
Mitochondria.
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9.3. Findings

Figure 9.4: Questionnaire for the domain task Analyzing Mitochondria Placement.
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9. Evaluation

Figure 9.5: Questionnaire for the domain task Analyzing Mitochondria Spine Coverage.
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CHAPTER 10
Conclusions and Future Work

In this Chapter, we conclude the thesis by summarizing our work and discussing promising
future research directions.

10.1 Summary
We presented NeuroKit, a visual tool to analyze and compare spatial neighborhoods in
brain tissue. NeuroKit efficiently supports scientists in their data exploration and analysis
process by an automatic guidance that adjusts the default user interface, visualization
parameters, and interactions. Combining spatial neighborhood analysis with a scalable
and customizable comparative visualization framework contributes to both the scientific
field of neurobiology and data visualization. When creating domain-specific visualization
tools, researchers often need the design to follow either a one-fits-it-all approach or an
approach specifically designed around the needs of the domain experts. By creating
NeuroKit as a customizable toolkit, we aim to get the best of both worlds by being
general enough to target a wide range of experts and providing them enough detailed
analysis capabilities to investigate their specific research interests.

Our user study found that NeuroKit meets domain experts’ needs by supporting the
analysis of different data cardinalities and combining detailed real-time 3D renderings
with more abstract and quantitative analysis views. We support the highly diverse needs
of neurobiologists by allowing specific customizations of NeuroKit.

10.2 Discussion

10.2.1 Additional features

During the user study, participants suggested a couple of additional features for NeuroKit.
For instance, it would be interesting to extend NeuroKit with visualizations for analyzing
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10. Conclusions and Future Work

the texture of mitochondria in greater detail. P6 and P7 have classified mitochondria
based on their texture in EM images into bright, dark, and combined mitochondria.
They would be interested in relating these categorizations with our spatial neighborhood
analysis. This would require further image-based analyses of our data sets and optimally
larger data sets to investigate the differences of mitochondria in different brain regions.
Additionally, overlaying the EM slice view with the segmentation data was requested by
some of the users.

10.2.2 Limitations

Due to the high resolution of EM data, currently, our data sets do not include full
reconstructions of nerve cells, but only small parts of them. Therefore, neurites and
cell organelles are often cut off, limiting the quantitative analysis of those incomplete
structures. Additionally, some pre-processing steps such as segmentation and mesh-
feature extractions still require manual work. For instance, the dendritic spines and the
cell body of all axons and dendrites were manually labeled in the surface meshes. This
information is required to compute the visualizations to investigate the spine coverage of
mitochondria. Manual data labeling and pre-processing make analyzing larger data sets
quite complicated. In the future, we plan to automate data pre-processing further.

We offer a human-readable format that does not require programming and is well received
for specifying analysis scenarios. It still requires manual editing and a rather technical
description of analysis scenarios. In the future, we could further simplify the ADF
specification by offering a visual interface to it.

10.3 Future Work

We want to prepare NeuroKit to be usable in the scientific community by providing
detailed examples and documentation. Video tutorials will also help to make NeuroKit
widely accessible. We suggest two primary research directions that could improve state of
the art in visualization of connectomics data. First, applying the approaches of NeuroKit
to much larger data sets with more diverse types of cell organelles is a promising direction.
Second, we plan to incorporate a wider range of visualization methods and machine
learning techniques to automatically learn properties of spatial neighborhoods in large
scale data sets.

10.3.1 Larger Data Sets

In the future, we want to use NeuroKit to study larger data sets and therefore make
the visual analysis more informative. We also plan to incorporate additional usage
scenarios involving other cell organelles such as ribosomes, endoplasmatic reticula, and
neuromuscular junctions once their EM segmentations and reconstructions are available.
Also, we want to investigate how mitochondria cover boutons in axons, similar to
mitochondria spine coverage.
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10.4. Conclusion

10.3.2 Additional Analysis & Visualization Methods

During the evaluation of NeuroKit, domain experts pointed out that knowledge about
spatial neighborhoods of cell organelles such as mitochondria can help classify cell types.
For instance, small mitochondria with proximity to the cell membrane most likely belong
to axons. We plan to use these neighborhood characteristics to investigate to which extent
they allow us to label neuronal structures automatically. We also plan to incorporate
more topology-centered methods to classify neurites and their spatial neighborhoods.

10.4 Conclusion
We believe that our neighborhood analysis approach is generalizable to other areas, such
as single-cell analyses or even exploring local neighborhoods in large city models. Our
approach of supporting customized analysis scenarios could be helpful in many domain-
specific visual analysis tools where users might have varying analysis goals. Finally, we
believe that NeuroKit can advance neuroscience research, not just for the presented usage
scenario of mitochondria analysis, but also for future data sets and future novel domain
questions that have yet to be specified by neuroscientists.
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List of Figures

1.1 Customized scalable comparison of spatial neighborhoods. NeuroKit
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diffusion tensor per voxel. By tracing streamlines through the field of principal
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2.4 Micro-scale brain connectivity visualization with Neurolines [AABS+14].
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abstracted using a subway metaphor. Links between the skeletons illustrate
synapses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
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2.6 Examples of visualizations generated with Vega-Lite. (a) JSON spec-
ification of a line chart and the resulting visualization. (b) JSON specifiction
of a scatter plot and the resulting visualization. Source: [SMWH17] . . . 17

3.1 Structure of neurons and cell organelles. Nerve signals are transmitted
from axons to dendrites via synapses. Neurons contain several different cell
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for providing energy to the neuron while ribosomes synthesize proteins. Source:
Johanna Beyer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Steps of the connectomics workflow. Source: [Moh17] . . . . . . . . . 21
3.3 Slice of brain tissue imaged with electron microscopy at a resolution

of 5× 5 microns. Data provided by Graham Knott [KMWL08]. . . . . . . 22
3.4 Segmentation masks of EM connectomics data. Each color relates to

a neuronal structure. Source: Brian Matejek [MHL+17] . . . . . . . . . . 23
3.5 Six different data sets acquired by our collaborators [KMWL08].

The first column shows a 3D rendering of the respective data set and the
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geometry since it shows a small subvolume of the mouse brain. The second
column shows information data of the data set and the third column holds
information about the segmented structures. Source: [ACA+19] . . . . . . 25

4.1 Overview of the design study methodology approach by Sedlmair et al. [SMM12] 28
4.2 Connectivity vs. neighborhood analysis. Connectivity analysis of neu-

ronal structures (a) compared to spatial neighborhood analysis (b). Our
collaborators are specifically interested in the latter. . . . . . . . . . . . . 30

5.1 NeuroKit workflow and automatic user guidance. NeuroKit guides
and supports users throughout the analysis workflow to minimize mental
load and support specific analysis tasks. We show user actions in purple,
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6.1 NeuroKit user interface. (a) List view for selecting structures of interest.
(b) 3D overview of all selected structures of interest. (c) Analysis view for
detailed comparisons of the selected local neighborhoods. (d) Detailed 3D
neighborhood views. (e) Panel for user-defined analysis scenario, showing
suggested comparison modes and custom UI elements. . . . . . . . . . . . 41

6.2 Detailed three-dimensional neighborhood view. The dendrite (green)
developed spines that form synapses (purple), and an enclosed mitochondrion
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close proximity between the mitochondrion and the dendrite’s cell membrane,
while blue denotes a greater distance. The 3D rendering is overlayed with a
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