
Eurographics Symposium on Rendering 2021
A. Bousseau and M. McGuire
(Guest Editors)

Volume 40 (2021), Number 4

Rendering Point Clouds with Compute Shaders and Vertex Order
Optimization

Markus Schütz, Bernhard Kerbl, Michael Wimmer

TU Wien

Figure 1: Performance of GL_POINTS compared to a compute shader that performs local reduction and and early-z testing, and a high-
quality compute shader that blends overlapping points. Retz point cloud (145 million points) courtesy of Riegl.

Abstract
In this paper, we present several compute-based point cloud rendering approaches that outperform the hardware pipeline by
up to an order of magnitude and achieve significantly better frame times than previous compute-based methods. Beyond basic
closest-point rendering, we also introduce a fast, high-quality variant to reduce aliasing. We present and evaluate several
variants of our proposed methods with different flavors of optimization, in order to ensure their applicability and achieve
optimal performance on a range of platforms and architectures with varying support for novel GPU hardware features. During
our experiments, the observed peak performance was reached rendering 796 million points (12.7GB) at rates of 62 to 64 frames
per second (50 billion points per second, 802GB/s) on an RTX 3090 without the use of level-of-detail structures.
We further introduce an optimized vertex order for point clouds to boost the efficiency of GL_POINTS by a factor of 5× in
cases where hardware rendering is compulsory. We compare different orderings and show that Morton sorted buffers are faster
for some viewpoints, while shuffled vertex buffers are faster in others. In contrast, combining both approaches by first sorting
according to Morton-code and shuffling the resulting sequence in batches of 128 points leads to a vertex buffer layout with high
rendering performance and low sensitivity to viewpoint changes.

CCS Concepts
• Computing methodologies → Rasterization;

1. Introduction

Point clouds are three-dimensional models that consist of individ-
ual points with no connectivity. They are typically obtained by re-
constructing the real world, for example with laser scanners or pho-
togrammetry. Laser scanners obtain point-sampled surface models
by measuring the distance from the scanner to surrounding sur-

faces, and then transforming the distance values and the known ori-
entation of the scanner into 3D coordinates. Photogrammetry uses
multiple photos to create a 3D model that best fits these images.
The amount of points produced by these methods ranges from a
few million up to trillions of points, depending on the scan resolu-
tion and the extent of the scanned area. The Actueel Hoogtebestand
Nederland (AHN2) [AHN2] data set, for example, is an aerial laser

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.14345

https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.1111/cgf.14345

Markus Schütz & Bernhard Kerbl & Michael Wimmer / Rendering Point Clouds with Compute Shaders

scan of the entire Netherlands, comprising 640 billion points, for a
total of 1.6 terabytes in compressed form [MVvM*15]. Terrestrial
laser scans (e.g., of buildings, monuments, caves, smaller regions)
usually yield from tens of millions up to a few billion points.

The rendering of large point clouds is an active field of
research that includes topics such as high-quality rendering,
as well as the generation and effective use of level-of-detail
(LOD) structures. Arguably, the most widespread solution for
rendering a given set of points is by using the native point
primitive that modern graphics APIs provide in addition to
lines and triangles, such as GL_POINTS for OpenGL and We-
bGL, D3D11_PRIMITIVE_TOPOLOGY_POINTLIST for Di-
rectX, VK_PRIMITIVE_TOPOLOGY_POINT_LIST for Vulkan
and “point-list" for WebGPU. A key property of point primitives
is that they require only one single coordinate vector as input,
thereby keeping vertex buffer usage and bandwidth requirements
to a minimum. OpenGL and Vulkan enable developers to specify
the pixel size of points inside the vertex shader (rasterizing them
as rectangles), whereas DirectX only supports a size of 1 pixel
per point. Rendering larger points in DirectX and DirectX-based
solutions (e.g., WebGL, WebGPU) requires developers to emulate
sized points. In case of WebGL, this is done by instancing a quad
model at each point location, as seen in the backend ANGLE [AN-
GLE]. GL_POINTS is the standard high-performance point ren-
dering primitive in research (e.g., [RDD15; Ric18; Mor17; GM04;
NMN20; SP04; DDG*04; MB20]) and software (e.g., CloudCom-
pare [CC], Potree [POT], QGIS [QGIS], Cesium [Cesium]). It is
also used in high-quality techniques that rely on quads with spe-
cific pixel sizes [GP03; SP11], as well as impostors [MB20] and
particle systems [Lea14]. However, in this paper, we will only con-
sider cases where each point is drawn to at most one pixel of the
framebuffer.

Modern graphics processing units (GPUs) are capable of render-
ing several million points (smartphones, integrated graphics) up to
around 100 million points (high-end GPUs) in real-time (60 fps)
using GL_POINTS or its counterparts. Rendering arbitrarily large
point clouds, however, requires hierarchical level-of-detail (LOD)
structures that only load and render a small subset of the full model
at any given time. Unfortunately, generating these structures re-
quires time-consuming preprocessing steps that impede quick in-
spection of larger scenes. In this paper, we focus on raising the
raw rendering performance of given point cloud data sets by ex-
ploiting the GPU compute pipeline, as well as low-overhead vertex
reordering schemes. Based on our compute-based variants, we also
propose an easy-to-implement, high-quality point cloud rendering
method that can reduce aliasing while achieving higher frame rates
than the hardware pipeline. Since different hardware and graph-
ics APIs impose diverse restrictions on the features that are ex-
posed by compute shaders, we explore several variations of our
compute-based solutions that exploit different feature levels to heed
these limitations. For instance, developers that target the soon-
to-be-released WebGPU standard may adopt our basic variants,
while users of lower-level graphics APIs can exploit hardware-
accelerated primitives for peak performance.

Hence, our contributions to the state of the art are:

• Suitable alternatives to glDrawArrays(GL_POINTS, ...), based
on compute shaders that use 64bit atomic operations to draw into
an interleaved depth and color buffer.
• Performance improvements and extensions to the basic compute

shader with early-z (as suggested in [GKLR13]) and group-
wide reduction of points with warp-level primitives to reduce
contention in global GPU memory.
• A high-quality shader that provides anti-aliasing within pixels by

blending overlapping points together (similar to mipmapping),
while still being faster than the aliased results of GL_POINTS.
The basic version, HQS, is a simplified and compute-based im-
plementation of the blending algorithm in [BHZK05], while the
HQS1R version reduces memory accesses by updating the sum
of colors and fragment counts with a single atomic instruction
per point.
• An easy-to-implement policy for rearranging points in a shuffled

Morton order that significantly improves stability and rendering
performance with GL_POINTS.
• A thorough evaluation to quantify the impact of using different

compute shader techniques, point orderings and GPUs for ren-
dering a range of point-cloud data sets, both unstructured and
embedded in LOD data structures.

2. Related Work

2.1. Compute-based Triangle Rasterization

Although the GPU’s rendering pipeline is becoming increasingly
programmable, its implementation in hardware necessitates numer-
ous restrictions. The general-purpose capabilities of modern GPUs
have led developers to pursue parallel software rasterizers as an
alternative. Freepipe [LHLW10] describes one of the first practi-
cal software implementations running on a GPU, using a single
thread per triangle. The authors report that Freepipe surpasses the
performance of OpenGL-based solutions in carefully selected ap-
plications. Later approaches managed to achieve a higher level of
parallelism and significantly improved performance via tile-based
rendering and coverage masks [PTSO15; LK11]. Complete sort-
middle streaming pipelines have been realized in both CUDA and
OpenCL [KKSS18; KB21]. Recently, Unreal Engine presented a
hybrid approach that renders small, about pixel-sized, triangles
with a compute-based software rasterizer. They report that software
rasterization is, on average, three times faster for small triangles,
while large triangles are still passed on to the standard hardware
rasterizer [Nanite].

2.2. Compute-based Point Cloud Rendering

Günther et al. [GKLR13] were the first to suggest compute-based
point rendering as an alternative to the standard point primitives
of OpenGL. Their OpenCL implementation uses a busy-loop to
wait until a pixel is free to write to, locks the pixel with an atomic
compare-and-swap, updates the depth and color buffers, and after-
ward unlocks the pixel again. The authors observed that adding a
custom early-z test enables the compute-based approach to scale
significantly better with the number of fragments per pixel than

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

116

Markus Schütz & Bernhard Kerbl & Michael Wimmer / Rendering Point Clouds with Compute Shaders

GL_POINTS. Lukac et al. [Lpa14] use a very similar atomicMin-
based algorithm in their hybrid point and volume renderer. How-
ever, their method is not thread-safe and leads to artifacts with
dense point clouds. Instead of a busy-loop, our method updates an
interleaved depth and color buffer with a single atomic instruction.
Marrs et al. [MWH18] use compute-based point-cloud rendering as
a means to reproject a depth map to several different views. Since
no colors are required, they simply use InterlockedMax (DirectX’s
counterpart to atomicMax) to write the largest depth into the target
buffer. In contrast, our approach writes depth and color information
and exploits local reduction to maximize performance.

2.3. Hole Filling

The approaches presented in this paper only address rendering at
most one pixel per point, which may lead to holes if the point
density is not high enough from a given view of the scene. How-
ever, several hole-filling algorithms have been proposed to elimi-
nate the gaps between points of a point cloud—many of them via
fast screen-space methods that operate by analyzing the neighbor-
hood of a pixel.

Grossman and Dally [GD98], Pintus et al. [PGA11] and Marro-
quim et al. [MKC07] first draw points and then build an image pyra-
mid (e.g., [SKE06]) that is subsequently used to fill in gaps. This
involves determining hidden surfaces that were rendered through
gaps between points of the front-most visible surface. Afterward,
background pixels and points that are determined to be hidden are
replaced with colors from the image pyramid. Instead of an image
pyramid, Rosenthal and Linsen [RL08] use an iterative approach
that covers wider areas with higher iteration counts, but often al-
ready succeeds with fewer iterations. In contrast to methods based
on computing color values between the gaps of rendered pixels,
Auto Splats [PJW12] takes an additional step to compute oriented
and sized splats, based on the initial rendering, and draws these
splats in a separate rendering pass. The resulting splats contain nor-
mals that can be used for shading, and their size is adapted to fill in
the gaps.

2.4. High-Quality Rendering

In addition to visible holes, rendering point clouds is prone to
aliasing artifacts due to the lack of mipmapping. Arikan et al.
[APW16] create multiple textured depth maps out of point clouds,
and then ray-trace the depth maps in order to obtain a high-quality
reconstruction of the underlying point cloud data. Surface splat-
ting [ZPVG01] is an extension of point clouds that uses oriented
disks as a better representation of the underlying surface. The splat
sizes are adjusted to cover holes, and overlapping splats are blended
together, which results in anti-aliasing similar to mipmapping.
Botsch et al. [BHZK05] implement an efficient surface-splatting
method that uses a depth pass to generate a shifted depth buffer,
an attribute pass to sum up weighted fragments that pass the depth
test, and a normalization pass to divide the weighted sum by the
sum of weights. Our work also presents a high-quality shader
based on blending overlapping points, but without considering ori-
ented disks with variable radii. The already discussed Auto Splats
method [PJW12] uses the same high-quality rendering method, but
computes the required attributes (normals and radii) on the fly.

(a) Our basic compute shader approach requires a render pass over all
points, and a resolve pass over all pixels to transfer colors from the inter-
leaved buffer into a texture or render target.

(b) The high-quality approaches require two geometry passes (depth and
color) over all points, and a resolve pass over all pixels that writes blended
color values into a displayable texture.

Figure 2: Proposed compute shader pipelines.

2.5. Level-of-Detail Rendering

While our compute-based rendering method attempts to speed up
the rendering of a given set of points, LOD methods aim to im-
prove the performance by reducing the number of points being
rendered. These goals are complementary and can be combined to
further improve the overall point-cloud rendering performance. An
LOD approach that is built on GL_POINTSmay benefit from faster
compute-based alternatives. LODs are addressed via sequential
point trees [DVS03], layered point clouds [GM04] and their varia-
tions [WBB*08; GZPG10; SW11; EBN13; MVvM*15; KJWX19;
BK20]. We assess layered point cloud rendering in Section 5.4.

3. Compute-Shader Rendering

In this chapter, we first describe a basic compute shader-based
method for point cloud rendering, followed by various optimiza-
tions to improve performance and quality. A detailed evaluation of
each variation is provided in Section 5.

Figure 2 shows the individual compute-shader passes for the ba-
sic and high-quality approaches. All proposed variations require
at least one render pass over all points, and a resolve pass over
all pixels. The render pass transforms points to screen space and
writes them into a storage buffer that acts as a framebuffer. The re-
solve pass transfers the results from our custom framebuffer into
an OpenGL texture. The high-quality variations further require an
additional pass over all points to compute a depth map, for a total
of two geometry passes and one screen pass.

3.1. Basic Approach

Our compute-based approach resolves visibility and color simulta-
neously by encoding the depth and color in a single 64bit integer,
and uses 64bit atomicMin to pick points with the lowest depth, as
shown in the following GLSL sample:

1 vec4 pos = worldViewProj * position;
2

3 int pixelID = toPixelID(pos);
4 int64_t depth = floatBitsToInt(pos.w);
5 int64_t point = (depth << 24) | rgb;
6

7 atomicMin(framebuffer[pixelID], point);

Listing 1: Render pass draws closest points via atomicMin.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

117

Markus Schütz & Bernhard Kerbl & Michael Wimmer / Rendering Point Clouds with Compute Shaders

The compute shader replaces the role of both vertex and frag-
ment shader in the standard rendering pipeline. In Listing 1, we
only write the vertex color, stored in variable rgb, to the frame-
buffer, as is common when rendering point clouds. Alternatively,
we may also compute illumination if normals are present, or any
other mapping from attributes to RGB color values. The target of
the render pass is an OpenGL storage buffer containing one 64bit
integer per pixel. For each point, the color value is stored in the 24
least significant bits of the integer (8 bits per color channel), and the
32bit depth value is stored in the 32 next-higher bits. Using atom-
icMin, we can then make sure that the point with the smallest depth
value is chosen for each pixel. After the render pass, we transfer
the results from this storage buffer into an OpenGL texture with a
resolve pass over all pixels:

1 uint pixelID = x + y * imageSize.x;
2 // Read RGB component from framebuffer
3 uvec4 icolor = colorAt(pixelID);
4 // Write result into an OpenGL texture
5 imageStore(texture, ivec2(x, y), icolor);

Listing 2: Resolving custom framebuffer to OpenGL texture.

One beneficial side effect of this approach is the ability to di-
rectly use the linear depth value (pos.w) for depth-buffering. In con-
trast, depth values in the conventional hardware rendering pipeline
are subject to further transformations and associated loss of pre-
cision. In order to allow perspectively correct triangle rasteriza-
tion, the typically used transformation matrices result in hyperbolic
depth buffer values which, when combined with floating-point data
types, causes a disproportionately larger accumulation of precision
towards the near plane. We note that methods such as reverse-
z [DPV18; LJ99] can help achieve a near-optimal precision of the
hardware pipeline by mapping the far plane to 0 and the near plane
to 1. Nevertheless, since we don’t require interpolation across pix-
els, we can directly use the unmodified linear depth value to obtain
the maximum depth-buffer precision that a typical floating point
transformation matrix may achieve. If traditional depth-buffer val-
ues are required (e.g., for hybrid rendering with triangles), devel-
opers may integrate associated conversions in the resolve pass.

3.2. Early Depth Test

Rendering hundreds of millions of points to framebuffers with ap-
proximately 2 million target pixels (1920x1080) can lead to the pro-
jection of several thousand points to a single pixel, depending on
viewpoint and scan density distribution, as shown in Figure 3. Such
a large number of atomic operations on the same memory loca-
tion causes contention with severe negative impacts on the perfor-
mance. In practice, this manifests as lower framerates after zoom-
ing out, even if the number of points within the view frustum stays
the same. In the traditional rendering pipeline, early-z (also known
as early depth test or early fragment test) is done before the frag-
ment shader to avoid calling the shader program for fragments that
are occluded by previously processed fragments. In our compute
shader-based approach, we can achieve early depth testing by com-
paring against the current value at the storage buffer location we
are trying to write to. atomicMin only needs to be called if the cur-
rently processed point has a smaller depth than a previously written
point. A GLSL snippet for early depth testing is given in Listing 3:

(a) RGB (b) Points per pixel

Figure 3: (a) Candi Sari point cloud. (b) Heatmap of the num-
ber of points in each pixel. 9,427 pixels contain over 10k points
(in pink). Points: 725M. Resolution: 1920x1080. Candi Sari point
cloud courtesy of TU Wien – Baugeschichte.

1 // Fetch 64bit value from interleaved buffer
2 uint64_t oldPoint = framebuffer[pixelID];
3

4 // Higher bits encode depth, can compare directly
5 if(point < oldPoint)
6 {
7 atomicMin(framebuffer[pixelID], point);
8 }

Listing 3: Avoiding atomicMin calls with an early depth test.

In contrast to [GKLR13], our simplified solution exploits the fact
that previously written depth values may already be available for
reading in fast L1 caches. Although loading and evaluating the cur-
rent depth is not synchronized, this does not affect the rendered
image because the real depth buffer value can only become smaller
in the meantime. In the worst case, we merely invoke superfluous
atomicMin calls.

3.3. Local Reduction with Warp-Level Primitives

Individual GPU threads are grouped in concurrently scheduled
warps (NVIDIA), wavefronts (AMD) or subgroups (OpenGL).
On NVIDIA microarchitectures, each warp consists of 32 threads
that can operate based on the SIMT (single instruction, multiple
threads) principle. Threads within each warp can communicate effi-
ciently, opening up the possibility to combine intermediate results.
In our case, we can combine up to 32 points into a single frame-
buffer update if they fall inside the same pixel, thereby reducing
the amount of expensive atomicMin calls from 32 to just one.

In Listing 4, all threads in the subgroup first check if they have
the same target pixel ID. If this is the case, the threads compute the
minimum depth value of the whole subgroup and only the thread
with the smallest depth proceeds to write a point to the framebuffer.
The final if clause applies to both the slow and the fast, reduction-
based path, causing 32 atomic updates in the former and a single
update in the latter.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

118

Markus Schütz & Bernhard Kerbl & Michael Wimmer / Rendering Point Clouds with Compute Shaders

1 int minDepth = depth;
2

3 if(subgroupAllEqual(pixelID))
4 minDepth = subgroupMin(depth);
5

6 // Different pixels or thread has lowest depth
7 if(minDepth == depth)
8 atomicMin(framebuffer[pixelID], point);

Listing 4: If all points in a warp fall into the same pixel, atomicMin
is only called in the thread with the lowest depth. Otherwise,
atomicMin must be called by all threads.

The warp-wide reduction mostly affects very dense point clouds
and zoomed-out views. In order to accelerate other cases as well,
we can perform a quick, fine-granular local reduction where pairs
of threads check whether their updates can be merged, as outlined
by Listing 5. Doing so can help to reduce the number of atomic
operations, even for close-up viewpoints, depending on the order
of vertices in memory.

1 uint idXOr = subgroupClusteredXor(pixelID, 2);
2 uint minDepth = subgroupClusteredMin(depth, 2);
3

4 // Update if different pixels or lowest depth
5 if(idXOr != 0 || minDepth == depth)
6 atomicMin(framebuffer[pixelID], point);

Listing 5: If two neighboring threads target the same pixel, only
the one with the lower depth value will write its result.

3.4. Full Warp-Wide Deduplication

Taking advantage of recent GLSL language extensions, we can
fully deduplicate the pixel updates within a subgroup, i.e., we can
further reduce framebuffer updates to a single atomicMin per ac-
cessed pixel, as shown in Listing 6.

1 // Find subgroup (sg) indices with same pixelID
2 uvec4 sg = subgroupPartitionNV(pixelID);
3

4 // Lowest depth among threads with same pixelID
5 int minDepth;
6 minDepth = subgroupPartitionedMinNV(depth, sg);
7 // Write if thread owns point with lowest depth
8 if(depth == minDepth)
9 atomicMin(framebuffer[pixelID], point);

Listing 6: The deduplication shader can reduce pixel updates to
only one per accessed pixel in each SIMT subgroup.

Each thread first requests a mask of all threads that intend to
write to the same pixel. This mask is then used to compute the
minimum depth of the respective threads, and only the threads with
the lowest depth will update the pixel. Note that there may still be
superfluous atomicMin calls if two or more points in a warp have
the same pixel ID and depth value. While it is possible to remove
these duplicates with additional warp-wide logic operations, but in
practice, we found no discernible benefits from doing so.

(a) Basic Shaders (b) HQS Shaders

Figure 4: (a) GL_POINTS and our basic atomicMin-based ap-
proaches are prone to aliasing artifacts. (b) High-quality shading
blends overlapping points together, improving quality and legibility
of high-frequency features, such as text. Lifeboat point cloud cour-
tesy of Weiss AG.

3.5. High-Quality Rendering

While the presented approaches are fast and require only one pass
over the entire geometry, they, like all single-pixel update methods,
exhibit noticeable aliasing. Point-cloud renderings are colored per-
vertex, which causes artifacts similar to rendering textured models
without mipmapping. Mipmapping addresses the cases where the
bounds of a single pixel map to a large area of a texture. Instead
of picking a single texture element (texel), all texels contained in a
pixel should contribute to that pixel. Mipmaps store precomputed
averages of potentially contributing texels to avoid recomputing
averages of potentially thousands of texels in each frame. Unfor-
tunately, mipmapping is not feasible in our case: two-dimensional
textures are not applicable to regular point-cloud data sets due to
the lack of 2D neighborhood information. Instead, we propose a
compute shader-based high-quality approach to calculate the aver-
age of overlapping points inside a pixel directly at runtime.

One concept for high-quality shading is that all overlapping
points of the front-most visible surface should contribute to the
pixel color, rather than just the point that is closest to the camera.
Botsch et al. [BHZK05] achieve this through a multi-pass approach
that first computes a depth map, which is then shifted slightly to-
wards the far plane. They then sum up the colors of fragments that
pass the depth test, and finally obtain the average by dividing the
sum of all colors by the number of fragments that contributed to
the sum. Figures 1 and 4 illustrate the difference between basic ap-
proaches, including GL_POINTS, and such a high-quality shading
(HQS) approach. HQS reduces image noise by computing a blend
of all relevant samples, and increases the fidelity of high-frequency
features that might otherwise be lost. In order to apply this method
on the GPU, we employ two geometry render passes—a depth and
a color pass—over all points. The depth pass is implemented simi-
lar to the previously introduced atomicMin approaches, but without
the need to update colors. We therefore implement it with simple
32bit atomic operations instead of 64bit.

In the color pass, we replace atomicMin by atomicAdd in or-
der to sum up the values of all contributing points and their count.
Contributing points should be those that belong to the front-most
visible surface. However, since there is no notion of a surface in a
point cloud, we instead propose considering all points within an ε

range, proportional to the distance of the closest point. In practice,
we obtained good results with an ε of 1%. To provide sufficient

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

119

Markus Schütz & Bernhard Kerbl & Michael Wimmer / Rendering Point Clouds with Compute Shaders

capacity for computing the sum of a large amount of points, we
recommend a buffer with 32 bits per color channel, and a fourth
channel for the fragment count. Summing up all channels requires
four 32bit atomicAdd calls, but we suggest packing the channels
into two 64bit integers to reduce the number of atomicAdd updates
to two per point, as shown in Listing 7. The resolve pass then di-
vides the color sums by the total number of points that contributed
to them, as outlined by Listing 8.

1 uint bufferVal = ssDepthbuffer[pixelID];
2 float bufferDepth = uintBitsToFloat(bufferVal);
3 float depth = pos.w;
4

5 if(depth <= bufferDepth * 1.01){
6 int64_t rg = (r << 32) | g;
7 int64_t ba = (b << 32) | 1;
8

9 atomicAdd(ssRG[pixelID], rg);
10 atomicAdd(ssBA[pixelID], ba);
11 }

Listing 7: Accumulate colors and point count within a range ε

proportional to the smallest depth (1% farther away, in this case).

1 uint64_t rg = ssRG[pixelID];
2 uint64_t ba = ssBA[pixelID];
3

4 uint a = uint(ba & 0xFFFFFFFFUL);
5 uint r = uint((rg >> 32) / a);
6 uint g = uint((rg & 0xFFFFFFFFUL) / a);
7 uint b = uint((ba >> 32) / a);

Listing 8: Normalize to the average color in the resolve pass.

3.5.1. Single-Atomic High-Quality Variants

The number of atomic operations in the high-quality shader can be
further reduced by encoding the RGB channels and counter into a
64bit integer. A distribution of 18 bits for the RGB channels and
10 bits for the counter guarantees that we can correctly compute
the sum of up to 1023 points per pixel with a single 64bit atomic
operation per point. Thus, we refer to this HQS variant as HQS1×.

While this naïve approach may work well for small point clouds
and close-up views, the counter and color values overflow when-
ever more than 1023 points contribute to a pixel’s average color
value. For larger scenes, this leads to strongly noticeable rendering
artifacts, as shown in Figure 5. Hence, we propose a robust alterna-
tive: instead of a 18-18-18-10 fragmentation, we use a 16-16-16-16
pattern. This ensures that up to 255 8bit color values can be stored
in RGB, and the counter can register 216 = 65536 increments. We
further modify the shader to check the return value after performing
the 64bit atomic addition. If the count exceeds 255, the update is
written a second time into separate fallback buffers with two atomic
operations, as described in Section 3.5. The thread that detected an
exact count of 255 is further tasked with transferring the pixel data
to the fallback buffers and atomically setting the full 64bit value to
zero. The unused 216− 256 counts merely serve as a safety mar-
gin for—potentially several thousand—simultaneously executing
threads to detect the overflow. If more or significantly fewer than
65k simultaneous accesses to a pixel are expected, the bit pattern

(a) HQS (1×atomicAdd) (b) With overflow protection

Figure 5: (a) The 1×atomicAdd shader is prone to artifacts when
a pixel receives over 1023 points. (b) The robust version adds over-
flow protection to eliminate these artifacts.

may be changed accordingly. In practice, however, we found that
this robust variant, HQS1R, with a 4× 16 pattern shows negligi-
ble overhead compared to the unstable HQS1× version. Listing 9
shows the method’s implementation. The associated resolve pass
must then combine the results from all updated buffers.

1 uint64_t rgba = (r<<48)|(g<<32)|(b<<16)|1;
2 // Try rendering with just one atomicAdd
3 uint64_t old = atomicAdd(ssRGBA[pixelID],rgba);
4 uint count = uint(old & 0xFFFF);
5

6 if (count >= 255){
7 // Overflow detected
8 int a = 1;
9 if (count == 255){

10 // The first thread that overflows resets
11 // the overflown buffer value to zero, and
12 // transfers the r, g, b, a values before
13 // the overflow to the fallback buffer.
14 atomicExchange(ssRGBA[pixelID], 0);
15 r += (old>>48) & 0xFFFF;
16 g += (old>>32) & 0xFFFF;
17 b += (old>>16) & 0xFFFF;
18 a += 255;
19 }
20 int64_t rg = (r << 32) | g;
21 int64_t ba = (b << 32) | a;
22 // All overflown threads write the value
23 // to the fallback buffer using 2 atomicAdd
24 atomicAdd(fallback[2 * pixelID + 0], rg);
25 atomicAdd(fallback[2 * pixelID + 1], ba);
26 }

Listing 9: Summing up colors with a 16-16-16-16 bit pattern per
point for the r-g-b-a channels and fallback on overflow.

4. Vertex Order Optimization

Beyond various compute-based solutions for point rendering, we
also investigate the impact of point order in memory. Reorder-
ing vertices and indices is a common task for mesh optimization
prior to rendering and can significantly improve data access pat-
terns. Similarly, point clouds can be stored in various different ver-
tex orders. Since we use non-indexed draws, clearly the fetching
of point-cloud data is already optimally coalesced. However, we

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

120

Markus Schütz & Bernhard Kerbl & Michael Wimmer / Rendering Point Clouds with Compute Shaders

can also attempt to achieve a point ordering that positively impacts
the updates of the framebuffer itself. One potential point order-
ing method is to shuffle them randomly. Shuffled or partially shuf-
fled data sets can be used for progressive rendering [SMOW20] or
as a simple level-of-detail structure, where rendering increasingly
larger random subsets is akin to rendering increasingly higher lev-
els of detail. Unfortunately, shuffling and the consequent absence
of all data locality can be detrimental to rendering performance:
Distributed writes to random framebuffer locations quickly lead to
cache thrashing and fail to exploit the GPU’s available memory
bandwidth. A common method for increasing locality without spa-
tial data structures is to sort by Morton code. In the resulting Z-
curve, points that are stored side-by-side in memory are also likely
to be close in 3D and in 2D after projection, thus favoring aggregate
updates of close-by framebuffer locations.

While ordering points by Morton code may in fact be adequate
for compute variants that write to buffers backed by linear memory,
it is suboptimal for the hardware rendering pipeline: for parallel ras-
terization, all output geometry is sorted into 2D viewport tiles. On
NVIDIA architectures, each tile is statically assigned to a graphics
processing cluster (GPC) with exclusive access to the underlying
memory. GPC tiles are spread over the viewport in repeating 2D
patterns to facilitate uniform load balance. However, it has been
shown that these static patterns cannot compensate for extreme spa-
tial clustering of in-flight scene geometry [KKSS17]. To simultane-
ously address the hardware pipeline’s demands for locality and suf-
ficient utilization of all available GPCs, we thus propose an alterna-
tive layout that requires minimal overhead and is easy to produce:
shuffled Morton order. First, all points are sorted according to Mor-
ton code. The resulting sequence is divided into batches of spatially
sorted points. Batches are then moved to random locations without
changing their internal order. The final sequence yields uniformly
distributed groups of spatially close points. This new ordering ac-
curately recreates the typical workload of the rasterization engine,
i.e., geometry primitives that provoke an update for a localized set
of fragments. In practice, we found that shuffled Morton order dras-
tically improves performance when rendering with GL_POINTS.
As an unexpected side effect, it also tends to reduce fluctuations
and performance gaps across different compute-based methods (see
following Section 5 for details).

5. Evaluation

In this section, we evaluate our proposed compute shader-based
point cloud rendering approaches and compare them against each
other, as well as adequate baselines under relevant aspects that can
affect the performance of rendering large point clouds. The evalu-
ated methods are:

• GL_POINTS: Hardware pipeline using OpenGL GL_POINTS
primitive. Points are rendered with the default size of one pixel.
The gl_PointSize variable is unmodified.
• just-set: A reference method with no program control overhead

or performance penalties for memory synchronization. A com-
pute shader draws points by setting the framebuffer’s pixel colors
in a non-atomic fashion. Not viable in practice, due to the lack of
depth buffering and resulting flickering due to the unpredictable
order in which points are written by multiple compute threads.

• busy-loop: Implementation of the busy-loop approach by Gün-
ther et al. [GKLR13], including their early-z test.
• atomicMin: Our basic compute-shader approach, which uses

atomicMin to store the point with the smallest depth inside the
framebuffer, as described in Section 3.1.
• early-z: The basic atomicMin method, but with an additional

early-z test, as described in Section 3.2.
• reduce: The basic atomicMin method, but with an additional

warp-wide reduction to decrease the number atomicMin calls
from 32 to 1 if all points in the warp are inside the same pixel, or
by up to 50% if pairs of adjacent threads write to the same pixel
(outlined in Section 3.3).
• reduce&early-z: Applies both, early-z and reduce.
• dedup: A full deduplication shader, that reduces the amount of

atomicMin calls in a subgroup to one per pixel (except if depth
values are identical). See Section 3.4 for details. This method
also includes an early-z test.
• HQS: High-Quality Shading. Computes average color of over-

lapping points in a certain depth range (Section 3.5).
• HQS1R: Robust high-quality shading with overflow protection

using one atomicAdd in its fast path, and two atomic updates as
fallback, as described in Section 3.5.1.

Furthermore, the order in which points are stored in the vertex
buffer has a significant impact on rendering performance—up to
an order of magnitude between differently sorted point clouds. The
evaluated orderings are:

• Original: Points are kept in the order in which we originally
received them. Typical orderings vary from sorted by Morton
code, by scan position and timestamp, or even partially shuffled
to simulate coarse LODs.
• Morton: The point cloud is sorted by a 21bit Morton

code [MOT]—equivalent to sorting points using depth-first
traversal into an octree with a depth of 21 levels.
• Shuffled: Points are shuffled by assigning a random value to

each point, and then sorting according to that value.
• Shuffled Morton: Points are first sorted by Morton code, then

grouped into batches of 128 points, and finally the batches are
shuffled, with points inside each batch remaining in order. Do-
ing so preserves basic locality between points within each batch,
but avoids excessive locality that might lead to contention or im-
balanced workload.

Performance for each method and ordering is measured using
OpenGL timestamp queries at the start and end of each frame (right
before glfwSwapBuffers). Reported performance numbers are com-
puted as the average of all frames over one second. In the follow-
ing, we compare our methods and relevant baselines with respect
to the most significant aspects, based on our observations on four
test systems:

• NVIDIA RTX 3090 24GB, AMD Ryzen 7 2700X (8 cores),
32GB RAM, running Microsoft Windows 10.
• NVIDIA RTX 2070 Super 8GB, Intel i7-4771 (8 cores), 16GB

RAM, running Microsoft Windows 10.
• AMD Radeon RX Vega 64 8GB, Intel i7-4771 (8 cores), 16GB

RAM, running Microsoft Windows 10.
• NVIDIA GTX 1060 3GB, AMD Ryzen 5 1600X (6 cores),

32GB RAM, running Microsoft Windows 10.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

121

Markus Schütz & Bernhard Kerbl & Michael Wimmer / Rendering Point Clouds with Compute Shaders

For the sake of brevity, we will focus on the illustration of results
from the RTX 3090 and highlight differences where appropriate.
Detailed benchmarks for the GTX 1060 and RTX 2070 are found
in the paper’s supplemental material. We would like to note that
all compute-based benchmarks were evaluated on NVIDIA GPUs,
since we only had access to an older AMD Radeon RX Vega 64
that does not expose 64bit atomic integer operations to GLSL. The
results of our compute-based rendering approaches might therefore
only be valid for NVIDIA GPUs.

5.1. Hardware vs. Compute Pipelines

Table 1 shows benchmark results comparing all evaluated methods
for different data sets ranging from 4 million to 796 million points.
The results clearly show that compute-based methods (including
high-quality variants with additional anti-aliasing) are significantly
faster than GL_POINTS, the predominantly used method in state-
of-the-art solutions, by a factor of 10× or more. The improvements
are least pronounced for the lion model due to the implied overhead
caused by the additional resolve pass, which takes about 0.06ms
on an RTX 3090, and compute pipeline launches in general. Af-
ter investigating with Nsight Systems, we found that the glDis-
patchCompute call itself appears to have a larger overhead than
glDrawArrays, which is significant for small data sets, but negli-
gible when rendering larger scenes.

Among the individual compute-based methods, the busy-loop
approach is often already outperformed by our most basic atom-
icMin and reduce methods, with the exception of particularly large
or shuffled data sets. early-z can yield significant performance im-
provements (34% on average), but has adverse effects on rendering
the smaller lion model. This is expected, because early-z testing
only pays off once the depth buffer is partially filled by previously
processed points and thus mostly affects larger scenes. Synergizing
the properties of reduce and early-z in reduce&early-z yields a
particularly strong and stable contender for all scenarios (1% faster
than fastest of either reduce and early-z, 33% faster than slow-
est on average). It is outperformed only on the RTX 3090 by the
dedup method, whose frame time is 1–2% faster on average and
less affected by different vertex orderings. In contrast to the busy-
loop approach, which thrives on shuffled vertex order, the perfor-
mance of our compute-based methods is best when using sorted or
partially sorted data sets. Specifically, the highest performance for
every single scene was recorded on the RTX 3090, using dedup
with Morton sorted scenes (at least 3% faster than the next better
technique). dedup is most effective on the RTX 3090 and 2070, but
clearly trails behind reduce&early-z on the GTX 1060. This comes
as no surprise, since the subgroupPartitionNV and subgroupPar-
titionedMinNV primitives in GLSL are only accelerated by GPU
hardware since the Volta and Ampere architectures, respectively. In
contrast, reduce&early-z only requires warp shuffle instructions,
which have been accelerated in hardware since the Kepler genera-
tion. For our high-quality variants, we found that HQS1R always
runs faster than HQS (up to 37%, 18% on average). Both methods
are up to 4× faster than the aliased GL_POINTS (see supplemen-
tal for visual comparison).

5.2. The Impact of the Viewpoint on Performance

A key issue when rendering large point clouds is the spatial clus-
tering of fragments, which can lead to contention and poor occu-
pancy. The viewpoint plays an important role in that aspect. Close-
up viewpoints of a model are typically advantageous, because many
points fall outside the view frustum, but also because the points
themselves are distributed more evenly, so the chance of individual
pixels containing a large number of points at once is low. How-
ever, when zooming out, points start to cluster inside an exceed-
ingly smaller range of pixels, some of which may now receive
tens of thousands of points, as shown in Figure 3. We observe
that the performance of rendering vertices in their original or Mor-
ton order with GL_POINTS is strongly affected by the viewpoint.
Rendering the Retz scene with a zoomed-in and zoomed-out view
yields 31.95ms vs. 153.22ms (×4.79), respectively. The simple
busy-loop and atomicMin approaches show similar trends (7.76ms
vs. 16.66ms →×2.15 and 5.07ms vs. 21.45ms →×4.23), while
sophisticated compute shader variants like reduce&early-z and
HQS1R are mostly unaffected (3.37ms vs. 3.33ms and 6.91ms vs.
7.90ms, respectively). However, these figures are reversed when us-
ing shuffling. Fully shuffled data sets are less sensitive to viewpoint
changes with GL_POINTS (30.71ms vs. 39.52ms→×1.29), but
increase view dependence and incur overall negative impact on the
performance of our more elaborate compute-based methods, in-
cluding high-quality shading variants. In opposition to these var-
ied results, shuffled Morton order yields peak or close-to-peak
performance over all rendering methods, regardless of viewpoint.
However, the best results for a particular combination of rendering
method and point ordering were observed with the dedup approach
(3.06ms vs. 3.04ms) on Morton sorted data sets, showing a margin
of just 3% between the close-up and overview scenario. A detailed
illustration of exemplary viewpoint benchmarks with different lev-
els of zoom on an RTX 3090 is provided as supplemental material.

5.3. The Impact of Vertex Order on Performance

Table 1 also illustrates the impact of the four assessed vertex or-
ders across different models and viewpoints. Overall, we find that
elaborate compute-based methods perform better with Morton lay-
outs, GL_POINTS and busy-loop perform better with shuffled
points. Morton order predictably works well for methods that ex-
ploit locality, like reduce and dedup as well as close-up views
with GL_POINTS and atomicMin. Shuffled points are favorable
for zoomed-out views with GL_POINTS (3.9× over original) and
atomicMin (2.1× over original). In contrast, shuffled Morton order
is mostly view-independent and yields the highest performance for
our compute-based methods in 65% of all scenarios, outperformed
only occasionally by Morton order with dedup or reduce&early-z
methods. It also raises the performance of high-quality shading by
7% on average.

The most drastic effects of choosing shuffled Morton, however,
are observed for GL_POINTS: rearranging input vertices with the
new layout accelerates rendering performance by up to 4× (2.25×
on average) on an RTX 3090 and up to 2.5× (1.6× on average) on
an RTX 2070, compared to the original ordering. Creating custom
vertex orders with the described policies only requires a one-time
preprocessing step, which may take from less than a milliseconds

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

122

Markus Schütz & Bernhard Kerbl & Michael Wimmer / Rendering Point Clouds with Compute Shaders

Model: Lion Points: 4 million (64MB)

Model: Lifeboat Points: 47 million (752MB)

Model: Retz Points: 145 million (2.3GB)

Model: Endeavor Points: 796 million (12.7GB)

Table 1: Frame times (ms) for a given viewpoint and vertex order on an RTX 3090 (lower is better).

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

123

Markus Schütz & Bernhard Kerbl & Michael Wimmer / Rendering Point Clouds with Compute Shaders

#nodes points/node GL_POINTS compute

1624 2.4k 718 FPS 500 FPS
80 49.4k 1615 FPS 2096 FPS

Table 2: Performance of rendering 4 million points in LOD struc-
tures with different granularity settings. Compute-based methods
benefit from fewer nodes with a more points.

to a few seconds, depending on the implementation and scene size.
Hence, we claim that shuffled Morton is well-suited for the hard-
ware pipeline and can be considered as a drop-in solution to accel-
erate applications based on GL_POINTS.

The results discussed above are specific to NVIDIA GPUs. The
benchmark results on our AMD Radeon RX Vega are limited to
rendering with GL_POINTS. We observed that the shuffled or
shuffled Morton vertex orders are always the fastest vertex orders.
Shuffled data sets rendered 1.4–5× faster than Morton ordered
models, and shuffled Morton ordered data sets rendered 1.7–4.5×
faster than Morton ordered models. For details, please see the sup-
plemental material. Shuffled and shuffled Morton show very similar
performance, with no clear winner on that GPU.

5.4. Level-of-Detail Performance

The layered point-cloud (LPC) [GM04] structure and its varia-
tions are a widely used LOD structure for point clouds (e.g., [QGIS;
POT; ENT; A4D]) that stores subsamples of the full point cloud in
the nodes of a spatial acceleration structure (e.g., binary tree, oc-
tree, kd-tree). Each node is essentially a small point cloud contain-
ing 100 to 20 000 points, and the union of all smaller point clouds
yields the original. This way, the number of points that are ren-
dered in each frame can be limited to approximately 1 to 10 mil-
lion points, which corresponds to about 100 to 4 000 octree nodes.
The points in each node are stored in separate vertex buffers, and
in each frame the point cloud is rendered by invoking as many gl-
DrawArrays calls as there are visible nodes.

In order to evaluate the suitability of compute-based rendering
for layered point clouds, we use PotreeConverter 2.1 [PConv] to
build an octree from the lion data set. With default granularity
settings, PotreeConverter produces 1624 octree nodes with an av-
erage of 2.4k points per node. We also evaluate a modified case
with lower granularity settings, which leads to an octree with
80 nodes and an average of 49.4k points in each node. Table 2
shows the performances obtained by rendering both octree data
sets with GL_POINTS and reduce&early-z as a representative
for compute-based methods. Clearly, GL_POINTS performs bet-
ter when rendering a large number of nodes with a small amount
of points in each, while compute performs better for fewer nodes
with a higher number of points. According to these results, we
claim that compute-based rendering is useful to LOD rendering
approaches that ensure individual LOD chunks with at least sev-
eral ten thousand points. Methods that pack all points into a single
buffer [DVS03; SKW19] are very likely to benefit since compute
approaches outperform GL_POINTS in all evaluated orderings.

5.5. Recommendations

Interpreting the results of our experiments (illustrated in Table 1,
full data in supplemental material), our recommendations for vertex
order and rendering method are as follows:

Recommended Vertex Order We recommend using the shuffled
Morton order for the brute-force rendering of large point clouds,
since it is typically the fastest or within small margins of the fastest
ordering according to our benchmarks, regardless of the technique
being used. Regular Morton order can achieve peak performance
with advanced compute shader approaches on modern GPU hard-
ware, but is vastly outperformed by shuffled Morton order when
rendering point clouds using the GL_POINTS primitive.

Recommended Rendering Method The choice of the optimal
rendering method is governed by the capabilities of the avail-
able hardware and graphics API. In our experiments, we observed
peak performance results with the dedup approach in combination
with Morton ordered points. However, these results strongly de-
pend on recent GLSL extensions that may be unavailable for less
specialized standards (e.g., WebGPU) and hardware-accelerated
features of the NVIDIA Volta architecture or later. In contrast,
the reduce&early-z approach may be implemented with vendor-
agnostic extensions, performs well on the older Pascal architecture,
and is consistently within slim performance margins of the dedup
approach on newer models. We would therefore recommend using
reduce&early-z for wider support, and consider dedup as an op-
tional improvement on Volta, Turing or Ampere architectures, since
dedup shows consistently high performance with the smallest fluc-
tuations between different viewpoints.

6. Limitations

We would like to highlight two specific limitations of our ap-
proach and evaluation: First, the proposed compute-based render-
ing method requires at least 64bit atomic integer operations, which
may not be available on older or mobile GPUs, and which became
available in DirectX only recently. Second, the evaluation is lim-
ited to NVIDIA GPUs since the only AMD GPU at our disposal
is relatively old and does not expose aforementioned 64bit integer
atomics to GLSL shaders. The results might therefore not be repre-
sentative for GPUs of all vendors.

However, at least the high-quality shading approach (Section 3.5
) could also be implemented with only 32bit atomic operations. The
depth-pass is already implemented using only 32bit atomicMin, and
the color pass only uses 64bit atomicAdd as an optimization. In-
stead of two 64bit atomicAdd operations, colors and counters can
also be summed up with four 32bit atomicAdd operations.

7. Conclusions

We have explored various methods for rendering point clouds with
compute shaders, and shown that combining an atomicMin-based
approach with early-z and warp-wide reduction or deduplication
gives us the fastest results—up to an order of magnitude faster
than using GL_POINTS. dedup, in particular, achieves consis-
tently high performances in combination with Morton order, and

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

124

Markus Schütz & Bernhard Kerbl & Michael Wimmer / Rendering Point Clouds with Compute Shaders

a throughput of up to 50 billion points per second (800GB/s) on an
RTX 3090, which amounts to 85% of its specified memory band-
width of 936GB/s. Additionally, a high-quality compute shader that
computes the average of overlapping points was also shown to be
faster than GL_POINTS, and results in a quality that is compa-
rable to mipmapping or anisotropic filtering for textured meshes.
GL_POINTS still outperforms compute when rendering a large
number of small vertex buffers (up to a few thousands of points per
buffer), but compute takes over when the buffers are larger (tens
of thousands of points per buffer). From these results, we conclude
that compute-based rendering with early-z and reduction enabled is
a good choice for rendering unstructured point clouds with millions
to hundreds of millions of points, and potentially useful for LOD
rendering methods that employ larger LOD chunks.

We also investigated the impact of vertex order on rendering per-
formance and found that Morton order and shuffled vertex buffers
outperform each other in different scenarios. Combining both into
a shuffled Morton vertex order preserves the advantages of both,
and yields consistently high rendering performance over various
different viewpoints.

In the future, we would like to further explore the application of
compute shaders to the LOD rendering of point clouds. We believe
that with sophisticated work aggregation schemes, compute shaders
could prove advantageous for the fast and fine-grained selection
and rendering of the most suitable LOD chunks, compared to the
current layered point cloud applications that select a set of coarse
chunks on the CPU side and then invoke one draw call for each.

8. Acknowledgements

The authors wish to thank Riegl Laser Measurement Systems for
providing the data set of the town of Retz, NVIDIA for the En-
deavor building site data set, Weiss AG for the lifeboat data set,
and TU Wien, Institute of History of Art, Building Archaeology and
Restoration for the Candi Sari data set.

This research has been funded by the FFG project Large-
Clouds2BIM and FWF project no. P32418, as well as the Research
Cluster “Smart Communities and Technologies (Smart CT)” at TU
Wien.

References
[A4D] Arena4D. https : / / veesus . com / veesus - arena4d -
data-studio/, Accessed 2021.04.13 10.

[AHN2] AHN2. https : / / www . pdok . nl / introductie/ -
/article/actueel-hoogtebestand-nederland-ahn2-,
Accessed 2021.03.27 1.

[ANGLE] ANGLE: Emulating OpenGL Point Sprites in DirectX.
https : / / github . com / google / angle / blob /
9b1c569b14e90765cdd7c07e449400e88f1d6c45 / src /
libANGLE/renderer/d3d/d3d11/StateManager11.cpp#
L3904-L3913, Accessed 2021.03.19 2.

[APW16] ARIKAN, MURAT, PREINER, REINHOLD, and WIMMER,
MICHAEL. “Multi-Depth-Map Raytracing for Efficient Large-Scene Re-
construction”. IEEE Transactions on Visualization & Computer Graph-
ics 22.2 (Feb. 2016), 1127–1137 3.

[BHZK05] BOTSCH, M., HORNUNG, A., ZWICKER, M., and KOBBELT,
L. “High-quality surface splatting on today’s GPUs”. Proceedings
Eurographics/IEEE VGTC Symposium Point-Based Graphics, 2005.
2005, 17–141 2, 3, 5.

[BK20] BORMANN, PASCAL and KRÄMER, MICHEL. “A System for Fast
and Scalable Point Cloud Indexing Using Task Parallelism”. Smart Tools
and Apps for Graphics - Eurographics Italian Chapter Conference. Ed.
by BIASOTTI, SILVIA, PINTUS, RUGGERO, and BERRETTI, STEFANO.
The Eurographics Association, 2020 3.

[CC] CloudCompare - 3D point cloud and mesh processing software.
https://www.danielgm.net/cc, Accessed 2019.07.01 2.

[Cesium] Cesium. https://github.com/CesiumGS/cesium/,
Accessed 2021.03.19 2.

[DDG*04] DUGUET, FLORENT, DRETTAKIS, GEORGE, GIRARDEAU-
MONTAUT, DANIEL, et al. “A Point-Based Approach for Capture, Dis-
play and Illustration of Very Complex Archeological Artefacts”. VAST
2004: The 5th International Symposium on Virtual Reality, Archaeology
and Cultural Heritage. Ed. by CHRYSANTHOU, Y., CAIN, K., SILBER-
MAN, N., and NICCOLUCCI, F. The Eurographics Association, 2004 2.

[DPV18] REED, NATHAN. Depth Precision Visualized. July 2015. URL:
https : / / developer . nvidia . com / content / depth -
precision-visualized 4.

[DVS03] DACHSBACHER, CARSTEN, VOGELGSANG, CHRISTIAN, and
STAMMINGER, MARC. “Sequential Point Trees”. ACM Trans. Graph.
22.3 (July 2003), 657–662 3, 10.

[EBN13] ELSEBERG, JAN, BORRMANN, DORIT, and NÜCHTER, AN-
DREAS. “One billion points in the cloud – an octree for efficient process-
ing of 3D laser scans”. ISPRS Journal of Photogrammetry and Remote
Sensing 76 (2013). Terrestrial 3D modelling, 76–88 3.

[ENT] Entwine. https://entwine.io/, Accessed 2021.04.13 10.

[GD98] GROSSMAN, JEFFREY P and DALLY, WILLIAM J. “Point sample
rendering”. Eurographics Workshop on Rendering Techniques. Springer.
1998, 181–192 3.

[GKLR13] GÜNTHER, CHRISTIAN, KANZOK, THOMAS, LINSEN, LARS,
and ROSENTHAL, PAUL. “A GPGPU-based Pipeline for Accelerated
Rendering of Point Clouds”. J. WSCG 21 (2013), 153–161 2, 4, 7.

[GM04] GOBBETTI, ENRICO and MARTON, FABIO. “Layered Point
Clouds: A Simple and Efficient Multiresolution Structure for Distribut-
ing and Rendering Gigantic Point-sampled Models”. Comput. Graph.
28.6 (Dec. 2004), 815–826 2, 3, 10.

[GP03] GUENNEBAUD, GAEL and PAULIN, MATHIAS. “Efficient screen
space approach for Hardware Accelerated Surfel Rendering”. Vision,
Modeling and Visualization. Munich, Germany: IEEE Computer Soci-
ety, Nov. 2003, 485–495 2.

[GZPG10] GOSWAMI, P., ZHANG, Y., PAJAROLA, R., and GOBBETTI,
E. “High Quality Interactive Rendering of Massive Point Models Us-
ing Multi-way kd-Trees”. 2010 18th Pacific Conference on Computer
Graphics and Applications. 2010, 93–100 3.

[KB21] KIM, MINGYU and BAEK, NAKHOON. “A 3D graphics rendering
pipeline implementation based on the openCL massively parallel pro-
cessing”. The Journal of Supercomputing (Jan. 2021) 2.

[KJWX19] KANG, L., JIANG, J., WEI, Y., and XIE, Y. “Efficient Ran-
domized Hierarchy Construction for Interactive Visualization of Large
Scale Point Clouds”. 2019 IEEE Fourth International Conference on
Data Science in Cyberspace (DSC). 2019, 593–597 3.

[KKSS17] KERBL, BERNHARD, KENZEL, MICHAEL, SCHMALSTIEG,
DIETER, and STEINBERGER, MARKUS. “Effective Static Bin Patterns
for Sort-Middle Rendering”. Eurographics/ ACM SIGGRAPH Sympo-
sium on High Performance Graphics. Ed. by HAVRAN, VLASTIMIL and
VAIYANATHAN, KARTHIK. ACM, 2017 7.

[KKSS18] KENZEL, MICHAEL, KERBL, BERNHARD, SCHMALSTIEG,
DIETER, and STEINBERGER, MARKUS. “A High-performance Software
Graphics Pipeline Architecture for the GPU”. ACM Trans. Graph. 37.4
(July 2018), 140:1–140:15 2.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

125

https://veesus.com/veesus-arena4d-data-studio/
https://veesus.com/veesus-arena4d-data-studio/
https://www.pdok.nl/introductie/-/article/actueel-hoogtebestand-nederland-ahn2-
https://www.pdok.nl/introductie/-/article/actueel-hoogtebestand-nederland-ahn2-
https://github.com/google/angle/blob/9b1c569b14e90765cdd7c07e449400e88f1d6c45/src/libANGLE/renderer/d3d/d3d11/StateManager11.cpp#L3904-L3913
https://github.com/google/angle/blob/9b1c569b14e90765cdd7c07e449400e88f1d6c45/src/libANGLE/renderer/d3d/d3d11/StateManager11.cpp#L3904-L3913
https://github.com/google/angle/blob/9b1c569b14e90765cdd7c07e449400e88f1d6c45/src/libANGLE/renderer/d3d/d3d11/StateManager11.cpp#L3904-L3913
https://github.com/google/angle/blob/9b1c569b14e90765cdd7c07e449400e88f1d6c45/src/libANGLE/renderer/d3d/d3d11/StateManager11.cpp#L3904-L3913
https://www.danielgm.net/cc
https://github.com/CesiumGS/cesium/
https://developer.nvidia.com/content/depth-precision-visualized
https://developer.nvidia.com/content/depth-precision-visualized
https://entwine.io/

Markus Schütz & Bernhard Kerbl & Michael Wimmer / Rendering Point Clouds with Compute Shaders

[Lea14] LEACH, CRAIG. “A GPU-Based Level of Detail System for the
Real-Time Simulation and Rendering of Large-Scale Granular Terrain”.
MA thesis. University of Cape Town, 2014, 133 2.

[LHLW10] LIU, FANG, HUANG, MENG-CHENG, LIU, XUE-HUI, and
WU, EN-HUA. “FreePipe: A Programmable Parallel Rendering Archi-
tecture for Efficient Multi-Fragment Effects”. I3D ’10. Washington,
D.C.: Association for Computing Machinery, 2010, 75–82 2.

[LJ99] LAPIDOUS, EUGENE and JIAO, GUOFANG. “Optimal Depth Buffer
for Low-Cost Graphics Hardware”. Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Workshop on Graphics Hardware. HWWS
’99. Los Angeles, California, USA: Association for Computing Machin-
ery, 1999, 67–73 4.

[LK11] LAINE, SAMULI and KARRAS, TERO. “High-Performance Soft-
ware Rasterization on GPUs”. HPG ’11. Vancouver, British Columbia,
Canada: Association for Computing Machinery, 2011, 79–88 2.

[Lpa14] LUKAC, N., PELIC, D., and ALIK, B. “Hybrid Visualization of
Sparse Point-Based Data Using GPGPU”. 2014 Second International
Symposium on Computing and Networking. 2014, 178–184 3.

[MB20] MICHEL, É. and BOUBEKEUR, T. “Real Time Multiscale Ren-
dering of Dense Dynamic Stackings”. Computer Graphics Forum 39.7
(2020), 169–179 2.

[MKC07] MARROQUIM, RICARDO, KRAUS, MARTIN, and CAVAL-
CANTI, PAULO ROMA. “Efficient Point-Based Rendering Using Im-
age Reconstruction”. Proceedings Symposium on Point-Based Graphics.
2007, 101–108 3.

[Mor17] MOREL, JULES. “AN ANDROID APPLICATION TO VISU-
ALIZE POINT CLOUDS AND MESHES IN VR”. CGVCVIP 2017.
2017 2.

[MOT] Morton. https : / / www . forceflow . be / 2013 /
10 / 07 / morton - encodingdecoding - through - bit -
interleaving-implementations/, Accessed 2021.03.19 7.

[MVvM*15] MARTINEZ-RUBI, OSCAR, VERHOEVEN, STEFAN, van
MEERSBERGEN, M., et al. “Taming the beast: Free and open-source
massive point cloud web visualization”. Capturing Reality Forum 2015,
Salzburg, Austria. Nov. 2015 2, 3.

[MWH18] MARRS, ADAM, WATSON, BENJAMIN, and HEALEY,
CHRISTOPHER. “View-warped Multi-view Soft Shadows for Local Area
Lights”. Journal of Computer Graphics Techniques (JCGT) 7.3 (July
2018), 1–28 3.

[Nanite] Nanite | Inside Unreal. https : / / youtu . be /
TMorJX3Nj6U?t=4063, Accessed 2021.06.16 2.

[NMN20] NYSJÖ, F., MALMBERG, F., and NYSTRÖM, I. “RayCaching:
Amortized Isosurface Rendering for Virtual Reality”. Computer Graph-
ics Forum 39.1 (2020), 220–230 2.

[PConv] Potree Converter. https : / / github . com / potree /
PotreeConverter/, Accessed 2021.03.19 10.

[PGA11] PINTUS, RUGGERO, GOBBETTI, ENRICO, and AGUS, MARCO.
“Real-Time Rendering of Massive Unstructured Raw Point Clouds Us-
ing Screen-Space Operators”. Proceedings of the 12th International
Conference on Virtual Reality, Archaeology and Cultural Heritage.
VAST’11. Prato, Italy: Eurographics Association, 2011, 105–112 3.

[PJW12] PREINER, REINHOLD, JESCHKE, STEFAN, and WIMMER,
MICHAEL. “Auto Splats: Dynamic Point Cloud Visualization on the
GPU”. Proceedings of Eurographics Symposium on Parallel Graphics
and Visualization. Ed. by CHILDS, H. and KUHLEN, T. Eurographics
Association 2012. Cagliari, May 2012, 139–148 3.

[POT] Potree. http://potree.org, Accessed 2021.03.19 2, 10.

[PTSO15] PATNEY, ANJUL, TZENG, STANLEY, SEITZ, KERRY A., and
OWENS, JOHN D. “Piko: A Framework for Authoring Programmable
Graphics Pipelines”. ACM Trans. Graph. 34.4 (July 2015) 2.

[QGIS] QGIS: A Free and Open Source Geographic Information System.
https://qgis.org/, Accessed 2021.03.19 2, 10.

[RDD15] RICHTER, RICO, DISCHER, SÖREN, and DÖLLNER, JÜRGEN.
“Out-of-Core Visualization of Classified 3D Point Clouds”. 3D Geoin-
formation Science: The Selected Papers of the 3D GeoInfo 2014. Ed. by
BREUNIG, MARTIN, AL-DOORI, MULHIM, BUTWILOWSKI, EDGAR,
et al. Cham: Springer International Publishing, 2015, 227–242 2.

[Ric18] RICHTER, RICO. “Concepts and techniques for processing and
rendering of massive 3D point clouds”. PhD thesis. Jan. 2018 2.

[RL08] ROSENTHAL, PAUL and LINSEN, LARS. “Image-space point
cloud rendering”. Proceedings of Computer Graphics International.
2008, 136–143 3.

[SKE06] STRENGERT, MAGNUS, KRAUS, MARTIN, and ERTL, THOMAS.
“Pyramid methods in GPU-based image processing”. Proceedings vi-
sion, modeling, and visualization. Vol. 2006. Citeseer. 2006, 169–176 3.

[SKW19] SCHÜTZ, MARKUS, KRÖSL, KATHARINA, and WIMMER,
MICHAEL. “Real-Time Continuous Level of Detail Rendering of Point
Clouds”. 2019 IEEE Conference on Virtual Reality and 3D User Inter-
faces. Osaka, Japan: IEEE, Mar. 2019, 103–110 10.

[SMOW20] SCHÜTZ, MARKUS, MANDLBURGER, GOTTFRIED,
OTEPKA, JOHANNES, and WIMMER, MICHAEL. “Progressive
Real-Time Rendering of One Billion Points Without Hierarchical
Acceleration Structures”. Computer Graphics Forum 39.2 (May
2020), 51–64 7.

[SP04] SAINZ, MIGUEL and PAJAROLA, RENATO. “Point-based rendering
techniques”. Computers & Graphics 28.6 (2004), 869–879 2.

[SP11] SCHEIBLAUER, CLAUS and PREGESBAUER, MICHAEL. “Consol-
idated Visualization of Enormous 3D Scan Point Clouds with Scanopy”.
Proceedings of the 16th International Conference on Cultural Heritage
and New Technologies. Vienna, Austria, Nov. 2011, 242–247 2.

[SW11] SCHEIBLAUER, CLAUS and WIMMER, MICHAEL. “Out-of-Core
Selection and Editing of Huge Point Clouds”. Computers & Graphics
35.2 (Apr. 2011), 342–351 3.

[WBB*08] WAND, MICHAEL, BERNER, ALEXANDER, BOKELOH,
MARTIN, et al. “Processing and interactive editing of huge point clouds
from 3D scanners”. Computers & Graphics 32.2 (2008), 204–220. DOI:
https://doi.org/10.1016/j.cag.2008.01.010 3.

[ZPVG01] ZWICKER, MATTHIAS, PFISTER, HANSPETER, VAN BAAR,
JEROEN, and GROSS, MARKUS. “Surface splatting”. Proceedings of
the 28th annual conference on Computer graphics and interactive tech-
niques. 2001, 371–378 3.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

126

https://www.forceflow.be/2013/10/07/morton-encodingdecoding-through-bit-interleaving-implementations/
https://www.forceflow.be/2013/10/07/morton-encodingdecoding-through-bit-interleaving-implementations/
https://www.forceflow.be/2013/10/07/morton-encodingdecoding-through-bit-interleaving-implementations/
https://youtu.be/TMorJX3Nj6U?t=4063
https://youtu.be/TMorJX3Nj6U?t=4063
https://github.com/potree/PotreeConverter/
https://github.com/potree/PotreeConverter/
http://potree.org
https://qgis.org/
https://doi.org/https://doi.org/10.1016/j.cag.2008.01.010

