
The Visual Computer (2021) 37:2769–2781
https://doi.org/10.1007/s00371-021-02243-x

ORIG INAL ART ICLE

Fast occlusion-based point cloud exploration

Mohamed Radwan1 · Stefan Ohrhallinger1 ·Michael Wimmer1

Accepted: 4 July 2021 / Published online: 28 July 2021
© The Author(s) 2021

Abstract
Large-scale unstructured point cloud scenes can be quickly visualized without prior reconstruction by utilizing levels-of-detail
structures to load an appropriate subset from out-of-core storage for rendering the current view. However, as soon as we need
structures within the point cloud, e.g., for interactions between objects, the construction of state-of-the-art data structures
requires O(NlogN ) time for N points, which is not feasible in real time for millions of points that are possibly updated in each
frame. Therefore, we propose to use a surface representation structure which trades off the (here negligible) disadvantage of
single-frame use for both output-dominated and near-linear construction time in practice, exploiting the inherent 2D property
of sampled surfaces in 3D. This structure tightly encompasses the assumed surface of unstructured points in a set of bounding
depth intervals for each cell of a discrete 2D grid. The sorted depth samples in the structure permit fast surface queries, and
on top of that an occlusion graph for the scene comes almost for free. This graph enables novel real-time user operations
such as revealing partially occluded objects, or scrolling through layers of occluding objects, e.g., walls in a building. As an
example application we showcase a 3D scene exploration framework that enables fast, more sophisticated interactions with
point clouds rendered in real time.

Keywords 3D navigation · Real-time processing · Occlusion

1 Introduction

A variety of current sensors allows acquiring large scenes as
dense point clouds, and state-of-the-art methods can render
such huge 3D data in real time. Billion-sized point clouds
can be inspected using hierarchical structures that select
frame-varying levels of detail (LOD) as a few million points
subset within the viewing frustum for rendering. As interac-
tive 3D applications become more common, visualization is
not enough, and the demand increases to interact with and
explore suchpoint clouds,which canquickly change between
frames. In this paper, we investigate interactive handling and
querying changing subsets of point clouds beyond simple
visualization and navigation.

In order to make the per-frame construction and query-
ing of a data structure fast enough, we exploit both the fact

B Mohamed Radwan
mradwan@cg.tuwien.ac.at

Stefan Ohrhallinger
ohrhallinger@cg.tuwien.ac.at

Michael Wimmer
wimmer@cg.tuwien.ac.at

1 TU Wien, Vienna, Austria

that for changing subsets of a point cloud, a view-dependent
structure is sufficient, and that the inherent 2D property of
samples of a surface results in low depth complexity for
its projection. A related method is thickened layered depth
images (TLDI) [29], which is constructed subsequently for
each depth layer, and extends the depth value of LDIs [19]
to a bounding interval (for a more detailed description, see
Sect. 3.1). We propose to extend it to a more generic and
efficient discrete depth structure (DDS) that re-samples the
point cloud at a 2D grid and generates a list of intervals per
cell, orthogonal to the grid, for all depth layers in the same
pass, thus drastically reducing the runtime of several passes
on the same input data that TLDI requires. In case this grid is
aligned with the view plane, these lists correspond to depth
intervals encapsulating the surface along the box projected
by the cell into 3D, and thus the surface can be approximated
by the centers of these intervals. The construction time of the
DDS is not a function of points but rather of fragment count
(see Sect. 3.2). For input point clouds with area-covering
splat radii, the number of fragments is always proportional to
the grid size, making its runtime mostly output-sensitive. We
also explain a modified pipeline to label the depth intervals
by object ID while constructing the DDS, for applications

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-021-02243-x&domain=pdf
http://orcid.org/0000-0002-5938-557X


2770 M. Radwan et al.

where depth bounds of different objects should be distin-
guished.This requires just an additional sortingpass,whereas
the TLDI has to be constructed for each object separately in
such cases.

A common challenge in exploring immersive scenes is
to find occluded objects. As occlusions are view-dependent,
occlusion relations between the scene objects can easily be
extracted from the sorted view-aligned depth intervals of the
DDS. This is similar to casting rays perpendicular to (and at
the centers of the cells of) the 2D grid on which the DDS
is built, where the discretization guarantees that all parts of
the surface relevant to the current view is considered. Once
an occlusion graph has been built for a view, occluders of
an object or a set of objects can be determined much faster
because of the much coarser (object) granularity of the graph
compared to considering individual points. We provide an
exploration tool, based on occludee revealing, to aid users
with quickly understanding a scene and the spatial relations
between its objects. This tool is coupled with a rendering
structure, specifically Potree [34], to form a complete frame-
work for both rendering and exploring huge point clouds.
Potree is responsible for selecting a subset of points for ren-
dering the current view, while the processing module builds
the DDS on the selected points and constructs the occlusion
graph used by the exploration component.

Our contributions in this paper are:

– The DDS: A tight surface-bounding structure for point
clouds with constant time queries which generalizes the
TLDI [29] and constructs much faster, in the same pass
for all depth layers

– As an application, novel intuitive and real-time opera-
tions for effective point cloud explorations which are
enabled by using the DDS (see Fig. 1)

We demonstrate these contributions in a framework that
can both visualize and explore out-of-core point clouds in real
time. Furthermore, the DDS can also be used for accelerating
queries such as k-nearest neighbors, ray casting, collision and
change detection.

In Sect. 2 we describe related work, then the technical
details of our proposed DDS in Sect. 3, before presenting
the framework in Sect. 4. We evaluate the performance in
Sect. 5 and conclude in Sect. 6, together with an outlook
towards future work.

2 Related work

Multi-layers Structures: Algorithms based on projecting 3D
models into multiple layers in screen space have been used
in several applications such as ray tracing, collision detec-
tion, and transparency. Everitt [15] introduced depth peeling,

Fig. 1 Interactively browsing occluded objects: Occluders of a selected
object are arranged in visibility layers for browsing through them, using
the Browse Occluders function. Top: The couch is selected (border
shaded blue). Center and Bottom: First and second visibility layers of
occluders (encircled red) of the couch, respectively, are removed in
order to expose the entire couch

where geometric data are repeatedly projected to extract one
depth layer at a time. The illustration buffer introduced by
Carnecky et al. [5] is a view-aligned structure that stores all
depth layers through a single data projection, and is used
to control transparency at objects silhouettes for enhanced
illustrations. Hofmann et al. [21] perform screen-space ray
marching on a hierarchical multi-layer structure, that merges
fragments to form lower resolutions.

Layered Depth Images (LDIs) [35], which are basically
depth layers, were used to approximate volumes and detect
collisions [18], and to model collisions responses [16]. All
these methods and structures process and sample continuous
surfaces in the form of polygonalmeshes. Ourmethod allows
for including more data representations, such as sampled
point sets. We define the underlying surface, and resample it
uniformly.

Radwan et al. [29] based their Thickened Layered Depth
Images (TLDI) on theLDIs to detect collisions between point
clouds by enveloping the points with an assumed thickness

123



Fast occlusion-based point cloud exploration 2771

derived from point density. Their approach to extract depth
images is similar to depth peeling, augmented by stages to
merge depth intervals. Our proposed DDS is based on simi-
lar definitions and provides the same purposes, but builds the
depth bounds much more efficiently and independent on lay-
ers complexity so that occlusions graphs can be determined
by a small fraction of the time, making it very near-linear in
practice.

Occlusion Management: Many occlusion management
techniques have been proposed to discover fully and partially
hidden objects in visualizations. Elmqvist and Tsigas [13]
recognized five broad design patterns in such techniques,
namely volumetric probes,multiple views, virtualX-ray, tour
planners and projection distorters. In the multiple views pat-
tern, different views and perspectives of the virtual world
are presented, such as the hand-held world copy WorldIn-
Miniature [36], worldlets [14], visibility widgets [30], and
multi-perspective images [40]. The volumetric probes find a
hidden object among occluders using a probe object, such as
Depth Ray or 3D Bubble Cursor [38], possibly transform-
ing or distorting the occluders [3,7], or rearranging cluttered
objects in a planar view to select the desired one such as
SQUAD [24] and EXPAND [6]. V irtual x-rays turn objects
transparent or semi-transparent in order to reveal occluded
items [11,25]. All these techniques assume that the objects
have a priori well-defined surfaces, and that they are arranged
in a tree-like structure, in order to find occlusions and order
along depth efficiently via ray casting. In our approach,
this information is extracted from the DDS, which is built
in real time and approximates the surfaces of unstructured
point clouds. We reveal partially occluded objects by hiding
the occluders; however, different visualization (e.g., trans-
parency), can be easily integrated in our system.

Mossel and Koessler [25] also target dense point clouds.
However, their approach allows users to locate just a single
object, walk closer to it along a cut plane, and segment it
with a region growing algorithm. Our approach structures
the whole scene in real time, and allows for a faster revealing
of many objects, without changing the viewpoint.

A different approach to handle occlusions was presented
by Eisemann et al. [12], where they cut meshes into lay-
ers based on visibility. This method is used to convert 3D
geometry into 2D vector graphics, and is most useful to cut
self-occluded objects.

Bounding structures: Convex bounding volumes (e.g.,
convex hulls, spheres, bounding boxes, k-DOPs) are used as
efficient shape representation in many applications to speed
up queries and intersection tests. Other coarse bounding
meshes—sometimes called “cages”—fit highly non-convex
shapes tighter and perform faster than convex volumes,
such as nested cages [32], bounding proxies [4], and oth-
ers [8,10,33,41]. Those structures bound the shape volume,
while the DDS is a tight bound of the surface, making it suit-

able for representing the different surface layers of the shape
from a specific view, as well as handling shapes which are
incomplete or have boundaries.

Large point sets sampling: Large-scale point clouds are
usually rendered using hierarchical levels-of-detail struc-
tures, which sub-samples them into smaller representative
subsets for actual rendering. Rusinkiewicz and Levoy [31]
introduced the first hierarchical structure for rendering
points, and Dachsbacher et al. [9] proposed a sequential ver-
sion of it for efficient processing by GPUs. Several following
approaches proposed multi-resolution tree structures [2,17,
26,34,37,39]. Our framework integrates the state-of-the-art
multi-resolution Potree [34]with theDDS for real-time scene
rendering and exploring.

3 Discrete depth structure

The DDS is based on similar definitions as the TLDI [29],
and stores the same information, but it is more generically
applicable, and we present a much more efficient method to
construct it by combining its multiple passes on input data
into a single one. Section 3.1 reviews the common theoretical
basis, and Sect. 3.2 explains the new,more efficient construc-
tion pipeline.

3.1 Discrete surface bound

We now repeat some definitions [29], partly adapted: They
define a tight cover of spheres � to enclose a set of points
and their underlying surface �. The intersection of spheres
defines the connectivity between points, which is simplified
to the intersection of disks due to their projection onto a
plane, and overlaps in the direction orthogonal to that plane.
They refer to that projection direction as depth, and we also
use it that way in our proposed method. In 3D, this union of
disks corresponds to a union of cylinders (termed �′) whose
bases are aligned to the projection plane. A ray perpendicu-
lar to that projection plane intersects each cylinder in a 1D
segment along the depth which is called “fragment interval.”
For an equal thickness of the boundary in view direction,
all overlapping depth intervals are blended. Blending com-
putes both start and end of the result interval as a weighted
mean of the overlapping intervals’ start and end values. The
weight should be inversely proportional to the distance x
between the ray and the point enclosed by the cylinder, pro-
jected onto the view plane. Therefore, we choose as weight

the Gaussian function wi = e−x2i /
∑

i e
−x2j for fast decay.

We call these resulting depth intervals (blended from over-
lapping cylinders, or stemming from single cylinders) “depth
bound intervals,” DBI, and �̂ is defined as the union of those

123



2772 M. Radwan et al.

Fig. 2 The ray r intersects three overlapping cylinders, generating three
fragment intervals, f1,2,3, which are blended into the depth bound inter-
val (DBI) d

Fig. 3 Left: The surface sample points are enclosed in the cylinder
cover �′. Right: Cylinders’ depth ranges along view-aligned rays are
blended into depth bound intervals �̂

DBIs. Figure 2 illustrates the concept of cylinder intersec-
tions, blending and DBIs.

Then, they approximate � with the smooth surface �̂,
which they define as bounded by the union of cylinders and
passing through the centers of the DBIs of �̂. We call these
centers “depth samples.” The DBIs can also be considered
as confidence intervals for the depth samples’ positions.

In order to enable hole-free reconstruction of the surface,
the cylinders have to overlap. Thus, the radii of the cylinders
have to be estimated from the sampling density, either per
point using k-nearest neighbors search, or as a global param-
eter from the minimum sample distance, to avoid the search
and preserve the time complexity advantage.

The projection plane is then discretized to a 2D grid, while
the DBIs of �̂ remain continuous in the third dimension. The
distance x between the fragment and the generating point is
also discretized as the distance between their cells. We use
theManhattan distance, commonly usedwith grids, for faster
calculations. Figure 3 illustrates the transition from the union
of cylinders�′ to discretized �̂, and Fig. 4 shows an example

Fig. 4 The DDS of a sphere with example cell rays from the 2D aug-
mented view-plane grid, (top: twodepth intervals, bottom: a single depth
interval)

of the constructed discrete grid and DBIs together with the
original surface the points were sampled from.

3.2 DDS: construction and queries

The TLDI [29] construction algorithm combines the point-
splatting and depth-peeling methods. The construction pip-
eline consists of the common three passes of point splatting:
visibility, blending, and normalization [23], augmented by
three more passes to find the depth intervals contributing to
the thickened layer to be extracted. The whole pipeline of
full six passes is required for each depth layer, which limits
the range of applications that can be performed interactively
using the TLDI. It performs well with models of little depth
complexity, or when only few depth layers suffice to answer
most of the queries (e.g., collision detection [29]), amortizing
the total runtime. However, construction time for all depth
layers of complex models (e.g., indoor scenes such as large
office buildingswithmanywalls, furniture) increases quickly
and thusmakes it infeasible for interactive operations. Unlike
the TLDI, the construction runtime of the DDS data structure
proposed in this section is not dominated by the number of
visibility layers, because the depth-bound intervals for all
layers of the current view are constructed at once, avoiding
many iterations over the input data.

The main stages of the construction pipeline are (Fig. 5a
illustrates this pipeline with an example):

123



Fast occlusion-based point cloud exploration 2773

Fig. 5 aThe construction pipeline:A ray fromgrid cell c passes through
the cylinders of three points. Each pi generates a fragment interval of
length Li , a distance Di from the projection plane (nearest depth), and
a distance xi from the ray on that plane. The projection stage creates the
fragment intervals of the points in processing order (Di , Li , xi ). The
three arrays are then sorted by Di . The two overlapping intervals p1,

p2 are blended into one DBI (depth db, length Lb), p3 become a single
DBI. b The augmented construction pipeline: Points p1, p2, p5, p6
belong to one object, while p3, p4 belong to another. Fragment inter-
vals are sorted by a compound key (object ID, nearest depth). Then,
overlapping fragment intervals are blended. Finally, DBIs are sorted by
sample depth

– Counting The purpose of this stage is to count the num-
ber of fragments, in total and per cell. The cylinders are
projected onto the projection plane, which is similar to
rendering a disk splat centered at each point in screen
space, possibly covering multiple grid cells. Each frag-
ment increments the counter of its cell in a regular frame
buffer, the count buffer. The total number of fragments
is then calculated from the count buffer using the reduce
function of Thrust [20], a CUDA toolkit library for par-
allel computing. An offset buffer is also computed from
the count buffer, using the Thrust exclusive_scan func-
tion. The offset buffer holds the starting location of each
fragment in the fragment interval storage buffers for each
cell, and its usage is explained next.

– Projection The splats are projected again to generate the
fragment intervals. For each generated fragment interval,
the offset buffer indicates its position in the follow-
ing three storage buffers, while incrementing the count
buffer:

1 A 64-bit compound buffer to store both the cell ID (in the
32 most significant bits) and the nearest depth (32 least
significant bits)

2 A 32-bit length buffer to store the interval length L =
2 ∗ diskradius

3 A 32-bit distance buffer to store the Manhattan distance
from fragment cell to splat center cell

– Sorting In order to keep fragment intervals consecu-
tive per cell, we sort them by the composite key of the
cell ID and the nearest depth, which are already packed
in the compound buffer. We use the Thrust function
sort_by_key to sort the fragment interval indices in an
index buffer, using the compound buffer as key. Using

the Thrust function gather, we then reorder both length
and distance buffers using this index buffer. In our exper-
iments, the sort_by_key function performed faster than
sorting cells in parallel. The reason for this is the vary-
ing number of fragment intervals per cell, which prevents
effective parallelization, whereas sort_by_key processes
the entire array fully in parallel.

– Blending A traversal of the sorted fragment intervals per
cell finds groups of subsequent overlapping intervals, and
blends them as follows. Starting with the nearest interval
I0, both start and end pointers are positioned at this entry
0, and an interval R is initialized as R = I0. At each
subsequent interval Ii , we check whether it intersects R.
If yes, we assign R = R ∪ Ii , and move the end pointer
to position i . If Ii does not intersect R, then the frag-
ment intervals from start to end pointer are blended into
a single DBI, or in case of a single interval, copied. The
traversal is then resumed with entry i as long as entries
exist, by updating R as R = Ii , andmoving both start and
end pointers to i . This procedure creates the DBIs from
fragment intervals in depth order. The depth sample of
each DBI is in its center.

Out-of-core data sets have to be split into chunks for
sequential processing, which requires an incremental con-
struction of the DDS. The pipeline stages are applied to each
chunk, and the resulting fragment intervals are merged with
aggregated intervals in a reference structure. The DBIs are
the aggregated intervals after all points are processed, when
their start/end can be finally calculated as theweightedmean,
for sorting them. An alternative is to sample the points using
a 3D grid, scale the cylinders’ radii accordingly, and build the
DDS in one go. In applications like ours, where the points are

123



2774 M. Radwan et al.

Table 1 Comparing time and space complexity in the number of points
N for construction, random access queries, whether neighbor elements
can be retrieved with coalescing memory accesses, and space required
in memory (f=load factor, L=number of layers, N=number of points,
F=fragment count ≈ L*grid size)

Structure Construction R.-Access Coal. Space

Hashmap O(N) O(1) no O(N)f

Bintree O(N log N) O(log N) no O(N)

DDS O(F log L) O(1) yes O(N)

displayed on screen, the DDS uses the point subset selected
by the out-of-core rendering algorithm.

The time complexity of the algorithm is dominated by the
sorting stage, being O(mn.L log L) ≈ O(F log L), withmn
as the discrete grid size, L as the number of layers, for F frag-
ments. Note that, since fragments have already been binned
to cells in order, the buffer is almost sorted, and just requires
sorting within the layers of individual cells. As L << F , the
construction time of the DDS becomes near-linear. Table 1
shows that our view-dependent spatial structure is compet-
itive with state-of-the-art structures for such purposes, as it
has lower time complexity both in construction and queries
than bintrees, and can exploit coalescing memory accesses,
which hashmaps cannot. It also needs less or equal space than
these data structures. Furthermore, it yields the connectivity
of the points for free, without explicitly having to search for
and connect neighbors. Time-coherent updates for changing
point clouds are of the same low complexity as their pro-
portional construction since this only touches affected grid
cells.

4 Occlusion-based scene exploration

We demonstrate the DDS with scene exploration as appli-
cation. The proposed framework consists of a rendering
component, a reconstruction component, and an exploration
user interface. Rendering is built upon a levels-of-detail
(LOD) structure, namely Potree [34], while reconstruction
and exploring are based on theDDS. The reconstructor builds
the DDS, and the explorer uses the structure to construct an
occlusion graph, which is queried by the exploration oper-
ations to reveal objects by hiding other objects. The list of
objects marked as hidden by the exploration operations is
sent to the renderer, so that their points are discarded during
rendering. Both the DDS and the occlusion graph are built on
theGPU, sinceparallelization is required for real-timeperfor-
mance. Post-construction, the occlusion graph is transmitted
to the CPU, as searching its relatively small size is neither
well parallelizable nor critical in terms of runtime. Figure 6

illustrates how the different components in the framework
interact.

The input to the framework is a (potentially out-of-core)
point cloud scene, which has already been scanned, labeled
and stored in a format readable by Potree, namely a num-
ber of subclouds with different LODs. A prerequisite for
our exploration application is the labeling of these points.
Recently, several deep learning-based point cloud seman-
tic segmentation and classification methods [22,27,28] have
been introduced, with high accuracy rates, so that we can
assume that this step can be performed efficiently in a pre-
process. For our sample scene, we used a point cloud already
labeled by object categories. Points of the same category are
further clustered into individual objects based on proximity,
as explained in more detail in Sect. 5.

4.1 Reconstruction

The rendering component selects a number of visible sub-
clouds (octree nodes) to load into the GPU at render time,
based on the current view. In Potree, points are displayed as
soon as the first, coarser, nodes are loaded, while finer sub-
clouds are loaded in subsequent frames to refine the rendered
image. When moving the camera, this process is repeated.
Thus, the subset of points rendered in the current frame often
changes a lot from the previous frame. Each point is rendered
as a splat, with its radius proportional to the level of detail
(LOD) of its subcloud. The reconstruction component builds
a DDS of the scene upon user request, using the available
selected points at request time. We assign the splat radius
of the points as their cylinder radius, in order to achieve a
mostly hole-free reconstruction. In order to create the occlu-
sion graph from the user’s view, we build the DDS according
to these camera parameters, with the view plane as its pro-
jection plane, and the same rendering perspective projection.
The 2D grid has the same resolution of the render frame
buffer as default. Reducing the grid resolution is easily pos-
sible, trading off little precision for faster construction.

4.1.1 Per-object reconstruction

For occlusion detection, we require the depth samples of the
DDS to be labeled with object IDs so we can determine the
relations between entire objects. This requires some augmen-
tation of the DDS construction process.

First, we have to avoid blending the fragment intervals of
different objects. Thus, fragment intervals have to be sorted
by cell ID, object ID and depth. CUDA supports variables
of up to 64 length; therefore sorting can only be performed
in a single pass if the three attributes fit in a 64 bits com-
posite key. This is possible only up to the case of a full HD
resolution and 211 objects (or tradeoffs between those). Oth-
erwise, we sort the fragment intervals two times, first by

123



Fast occlusion-based point cloud exploration 2775

Fig. 6 The framework components and the data flow

depth, and then by a composite key of cell ID and object ID
using Thrust stable_sort, which maintains the relative order
of entries with similar key values. The results of the blend-
ing stage are then consecutive DBIs per object for each cell.
After the DBIs have been generated on a per-object basis,
they are still sorted by object ID before depth for each cell.
Therefore, we perform an additional sort with the original
composite key (cell ID, depth) in order to correct the depth
ordering. Figure 5b illustrates the augmented pipeline with
an example.

4.2 Occlusion detection with the DDS

We can now determine the occlusion relations between
objects by looking at the order of the sorted depth samples per
cell.Note that per cellwe only have to consider the front-most
(nearest) depth sample for each object. Therefore, for each
label we only consider the nearest (i.e., first encountered)
depth sample and ignore those that follow. If we encounter
a nearest depth sample labeled X and then a nearest depth
sample labeled Y, we mark object X as occluding Y (plus all
other objects for which a nearest depth sample follows).

A common case of obvious false positives can happen at
the boundaries, where the nearest depth samples of two adja-
cent but non-occluding objects are projected into the same
cell, such as in Fig. 7a. Since the DBIs of such depth sam-
ples are usually close in depth and intersect in their range,
we manage to exclude such false positives by ignoring depth
samples in that case. This condition could result in false neg-
atives when the occluder and occludee are close along the
depth direction and the occluder consists of only one layer,
so that the nearest DBIs of the two objects intersect in all
cells, such as in Fig. 7b. But this is a very rare case. In real
scenes, most of the objects have more than a single depth
layer (even, e.g., a thin wall), and the nearest DBIs of the
occluder and occludee are separated by DBIs of other layers
of the occluder, as in Fig. 7c.

Fig. 7 Cross sections of the DDS from top view, for different cases of
occlusion. The nearest DBIs are dotted. a Nearest DBIs in the occluder
and occludee intersect at the boundaries extensions of the two objects.
Due to the intersection, no occlusion is reported, otherwise it would be
a false positive case. b A false negative case: The occluder is a thin
object with only one layer, all its DBIs intersect with the nearest DBIs
of the occludee. c A regular case, with two layers in both occluder and
occludee. Occlusion is detected, because there is at least one nearest
DBI in the occluder that precedes a nearest DBI in the occludee, so they
do not intersect

In point clouds scanned from real-world scenes, data is
often missing or sparse at regions that are invisible or hardly
visible from scan positions. Our occlusion finding algorithm
is robust to such data deficiencies, because only data that is
actually present forms layers.

4.3 Occlusion graph and visibility layers

From these occlusion relations we can now construct the
occlusion graphwith objects as nodes and occluder–occludee
relations as directed edges. The cells’ DBIs are traversed in
parallel, each cell with a thread, to accumulate all occlusions
tuples (occluder, occludee) in an array. The tuples are sorted
by Thrust sort, duplicates are removed by Thrust unique, and
the graph is constructed as a list of objects with each object
keeping a pointer to a set of its occluders.

The number of non-overlapping objects (depending on
the level of segmentation) determines the complexity of the
occlusion graph; the more objects, the more complex is the
graph. In indoor environments, a segmentation can break
down the scene into individual objects, further into semanti-
cally defined parts, or even into a convex decomposition [1]
of parts. Coarser levels are also possible, such as segmenting
the scene into rooms. Figure 8 shows a simple example scene
and corresponding occlusion graphs of different segmenta-
tion levels. In case more than one level of segmentation is
provided, e.g., encoded in per-level bitsets of the object ID,
the user can control the graph complexity andmove from one
level to another interactively. In our experiments, we segment
the scene into objects, but nearby objects of the same class
may be grouped together if they overlap, as will be explained
in more detail in Sect. 5.

In order to reveal an object, we just have to remove its
occluders. Occluders can also be arranged in visibility layers,

123



2776 M. Radwan et al.

Fig. 8 The complexity of the occlusion graph of a scene depends on
the segmentation granularity. Left Scene of two chairs, floor and wall.
Occlusions graphs: Center top For nearby objects of the class grouped
as single object. Center bottom For object-level segmentation. Right:
For part-level segmentation. Here, all the chairs parts also occlude the
wall (omitted for simplicity)

Fig. 9 A cycle is encountered while assigning objects (all occluded) to
a layer. The least occluded object (table) is added to the layer

so that the user can browse through them, instead of hiding
all occluders at once. We define the visibility layers as an
ordered list (l0, l1, ...) of unordered sets, such that l0 is the
set of entirely unoccluded objects, and li is the set of objects
not occluded by any objects except those in l0..i−1, and so
on.Thequadratic-time layering algorithmsearches for totally
non-occluded nodes and adds them to l0, and repeats this for
the next layers.

A sequence of objects may form a cycle in the occlu-
sion graph, where each object occludes the next in a loop.
Separating this set of objects into several visibility layers is
impossible, as each of them will then be always occluded
by another one in that set. If the graph contains at least
one such cycle, even if it is as small as two nodes, then the
layering algorithm will fail to find any non-occluded nodes
to add to li at some i . When this happens, we determine
the object least occluded (that is, the object with the fewest
occluded nearest depth samples) and add it to li . In case the
selected object is not part of the cycle, the cycle persists, and
is encountered again in the next layer(s), where the process
is repeated. Figure 9 shows an example of an occlusion cycle
encountered during the layering process. Selecting the least
occluded objects is a heuristic, based on the fact that our sys-
tem explores objects by revealing them. Other heuristics are
possible, such as selecting the nearest object to the camera,

or the one occluded by the least number of objects. The user
can select the preferred strategy.

4.4 Exploration tools

Once the DDS has been constructed for the current view, the
user can explore novel exploration operations until theymove
the camera.Desired objects are highlighted by rendering their
boundaries with a distinct shade, e.g., blue. The list of bound-
ary pixels is sent to the rendering component to update the
current frame. Being able to expose (partially, or even multi-
ply) occluded objects can help the users to faster understand
environments, especially in cluttered indoor scenes. We pro-
pose the following functions:

– Click to Reveal: The user selects a partially visible object
and clicks to hide all its occluders.

– Reveal by Class: In case objects are categorized (e.g.,
chairs, tables, etc.), the user chooses to reveal all objects
of a specific class.

– Hide with Occluders: Selecting an object and hiding it is
a simple operation that does not need occlusion informa-
tion. This advanced operation hides the selected object
together with all its occluders. This operation is a com-
posite of ’Click to Reveal’ an object, and then applying
’Hide’ to it. It can be useful when the user wants to hide a
whole room, for example, so that they can select the wall
in order to hide it plus its occluders.

– See through: The objects behind the visible object along
the cursor position are displayed on a panel on the right,
sorted by depth. In dense environments, the number
of displayed occludees can be controlled by the user.
This operation is useful when the user wants to explore
the scene without hiding objects. It also reveals fully
occluded objects.

– Browse Occluders: Some interesting occluders of an
object could be fully occluded themselves, and if the user
would apply the Click to Reveal operation on that object,
those would be hidden. Instead of hiding all occluders of
an object at once, this operation arranges the occluders in
their visibility layers, and the browsing operation is then
applied to objects per visibility layer. This operation is
most useful when the user is searching for a specific item.

– Browse Layers: We arrange all objects in the scene
(instead of just occluders of a single selected object as
above) in visibility layers, and can then browse forward
and backward through them. This function is useful for
quick understanding of small scenes.

We keep an array of hidden objects that is updated after
each operation and sent to the rendering component, so that
it can discard the points of these objects during rendering.

123



Fast occlusion-based point cloud exploration 2777

Fig. 10 Exploration functions, always before/after click. a, b Click to
Reveal reveals the selected object. c, d Reveal by Class reveals the
selected object together with all other objects of the same category. e, f
Hide with Occluders hides the selected object together with its occlud-
ers. g, h See through displays the occluded objects along the cursor. i–l

Browse Layers browses the layers of the scene. In each subfigure of the
browsing functions, the objects to be removed the next subfigure are
enclosed in red. m–p Browse Occluders browses the layers of objects
occluding the selected object. Objects to be removed are also enclosed
in red

Alternatively, such objects could be turned semi-transparent.
Figure 10 shows examples of the Click to Reveal, Reveal by
Class, Hide with Occluders, See through, Browse Occluders
and Browse Layers operations applied to the objects of a
scene.

5 Evaluation

Weused the open source softwarePotree [34] as the rendering
component. The DDS and exploration tools were imple-
mented using C++ and CUDA, as well as OpenGL shaders
to show/hide objects. All experiments were performed on an
AMD Ryzen 7 3700X 8-Core CPU, with 64 GB RAM, and
GeForce RTX 2070 SUPERGPU. The frameworkwas tested
on a large indoor scene (http://buildingparser.stanford.edu/)
with more than 30 rooms and 40M points. The points of

123

http://www.buildingparser.stanford.edu/


2778 M. Radwan et al.

Fig. 11 The model and the four views used in the quantitative compar-
ison. Top Top view of the model. Bottom View 1–4 in reading order

the scene are labeled as common indoor categories, such as
chairs, tables, etc., however they are not grouped together as
objects. For the purpose of our experiment, we performed a
quick heuristic segmentation of points in each category in
a preprocess: First, a seed point is randomly chosen, then
points of the same category in its 10-nearest-neighbors set
are added recursively as long as points can be added. This is
repeated for unvisited points until all points are grouped in
sets. A set can contain the points of an object or a part of an
object (e.g., chair arm). Next, sets of less than 500 points are
marked as small, and joined with the nearest non-small set
of the same category. Some close objects of the same cate-
gory (e.g., chairs) are joined in a single set, which we found
acceptable in our experiments.

Table 3 Occlusion graph sizes for DDS with 5122 and 2562 grid reso-
lution (N=nodes, E=edges)

view #N (5122) #N (2562) #E (5122) #E (2562)

1.4 1512 1513 55072 53865

2 865 866 28238 27840

3 1029 1029 26233 26327

4 1658 1659 64479 63417

Table 4 Runtime of the DDS (5122) construction stages (in millisec-
onds, and percent, averaged over views 1–4)

Count Proj Sort Frag Blend Sort DBIs Total
O(F) O(F) O(F log L) O(F) O(F log L)

11 32 60 11 6 120

9.2% 26.6% 50.0% 9.2% 5% 100%

DDS vs TLDI:We compared the computation times of the
DDS (grid sizes 256×256 and 512×512) against the TLDI
(grid size 512×512). Four different views (see Fig. 11), one
of themwith different resolution, were taken from themodel,
on which both the DDS and TLDI were applied. Table 2
shows the construction time of the two structures in millisec-
onds. For the particular application of finding occlusions,
it is sufficient to compute the first layer only of the TLDI.
Nevertheless, the 5122 DDS construction time is about 20
to 40 times faster than the TLDI. This is due to the fact that
the TLDI is built per object, and the scenes we processed
consist of about thousand objects (see Table 3). Table 2 also
shows that finding occlusions with TLDI is several magni-
tudes slower than finding them using the occlusion graph
with the DDS, because the TLDI layers of the objects have
to be compared in pairs, which results in quadratic runtime,
making detecting occlusions with the TLDI infeasible for
any but very small scenes.

DDS runtime analysis: Table 2 also shows that the con-
struction time of a downsized (2562)DDS and the associated
occlusion graph are both reduced to about 35%–40%, com-
pared to the (5122) DDS. Construction times for each

Table 2 DDS vs TLDI construction time with respective graphs

view id #points DDS (5122) DDS (2562) TLDI DDS (5122) Graph DDS (2562) Graph TLDI Graph

1.1 522k 115 41 4623 26.8 10.5 7.07 minutes

1.2 773k 125 45 4872 26.5 10.1 7.08 minutes

1.3 1.7M 151 58 3607 27.7 11.1 7.35 minutes

1.4 2.3M 149 59 3649 29.4 11.6 7.61 minutes

2 1.9M 126 49 3565 20.1 8.8 7.44 minutes

3 3.6M 168 72 4013 21.4 9.5 7.05 minutes

4 5.4M 205 97 3529 38.1 14.9 7.12 minutes

Timings in milliseconds, except for TLDI Graph

123



Fast occlusion-based point cloud exploration 2779

resolution are very close, independently of the number of
points, which supports our claim that DDS construction time
is mostly output sensitive.

Table 4 details the complexity and runtime of each stage
in the augmented DDS (5122) construction pipeline. Sort-
ing fragments is the dominant stage, and projecting disks is
next, with less than half the runtime. Sorting the DBIs takes
relatively short time, because the number of DBIs is usually
5–10 times smaller than the number of fragments. Other than
the sorting of the almost-sorted buffer, the linear stages sum
up to almost 50% of the total runtime.

Reduced resolution comes with reduced precision. How-
ever, Table 3 shows that the error in occlusions detected
(represented by differences of edge count in the occlusion
graph) is 2% or less.

6 Conclusion and potential applications

In this paper, we presented the—TLDI-based—DDS, a view-
dependent data structure with output sensitive runtime and
near-linear time complexity for practical cases that approx-
imates a tight surface bound from point sets in real time.
Since the separate layers of the surface w.r.t. visibility from
the current view are already sorted in this structure, occlu-
sions are easily detected with little computational effort. This
is both useful and efficient for users to locate hidden objects
in cluttered scenes.

The DDS as time- and space-efficient structure has poten-
tial for many additional purposes, and we intend to continue
studying it in different applications. The following are poten-
tial uses of the structure:

– Point cloud data structure: Instead of resampling the
depth values of the original points into DBIs, the original
samples could be kept in a list linked to their DBIs. This
enables speeding up operations on the points’ neighbor-
hoods, such as kNN search.

– Voxel-based representation: The DDS is quite similar to
voxel structures, except that its bounding intervals along
one axis, e.g., depth, are continuous and do not have to be
aligned. This offers both more flexibility and resolution.
Like grids, the DDS can function as an intermediate rep-
resentation of a model, and then be meshed, also easily
more coarsely.

– Bounding volume: The structure also serves as a tight
bounding volume, which is useful for, e.g., simulations
and shape deformation, among others.

– Compact representation: As the bounding intervals have
no fixed depth, the DDS encodes spaces much more
efficiently than a grid or voxels. This can be exploited
in change detection, where storing the occupied space

between surfaces would require too much space with tra-
ditional hierarchical data structures.

– Visibility-based geometry filter: The DDS can prune the
nodes selected by a LOD structure for rendering by dis-
carding nodes occluded by the visible layers.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00371-021-02243-
x.

Acknowledgements This work has been partially funded by the Aus-
trian Science Fund (FWF) project no. P32418-N31 and by the Wiener
Wissenschafts-, Forschungs- und Technologiefonds (WWTF) project
ICT19-009

Funding Open access funding provided by TU Wien (TUW).

Declarations

Compliance with Ethical Standards The Authors declare that there is
no conflict of interest

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Asafi, S., Goren, A., Cohen-Or, D.: Weak convex decomposition
by lines-of-sight. Comput. Graphics Forum 32(5), 23–31 (2013)

2. Benger, W., Hildenbrand, D., Dobler, W.: Optimizing refined geo-
metric primitive’s leaflet visibility for interactive 3d visualization
via geometric algebra. In: Proceedings of CGI 2018, p. 267–272.
ACM, NY (2018)

3. Bruckner, S., Groeller, M.E.: Exploded views for volume data.
IEEE TVCG 12(5), 1077–1084 (2006)

4. Calderon, S., Boubekeur, T.: Bounding proxies for shape approxi-
mation. ACM Trans. Graphics 36(4), 1–13 (2017)

5. Carnecky, R., Fuchs, R., Mehl, S., Jang, Y., Peikert, R.: Smart
transparency for illustrative visualization of complex flow surfaces.
IEEE Trans. Vis. Comput. Graphics 19(5), 838–851 (2013)

6. Cashion, J., Wingrave, C., LaViola Jr., J.J.: Dense and dynamic 3d
selection for game-based virtual environments. IEEETVCG 18(4),
634–642 (2012)

7. Chen, M., Correa, C., Silver, D.: Illustrative deformation for data
exploration. TVCG 13(06), 1320–1327 (2007)

8. Xian,C., Lin,H.,Gao, S.:Automatic generation of coarse bounding
cages fromdensemeshes. In: 2009 IEEE ICSMA, pp. 21–27 (2009)

123

https://doi.org/10.1007/s00371-021-02243-x
https://doi.org/10.1007/s00371-021-02243-x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


2780 M. Radwan et al.

9. Dachsbacher, C., Vogelgsang, C., Stamminger, M.: Sequential
point trees. ACM ToG 22(3), 657–662 (2003)

10. Deng, Z., Luo, X., Miao, X.P.: Automatic cage building with
quadric error metrics. JCST 26, 538–547 (2011)

11. Diepstraten, J., Weiskopf, D., Ertl, T.: Transparency in Interactive
Technical Illustrations. CGF (2002)

12. Eisemann, E., Paris, S., Durand, F.: A visibility algorithm for con-
verting 3d meshes into editable 2d vector graphics. ACM Trans.
Graph. 28(3), 83:1–83:8 (2009)

13. Elmqvist, N., Tsigas, P.: A taxonomy of 3d occlusion management
techniques. In: 2007 IEEE Virtual Reality Conference, pp. 51–58
(2007)

14. Elvins, T.T., Nadeau, D.R., Kirsh, D.:Worldlets–3d thumbnails for
wayfinding in virtual environments. In: Proc. UIST ’97, pp. 21–30.
ACM, NY, USA (1997)

15. Everitt, C.: Interactive order-independent transparency. Tech. rep.,
NVIDIA corporation (2001)

16. Faure, F., Barbier, S., Allard, J., Falipou, F.: Image-based collision
detection and response between arbitrary volume objects. EG Ass.
(2008)

17. Gobbetti, E., Marton, F.: Layered point clouds: A simple and
efficient multiresolution structure for distributing and rendering
gigantic point-sampled models. Comput. Graphics 28(6), 815–826
(2004)

18. Heidelberger, B., Teschner, M., Gross, M.: Real-time volumetric
intersections of deforming objects. In: VMV’03, vol. 2003, pp.
461–468 (2003)

19. Heidelberger, B., Teschner, M., Gross, M.: Detection of collisions
and self-collisions using image-space techniques. J. WSCG 12,
145–152 (2004)

20. Hoberock, J., Bell, N.: Thrust: A parallel template library (2010).
http://thrust.github.io/. Version 1.7.0

21. Hofmann, N., Bogendörfer, P., Stamminger, M., Selgrad, K.: Hier-
archical multi-layer screen-space ray tracing. In: Proc. of HPG ’17.
ACM, NY, USA (2017)

22. Hu, Q., Yang, B., Xie, L., Rosa, S., Guo, Y., Wang, Z., Trigoni,
N., Markham, A.: Randla-net: Efficient semantic segmentation of
large-scale point clouds. In: Proceedings of the IEEE Conference
on CVPR (2020)

23. Kobbelt, L., Botsch, M.: A survey of point-based techniques in
computer graphics. C&G 28(6), 801–814 (2004)

24. Kopper, R., Bacim, F., Bowman,D.A.: Rapid and accurate 3d selec-
tion by progressive refinement. In: 2011 IEEE Symp. on 3D User
Int. (3DUI), pp. 67–74 (2011)

25. Mossel, A., Koessler, C.: Large scale cut plane: An occlusion man-
agement technique for immersive dense 3d reconstructions. In:
Proc. 22nd ACM Conference on VRST, pp. 201–210. ACM, NY,
USA (2016)

26. Ponto, K., Tredinnick, R., Casper, G.: Simulating the experience of
home environments. In: 2017 International Conference on Virtual
Rehabilitation (ICVR), pp. 1–9 (2017)

27. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on
point sets for 3d classification and segmentation. arXiv:1612.00593
(2016)

28. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical
feature learning on point sets in a metric space (2017)

29. Radwan, M., Ohrhallinger, S., Wimmer, M.: Efficient collision
detection while rendering dynamic points. In: Proceedings of the
2014 Graphics Interface Conference, pp. 25–33 (2014)

30. Röhlig,M., Schumann, H.: Visibility widgets:Managing occlusion
of quantitative data in 3d terrain visualization. In: Proc. 9th Intl
Symp. VICI, VINCI ’16, pp. 51–58. ACM, New York, NY, USA
(2016)

31. Rusinkiewicz, S., Levoy, M.: Qsplat: A multiresolution point ren-
dering system for large meshes. In: Proc. 27th Ann. Conf. CGIT,
pp. 343–352. ACM, USA (2000)

32. Sacht, L., Vouga, E., Jacobson, A.: Nested cages. ACM Trans.
Graphics 34, 6 (2015)

33. Sander, P.V., Gu, X., Gortler, S.J., Hoppe, H., Snyder, J.: Silhouette
clipping. SIGGRAPH ’00, pp. 327–334. ACM Press/Addison-
Wesley Publishing Co., USA (2000)

34. Schuetz,M.: Potree: Rendering large point clouds inweb browsers.
Master’s thesis, ICGA, TU Wien (2016)

35. Shade, J., Gortler, S., He, L.W., Szeliski, R.: Layered depth images.
In: Proc. 25th Ann. Conf. CGIT, SIGGRAPH ’98, pp. 231–242.
ACM, NY, USA (1998)

36. Stoakley, R., Conway, M.J., Pausch, R.: Virtual reality on a wim:
Interactive worlds in miniature. In: Proc. of SIGCHI, CHI ’95, pp.
265–272. ACM, USA (1995)

37. Tredinnick,R.,Broecker,M., Ponto,K.: Progressive feedbackpoint
cloud rendering for virtual reality display. In: 2016 IEEE Virtual
Reality (VR), pp. 301–302 (2016)

38. Vanacken, L., Grossman, T., Coninx, K.: Exploring the effects of
environment density and target visibility on object selection in 3d
virtual environments. In: 2007 IEEE Symposium on 3DUser Inter-
faces (2007)

39. Wimmer, M., Scheiblauer, C.: Instant points: Fast rendering of
unprocessed point clouds. In: Proc. Symp. on PBG 2006, pp. 129–
136. Eurographics, EG Ass. (2006)

40. Wu, M., Popescu, V.: Multiperspective focus+context visualiza-
tion. IEEE Trans. Vis. Comput. Graphics 22(5), 1555–1567 (2016)

41. Xian, C., Lin, H., Gao, S.: Automatic cage generation by improved
obbs for mesh deformation. Vis. Comput. 28(1), 21–33 (2012)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Mohamed Radwan is a PhD
student in the Institute of Visual
Computing and Human-Centered
Technology at TU Wien, Austria.
He got his masters in 2007, from
Ain Shams University, Cairo,
Egypt. He worked in Ain Shams
University as a teaching assistant,
and later as an assistant in two
projects at TUWien, namely “Har-
vest4D,” and “SuperHumans:
Walking through walls.” He first-
authored two papers, and partici-
pated in writing 3 others.

123

http://thrust.github.io/
http://arxiv.org/abs/1612.00593


Fast occlusion-based point cloud exploration 2781

Stefan Ohrhallinger is a Post-
doc researcher at the Institute of
Visual Computing and Human-
Centered Technology at TUWien,
Austria. In 2013 he obtained his
PhD from Concordia University,
Montréal, Canada. Since October
2012 he is a research associate
at TU Wien, working mainly on
surface reconstruction, geometry
processing and point-based graph-
ics. He has first-authored seven
peer-reviewed papers in the domain
of curve and surface reconstruc-
tion. Website: https://www.cg.tu

wien.ac.at/staff/StefanOhrhallinger.html

Michael Wimmer is currently
a full professor at the Institute
of Visual Computing and Human-
Centered Technology at TUWien,
where he heads the Rendering and
Modeling Group and is director
of the Center for Geometry and
Computational Design. His cur-
rent research interests are real-
time rendering, computer games,
point-based rendering, procedural
modeling and shape modeling. He
has coauthored many papers in
these fields, and was papers co-
chair of EGSR 2008, Pacific

Graphics 2012, Eurographics 2015, Eurographics GCH 2018, and
VMV 2019. He is associate editor of Computers & Graphics and ACM
Transactions on Graphics.

123

https://www.cg.tuwien.ac.at/staff/StefanOhrhallinger.html
https://www.cg.tuwien.ac.at/staff/StefanOhrhallinger.html

	Fast occlusion-based point cloud exploration
	Abstract
	1 Introduction
	2 Related work
	3 Discrete depth structure
	3.1 Discrete surface bound
	3.2 DDS: construction and queries

	4 Occlusion-based scene exploration
	4.1 Reconstruction
	4.1.1 Per-object reconstruction

	4.2 Occlusion detection with the DDS
	4.3 Occlusion graph and visibility layers
	4.4 Exploration tools

	5 Evaluation
	6 Conclusion and potential applications
	Acknowledgements
	References




